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Abstract

Structure tensors are a common tool for orientation estimation in image pro-
cessing and computer vision. We present a generalization of the traditional
second-order model to a higher-order structure tensor (HOST), which is able
to model more than one significant orientation, as found in corners, junctions,
and multi-channel images. We provide a theoretical analysis and a number
of mathematical tools that facilitate practical use of the HOST, visualize it
using a novel glyph for higher-order tensors, and demonstrate how it can be
applied in an improved integrated edge, corner, and junction detector.
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1 Introduction

The second-order structure tensor, formed as the outer product of the image
gradient with itself, is a common tool for local orientation estimation. Since it
was first introduced for edge and corner detection [9], it has been applied to a
wide variety of problems in image processing and computer vision, including
optic flow estimation [2], image diffusion [23], texture segmentation [21],
image inpainting [22], and image compression [10].

Two popular extensions are its generalization to vector- and tensor-valued
images, which goes back to an idea of Di Zenzo [7], and the introduction of
nonlinear local averaging [24], which lead to nonlinear structure tensors [4].

It is a known limitation of the traditional structure tensor that it can
only represent a single dominant orientation. Recently, there have been at-
tempts to overcome this: Arseneau and Cooperstock [1] have placed second-
order structure tensors in discrete directional bins and derived parameters
of multimodal directional distribution functions from them. Their work con-
centrates on lifting the constraint of antipodal symmetry (i.e., they treat
direction v differently than direction −v), a property which our approach
preserves. Moreover, they use the structure tensors only as an intermedi-
ate representation, finally reducing them to two scalar parameters for each
direction.

Herberthson et al. [12] have used outer products to handle pairs of orien-
tations. However, their approach is specific to the case of two orientations:
It neither generalizes to more than two directions, nor does it indicate cases
in which representing a single orientation is sufficient.

In our present work, we present a generalization of the second-order struc-
ture tensor to a higher-order tensor model, which is able to capture the ori-
entations of more complex neighborhoods, for example corners, junctions,
and multivalued images. The tensor order allows to specify the maximum
complexity the structure tensor can represent and can be chosen based on
the requirements of a given application.

This report is structured as follows: Chapter 2 introduces our new higher-
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order structure tensor (HOST). In Chapter 3, we present a novel glyph for
higher-order tensors and use it to visualize first experimental results. A
theoretical analysis and a number of mathematical tools that help to use
the HOST in practice are presented in Chapter 4. They include an effi-
cient representation of the structure tensor, an alternative representation as
a truncated Fourier Series, a generalization of the matrix trace and the eigen-
vector decomposition, and an algorithm to extract contrast extrema from a
higher-order tensor representation. Chapter 5 shows a proof-of-concept ap-
plication, in which the HOST is used for an improved integrated edge and
junction detection. Finally, Chapter 6 concludes this chapter and points out
directions of future research.
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2 A Higher-Order Structure

Tensor

The standard second-order structure tensor J is given by the outer product
of the image gradient ∇f with itself [9]:

J := ∇f∇fT (2.1)

It is typically averaged over a neighborhood to obtain a descriptor of local im-
age structure. Our generalization to a higher-order tensor J simply repeats
the outer product. For a vector v, taking the outer product with itself l times
will be written v⊗l. It yields an order-l tensor, indexed by {i1, i2, . . . , il}:

(

v⊗l
)

i1i2...il
:= vi1 · vi2 · · · vil (2.2)

To ensure antipodal symmetry of the resulting tensor, we choose l to be even.
Interpretation of the higher-order structure tensor requires a contrast

function J , which specifies the local contrast in a given direction. When
the direction is represented by a unit-length vector u, J(u) is defined by
repeating the inner tensor-vector product of J and u until a scalar is left,
i.e., l times. In n dimensions, this can be written as

J(u) :=
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

il=1

(J )i1i2...ilui1ui2 · · · uil (2.3)

