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Abstract. The linear gyrokinetic spectral code LIGKA [1] is used to examine the Alfvén
eigenmode stability properties of the ITER 15 MA scenario. It is shown that a kinetic multi-
species treatment i.e. deuterium (D), tritium (T), helium ash (He), beryllium (Be), energetic α-
particles and neutral beam deuterium is indispensable for an accurate estimate of linear Alfvén
mode properties. Comparisons to analytical expressions are carried out and several frequency
ranges and modes such as the geodesic-acoustic/beta-induced Alfvén mode (GAM/BAE), the
toroidal Alfvén eigenmode (TAE) and the ellipticity-induced Alfvén eigenmode (EAE) are
discussed. A scan for the damping of TAEs (including radiative damping, continuum damping,
ion and electron Landau damping) with the toroidal mode numbers n = 1− 35 is performed.
Finally, the instability threshold as a function of the energetic particle β is investigated for one
example.
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1. Introduction

The excitation of collective instabilities by super-thermal particles in hot plasmas and the
related transport processes attract increasing interest due to their fundamental challenges for
theoretical models and their practical importance for burning fusion plasmas. Within the last
10 years significant advances on both the theoretical and the experimental side have been made
leading to a more detailed and quantitative understanding of fast-particle-driven instabilities.
On the theoretical-numerical side, one of the crucial steps was to move from fluid models for
the plasma background with a hybrid kinetic expression for the energetic particles (EPs) to
a fully kinetic model for all the plasma species, i.e. background ions, background electrons,
and fast ions[2, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. This improvement allows one to describe
consistently the resonant interaction between global plasma waves such as shear Alfvén and
Alfvén-acoustic waves, and the particles via Landau damping, i.e. the dynamics parallel to
the magnetic background field. The accurate treatment of the plasma background leads not
only to changes in the linear mode properties such as frequency, growth/damping rate, and
mode structure but also influences the non-linear dynamics.
Due to major advances on the diagnostics side in present day experiments, the comparison
of these advanced models with the experiments can be carried out in a more detailed and
comprehensive way than a few years ago. For example, the measurement of damping rates via
active external antennas [13, 14], the imaging of 2D mode structures via electron-cyclotron-
emission spectroscopy [15, 16, 17, 18], or the direct detection of escaping fast ions [19]
allows one to diagnose various kinetic features of the plasma modes that are responsible
for the transport of EPs. Furthermore, the fast particle distribution function itself can also
be measured with much greater confidence [20, 21]. Therefore, the new physics accessible
due to a more comprehensive model and numerical implementation can be directly verified
and validated with experimental data. Based on this validation on present day experiments,
predictions for ITER in several scenarios can be attempted, which is the topic of this paper.
Previously, an analysis has been carried out in ref. [22] using the hybrid kinetic code NOVA-
K [23]. In this approach the eigenmode structure was determined by the ideal code NOVA
and the damping and drive were calculated perturbatively. In ref.[24] local linear gyrokinetic
estimates for the fusion alpha density profile in ITER were given. In contrast, the treatment
in this paper is global, kinetic and non-perturbative. The reasons for relaxing the non-
perturbative and non-local constraints are the following: first, finite Larmor radius effects
change the mode structures by coupling to the kinetic Alfvén wave via radiative damping [25]
and via direct interaction with the continuum. The emerging short wave length features and
the small real frequency shifts (continuum intersection!) are important for correctly describing
the damping of these waves. Secondly, it will be shown in this paper that not always the ‘main’
TAE gap modes with (m,m+ 1) as dominant poloidal harmonics are the least damped TAEs
for a given toroidal mode number n. There is evidence [26] that these branches (as described
in section 3.3) can become dominant in the non-linear phase.
After briefly describing the LIGKA code [1] in section 2, a local kinetic analysis of the 15
MA standard scenario (profiles in section 3.1) is given. Several models of complexity are
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compared, dilution effects due to helium ash (He) and beryllium (Be) described and a large
range of mode numbers and frequencies are investigated. Other impurities such as tungsten are
not included, since their contribution to the physics of Alfvén modes are negligible: transport
studies show that in order to reach Q > 5 the tungsten concentration must be below 0.007%

