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Abstract.
We discuss the possibility of a dimensional reduction of the Einstein equations in S3

black-hole lattices. It was reported in previous literature that the evolution of spaces con-
taining curves of local, discrete rotational and reflection Symmetry (LDRRS) can be carried
out via a system of ODEs along these curves. However, 3+1 Numerical Relativity computa-
tions demonstrate that this is not the case, and we show analytically that this is due to the
presence of a tensorial quantity which is not suppressed by the symmetry. We calculate the
term analytically, and verify numerically for an 8-black-hole lattice that it fully accounts for
the anomalous results, and thus quantify its magnitude in this specific case. The presence of
this term prevents the exact evolution of these spaces via previously-reported methods which
do not involve a full 3+1 integration of Einstein’s equation.
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1 S3 black-hole lattices and dimensional reduction

Black hole lattices, and in particular those conformally related to the 3-sphere S3, have
recently been the object of several studies [1–6] serving as toy models for the evolution
of inhomogeneous universes [2, 3], for the propagation of gravitational waves in periodic
spaces [4], for the exploration of cosmological models of non-trivial topology [5], and as an
application of Regge calculus [6].

In [3], in particular, it was pointed out that the existence of a time-symmetric spatial
hypersurface in these models, in addition to the high degree of spatial symmetry of the cell
edges, implied that the evolution of the proper length of these subspaces was governed by
a system of ordinary differential equations, and was thus decoupled from the surrounding
spacetime. Here, however, we show that this is not the case: the symmetry is not sufficient
to suppress one term, proportional to the curl of the magnetic part of the Weyl tensor, which
contains spatial derivatives of the extrinsic curvature, and therefore prevents the reduction
of the evolution equations to a simple, localized ODE system.

In section 2, we present the arguments of [3] and the corresponding ODE system. In
section 3, we integrate the Einstein equations numerically in 3+1 dimensions, and show that
the comparison between the result and the solution of the ODE system features an anomaly
which converges to a non-zero value in the continuum limit. In section 4, we rederive the
equations of motion of S3 black-hole lattices on the cell edges, and illustrate the origin of
the curl term. We also show that in the 8-black-hole case, the additional term initially
vanishes together with its first two time derivatives, but its third time derivative does not,
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thus providing the final piece of evidence that the ODE system from [3] does not hold for the
8-black-hole lattice. Finally, we show in section 5 that the anomaly measured numerically in
section 3 coincides with the curl term derived in section 4, and provide a fitting formula for
representing this term analytically, so that the ODE system can still be used in combination
with this source term. We provide some conclusions in section 6.

We will use the following index conventions throughout the paper: Greek indices µ, ν, . . . ,
will run from 0 to 3 and denote the spacetime objects. Objects defined on a spatial slice of
dimension 3 will be denoted using Latin indices i, j, . . . . Tensorial quantities will be some-
times written in the index notation (γij , Kij) and sometimes in the index-free notation using
the bold typeface γ, K.

2 Definition and properties of the LDRRS curves

In this section we will introduce the mathematical formalism required to formulate the result
of this paper. We will first restate the definition of a curve with a local, discrete rotational
and reflection symmetry (LDRRS), discuss the effects of these symmetries and present the
ODEs derived in [3]. The derivation of the reduced Einstein equations in [3] has been per-
formed using the orthonormal frame approach in the version given by van Elst and Uggla
[7]. This approach is less known than the standard ADM formalism and certainly less useful
in numerical investigations where we have direct access to the 3-metric and the extrinsic
curvature on a time slice, rather than the Ricci rotation coefficients or the commutation rela-
tions of an orthonormal frame. We shall therefore present here the derivation of the reduced
evolution equations from the ADM equations. Naturally, the final result does not depend on
the formalism used.

Consider the vacuum ADM equations in the normal gauge (corresponding to Gaussian
normal coordinates, shift βi = 0, lapse α = 1)

γ̇ij = −2Kij (2.1)

K̇ij = Rij − 2KikK
k
j +KKij (2.2)

where γij is the 3-metric on a spacelike hypersurface Σ, Kij denotes the extrinsic curvature
of this hypersurface, K = Ki

i its trace and Rij is the 3-dimensional Ricci tensor of γij . The
constraint equations read

R+K2 −KijK
ij = 0 (2.3)(

Kij −K γij
)
;i

= 0 (2.4)

where R = Rii and the covariant derivative is taken with respect to γij [8–10].
Following [3], we assume that on a given Σ there exists a curve λ and a discrete group

of symmetries G in the form of discrete n-fold rotations about λ together with reflections
through planes passing through λ. More precisely, we assume that for each a ∈ G there exists
a mapping Ra defined on a neighbourhood of λ which preserves both the 3-metric and the
extrinsic curvature:

R∗a γ = γ (2.5)

R∗a K = K, (2.6)

R∗a denoting the pullback of a tensor by Ra. We assume it leaves every point in λ invariant:

Ra(p) = p if p ∈ λ. (2.7)
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It follows from the assumptions above that Ra induces a mapping on the tangent space at
every point p ∈ λ, i.e. R∗a : TpΣ 7→ TpΣ, which leaves both γij and Kij at p invariant.