This definition is inspired by a work of Özarslan and Mareci [18], who have
derived a diffusivity function D(u) in the same manner from higher-order
diffusion tensors D in the context of generalized diffusion tensor magnetic
resonance imaging (DT-MRI). For a second-order structure tensor, J is uni-
modal, which reflects the fact that it is suitable to model only one dominant
orientation. For higher orders, J can become multimodal, which allows a
more accurate representation of corners, junctions, and multi-images.
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We consider it a sensible requirement that the values of the contrast
function should remain comparable, independent of the tensor order that
we use. When evaluated in direction of the gradient, the contrast function
yields the squared gradient magnitude in the second-order case. However,
taking the outer product l times would raise the gradient magnitude to the
lth power. We compensate this by scaling the gradient vector beforehand.
An order-l structure tensor J that reduces to the well-known second-order
tensor J for l = 2 is then given by

J :=

(

∇f

|∇f |
l−2

l

)⊗l

(2.4)

In some applications, it is beneficial to have a contrast function that gives
the non-squared gradient magnitude [3]. This can be achieved by replacing
the exponent l−2

l
by l−1

l
in Equation (2.4).
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3 Glyphs for Higher-Order

Tensors

In the literature on higher-order diffusion tensors, generalized Reynolds glyphs
constitute the only glyph-based visualization technique [18, 15]. Let S be the
unit sphere and J the contrast function as defined above. Then, these glyphs
are formed by the set of points {J(u)u |u ∈ S}, which directly depicts the
contrast profile of the tensor. However, these glyphs have a round shape
around their maxima, which makes their exact orientation difficult to see.
To compensate this problem, Hlawitschka and Scheuermann [15] suggest to
add arrows that point to the maxima.

3.1 Generalized Ellipses as Higher-Order Ten-

sor Glyphs

While the diffusion ellipsoid is accepted as the standard glyph for second-
order diffusion tensors, the Reynolds glyph does not reduce to it for l = 2.
Since the tensor ellipsoid can be constructed by transforming the unit sphere
under the linear mapping induced by the tensor, it is natural to generalize it
by taking the inner tensor-vector product l − 1 times, until a vector is left.
We denote the inner product J • u, where

(J • u)i1i2...il−1
:=

n
∑

il=1

(J )i1i2...iluil (3.1)

and use the shortcut notation J
l−1
• u to indicate that we repeat it l−1 times.

Then, the surface of our glyph is given by the points {J
l−1
• u |u ∈ S}.

As the 2D examples in Figure 3.1 illustrate, the extrema of the generalized
ellipses coincide with the extrema of the Reynolds glyphs. However, they
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Figure 3.1: Three tensors of order six, visualized with Reynolds glyphs (a)
and our generalized ellipses (b). In (b), maxima of the contrast function
appear more localized.

develop sharp features around the maxima, at the cost of a smoother shape
around the minima. In examples two and three, the generalized ellipses
immediately make clear that the respective tensors are not axially symmetric,
a fact which the Reynolds glyph may not reveal at first glance. Since we are
generally more interested in the maxima than in the minima of the contrast
function, we will use the new glyphs in the remainder of this chapter.

3.2 Experimental Results

We will now present some experiments to confirm that higher-order struc-
ture tensors indeed give a more accurate representation of junctions and
multivalued images. Our first experiment uses simple junctions in synthetic
grayscale images. Derivatives are calculated by convolution with a derivative-
of-Gaussian filter (σ = 0.7). After HOSTs of different order l have been
computed, their information is propagated to a local neighborhood by con-
volution with a Gaussian kernel (ρ = 1.4).

Figure 3.2 shows the test images, with the position of the displayed struc-
ture tensor marked by a cross. The results show that a HOST of order l = 4
is sufficient to represent two edges that cross orthogonally, while the tradi-
tional structure tensor (l = 2) does not distinguish any particular direction.
In the non-orthogonal case, the traditional model indicates a principal direc-
tion which does not correspond to any gradient found in the image. While
the generalized ellipse of order four gives an impression of the involved direc-
tions, a clear separation of the maxima in the contrast profile now requires
higher orders. However, Chapter 4.4 will show that the generalized eigen-
vectors of the HOST give a good approximation of the gradient directions
already with l = 4.

The second experiment is based on a natural color image. Derivatives are
now calculated channel-wise and according to the conventional generalization
to multi-channel images, the HOSTs of the red, green, and blue color channels
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(a) Orthogonal edges are clearly distinguished with order l = 4.