[27]. This small amount has no effect on either the Alfvén velocity or on a reduced ion Landau
damping, even when high charge states are considered. Section 3.3 shows the results of global
mode calculations and its destabilisation due to alpha particles and beams (section 3.4). Due to
the sensitivity of global mode stability on the profiles for the background quantities and the EP
distribution functions, no complete analysis for this scenario can be given here, however, a first
set of representative parameters is investigated, also in the view of code-code benchmarking.
A discussion on the profile sensitivity and on other consequences from this linear analysis
will be given in the conclusion section.

2. Theoretical model

The equations solved by LIGKA are the quasi-neutrality equation (QN) and the gyrokinetic
moment equation (GKM) that together with the gyrokinetic equation for the particle
distribution functions form a consistent model for electromagnetic perturbations in tokamak
geometry [2, 3]. Starting directly from the implemented equations, a rather general dispersion
relation can be derived ([28] eqn.12,[29] eqn.4,[3, 11]), allowing the analysis of the continuum
solutions and the local damping due to electron and ion Landau damping, here written for
multiple ion species:
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.
This very general dispersion relation describes the linear physics of shear Alfvén waves in
tokamak geometry (left hand side) and their modification due to the coupling to acoustic and
kinetic ballooning waves up to first order in ε (right hand side). Note that both electron and
ion Landau damping are included.
Since this dispersion relation can be derived directly from the equations that are the basis
for LIGKA, all simplifications concerning the geometry and v⊥ (v⊥ = 0) that are assumed
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Figure 1. comparison of the analytical and the numerical value of the real part (left) and the
imaginary part (right) of the coefficient H(x) as given in eqn. 1 for D and T; ω was chosen to
be close to the lower TAE accumulation point (f = 71.2kHz) with a damping of 2.5%.

when expanding the drift operator can be dropped if the coefficients and the matrix elements
of the GKM and the QN equations are calculated numerically [11]. Although the influence
of the elongation of flux surfaces [32] and deeply trapped particles [33] on the dispersion
relation have been analytically examined, in general it is required to numerically evaluate
the coefficients in eqn. 1. The LIGKA code has been benchmarked [34, 11] to recover
this analytical dispersion relation in the appropriate limit. Figure 1 shows an example for
the differences between the numerical and the analytical evaluation of one of the relevant
coefficients H(x). Unless stated otherwise, the coefficients are evaluated numerically for the
local and global analyses in sections 3.2 and 3.3.
As indicated by the definition of ω∗ and the sum on the right hand side of eqn. 1, in this
version of the dispersion relation the thermal ion species are treated separately, i.e. their orbit
and profile properties are taken into account explicitly in order to account for D-T mixture
and dilution effects due to He ash and Be impurities.
According to this and the previous section, the Alfvén velocity is defined as

vA =
B√

µ0
∑
mini

.

This results in an on-axis value for fA = vA/(2πR0) of 178kHz for a 50:50 D-T mixture with
the given (figure 2) He ash and Be concentration.
The profiles given in figure 2 are based on on ASTRA transport simulations for the ITER
baseline scenario with a plasma current Ip = 15MA, R0 = 6.2m, a = 2m and a magnetic
field of B = 5.3T [35]. Two NBI beam sources with 16.5MW each are considered (one on-
axis and one off-axis) and the fusion gain Q is 10 for these parameters. The on-axis safety
factor is chosen to be q0 = 0.99 unless stated otherwise. The toroidal β is 2.8% and the
on-axis thermal and α-particle βs are 6.84% and 1.15%, respectively.
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Figure 2. Left: q and shear profile used in the simulations; Right: temperature and density
profiles for the background species: the tritium and the impurity ions are assumed to have the
same temperature as the deuterium and the tritium. Note that the densities of the He ash and
the Be are multiplied by 10 in this plot.
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Figure 3. Left: ideal shear Alfvén wave continuum (SAW) for q0 = 0.99. The gap around 80
kHz is the TAE (toroidicity induced) gap, the gap at 180 kHz is the EAE (ellipticity induced)
gap, and the gap at ∼ 275 kHz is the NAE (non-circular triangularity-induced) gap. Right:
ideal SAW continuum for q0 = 0.9; core localised gaps for low and medium n, here e.g. for
n = 7 can exist.

