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This Supporting Information contains technical details about

A. Free energy landscapes for engulfment process, with Figures S1 and S2;

B. Exocytic engulfment of nanoparticles, with Figure S3; and

C. Spreading dynamics and engulfment rate.

Figure S1 depicts the basic geometry of the vesicle-particle system for endocytic engulfment.

Figure S2 illustrates the different free energy landscapes for the engulfment process, em-

phasizing the landscapes for the bistable regime Bst. Figure S3 shows the four engulfment

regimes for exocytic engulfment by weakly curved membranes as a function of particle size

and spontaneous curvature.

A. Free Energy Landscapes for Engulfment Process

Geometry of bound and unbound membrane segments. In order to minimize the

free energy of the vesicle-particle system, we decomposed the membrane into a bound seg-
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ment and an unbound segment as shown in Figure S1 for endocytic engulfment. The bound

membrane segment (red in Figure S1) is in contact with the nanoparticle of radius Rpa and

extends up to the contact line which defines the wrapping angle φ. This angle varies from

φ = 0 for the free particle state to φ = π for the completely engulfed state and can be

regarded as the reaction coordinate for the engulfment process. The total membrane area

A = 4πR2
ve is equal to the sum of the area Abo of the bound membrane segment and the

area Aun of the unbound segment.

The bound segment of the vesicle membrane follows the contour of the particle, and thus

assumes the shape of a spherical cap with mean curvature M = ∓1/Rpa where the minus

and plus sign corresponds to the endocytic and exocytic process, respectively (main text,

Figure 2). The area of the bound segment is given by

Abo = 2πR2
pa (1− cosφ) . (S1)

If we cut the spherical particle along the contact line, we obtain two spherical caps. The

spherical cap adjacent to the bound membrane segment has the volume

Vbo =
4π

3
R3

pa(2 + cosφ) [sin (φ/2)]4 . (S2)

The unbound membrane segment does not experience molecular interactions with the

particle and its shape is determined (i) by the location of the contact line, which provides

the circular boundary of the unbound membrane segment, (ii) by the area Aun = A−Abo of

the unbound segment, (iii) by the effective volume V ±Vbo, which is enclosed by the unbound

membrane segment and the additional planar surface that spans the circular contact line,

where the plus and minus sign applies to endo- and exocytosis, respectively; and (iv) by the

spontaneous curvature m.
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Figure S1: Vesicle membrane (red-blue) in contact with a spherical nanoparticle (gray) of
radius Rpa. The vesicle shape is axially symmetric with respect to the vertical dashed line.
The wrapping (or spreading) angle φ denotes the position of the contact line which partitions
the membrane into a bound (red) and an unbound (blue) segment. The wrapping angle varies
from φ = 0 for the onset of adhesion up to φ = π for the completely engulfed state. The
bound and unbound membrane segment have the areas Abo and Aun = A−Abo, respectively.

Decomposition of total free energy. As explained in the Methods section, the total free

energy E is equal to the sum of the membrane’s bending free energy Ebe (main text, eq 21)

and the adhesion free energy Ead = −|W |Abo. The total free energy can also be decomposed

according to

E = Ebo + Eun (S3)

with the free energy

Ebo ≡
[
−2π|W |R2

pa + 4πκ(1±mRpa)2
]

[1− cos(φ)] . (S4)

of the bound membrane segment, where the plus and minus sign correspond to endocytic

and exocytic engulfment, respectively, and the free energy

Eun =

∫
dAun 2κ(M −m)2 (S5)
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of the unbound membrane segment where the integral extends over the area Aun = A−Abo

of the latter segment.

In eq S4, we used the convention that the upper and lower sign of the ± symbol corre-

sponds to the endocytic and exocytic case, respectively. The same convention will be used

below in all equations in which a ± symbol appears.