(b) For non-orthogonal edges, higher orders give more accurate repre-
sentations.

Figure 3.2: Two junctions in grayscale images and the corresponding struc-
ture tensors. For orders l > 2, the directions of the meeting edges can be
represented.

Figure 3.3: In a color image, the channel-wise gradients may point into
different directions. Higher-order structure tensors can be used to model
this situation accurately.
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are added. In this case, we do not propagate the structure information
(ρ = 0).

For comparison, Figure 3.3 also shows the gradients of the individual
color channels. Again, the structure tensor of order four already gives a much
better impression of the dominant directions than the traditional model. To
demonstrate the feasibility of going to very high tensor orders, we also present
the representation with l = 50.
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4 A Mathematical Toolbox

4.1 Efficient Representation

An order-l tensor in n dimensions has nl tensor channels, which becomes
impractical already for moderate l. However, higher-order structure tensors
are totally symmetric, i.e., invariant under permutation of their indices. This
reduces the number of independent channels to N =

(

n+l−1
l

)

, which means
merely linear growth for n = 2 (N = l + 1) and quadratic growth for n = 3.

With some additional notation, it is possible to evaluate J(u) directly
from this non-redundant representation: Call the ith non-redundant element
[J ]i, stored in a zero-based linear array [J ]. Let νi,k ∈ {0, 1, . . . , l} denote
the number of times k ∈ {1, 2, . . . , n} appears as an index of the i-th element.
The multiplicity of element i, denoted µi, is the number of times it appears
as a channel of the original tensor. For n = 2, µi =

(

l
νi,1

)

, for n = 3,

µi =
(

l
νi,1

)(

l−νi,1

νi,2

)

. Then, Equation (2.3) can be rewritten as

J(u) =
N−1
∑

i=0

µi[J ]iu
νi,1

1 u
νi,2

2 · · · uνi,n

n (4.1)

For n = 2, we chose indices such that νi,1 = l − i (e.g., [J1111,J1112, . . .]).

4.2 Relation to Truncated Fourier Series

From generalized DT-MRI, it is known that using a higher-order tensor model
in 3D is equivalent to approximating the diffusivity profile with a truncated
Laplace series [18]. We will now show that the corresponding result in 2D is
a relation of higher-order tensors to truncated Fourier Series. This fact will
serve as the basis of the methods in Chapters 4.3 and 4.5.
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Consider a Fourier Series, truncated after order l:

f(φ) =
1

2
a0 +

l
∑

k=1

ak cos(kφ) +
l
∑

k=1

bk sin(kφ) (4.2)

Setting ak := bk := 0 for odd k leaves a l + 1 dimensional vector space of
functions. For n = 2, Equation (4.1) can be rewritten in polar coordinates:

J(φ) =
l
∑

i=0

[J ]i

(

l

i

)

cosl−i φ sini φ (4.3)

Let us regard [J ]i as coefficients and
(

l
i

)

cosl−i φ sini φ as basis functions. We
will now show that these basis functions span the same space as the truncated
Fourier Series.

Proof by induction on order l. Let {fk} denote the basis functions of a
truncated Fourier Series in which only even multiples of φ are allowed:

fk :=











0.5 if k = 0

cos((k + 1)φ) if k odd

sin(kφ) if k even (k 6= 0)

Likewise, tl
k is the k-th basis function of an order-l tensor:

tl
k :=

(

l

k

)

cosl−k φ sink φ

For l = 0, both the Fourier Series and the tensor basis represent constant
functions and f0 = 0.5t0

0. Assume that the functions that can be represented
using {fk} with k ≤ l are equivalent to the functions represented by {tl

k}.
Further, assume that we know how to express the Fourier basis in terms of
the tensor basis. Then, we can show that the same assumption also holds for
l + 2: Observe that

cosl−i φ sini φ =
(

cos2 φ + sin2 φ
)

cosl−i φ sini φ

= cosl+2−i φ sini φ + cosl−i φ sini+2 φ

and that the latter functions are proportional to functions in {tl+2
k }. Thus,

we can express the first l + 1 Fourier basis functions in terms of {tl+2
k } by

replacing each occurence of tl
k in their known representation by

tl
k =

(l + 2 − k)(l + 1 − k)