We also assume that the action ofG on TpΣ is the action of the group of discrete rotations
and reflections. This assumption may be phrased in the following way: let r generate the
rotations and let m and r generate the reflections. Then, in an appropriately chosen, properly
oriented orthonormal frame ei in TpΣ, we have

R∗r(e1) = e1 (2.8)

R∗r(e2) = cos
2π

n
e2 + sin

2π

n
e3 (2.9)

R∗r(e3) = − sin
2π

n
e2 + cos

2π

n
e3 (2.10)

and

R∗m(e1) = e1 (2.11)

R∗m(e2) = −e2 (2.12)

R∗m(e3) = e3 (2.13)

where e1 has been chosen to be tangent to λ. Note that e1, e2 and e3 are not coordinate
basis vectors.

It is straightforward to see that the time development of λ under the vacuum Einstein
equations in normal coordinates will be a curve with local rotational and reflection symmetry.
In [3] the authors prove that the assumption of invariance under (2.8)–(2.13) restricts the
form of vectors and tensors at points lying on λ. In particular, a vector field Xi invariant
with respect to rotation (2.8)–(2.10) has to be aligned along the curve λ at every point p ∈ λ:

Xp = X1 e1 (2.14)

and every rotation-invariant symmetric 2-tensor Sij = S(ij) is a combination of the metric
and a symmetric traceless tensor:

Sp =
Sii
3
γ + S11

(
α1 ⊗α1 −

1

2
α2 ⊗α2 −

1

2
α3 ⊗α3

)
, (2.15)

where Sii is the trace of S, S11 is the (1, 1) component of Sij in the orthonormal frame ei
and αi is the dual co-frame of ei, i.e. αi(ej) = δij . On the other hand, every rotation- and
reflection-invariant antisymmetric 2-tensor Aij = A[ij] has to vanish at p:

Ap = 0. (2.16)

It follows quite easily from (2.14) that λ must be a geodesic with respect to γij . Indeed,
let v be a tangent vector to λ in any parametrization. The vector ∇vv is rotation-invariant
since both the curve λ and the metric γij are invariant as well. From (2.14) it must be
proportional to e1, and thus also to v itself. After a suitable reparametrisation we obtain
∇vv = 0.

In [3], following [7], a formalism was presented for simplifying the system (2.1)–(2.2) on
a LDRRS curve. In this case, the only degrees of freedom of the metric tensor not suppressed
by the symmetries are:

a‖ =
√
γ (Z1,Z1) (2.17)

a⊥ =
√
γ (Z2,Z2) =

√
γ (Z3,Z3), (2.18)
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where the vectors Z1, Z2 and Z3 are initially equal to e1, e2 and e3 respectively, and their
components are assumed to be constant in time in the normal coordinate basis (Z1, Z2 and
Z3 are the coordinate basis vectors if we choose the initial coordinate system appropriately).
Note that the functions a‖ and a⊥ are sufficient to reconstruct the metric tensor at any time:

γ = a⊥(t)2 (ω1 ⊗ ω1 + ω2 ⊗ ω2) + a‖(t)
2ω3 ⊗ ω3, (2.19)

where ωi is the dual co-frame of Zi, with constant components in a normal coordinate system
basis. The functions evolve according to:

ä‖

a‖
=

2

3
E+, (2.20)

ä⊥
a⊥

= −1

3
E+. (2.21)

E+ is the only surviving component of the electric part of the Weyl tensor, given by

E+ = −3

2
Eij ei1 ej1 (2.22)

Eµν = Cµανβ n
α nβ, (2.23)

nµ being the normal to the constant time slice. According to [3] its evolution is likewise
governed by an ODE:

Ė+ = −3
ȧ⊥
a⊥
E+ (2.24)

so that the evolution of the geometry on the curve is completely decoupled from its sur-
roundings (in fact, the evolution of every single point on the curve is decoupled from all the
others), and quantities that only depend on the metric tensor on the curve can be evolved
using just the above system of ODEs (note that we will show in the following sections that
(2.24) is missing an essential term which causes this decoupling to fail).

Such a simplified scenario is particularly suitable for use as a numerical testbed, as one
can compare the results of a full three-dimensional numerical evolution to the functions a‖,
a⊥ and E+ defined above, and check to what extent the code reproduces the ODE system.
We illustrate the result of this comparison in the next section.

3 Numerical Relativity solution of an S3 black-hole lattice spacetime

3.1 Methods

We solve the full 3 + 1 Einstein equations for an S3 lattice using Numerical Relativity,
allowing us to compute the metric everywhere, not just on the points of high symmetry. We
use the open-source Einstein Toolkit [11] and Cactus [12] framework. We compute various
lattice-related analysis quantities using a Cactus code generated using Kranc [13, 14] and the
xAct [15] tensor-manipulation package. Analysis of the numerical data was performed using
SimulationTools for Mathematica [16].