Free energy minimization. In order to find the shape of the unbound segment that

minimizes Eun for a given value of the wrapping angle φ and, thus, for a given location of

the contact line, we minimize the shape functional

Fun ≡ Eun + Σ(A− Abo)−∆P (V ± Vbo) (S6)

where Σ and ∆P are Lagrange multipliers which ensure that the membrane area has the

prescribed value A and that the unbound and bound membrane together enclose the vesicle

volume V . The auxiliary volume V ±Vbo is enclosed by the unbound membrane segment and

the additional planar surface that spans the circular contact line. When we calculate the

free energy Eun(φ) of the unbound membrane segment by minimizing the shape functional

Fun in eq S6 for many different values of φ within the interval 0 < φ < π, keeping both the

area A and the volume V fixed, we obtain the corresponding free energy landscape

E(φ) =
[
−2π|W |R2

pa + 4πκ(1±mRpa)2
]

[1− cos(φ)] + Eun(φ) (S7)

where the first term on the right hand side follows from eq S4. Typical free energy landscapes

E(φ) obtained in this way are displayed in Figure S2 corresponding to the parameter values

marked with green diamonds in Figure 3c. In general, the free energy landscapes may

contain additional minima corresponding to additional intermediate states. For the uniform

membranes considered in the main text, these additional states can always be ignored because

they represent satellite minima very close to the free or completely engulfed states, from
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Figure S2: Free energy landscapes ∆E(φ) ≡ E(φ)−E(0) corresponding to the six parameter
values marked by green diamonds in Figure 3c: (a) For the free (or non-engulfment) regime
Fst, the landscape has a minimum at φ = 0, which corresponds to the free state F , and
a maximum at φ = π, which defines the completely engulfed state C; (b) For the partial
engulfment regime Pst, the landscape has maxima both at φ = 0 and at φ = π and a
minimum at an intermediate φ-value corresponding to a partially engulfed state; (c) For the
complete engulfment regime Cst, the landscape exhibits a minimum at φ = π and a maximum
at φ = 0; (d, e, f) Three landscapes within the bistable regime Bst with two local minima at
φ = 0 and φ = π separated by a free energy barrier. In panels (d) and (f), the global minima
are provided by the states F and C, respectively. Panel (e) corresponds to the transition
line L∗ at which both states F and C have the same free energy.

which they are separated by tiny energy barriers that can be easily overcome by thermal

fluctuations.

Free energy landscape close to free particle state F . Close to the free particle state

F with φ = 0, the free energy landscape behaves as

E(φ) ≈ E(0) + 1
2
E ′′ φ2 with E ′′ ≡ d2E(φ)

d φ2

∣∣∣∣∣
φ=0

. (S8)

The free particle state is (meta)stable as long as E ′′ > 0 and unstable for E ′′ < 0, which

implies that E ′′ = 0 determines the instability line Lfr. Using the decomposition E =

Ebo +Eun of the free energy into the contributions from the bound and unbound membrane
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segments, as in eqs S3 - S5, we obtain E ′′ = E ′′bo + E ′′un with

E ′′bo = −2πR2
pa|W |+ 4πκ(1±Rpam)2 (S9)

with the plus (minus) sign corresponding to endocytosis (exocytosis).

The instability line Lfr is now determined by

E ′′ = −2πR2
pa|W |+ 4πκ(1±Rpa m)2 + E ′′un = 0 . (S10)

Alternatively, we may also determine Lfr from the instability relation

Mco = Mms or
√
R2

pa|W |/(2κ) = 1±Rpa Mms (S11)

where the expression for the contact mean curvature Mco in eq 23 of the main text has been

used. The two relationships as given by eqs S10 and S11 are only equivalent if the unbound

membrane segment makes the contribution

E ′′un = 4πκRpa[Mms −m] [±2 +Rpa(Mms +m)] (S12)

to the second derivative E ′′. A combination of E ′′bo in eq S9 and E ′′un in eq S12 then leads to

E ′′ = E ′′bo + E ′′un = −2πR2
pa|W |+ 4πκ(1±RpaMms)

2 . (S13)

For endocytosis (+ sign), this relationship is identical to eq 6 in the main text.