(l + 2)(l + 1)
tl+2
k +

(k + 2)(k + 1)

(l + 2)(l + 1)
tl+2
k+2
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l = 2 a0 = [J ]0 + [J ]2

a2 = 1
2
[J ]0 −

1
2
[J ]2 b2 = [J ]1

l = 4 a0 = 3
4
[J ]0 + 3

2
[J ]2 + 3

4
[J ]4

a2 = 1
2
[J ]0 −

1
2
[J ]4 b2 = [J ]1 + [J ]3

a4 = 1
8
[J ]0 −

3
4
[J ]2 + 1

8
[J ]4 b4 = 1

2
[J ]1 −

1
2
[J ]3

Table 4.1: Relation of Fourier coefficients and tensor components for orders
l = 2 and l = 4. A method to compute these relations for general l is given
in the text.

It remains to be shown how to express fl+1 and fl+2 in terms of {tl+2
k }.

For this, we use trigonometric identities for multiple angles:

fl+1 = cos((l + 2)φ)

=

l/2+1
∑

i=0

(−1)i

(

l + 2

2i

)

cosl+2−2i φ sin2i φ =

l/2+1
∑

i=0

(−1)itl+2
2i

fl+2 = sin((l + 2)φ)

=

l/2
∑

i=0

(−1)i

(

l + 2

2i + 1

)

cosl+1−2i φ sin2i+1 φ =

l/2
∑

i=0

(−1)itl+2
2i+1

Our proof is constructive in the sense that it implies a recursive method
to construct a change-of-basis matrix. For reference, Table 4.1 presents the
relations for l = 2 and l = 4.

4.3 Generalized Tensor Trace

The second-order tensor trace has been used as a substitute of the squared
gradient magnitude [8]. For the higher-order case, Özarslan et al. [19] have
proposed a generalized trace operation “gentr” in 3D, which is based on
integrating J over the unit hemisphere Ω and reduces to the standard matrix
trace for l = 2:

gentr(J ) :=
3

2π

∫

Ω

J(u) du (4.4)

In the 2D case, Ω is one half of the unit circle and the normalization factor 3
2π

is to be replaced with 2
π
. Since the generalized trace of an order-l 2D tensor
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equals its Fourier coefficient al
0, we can use the results from Chapter 4.2 to

verify that

gentr(J ) = al
0 = 2

l/2
∑

i=0

[J ]2i
(l − 1)!!

(l − 2i)!! · (2i)!!
(4.5)

where l!! is the double factorial, i.e., the product of integers in steps of two.
In the definition of J , we scaled the gradient magnitude such that the

maximum value of J is invariant to the tensor order. However, maxima
become narrower with increasing l, so the generalized trace decreases. It
follows from Equation (4.5) that the generalized trace of an order-l structure
tensor equals

gentr(J ) = 2
(l − 1)!!

l!!
|∇f |2 (4.6)

4.4 Generalized Eigenvector Decomposition

Many applications of the second-order structure tensor depend on its spectral
decomposition into eigenvectors and eigenvalues (e.g., [23, 16, 22, 8, 10]).
In this section, we introduce the Cand (Canonical Decomposition), which
can be regarded as a generalized eigendecomposition for higher-order tensors
and has first been studied by Hitchcock [13, 14]. A review in the context of
higher-order statistics and some new results are given by Comon et al. [6, 5].

We will concentrate on the symmetric Cand (sCand), which decomposes
a symmetric order-l tensor J into a sum of r outer powers v⊗l

i of unit vectors
vi, i ∈ {1, 2, . . . r}, scaled with λi:

J =
r
∑

i=1

λiv
⊗l
i (4.7)

For l = 2, Equation (4.7) reduces to the spectral decomposition, where λi are
the eigenvalues and vi the eigenvectors. It can be shown that any symmetric
higher-order tensor J has a sCand [5]. In analogy to the matrix rank, the
symmetric rank RS of J is defined as the smallest number r for which a
sCand exists. In dimension n = 2, it holds that RS ≤ l [6].