3. Numerical results

3.1. Ideal MHD spectra and TAE location

As a start, in figure 3 the ideal MHD shear Alfvén spectra (SAW) for different n are plotted
for the q-profile with q0 = 0.99 as given in figure 2. The TAE gap for low-n TAEs is outside
s ≥ 0.45 due to the vicinity of q to 1. Here s is the square root of the normalised poloidal
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flux. The gaps are closed, for the even TAEs at the bottom of the gap at around s ∼ 0.85 and
for the odd TAEs at s ∼ 0.6. Carrying out a sensitivity study with respect to q0 [36] shows
that the gap remains closed for reasonable choices for q0 between 0.9 < q0 < 1.15.
Due to the flatness of the q-profile and the fact that q is very close to 1, the radial TAE position
qTAE = m+1/2

n
for increasing mode number moves monotonically from s ∼ 0.7 to s ∼ 0.35.

This means that the modes form radially a dense cluster that motivates the question regarding
the extent to which non-linear mode saturation effects (resonance overlap) alter quasi-linear
predictions. In contrast to that, for q0 = 0.9, core localised gaps with TAEs that are also
sometimes called ‘tornado modes’ [37, 38, 39] can exist. Due to formation of this ‘inner’ gap
at s < 0.4, the main TAE gap can be closed in the centre (see figure 3, right). The details of
the case with q0 = 0.9 are analysed in ref.[36].

3.2. Local kinetic analysis

The kinetic dispersion relation eqn. 1 was used to benchmark the coefficients entering the
global solver of LIGKA. As shown previously [11], in the appropriate limit (e.g. electrons
in a circular equilibrium) the analytical expressions can be recovered numerically, also in the
case where the imaginary part of ω is negative. Mesh refinement close to the resonances and
rational interpolation techniques for determining the residual are employed. Figure 1 shows
this comparison for the ITER case described in the previous section. The first observation
is that indeed analytical theory and numerical evaluation agree relatively well, however, the
damping is over-estimated by the analytical expression (eqn. 1) . This is expected because of
the assumption of well circulating ions (v = v‖) in the analytical derivation [11]. Secondly,
there is a large difference for D and T, that is especially important for the imaginary (damping)
part: due to their larger mass T ions contribute much less to the total ion Landau damping
than D. It is emphasised that the damping depends exponentially ∼ e−x

2 (see eqn.1) on the
argument xm = ω

|k‖,m|vth
. This demonstrates the importance of a fully kinetic treatment: the

ion Landau damping is very sensitive on the mode frequency, local temperature, the local
aspect ratio and the isotope mix.
Electron Landau damping is rather small due to the large ratio of vth,e/vA ∼ 13 (on -axis).
Only very close to rational surfaces (k‖ = 0) small ‘spikes’ in the coefficients H(x), N(x)

and D(x) can make a small contribution (not shown here). Compared to the ideal, reduced
MHD results in figure 3, considerable corrections occur due to the coupling to the sound waves
and drift waves, especially for higher mode numbers. These corrections cannot be captured
properly by one single compressibility constant since the term in large round brackets on the
right hand side of eqn.1 depends on various quantities, most importantly on the frequency as
an argument of the plasma dispersion function. Figure 4 (left) shows this comparison between
the reduced MHD calculation and the kinetic continuum for n = 20 that was chosen because
it is an ‘intermediate’ case between local (n > 20) and global (n < 20) mode structures
(see also figure 8). In figure 6 (left) the local damping for the kinetic spectrum is shown: as
expected for higher frequencies, the ion Landau damping is reduced (smaller x). At lower
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Figure 4. Left: kinetic continuum for n = 20 (q0 = 0.99). In red, the kinetic calculation, in
blue the ideal spectrum. The black circle indicates the part of the spectrum that is shown on
the right.; Right: the lower TAE continuum branches as on the left as a function of the local
damping for different isotope mixes: the red crosses refer to a mix with D:T 50:50, He ash
and 2% (of the electron density) Be. The blue diagonal crosses include only D,T and He ash,
and the magenta stars only D and T. The red dots show the damping when all ω∗ effects are
neglected (D,T,He ash,Be).