Relation between membrane area and mechanical membrane tension. In the the-

oretical approach used here, the mechanical tension Σ does not represent an independent

parameter but plays the role of a Lagrange multiplier Σ, see eq S6, which is determined in

terms of the other parameters in order to ensure that the membrane area has the prescribed
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value A.1–3 The minimization procedure typically leads to Lagrange multipliers Σ that cor-

respond to relatively small tensions of the order of κ/R2
ve, κm/Rve, or κm2. If we stretched

the membrane with such a tension, the change in membrane area arising from the mem-

brane’s area compressibility would be rather small which provides a consistency check on

the theory. In fact, even in the presence of relatively large tensions of the order of 1 mN/m,

the membrane area can only change by a few percent without rupturing. Thus, as long as

the membrane does not rupture, its area remains constant to a very good approximation.

For giant unilamellar vesicles (GUVs), the membrane area A can be directly measured and

it is then possible to corroborate the theory by a systematic comparison of calculated and

experimentally observed membrane shapes as has been successfully done for lipid vesicles in

the absence of nanoparticles.4–6

An alternative theoretical approach has been used in refs 7 and 8 where the engulfment

of nanoparticles was theoretically studied in the presence of a certain prescribed membrane

tension Σ′. This tension was treated as an independent control parameter and then represents

a ‘chemical potential’ for membrane area which would govern the exchange of area with a

putative area reservoir, in analogy to a grand-canonical ensemble. This approach is motivated

by the view that eukaryotic cells control the tension of their plasma membranes, presumably

by regulating the osmotic conditions and by remodelling the cytoskeletal forces acting on

the cell membrane, which leads to the so-called cortical tension. Because the mechanisms

underlying this tension are complex and poorly understood, it is appealing to reduce this

complexity to a single tension parameter. One difficulty with this approach is that the

measured tension values are quite variable and change during the cell cycle. Indeed, recent

experiments provide Σ′-values in the range between 0.05 and 2 mN/m.9,10 Another difficulty is

that the actin-myosin cortex exerts complex patterns of forces onto the cell membrane which

contribute to the membrane tension but, at the same time, directly affect the membrane

shape, and it is not obvious that these two effects of the cortical forces may be decomposed

and considered separately.
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The lipid membranes and vesicles addressed in our study do not involve an area (or lipid)

reservoir which implies that the membrane area A rather than the membrane tension should

be regarded as the basic control parameter. Furthermore, the instability relations for the free

and completely engulfed particle states as derived here depend only on local properties of the

membrane close to the nanoparticle and can, thus, also be applied to cell membranes. In fact,

one can show that the free energy landscapes for particle engulfment remain unaffected by

small tensions Σ′ � Σo ≡ κ/R2
pa. For a membrane with a clathrin coat, the bending rigidity

is κ = 10−18 J as measured in ref 11 which leads to crossover tensions Σo ≥ 0.4 mN/m for

particle sizes Rpa ≤ 50 nm as studied experimentally in refs 12 and 13.

B. Exocytic Engulfment of Nanoparticles

Instability relations for exocytic engulfment. For exocytic engulfment, the curvature

Mms of the membrane segment adjacent to the free particle state F (main text, Figure 5)

must be smaller than 1/Rpa in order to ensure that the membrane and the particle do not

intersect each other. Furthermore, the contact mean curvature is given by Mco = − 1
RW

+ 1
Rpa

as explained in the Methods section. As a consequence, the relation Mco = Mms for the

instability line Lfr of the free state F leads to

Rpa = Rfr ≡
1

Mms +R−1
W

and Mms > −1/RW (Lfr, exocytosis) . (S14)

and the membrane segment starts to spread over the particle if

Rpa > Rfr and Mms > −1/RW (unstable F , exocytosis) . (S15)

For strongly curved membrane segments with a negative mean curvature Mms smaller than

−1/RW , the free state F is stable for all particle sizes, i.e., the critical particle size Rfr =∞.