The Cand is a current research topic and while some theoretical results
have been obtained, practical algorithms for efficient computation are rare.
Fortunately, Comon et al. [6] present an algorithm that works for n = 2 and
thus can be applied to our HOSTs. It is outside the scope of this chapter to
review the full theory required to derive the algorithm. For our experiments,
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Figure 4.1: Generalized eigenvectors can be used to recover individual direc-
tions from a higher-order structure tensor.

we have simply re-implemented the Matlab code given in [6] in C, using
routines from Lapack

1 and the Numerical Recipes [20].
The algorithm returns pairs of λi and vi, where the vi are not normalized.

While it appears trivial to convert this result to the canonical form, the
algorithm proves numerically unstable for vectors vi which are nearly aligned
with the y-axis: In such cases, λi tends to zero, while the magnitude of vi

tends to infinity. We work around this problem by reconstructing a tensor J ′

only from those vi which have a reasonable magnitude. Then, the residual
J̃ := J −J ′ can be rotated by 90◦ to obtain the remaining vi. Note that the
tensor rotation only requires a simple permutation of its elements and some
sign changes: In the array representation from Section 4.1, it is sufficient to
reverse the array and to multiply entries [J ]i with an odd index i by −1.

Figure 4.1 visually represents Equation (4.7) for a particular HOST. Even
though the gradient directions in the neighborhood of the considered pixel
are too close to be resolved in the contrast profile of an order-four tensor,
they are well approximated by the two largest generalized eigenvectors.

Our prototype implementation found the sCand of 160 000 order six
structure tensors from a natural color image in around 2.5 s on a 2 GHz
Athlon 64.

4.5 Extrema of the Contrast Function

A frequent problem when dealing with higher-order structure tensors will be
to find the angles at which the contrast function J attains an extremum.
In the second-order case, maxima and minima are given by the directions
of the major and minor eigenvectors, respectively. However, the generalized
eigenvectors do not in general coincide with maxima in the contrast function.

To find the extrema of the contrast function, we use the Fourier Series

1http://www.netlib.org/lapack/
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representation from Section 4.2. This makes it easy to take derivatives of J ,
since they are again Fourier Series of the same order, whose coefficients are
straightforward to compute.

4.5.1 Accelerating the Brute Force Method

Extracting extrema requires to find angles φ at which J ′(φ) = 0. The obvious
method to find such points for an arbitrary differentiable function J is to
sample its derivative with some resolution r to identify intervals in which
it changes sign and to refine the result to a desired accuracy a by a binary
search for the sign change on these intervals.

This method may miss pairs of extrema whose distance is less than the
sampling resolution r. Fortunately, such pairs are usually only minor local
variations in the contrast function, which are of no practical interest (cf.
Figure 4.2), so we found r = 2◦ sufficient for structure tensors of order six.
For higher orders, denser sampling will be necessary, as peaks in the contrast
function become sharper.

The computational cost of this method is dominated by the cost of eval-
uating the derivative J ′. Evaluating Equation (4.2) directly involves l sines
and l cosines. A recursive formulation exists which is known alternatively as
Clenshaw’s algorithm or as the Goertzel-Watt algorithm and requires only a
single sine and cosine. It is given by the recursion rule

ul+1 = ul+2 = 0 (4.8a)

ur = fr + 2ur+1 cos φ − ur+2 with r = l, l − 1, . . . , 1 (4.8b)

where fr := ar if the sum of cosines is to be computed, fr := br for the sum
of sines. From u1 and u2, the final result is determined as

l
∑

k=1

ak cos(kφ) = u1 cos φ − u2 and
l
∑

k=1

bk sin(kφ) = u1 sin φ (4.9)

Gentleman [11] has shown that this method magnifies roundoff errors
when evaluated near φ = kπ (k ∈ Z) and can produce unusable results for
large orders l. Newbery [17] suggests to adaptively perform a phase shift
of π/2 to avoid such cases. However, an experimental comparison of direct
evaluation, the original and the modified version of Clenshaw’s algorithm
indicates that the error is tolerable for the moderate values of l that occur in
our context: For 160 000 structure tensors of order six from a natural color
image, all methods produced identical results (with r = 2◦ and a = (2−7)◦, at
single precision). Even with l = 50, all methods gave the same extrema, now
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(a) cos φ + ( 1