We focus on the tesseract configuration, in which 8 identical black holes are arranged
regularly on S3. To simplify the numerical treatment, we carry out the stereographic projec-
tion, introduced in [2], from S3 to R3, where one of the black holes, with bare mass m1 = 4M
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is projected into the coordinate origin, another six, each with bare mass m2−7 = 4
√

2M, are
projected to xi = (±2, 0, 0)M, xi = (0,±2, 0)M, xi = (0, 0,±2)M, and the eighth is pro-
jected out to infinity (its presence, however, is revealed by an inner trapped surface at a
coordinate radius of about 20M). Here M is a mass parameter, and the seven mn are
the bare masses of the black holes in the Brill-Lindquist formalism (the asymmetry coming
from the stereographic projection, as their physical masses are all equal to each other). The
3-metric of the t = 0 surface is given by:

γij = ψ4δij (3.1)

where δij is the flat metric and ψ is the conformal factor, which takes the form:

ψ(x, y, z) = 1 +

7∑
n=1

mn

2rn
(3.2)

where mn is the bare mass of the nth black hole and rn is the distance from it. The initial
data is time-symmetric, so the extrinsic curvature is initially zero;

Kij = 0. (3.3)

We will study one segment of the LDRRS curve corresponding to one of the edges of the
lattice lying on the diagonal between the vertices xi = (2/3, 2/3, 2/3)M and xi = (2, 2, 2)M.
The S3 angular coordinate φ along this edge can be related to the Cartesian coordinates in
the stereographic projection via

φ =
π

2
− arccos

(
3d2 − 4

3d2 + 4

)
(3.4)

d2 =
4

3

(
1 + sinφ

1− sinφ

)
(3.5)

where d is any of the coordinates x, y or z. φ = 0 (d = 2/
√

3) corresponds to the midpoint
of the edge, and most of our results will be presented using this point as an example. The
vertices are located at φ = ±π/6.

We refer the reader to [2] for a discussion of this initial-data set, which also clarifies the
role of the parameter M and the invariance of the spacetime under a rescaling of M.

The spatial computational domain is |xi| ≤ 24
√

3M≈ 41.6M, and we make use of the
reflection symmetry in the x, y and z directions about the coordinate planes through the
origin to restrict the domain to the octant where x ≥ 0, y ≥ 0 and z ≥ 0.

The Einstein equations are solved using the McLachlan [17] code with fourth order
centred finite differencing for spatial derivatives and fourth order Runge-Kutta for the time
integration. We integrate the Einstein equations in the BSSN formulation [18–20], a variant
of the system (2.1)–(2.2). For more details, we refer the reader to [2].

In contrast to our previous work in [2], we do not use the standard binary black hole
coordinate conditions (1+log slicing and gamma-driver shift), and then reslice the spacetime
in postprocessing so as to use proper time as a time coordinate. Instead, we have recently
found out that one can evolve this lattice directly in the normal gauge (unit lapse and zero
shift), and still reach a proper time coordinate of t ≈ 110M before the metric becomes
degenerate in this coordinate system at the black holes, and further numerical evolution is
not possible [21].

– 5 –



In order to assess the effect of the numerical grid spacing on the results, we compared
solutions with different overall grid spacings, labelled by the number of points, n, in one
dimension in a certain coordinate distance. We report here the results for n = 32, 40 and
48. Since the space and time derivatives are computed with fourth order accuracy in the
grid spacing h ∝ 1/n, and this is expected to be the dominant source of error, we expect the
numerical error in the solution to scale as E = O(h4) = O(n−4). Hence, the errors at the
three resolutions should be approximately in the ratio 1 : 0.41 : 0.20.

Due to the different length scales in the system, we use mesh refinement to concentrate
the computational grid points in regions where small length and time scales need to be re-
solved, and avoid the prohibitive computational cost of using this same resolution everywhere.
Mesh refinement is provided by the Carpet [22] code. The coarsest grid (level L = 0) has a
grid spacing of h0 =M/(

√
3n). This was chosen so that the midpoint of the edge lies on a

grid point at every resolution to avoid the need to interpolate data there. Refined regions
are created around each black hole (BH) and around the edge where we wish to measure
quantities accurately. Several levels of refinement are used, each level having half the grid
spacing and time step of its parent region, resulting in a hierarchy of nested boxes with all
regions on level L completely surrounded by regions of level L−1. The BH at the origin, the
six BHs at r = 2, and the edge are on levels L = 7, 6 and 5 respectively. The locations of the
boundaries between refinement levels are found to have a significant effect on high-frequency
numerical error measured on the edge. This was minimised by ensuring that the boundaries
remain fixed in time and do not intersect the edge.

3.2 Results and comparison with analytic ODE

We now wish to determine whether the Numerical-Relativity (NR) spacetime satisfies the
ODEs derived in [3] on the edge of the lattice. Using the NR spatial metric γij , we compute
a⊥ and a‖ as a function of time at the midpoint of the edge using (2.18) and (2.17).

In the [3] solution, the evolution of a⊥ and a‖ is determined only by E+, and satisfies
the system (2.20)–(2.21). By computing ä‖ and ä⊥ from the NR data, we determine E+

from both equations. The result is shown in figure 1a, and we see that the NR evolution is
consistent with (2.18) and (2.17).