For exocytic engulfment, the curvature M ′
ms of the mother membrane adjacent to the
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membrane neck of the completely engulfed state C (main text, Figure 6) must be larger

than −1/Rpa in order to ensure that the mother membrane does not intersect the membrane

segment bound to the particle. The instability line Lce for the state C as determined by

Mco +M ′
ms = 2m now has the form

Rpa = Rce ≡
1

2m+R−1
W −M ′

ms

for M ′
ms < 2m+ 1/RW (Lce, exocytosis) , (S16)

and the membrane neck starts to open if

Rpa < Rce and M ′
ms < 2m+ 1/RW (unstable C, exocytosis) . (S17)

If the unbound membrane segment has a mean curvature M ′
ms larger than 2m + 1

RW
, the

completely engulfed state C is unstable for all particle sizes, i.e., Rce =∞. The physical re-

quirement that the membrane has no self-intersections in state C leads to the additional con-

dition that M ′
ms is larger than −1/Rpa. Therefore, stable states C without self-intersections

are only possible for − 1
Rpa

< M ′
ms < 2m+ 1

RW
.

These instability lines and instability criteria for exocytic engulfment can be transformed

into those for endocytic engulfment, if we change (i) the sign of the spontaneous curvature m

as well as (ii) the signs of the curvatures Mms and M ′
ms of the two membrane segments. This

‘mirror symmetry’ implies that we have a one-to-one correspondence between the engulfment

diagrams for exocytic and endocytic engulfment as illustrated further below for the case of

weakly curved membranes.

For notational simplicity, we have used the same notation RW for the adhesion length of

both the endocytic and the exocytic process. Note, however, that the two adhesion lengths

may have different numerical values because the molecular interactions described by the

adhesive strength W may be different on the two sides of the asymmetric bilayer.
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Figure S3: Exocytic engulfment of nanoparticles by weakly curved membranes: Different
engulfment regimes Fst, Bst, Cst and Pst as a function of particle size Rpa and spontaneous
curvature m, both measured in units of the adhesion length RW . (a) Concave membrane
segments with small negative curvatures Mms = M ′

ms = −0.05/RW ; (b) Flat membrane
segments with vanishing curvatures Mms = M ′

ms = 0; and (c) Convex membrane segments
with small positive curvatures Mms = M ′

ms = +0.05/RW . The two instability lines Lfr and
Lce for the free and completely engulfed states are given by eq S14 and eq S16 and define
the critical particle sizes Rfr and Rce. The bistable regimes Bst contain the transition lines
L∗ (dashed) at which the free and completely engulfed states coexist. All four engulfment
regimes meet at the ‘multicritical’ intersection points of the two instability lines. Compared
to endocytic engulfment (main text, Figure 7), the relative locations of the regimes Bst and
Pst have been swapped.

Critical particle sizes for exocytic engulfment. The equations of the previous sub-

section imply that the intersection point of the two instability lines is again located at

m = 1
2

(Mms +M ′
ms) but that the relative positions of the intermediate size regimes Bst and

Pst are now swapped compared to the endocytic case. Therefore, the engulfment process

is continuous for m < 1
2

(Mms + M ′
ms) and discontinuous for m > 1

2
(Mms + M ′

ms), see Ta-

ble S1. The latter table also contains the two critical particle radii for exocytic engulfment

as obtained from the corresponding instability criteria in eqs S15 and S17.

Exocytic engulfment by weakly curved mother membranes. For sufficiently large

values of the vesicle size Rve, the two membrane curvatures Mms and M ′
ms can again be

neglected. The corresponding engulfment diagram is depicted in Figure S3b as a function of

particle size Rpa and spontaneous curvature m, both measured in units of the adhesion length
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Table S1: Critical particle sizes for exocytic engulfment as derived from eqs S15 and S17.

Range of spontaneous Intermediate Engulfment Lower Upper
curvature m size regime process critical size critical size

m > 1
2

(Mms +M ′
ms) bistable Bst discontinuous Rce Rfr

m < 1
2

(Mms +M ′
ms) partial Pst continuous Rfr Rce

RW . Inspection of Figure S3b shows that exocytic engulfment by flat membranes leads to

partially engulfed states for negative spontaneous curvature and to bistability for positive

spontaneous curvature. This behavior for the exocytic process is exactly the opposite of

the behavior for the endocytic process for which partially engulfed states occur for positive

spontaneous curvature and bistability is found for negative spontaneous curvatures (main

text, Figure 7b). For small but finite values of the segment curvatures Mms and M ′
ms, the

regimes for exocytic engulfment again undergo small changes, primarily determined by the

sign of Mms +M ′
ms, as illustrated in Figure S3a and Figure S3c.