2
+ ε) sin 2φ (b) cos φ + 1

2
sin 2φ (c) cos φ + ( 1

2
− ε) sin 2φ

Figure 4.2: In a Fourier Series, a small ε (here, ε = 10−10) can make the
difference between a pair of extrema, a saddle, and no stationary point. The
top row shows one full period, while the bottom row gives a close-up of the
affected extrema.

with a maximum angular deviation of (2−7)◦, in less than 1% of the cases.
Thus, we chose the unmodified Clenshaw algorithm, which gave a speedup
factor of 2.2 for l = 6.

4.5.2 A Faster Method

We will now present a more efficient algorithm which exploits the fact that
even higher derivatives of J are easy to evaluate. The basic idea of the
method is to expand J ′ into a Taylor series J̃ ′, which is terminated after
degree three to obtain a polynomial that can be solved analytically in a
numerically stable manner [20]. Then, the error bounds of the expansion
define a corridor around the x-axis. For intervals in which J̃ ′(φ) is outside
this corridor, we can be sure that J ′(φ) 6= 0, i.e., they do not contain an
extremum.

It is possible to recurse on the (now shorter) intervals in which J̃ ′(φ)
lies within the corridor; this allows to identify extrema which are so close
that finding them with the brute force approach would be computationally
infeasible. For example, finding the pair of extrema which is shown in Fig-
ure 4.2(a) would require sampling at r ≈ (2−10)◦. In contrast, our algorithm
needs only 10 Taylor expansions to identify all four extrema.

While it is nice to be able to find such small extrema, they are not im-
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portant in our context, so we would prefer to find the major ones more
efficiently. As intervals get down to a certain width, the computational effort
of reducing them further via the Taylor expansion exceeds the cost of the
brute force method. A simple way to combine both methods is to use the
Taylor expansion once to cut down search space, and to run the brute force
method on the remaining intervals. In the above experiment with order six
tensors (r = 2◦, a = (2−7)◦), this gave a speedup of factor two, reducing the
total time for processing all 160 000 tensors on a 2 GHz Athlon 64 processor
to 2.2 seconds, which is about as fast as a sCand on the same data. For
smaller r, the speedup was much higher (factor 7.5 for r = 0.1◦); for r = 5◦,
it vanished.

4.5.3 Implementation of the Faster Method

Since we cannot expect a polynomial of degree three to reasonably approxi-
mate a sine of frequency l in an interval larger than π/l, we initially partition
[0, 2π) into 2l equal intervals for a Fourier Series of order l. For each of these
intervals, the Taylor expansion is performed by evaluating the higher deriva-
tives at its center φ0. The required Fourier coefficients are pre-computed
once. For a third-order approximation, the error bound ∆ is

∆ =
J (5)(φ)

4!
(φ − φ0)

4 (4.10)

for some φ within the interval. Taking the order-five derivative in this ex-
pression is appropriate, since we approximate J ′. To obtain a simple, safe
estimate of ∆, the Fourier coefficients ak and bk of J (5)(φ) are used to state
that

J (5)(φ) ≤
l
∑

k=1

√

a2
k + b2

k (4.11)

and half the interval length is taken for (φ − φ0).
Now, the roots of J̃ ′−∆ and J̃ ′ +∆ give the intersections with the upper

and lower error bound, respectively. Starting from the value of J̃ ′ at the left
interval boundary, we can go through the sorted error bound intersections to
determine the intervals in which J̃ ′ is within the error corridor. Within some
intervals, J̃ ′ may lie fully inside or outside the corridor.
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5 Integrated Edge and

Junction Detection

Given a grayscale image, edges can be seen as lines across which local contrast
is high. Then, corners are points in which edges bend sharply, and junctions
are points in which two or more edges meet. Corner detection has been one
of the first applications of the structure tensor [9]. More recently, Köthe [16]
has presented an algorithm that uses the structure tensor for “integrated”
edge and junction detection.