According to [3], E+ also evolves according to the ODE given by (2.24) which involves
a⊥ only, so that the system closes and the solution at the midpoint (as well as of any other
point on the edges) decouples from its surroundings, as there are no spatial derivatives in the
equation. In figure 1b, we show the NR solution for Ė+ and −3 ȧ⊥a⊥E+ which should agree if
the ODE derived in [3] is correct. There is a significant disagreement. We have computed
the numerical error bars for figure 1, but they are too small to be visible, indicating that
the disagreement is a feature of the continuum Einstein equations, and not simply due to
numerical error. Figure 1c shows a⊥ and a‖ computed from NR and compared with the
solution from the ODE. There is a disagreement of up to 1% which is not accounted for by
the relative numerical error of ∼ 10−7. We thoroughly investigated all possible sources of
error in the NR computation, and found none that could account for the discrepancy.

For future reference, we define the anomaly A as the unknown additional term in the
equation for Ė+. Hence, (2.24) from [3] gets modified to:

Ė+ = −3
ȧ⊥
a⊥
E+ +A . (3.6)

In summary, the numerical results suggest that there is a term, A, missing in the evolution
system of [3] which affects a⊥ and a‖ at the level of 1% by t = 110M.
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Figure 1: Comparison between Numerical Relativity and ODE

4 The evolution equations on a LDRRS curve

We now turn our attention again to the ODE system formed by (2.20), (2.21) and (2.24), and
in particular attempt to show that it is the reduction of the system (2.1)–(2.2) on a LDRRS
curve.

Equations (2.1)–(2.4) for γij and Kij are not closed at a single point because of the
presence of the spatial derivatives of γij in the 3-dimensional Ricci tensor Rij . We will try
to close the system by extending it to include Rij as a new evolution variable, for which we
require the time derivative of Rij . Recall that the time derivative of the 3-dimensional Ricci
tensor takes the form

Ṙij =
1

2

(
γ̇ki;jk + γ̇kj;ik − γ̇kk;ij − γ̇

k
ij;k

)
(4.1)

where the indices have been raised by the inverse metric γij , i.e. γ̇ki = γ̇ji γ
jk. We substitute

(2.1) to obtain

Ṙij = Kk
k;ij +K k

ij;k −K
k
i;jk −Kk

j;ik. (4.2)

We would like to get rid of the second derivatives in the equation above. This obviously
requires permuting the indices in the expressions above. Swapping the first or the second
pair of the indices is straightforward, but exchanging two indices between the two pairs is
less obvious. We introduce the following notation for the antisymmetrisation in the indices
2 and 3:

Uijkl = Kij;kl −Kik;jl. (4.3)

After a tedious exercise in index manipulation we arrive at the following expression for the
time derivative of the Ricci tensor

Ṙij = Rkp(i‖k‖ K
p
j) −R

p
(ij)kK

k
p + U

k
(ij)k , (4.4)
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where ‖ · ‖ excludes an index from symmetrisation and Rijkl denotes the Riemann tensor of
γij . In three dimensions Rijkl can be expressed entirely via the Ricci tensor and the Ricci
scalar [23]:

Rijkl = Rjl γik −Ril γjk −Rjk γil +Rik γjl +
1

2
R (γil γjk − γjl γik) . (4.5)

If we substitute the relation above into (4.4) we obtain

Ṙij = −3

2

(
R k
i Kkj +R k

j Kki

)
+KklR

klγij (4.6)

+
1

2
RKij +KRij −

1

2
RK γij + U

k
(ij)k , (4.7)

i.e. the time derivative of the Ricci tensor expressed directly via γij , Kij and Rij and a single

additional term U
k

(ij)k . The last term, i.e. the symmetrized contraction of Uijkl, is now the
only one involving the spatial derivatives of Kij and γij and thus not expressible directly via
γij , Kij and Rij . We will introduce a new notation for the symmetrised contraction:

Uij = U k
ijk . (4.8)

4.1 Properties of Uijkl and relation to the magnetic part of the Weyl tensor

Before we proceed with the derivation of the reduced Einstein equations, we will discuss some
of the properties of Uijkl and elucidate its relation to the magnetic part of the Weyl tensor.
Recall that the Weyl tensor Cµναβ in a 3+1 decomposition may be represented by its electric
and magnetic parts defined via (2.23) and

Bµν = −1

2
Cµακλ η

κλ
νβn

α nβ (4.9)

respectively, nµ being again the normal to the constant time slice, and ηκλνβ denoting the
totally antisymmetric volume form [24, 25]. Both tensors vanish in the normal direction and
can be considered 3-dimensional, spatial objects. The magnetic part of the Weyl tensor in
the ADM variables can be related to the tensorial curl of the extrinsic curvature:

Bij = η kl
j Kik;l . (4.10)

We can easily prove that it is traceless and symmetric: first, we note that

Bi
i = ηiklKik;l = 0 (4.11)

because Kik is symmetric with respect to the exchange of the indices. The contraction of Bij
with another volume form is equal to zero as well:

Bij η
ijp = −

(
γki γlp − γkp γli

)
Kik;l = Kpl

;l −K
;p = 0, (4.12)

where the last expression vanishes because of the vector constraint equation (2.4). Note that
in three dimensions this implies the vanishing of the whole antisymmetric part of Bij , so
Bij = B(ij).