temperatures, i.e. larger minor radius the damping decreases. Therefore, the local damping
is much smaller for the odd (top of the TAE gap) TAE branch since it has a higher frequency
than the even (bottom of the gap) TAE. However, a global analysis shows that the continuum
damping for odd modes is stronger since the gap is closer to the continuum formed by the
higher poloidal mode branches.
On the right of figure 4, the local (numerical) solution of the dispersion relation for the even
TAE (n = 20) branch is plotted. As discussed above, the background plasma composition is
shown to be crucial for the correct estimation of the damping: especially adding the He ash
(difference between pink stars and blue diagonal crosses) decreases the damping considerably
at the accumulation point (maximum of the real frequency). Since for n = 20,m = 20/21,
ω∗ is rather large due to a large kθ ∼ −m/r, the diamagnetic effects make a rather large
impact on the local damping rate. It should be noted that in all cases with less than 4 species
the densities were slightly adapted in order to fulfill (numerically) quasi-neutrality. Also the
differences due to changed Alfvén velocities via the mass density were taken into account.
The variation of the ratio of D and T around the optimal ratio 1 : 1 is not causing large
differences in the damping [36].
There is a considerable difference between taking into account circulating particles only and
both circulating and trapped particles. Due to their smaller bounce frequency trapped particles
interact less efficiently with TAEs. A reduced damping (1.8% vs. 2.2%) is the consequence
(see figure 5, left). This effect is more pronounced when the stability and the excitation of
low-frequency branches (BAE, AITG,KBM,...) are investigated [34].
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Figure 6. Left: kinetic continuum for n = 20 in the EAE frequency range: the red crosses
show the part of the continuum that has a damping less than γ/ω < 0.05%, the blue diagonal
crosses 0.05% < γ/ω < 0.5%, the magenta stars 0.5% < γ/ω < 2.5% , and the cyan squares
2.5% < γ/ω < 50%; Right: n = 20 EAE mode with a frequency of 190 kHz and a damping
rate of γ/ω = 0.6%; the mode frequency and its width are marked with the black line in the
spectrum on the left.

In figure 5 (right) the damping characteristics for the even (lower frequency) TAE
branch are plotted for some selected toroidal mode numbers. Although the TAE gap moves
radially inwards in regions with higher ion background temperature, the damping decreases
for high mode numbers. Two effects are responsible for this: the frequency increases due to
ωTAE/ωA0 = n

2m+1
from 0.33 ωA0 towards 0.5 ωA0 and the diamagnetic effects increase for
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Whereas the damping for the GAM branch is relatively large due to the high background ion
temperature, the damping for the ‘Alfvénic’ branches is very low.
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increasing mode numbers. For the odd TAE branch, these effects almost compensate each
other and therefore only a weak dependence on n was found.

For completeness and benchmarking with other codes also the damping for the EAE
(ellipticity induced) gap is given: due to its higher frequency the EAE branch is much less
damped (see figure 6). Finally, the n = 0 branches are discussed briefly: whereas the geodesic
acoustic branch is heavily damped (see figure 7), them = 1 branch - also called global Alfvén
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eigenmode branch (GAE) - experiences small damping over a large radial range. These
branches are not only important because of their role for the interaction with background
turbulence [40] but also for benchmarking initial value codes via decay studies of an initial
perturbation.
The conclusion of this local analysis chapter is, that all kinetic effects considered here tend to
reduce the local damping. Especially the isotope effects and ω∗ effects (for higher n) have a
considerable impact.