A detailed comparison of the different regimes for exocytic and endocytic engulfment as

displayed in Figure S3 and Figure 7 shows that the exocytic diagrams can be obtained from

the endocytic ones if we simultaneously change the sign of the spontaneous curvature m as

well as the signs of the segment curvatures Mms and M ′
ms. In this way, we obtain Figure S3c

from Figure 7a and Figure S3a from Figure 7c. This ‘mirror symmetry’ of the engulfment

diagrams is a direct consequence of the corresponding ‘mirror symmetry’ of the instability

criteria as pointed out after eq S17.

Adhesion length and spontaneous curvature from critical particle sizes. If the

exocytic engulfment process is continuous and proceeds via partially engulfed states, the

two critical particle sizes Rfr and Rce > Rfr are accessible to direct observation, either

in experimental or in simulations studies. From the observed critical sizes, we can then

11



determine the adhesion length via

RW =
Rfr

1−Rfr Mms

(cont exocytosis) (S18)

and the spontaneous curvature via

m = 1
2

[
1

Rce

− 1

Rfr

+Mms +M ′
ms

]
(cont exocytosis) (S19)

as follows from eqs S14 and S16.

C. Kinetics of Membrane Spreading and Engulfment Rate

Force balance at the contact line. The spreading of the membrane over the particle

surface is induced by the attractive membrane-particle forces and proceeds via the displace-

ment of the contact line. For the engulfment of a spherical particle, the membrane geometry

is axially symmetric and the contact line has the total length

Lco = 2πRpa sin(φ) . (S20)

The position of the contact line is determined by the contact point of the membrane contour.

The coordinate of this point is taken to be the arc length

s ≡ Rpa φ (S21)

of the bound membrane contour measured from the south pole of the particle with φ = 0 as

in Figure S1. The displacement of the contact line now corresponds to changes in s.

The contact line at position s experiences two forces: a thermodynamic driving force

and a friction force. The thermodynamic driving force F1 reflects the change in the system’s
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energy as we displace the contact line. This force has the form

F1 = −dEs(s)
d s

= − 1

Rpa

dE(φ)

d φ
(S22)

where Es(s) is the free energy landscape of the system as a function of s, i.e., Es(s) =

E(φ(s)) = E(s/Rpa) with the free energy landscape E(φ) as discussed before, see Figure S2.

The force F2, on the other hand, depends on the dissipation mechanism. If the contact

line does not move, there will be no friction. Therefore, the friction force F2 is taken to be

proportional to the velocity v = d s/d t of the contact line which is equal to the derivative

of arc length s with respect to time t. The friction coefficient for the displacement of

the whole contact line should be proportional to the length Lco of the contact line which

implies F2 = ηeffLcod s/d t which defines the effective dynamic viscosity ηeff . Using eq S20

for the contact length Lco and changing variables from arc length s to wrapping angle φ via

s = Rpa φ, we obtain the φ-dependent friction force

F2 = 2π ηeff R
2
pa sin(φ)

d φ

d t
. (S23)

We now balance the thermodynamic driving force F1 in eq S22 with the friction force F2 in

eq S23, i.e., we set F1 = F2 which leads to the equation of motion for the contact line as

given by

sin(φ)
d φ

d t
= − 1

2π ηeff R3
pa

dE(φ)

d φ
(S24)

which is identical with eq 17 in the main text.

Size-dependent engulfment rate. The equation of motion for the contact line (eq S24)

involves the gradient dE/d φ of the free energy landscape which can again be decomposed

into two contributions from the bound and unbound membrane segment, i.e.,

dE(φ)

d φ
=
dEbo(φ)

d φ
+
dEun(φ)

d φ
(S25)
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with

dEbo(φ)

d φ
=
[
−2π|W |R2

pa + 4πκbo(1±mboRpa)2
]

sin(φ) (S26)

with the plus sign corresponding to endocytosis.