The covariant derivative of Bij on the other hand can be related to U via

Uijkl = Bip;l η
p
jk. (4.13)
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The equation above, contracted with respect to the two last indices, yields

Uij = −η pl
j Bip;l, (4.14)

which has exactly the same structure as (4.10), i.e. Uij is proportional to the curl of Bij .
Now, repeating the reasoning we have used for Bij above we may prove that the trace of
(4.14) vanishes because of the symmetry of Bij .

1

U ii = 0. (4.15)

4.2 The reduced evolution equations

Consider the tangent space at a point along a LDRRS curve λ. We rewrite (2.1)–(2.2) and
(4.7) assuming conditions (2.14)–(2.16) to hold and parametrizing the metric according to

(2.17)–(2.18). We first note that the antisymmetric part of U k
ijk must vanish because of

(2.16). Since it is also traceless it must be proportional to U11 (see (2.15)). We obtain
(2.20)–(2.21), where E+ is the non-vanishing part of the electric Weyl tensor, but (2.24) now
takes the form of

Ė+ = −3 ȧ⊥a⊥E+ − 3
2U11, (4.16)

with U11 = Uij ei1 ej1 (notice that numeric indices always indicate frame components). In [3],

the authors assume that this term vanishes due to the rotation and reflection invariance.2

We will show that this is not the case in general. As a result, we will identify this term with
the anomaly A found numerically in section 3.2;

A = −3

2
U11 . (4.17)

First let us consider the magnetic part of the Weyl tensor. Since Bij is composed of
rotation-invariant ηijk and Kij;k it is rotation-invariant itself. Being additionally traceless
and symmetric it must be proportional to B11 due to (2.15). From (4.10) we obtain

B11 = K12;3 −K13;2 = 2Ki[2;3] e
i
1 (4.18)

Since e1 is both rotation- and reflection-invariant, the last expression is the (2, 3) component
of a rotation- and reflection-invariant rank 2 antisymmetric tensor, so it must vanish at λ
because of (2.16).

Now, since Uij is also traceless and is given by a very similar expression (4.14) to Bij ,
it would be tempting to repeat the argument above and conclude that U11, together with
the whole symmetric part of Uij , vanishes too. This would however be incorrect due to the
following: unlike Kij appearing in (4.10), Bij in (4.14) is not reflection-invariant. Note that
since its definition (4.10) involves the volume form ηijk it changes its sign under reflections
(2.11)–(2.13). Although U11 can be put in a similar form to (4.18):

U11 = −2Bi[2;3] e
i
1 (4.19)

1Note however that Uij does not have to be symmetric in general, unlike Bij .
2It corresponds to the term proportional to εγδ(α eγ

(
H
β)

δ

)
in equation (2.15) in the aforementioned paper.

If it does not vanish then it appears later in the evolution equation (4.11).
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we cannot now apply (2.16) because the antisymmetric 2-tensor in question Bi[k;l] e
i
1 is not

reflection-invariant. The symmetry assumptions put no restrictions on the value of U11 and
there no reason whatsoever to assume that U11 vanishes identically along a LDRRS curve.

We can give a simple and instructive analogy from the theory of electromagnetism and
Maxwell’s equations. Consider a static configuration of electric and magnetic fields in a flat
space exhibiting a similar rotation and reflection invariance with respect to a chosen axis. If
the vector potential ~A is invariant then its curl needs to vanish at the symmetry axis and
thus the magnetic field ~B = curl ~A = 0 along the axis due to the reflection symmetry, just
like in the case of the magnetic Weyl tensor. But the curl of ~B does not need to vanish at the
axis. Indeed, it is easy to create a configuration of the electromagnetic field in which there is
a non-vanishing current flowing along the axis and thus ~j = curl ~B 6= 0. This is due to the
fact that ~B, as a curl of a vector, is a pseudovector field, while ~j, which is a curl of a curl
of a vector is again a regular vector field. The former must vanish because of the reflection
symmetry, but the latter not.

4.3 U11 and its time derivatives for the 8-black-hole initial data

The initial data described in section 3.1 is time-symmetric, so the solution in normal coordi-
nates satisfies γij(t) = γij(−t). It follows that the odd time derivatives of the metric ∂2N+1

∂t2N+1γij

and of the Christoffel symbols ∂2N+1

∂t2N+1 Γijk, N = 0, 1, 2 . . . , vanish at t = 0 identically. So does

the extrinsic curvature together with its even time derivatives ∂2N

∂t2N
Kij . From (4.3) and (4.8)

we see that the same must hold for Uij , i.e.

∂2N

∂t2N
Uij = 0 at t = 0 (4.20)

and in particular Uij and Üij vanish initially. Direct computation reveals that for the initial
data (3.3) and (3.1) the first derivative U̇ij = 0 along a LDRRS curve vanishes as well.
The first non-vanishing time derivative turns out to be the third one. We have evaluated it
as a combination of the partial derivatives of the conformal factor ψ. Since the expression
involves up to 4th covariant derivatives of the Ricci tensor of γij , the tensor manipulations
and algebraic reduction were performed using Mathematica. The final result, considered
along the LDRRS curve and after simplifications due to the symmetry, reads

U
(3)
11

∣∣
t=0

= 2ψ−18
(
−
(
ψ(0,0,6) + 3ψ(0,2,4) + 3ψ(0,4,2) + ψ(0,6,0)