While this method is a considerable improvement over previous approa-
ches, it finally decomposes the structure tensor field into an “edge” and a
“junction” part, which are processed by separate algorithms to produce the
respective edge and junction maps. Because of this, edges break down near
junctions, it is not always clear which edges are connected by a junction, and
isolated or duplicate junctions can occur (cf. Figure 5.1).

Unlike the second-order structure tensor, the HOST at a junction holds
enough information to find the adjacent edges. This allows to extract edges,
corners, and junctions in a single, fully integrated process. The fundamental
idea is similar to tracking lines in higher-order tensor fields [15], except that
we assume that edges are orthogonal to contrast maxima.

Figure 5.2 illustrates the process of tracking edges in a HOST field: Start-
ing from a seed with locally maximal generalized trace, we integrate edges
orthogonal to the major contrast indicated by the tensor (red arrow). When
a secondary peak in the contrast function attains a local maximum, we insert
a junction and start new edges from it (yellow arrows).

While standard hyperstreamline integration techniques can be applied
by interpolating the higher-order tensors channel-wise, we are typically not
interested in edge maps that have a greater resolution than the structure
tensor grid (note, however, that it is advisable to sample the structure tensors
at twice the image resolution [16]).

Thus, we implemented a simple tracking algorithm that works on the
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(a) (b) (c) (d)

Figure 5.1: Subfigure (b) shows edges and junctions extracted from (a) using
second-order structure tensors. (c) and (d) illustrate that edges break down
as the tensor becomes isotropic near junctions (marked with circles).

Figure 5.2: Scheme of the tracking process which extracts edges and junctions
simultaneously.
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(a) (b) (c)

Figure 5.3: With higher-order tensors, edges can be traced through and
assigned to junctions, which allows easy classification of corners (green) and
junctions (red).

given grid. For each edge, it outputs a list of sub-pixels that belong to it,
and each junction holds references to the edges it connects. This information
allows an easy classification of corners and junctions, which are shown in
different colors in Figure 5.3, based on the number of incident edges.

Integration over a Gaussian neighborhood propagates the contrast from
edges beyond corner points, which leads to short “phantom” edges that make
corners appear as junctions. To avoid such artifacts, we reject edges along
which the HOST indicates multiple directions in all sub-pixels. Also, edges
may reach existing junctions through a cycle (like in Figure 5.3(c)), and we
need to connect them explicitly to such junctions.

Figure 5.3 presents a result of our method with HOSTs of order l = 6.
The present algorithm gives superior results on synthetic images and demon-
strates the applicability of the methods introduced in Chapter 4. However,
a version which is robust enough for natural images has to be left for future
research. In particular, we plan to explore the potential of using generalized
eigenvectors instead of contrast maxima to steer the tracking.

Our implementation of Köthe’s algorithm took 0.3 s for the shown ex-
ample image (including his anisotropic averaging), while our method needed
0.9 s, again including computation and integration of the tensors. The orig-
inal image size was 300 × 300 pixels, giving a 599 × 599 sub-pixel structure
tensor field.
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6 Conclusions and Future

Work

In the present work, we have shown how higher-order tensors can be used to
represent the average of orientations in greater detail than it is possible using
traditional second-order structure tensors. We have introduced the notions,
definitions and mathematical tools required to work with such higher-order
structure tensors efficiently and to visualize them appropriately.

While Chapter 5 demonstrates the advantages of the HOST for integrated
edge and junction detection, it is intended as a proof of concept for the
introduced methods, not as the ultimate goal of our research. Consequently,
our next step will be to explore the potential of the HOST in several image
processing and computer vision applications. We have already conducted
some promising experiments on using HOSTs for texture segmentation and
for steering image diffusion.

All results in this chapter are in 2D. Some of the theory (Chapter 2) and
practical methods (Chapters 3 and 4.1) easily carry over to three dimensions,
or equivalents can be taken from the literature (Chapters 4.2 and 4.3). How-
ever, efficient methods for the sCand with n = 3 and for finding the maxima
of 3D contrast functions are still missing and probably require substantial
research.
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