As far as the gradient dEun(φ)/d φ of the unbound membrane (or mother membrane) is

concerned, it is intuitively plausible that Eun(φ) changes primarily by shape changes of the

unbound membrane segment close to the contact line and that these changes are small if

this segment can adapt its mean curvature to the spontaneous curvature m. For m = 0, for

example, this segment can attain a shape close to a catenoid which has vanishing bending

energy and, thus, makes no contribution to Eun. This expectation can be directly confirmed

for the initial spreading close to the free state F , i.e., for small values of the wrapping angle

φ because

dEun(φ)

d φ
≈ E ′′un,fr φ = 4πκRpa[Mms −m] [±2 +Rpa(Mms +m)]φ for small φ (S27)

as follows from Eun(φ) ≈ Eun(0) + 1
2
E ′′un,fr φ

2 and eq S12 with E ′′un = E ′′un,fr. The latter

equation also applies to the present case because the unbound membrane segment (or mother

membrane) is characterized by the same fluid-elastic parameters m and κ as in the case of

the uniform membrane.

Likewise, for the final spreading process close to the completely engulfed state C, i.e., for

small deviations δφ ≡ φ− π, the free energy landscape for the unbound membrane segment

behaves as Eun(φ) ≈ Eun(π) + 1
2
E ′′un,ce δφ

2 with

E ′′un,ce ≡
d2Eun(φ)

d φ2

∣∣∣∣∣
φ=π

= 4πκRpa[M ′
ms −m] [±2 +Rpa(3m−M ′

ms)] . (S28)

which implies the gradient

dEun(φ)

d φ
≈ 4πκRpa(M ′

ms −m) [±2 +Rpa(3m−M ′
ms)] δφ for small δφ. (S29)
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Inspection of eqs S27 and S29 shows that the gradient dEun(φ)/d φ is proportional to

Rpa(Mms −m) for small φ and to Rpa(M ′
ms −m) for small δφ = φ− π. These dependencies

have two implications. First, the gradient dEun(φ)/d φ vanishes for small φ and Mms = m

as well as for small δφ and M ′
ms = m as expected. Second, this gradient becomes small if

both the segment curvatures Mms and M ′
ms as well as the spontaneous curvature m are small

compared to the inverse particle radius 1/Rpa. The latter property motivates a systematic

expansion of the free energy Eun in powers of the size ratio ε ≡ Rpa/Rve with Rve =
√
A/4π

as before. Such an expansion shows (i) that M ′
ms ≈ Mms to leading order in ε and (ii) that

the free energy gradient dEun/d φ of the unbound membrane segment behaves as

dEun(φ)

d φ
= ±8πκRpa(Mms −m) sin(φ) cos(φ) +O(ε2) . (S30)

For small values of φ and δφ = φ − π, this expression becomes identical, to first order in

ε = Rpa/Rve, with eq S27 and eq S29, respectively. This asymptotic behavior has been

confirmed by numerical minimization of the total free energy. Therefore, in the limit of

small size ratios Rpa/Rve, the gradient dEun(φ)/d φ is proportional to Rpa(Mms − m) ≈

Rpa(M ′
ms −m) for all values of φ. As a consequence, this gradient can be neglected if both

the segment curvatures Mms and M ′
ms as well as the spontaneous curvature m are much

smaller than the inverse particle radius 1/Rpa. In the latter case, the gradient of the free

energy landscape is determined by the bound membrane segment alone and behaves as

dE(φ)

d φ
≈ dEbo(φ)

d φ
=
[
−2π|W |R2

pa + 4πκbo(1±mboRpa)2
]

sin(φ) (S31)

as follows from eq S26. When we insert this expression for dE(φ)/d φ into the equation of

motion as given by eq S24 (or eq 17 in the main text), the factors proportional to sin(φ)

cancel and we obtain the simplified equation of motion

d φ

d t
=
|W |R2

pa − 2κ(1±mRpa)2

ηeff R3
pa

(S32)
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which implies that the wrapping velocity d φ/d t is constant and that the engulfment time

tFC follows from

π =
|W |R2

pa − 2κ(1±mRpa)2

ηeff R3
pa

tFC . (S33)

For the plus sign corresponding to endocytosis, eq S33 is equivalent to eq 18 in the main

text.
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