+2
(
ψ(2,0,4) + 2ψ(2,2,2) + ψ(2,4,0)

)
− ψ(6,0,0)

)
ψ5

+
(
−8(ψ(3,0,0))2 + ψ(2,0,0)

(
35ψ(4,0,0) − 29

(
ψ(0,0,4) + 2ψ(0,2,2) + ψ(0,4,0)

))
+2
(

24(ψ(0,0,3))2 + 44ψ(0,2,1)ψ(0,0,3) + 28(ψ(0,1,2))2 + 28(ψ(0,2,1))2 + 24(ψ(0,3,0))2

+44ψ(0,1,2)ψ(0,3,0) + 6ψ(0,1,1)
(
ψ(0,1,3) + ψ(0,3,1)

)
+ 7ψ(1,0,1)

(
ψ(1,0,3) + ψ(1,2,1)

)
+7ψ(1,1,0)

(
ψ(1,1,2) + ψ(1,3,0)

)
+ 2ψ(1,0,0)

(
ψ(1,0,4) + 2ψ(1,2,2) + ψ(1,4,0) − ψ(5,0,0)

)))
ψ4

−2
(

18(ψ(2,0,0))3 − 24ψ(1,0,0)ψ(3,0,0)ψ(2,0,0) + 2ψ(0,0,4)(ψ(0,1,0))2 + 11(ψ(0,0,1))2ψ(0,0,4)

+18ψ(0,0,1)ψ(0,1,0)ψ(0,1,3) + 13(ψ(0,0,1))2ψ(0,2,2) + 13(ψ(0,1,0))2ψ(0,2,2)

+18ψ(0,0,1)ψ(0,1,0)ψ(0,3,1) + 2(ψ(0,0,1))2ψ(0,4,0) + 11(ψ(0,1,0))2ψ(0,4,0)+
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+7ψ(1,0,0)
(

7
(
ψ(0,0,3) + ψ(0,2,1)

)
ψ(1,0,1) + 7

(
ψ(0,1,2) + ψ(0,3,0)

)
ψ(1,1,0)

+3ψ(0,0,1)
(
ψ(1,0,3) + ψ(1,2,1)

)
+ 3ψ(0,1,0)

(
ψ(1,1,2) + ψ(1,3,0)

))
− 8(ψ(0,0,1))2ψ(4,0,0)

−8(ψ(0,1,0))2ψ(4,0,0) + (ψ(1,0,0))2
(

26ψ(4,0,0) − 20
(
ψ(0,0,4) + 2ψ(0,2,2) + ψ(0,4,0)

)))
ψ3

−6
(

3
(

(ψ(0,0,1))2 + (ψ(0,1,0))2
)

(ψ(2,0,0))2 − ψ(1,0,0)
(

49
(
ψ(0,0,1)

(
ψ(0,0,3) + ψ(0,2,1)

)
+ψ(0,1,0)

(
ψ(0,1,2) + ψ(0,3,0)

))
ψ(1,0,0) − 8

(
(ψ(0,0,1))2 + (ψ(0,1,0))2

)
ψ(3,0,0)

))
ψ2

+288
(

(ψ(0,0,1))2 + (ψ(0,1,0))2
)

(ψ(1,0,0))2ψ(2,0,0)ψ

−288
(

(ψ(0,0,1))2 + (ψ(0,1,0))2
)

(ψ(1,0,0))4
)
, (4.21)

where we have assumed above that the first coordinate x1 is aligned along the curve and x2, x3

are transversal. We have introduced here a short hand notation for the partial derivatives in
the form of ψ(p,q,r) = ∂p

∂(x1)p
∂q

∂(x2)q
∂r

∂(x3)r
ψ. Substituting the conformal factor ψ from equation

(3.2), we obtain that the numerical value of U
(3)
11 (0) at the midpoint of the edge is 4.3×10−12.

4.4 Effect of U11 on the metric

The addition of the term −3/2U11 to the ODE clearly affects the evolution of a‖ and a⊥.
We can estimate the effect by making a Taylor expansion of a‖(t) and a⊥(t) about t = 0 and
using the evolution equations (2.21), (2.20) and (4.16) to evaluate the Taylor coefficients at
t = 0. We find that the effect of U11 appears first in the O(t6) term. Using an overbar to
represent the solution using the original ODE (2.24), i.e. without the U11 term, we find

∆a‖ = a‖ − ā‖ = −
a‖(0)

720
U

(3)
11 (0)t6 +O(t8) , (4.22)

∆a⊥ = a⊥ − ā⊥ =
a⊥(0)

1440
U

(3)
11 (0)t6 +O(t8) . (4.23)

(4.24)

where we have used the fact that a⊥, a‖ and E+ have the same value at t = 0 independent
of the appearance of U11 in the ODE.

At the midpoint of the edge, at t = 110M, we find a relative error ∆a‖/a‖ of about
1% compatible with the NR results in figure 1c, and a relative error of 100% by t = 235M.
We conclude that the leading order contribution to U11 leads to a complete breakdown of
the original ODE solution by this time, though we cannot determine whether higher order
corrections are important here.

5 Numerical Relativity calculation of U11

5.1 Consistency between NR and new analytical results

In the previous section, we identified a term, −3/2U11, in the evolution equation for Ė+ which
was assumed in [3] to vanish, but for which we find a nonvanishing third time derivative. We
now aim to verify that the NR solution satisfies the new evolution equation (4.16), and that
the numerically-non-zero anomaly A is indeed related to U11 by (4.17). U11 is computed in
NR from covariant derivatives of the extrinsic curvature,

U11 = (Kij;k
k −Kik;j

k) ei1 ej1 . (5.1)
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Figure 2: NR solution demonstrating consistency with the new analytic results

whereas A is defined via (3.6).

Figure 2a shows a comparison between Ė+ and the RHS of the original and new evolution
equations. We see that the addition of the term −3/2U11 is necessary for agreement. In figure
2b, we see that U11 and −2/3A are found to be indistinguishable, and figure 2c shows that
their relative difference, ∆ ≡ 1− (−2/3A)/U11, converges to zero as the numerical resolution
n is increased. The convergence is 4th order, as expected from the finite differencing order of
the code. ∆ exhibits high-frequency noise for t < 40M which we attribute to error coming
from the finite precision with which floating point numbers are represented in the code3.
We have partially filtered the high frequency noise from the data in figure 2c to make the
convergence more apparent. For t > 40M, there are lower-frequency oscillations in the error
which we attribute to numerical reflections from mesh refinement boundaries.

For t > 20M, at the highest resolution, we see that |∆| < 3× 10−5. Hence

−2

3
A = 1.00000(3)U11 (5.2)

in agreement with the analytic derivation in section 4.2. For t < 20M, the ratio is still
consistent with −2/3, but the relative error is larger since U11 itself is small.

We therefore see that the anomaly originally measured in the comparison of the 3+1
Numerical Relativity results and the ODE system presented in [3] was due to the term U11

derived in the previous section, but taken to vanish in the original derivation.

5.2 Computation of U11 and fitting formula

We now present the NR computation of U11 on the edge, and give a simple fitting formula
for it that could be used along with (4.16) to solve the system via an ODE.

Figure 3 is a contour plot of log10(U11M3) as a function of t and φ, the proper time
and the S3 angular coordinate along the edge, respectively. The black solid and dashed lines

3A depends on the third time derivative of a⊥, and an initial relative roundoff error of ε ∼ 10−15 with
frequency ω ∼ π/∆t ∼ 80, for ∆t the time spacing of output data points, will be amplified by a factor of
a⊥/

...
a⊥ω

3 when taking a third derivative, which leads to a relative error in
...
a⊥ comparable with that observed

for the measured values of a⊥ ∼ 102 and
...
a⊥ ∼ 10−7.
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Figure 3: Contours of log10 U11 computed using NR at two different resolutions (solid and
dashed black contours) and from a simple polynomial formula fitted to the NR data (blue
contours) as a function of t (time) and φ (coordinate along the edge). The fit is performed
in the region 1M≤ t ≤ 110M.

represent contours of U11 computed at resolutions n = 48 and n = 40 respectively. For
t ≥ 10M the two resolutions are indistinguishable, indicating that the numerical error is
small in comparison with U11. For t < 10M, there are regions, notably around φ ∼ −π/8,
where the numerical error dominates over U11, which at these early times is O(10−15). The
NR data satisfies U11(0, φ) = U11(t,±π/6) = 0 on the initial slice and the vertices as expected,
since U11 = 0 there by symmetry. Note that the NR computation was performed in Cartesian

coordinates (t, x, y, z) and has been transformed to (t, φ = π
2 − cos−1

(
3x2−4
3x2+4

)
) for plotting.

While the spacetime is symmetric about φ = 0 in (t, φ), this is not the case in (t, x, y, z),
hence the continuum solution is expected to show this symmetry in φ, but the numerical
error is not. This is reflected in Figure 3.

Since U11 is only available numerically, and appears to have a simple form in the regions
in which it is well resolved, we provide a simple formula based on low-order polynomials in
t and φ obtained via a least-squares fit to the NR data in the region 1M ≤ t ≤ 110M,
−π/6 ≤ φ ≤ π/6, corresponding to the edge of the lattice. The fitting formula is

U11 =
∑
p,q

cpq(t/M)pφqM−3 p = 3, 5, 7 q = 0, 2, 4, 6 (5.3)

with the coefficients cpq of (t/M)p and φq given in Table 1. The error estimate in the last
digit in parentheses is an indication of numerical truncation error. The contours of the fitting
formula are shown in blue in Figure 3.
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1 φ2 φ4 φ6

(t/M)3 7·040(1) ×10−13 −3·558(6)×10−12 4·23(4)×10−12 −2·30(7)×10−12

(t/M)5 −3·810(2) ×10−17 2·361(9)×10−16 −4·37(6)×10−16 3·1(1) ×10−16

(t/M)7 1·0965(9)×10−21 −6·85(3) ×10−21 1·30(2)×10−20 −9·8(3) ×10−21

Table 1: Coefficients of (t/M)p and φq in the fitting formula for U11 determined from NR

The region 1M ≤ t ≤ 10M contains localised regions of high relative numerical error,
but the small number of degrees of freedom in the fitting formula means that the fit is
insensitive to these localised regions. The region t ≤ 1M, in which the NR error dominates,
is outside the fit region, and hence the fitting formula is an extrapolation in this region.
For t > 10M, |φ| < π/8, i.e. the regions where U11 is not close to zero, this fitting function
approximates the NR result to within ±1%. In the regions t < 10M and |φ| > π/8, the
absolute agreement is within 10−12M−3.

For t ≥ 10M, the NR and fitting-formula curves are visually indistinguishable.

5.3 Computation of U
(3)
11

We now wish to compute the third time derivative of U11 at φ = 0 from the NR data and
compare with the analytic result obtained in (4.21). We cannot directly finite-difference the
NR data near t = 0 because, as can be seen in figure 3, it is contaminated by numerical error.
Instead, we compute the derivative by analytically differentiating the fitting formula. The
fitting effectively averages out the very small numerical errors near t = 0 and uses information
from t > 0, where the errors are less significant, to obtain information about the derivative
at t = 0.

The fitting formula (5.3) contains only a finite number of terms, so the coefficients
cannot be directly identified with the coefficients in a Taylor series, and hence with the
derivatives of U11. However, as the number of terms in the fitting formula is increased, we
expect the coefficients to approach the Taylor coefficients. We find that as both pmax and
qmax are increased, c30 appears to converge exponentially towards a limiting value. Taking

this to be the Taylor coefficient, we obtain an NR estimate for U
(3)
11 which can be directly

compared with the analytic value obtained from (4.21):

∂3U11

∂t3

∣∣∣∣
t=0,φ=0

=

{
4.3015(4)× 10−12M−6 Numerical

4.30113× 10−12M−6 Analytic .
(5.4)

The NR error estimate in parentheses includes the effect of both numerical truncation error
and of fitting using a finite number of terms, and we see that the NR derivative matches the
analytical calculation within NR errors. We therefore have a high degree of confidence that
the numerical solution and our understanding of the analytical system are correct.

5.4 Effect of U11

In figure 4, we show the relative difference between a‖ computed from NR and from the
original ODE, and compare it with the leading order analytic contribution computed in
section 4.4 from the Taylor series. We see that the relative difference is dominated by the
leading order term for as long as the NR computation lasts. We do not know whether this
will continue past t = 110M.
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Figure 4: Comparison between the difference between the NR and ODE solutions for a‖,
and the leading order contribution computed from a Taylor expansion.

6 Conclusions

We have solved the full Einstein equations for an S3 8-black-hole lattice spacetime using
Numerical-Relativity and found that the solution along certain LDRRS curves does not
agree with the ODEs previously derived for this system.

We therefore analysed the behaviour of LDRRS curves in vacuum spacetimes, and in
particular showed that the evolution of certain symmetric subsets does not decouple from the
surrounding spacetime, following a system of pure ODEs, as had been previously claimed.
Instead, the variables a‖, a⊥ and E+, which capture all the metric and extrinsic-curvature
degrees of freedom not suppressed by the symmetries, follow a system of ODEs with a source
term U11, which itself depends on the spatial derivatives of the extrinsic curvature and can
only, to our knowledge, be computed via Numerical Relativity.

We have then computed this term using Numerical Relativity, both as an anomaly in
the original ODE system, and via its expression in terms of the derivatives of Kij . These
agree to within the relative numerical error of 3×10−5, strengthening our confidence in both
the analytical study performed in sections 2 and 4 and the numerical infrastructure used in
sections 3 and 5, as well as in [2].

Note that it is still possible to use the ODE system presented in [3], as long as one
knows the source term independently. To this end, we provide a polynomial function, fitted
from the NR data, in both proper time t and edge coordinate φ, which can be used up until
t ∼ 110M. We have also computed the third time derivative of U11 on the midpoint of the
edge at t = 0 (which is the lowest non-zero time derivative of U11 initially), and compared it
with an analytical derivation of the same quantity in the ADM formalism. These also agree
within the relative numerical error of 10−4.

We conclude by remarking that the evolution of the edges of S3 black-hole lattices is not
symmetric enough for a reduced-dimension calculation4, and can, to our knowledge, only be
performed via Numerical Relativity. In particular, the solution to the ODE system presented
in [3] can be treated as an approximation, valid at early times, which may or may not be
close to the true solution at late times. We have measured the error associated with such
an approximation by direct comparison with a 3+1 integration of the Einstein equations,

4Note that the vertices, on the other hand, possess enough symmetries for a full decoupling from the
neighbouring points, leading to the solution E+ = 0 and the 3-metric being constant.
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and find it to grow to ∼ 1% in the components of the spatial metric for t . 110M. We
have shown analytically that the leading order effect of the U11 term is O(t6) in the metric,
and this is observed to a very good approximation in the NR results for t < 110M. The
duration of the NR computations presented here is limited by the use of the normal gauge,
and at the present time, we have no way of assessing the error resulting from neglecting the
U11 term at late times far from the time-symmetric hypersurface. We observe that if the t6

growth were to continue, the metric would have 100% error by t ∼ 235M. At late times, the
results obtained from the system derived in [3] may well be qualitatively different to those
that would be obtained by an evolution using the full, corrected, system.
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