3.3. Global analysis

It has been predicted that the EP transport in ITER can be solved by applying local models
[24, 41, 12]. This prediction is based on the fact that the α-particle drive is optimal (drift orbit
width of driving particles equals the mode width) around n ∼ 30 for this scenario and on
the assumption that the most unstable modes are radially rather localised. More global (and
thus more dangerous) modes are thought to be even more damped due to non-local continuum
damping [12]. In addition, if the saturation amplitudes are small quasi-linear estimates for
the EP transport can be used [24, 42]. However, no non-linear global, multi-n simulations
have been carried out to support these predictions. As will be shown in this section, some
of these assumptions may only be marginally fulfilled or not be valid at all. Further, it is
important to investigate how far the scenarios are from the thresholds that would impact the
ITER performance, also in the view of more unstable (advanced) scenarios.
As a first step towards a more complete numerical description, the mode structures,
frequencies and damping rates of a large range of toroidal mode numbers are documented
here. As a next step [43] this information will be used in non-linear hybrid simulations
employing the HAGIS code [44]. Of particular concern for EP transport are rather low-
n modes (n < 15) with a large radial extent and/or dense clusters of modes that cause
overlapping resonances in phase space. In both cases EPs can be effectively redistributed
[45]. For a final answer on the magnitude of this transport, global, non-linear calculations
are necessary: it cannot be ruled out that low-n modes (n < 15) are excited in regions of
phase space that are not affected by the high-n modes - especially when they are sparse and
only affect a small volume in phase space. Also in the non-linear phase the modes with the
largest linear growth rate may not always have the largest amplitudes or sub-dominant modes
can saturate with the highest amplitude [7, 46] because of non-linear phase space coupling
effects.
As described above, for the q-profile given in figure 2 the TAE modes form a rather dense
cluster of modes (see figure 8). The damping dependencies of these modes can be understood
as follows: as shown in figure 9, the mode peak position moves radially outwards with
decreasing n (pink squares). At the same time, the mode frequencies decrease, as indicated
by the red, green and blue lines. This means that x = ω/(|k‖|vth) (see section 2) changes
via ω and vth,i ∼

√
Ti. Since neither ω nor vth,i change linearly, and x is an argument in

e−x
2 , the damping behaviour as shown on the right of figure 9 is rather complex. In addition,

radiative damping becomes larger for more localised mode structures via its dependence on
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k⊥%i, whereas on the other hand the modes move into the low shear region for higher n’s that
in turn decreases radiative damping. Finally, for n ≈ 20 the modes become very localised and
they do not couple through several gaps (see figure 8). Therefore, there is no interaction with
the continuum at the plasma edge (s ≈ 0.85). For lower mode numbers, continuum damping
tends to increase since the distance between the closed edge continuum and the main TAE gap
decreases.
Interestingly, at n ≈ 15 other branches of the TAEs start to appear (see figure 9, green and

blue lines). These modes couple in a different way through the outer gaps (see figure 10) than
the lowest frequency TAE modes in figure 8. In fact, for n = 10 and below the dominant
poloidal harmonics are not m1 = n,m2 = n + 1 but m1 = n + 1,m2 = n + 2. Surprisingly,
the damping of these mode is rather low. On the one hand, due to their radial location around
s ∼ 0.6, they avoid strong ion Landau damping and also the radiative damping is small (low
n). On the other hand, continuum damping is expected to increase for modes with low n.
In this case, however, the rather strong shear between s ∼ 0.6 − 0.85 causes the mode’s
poloidal harmonics to decrease rather fast while coupling through the outer part of the gap.
Therefore, at the intersection with the continuum, the mode’s relative amplitude is rather low,
and therefore also the continuum damping.
The challenging question for future studies will be, if these type of modes (that are localised

outside the region where no strong EP drive is present) could be driven non-linearly unstable
even by small EP transport from the more core-localised and (higher n) modes.
For completeness also an EAE mode is given in figure 6 - its damping is low compared to the
TAE branches (higher frequency) but also its drive is expected to be considerably smaller that
the TAE drive. A dedicated study for EAEs will be carried out elsewhere.
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Figure 10. Left: two n = 10 TAEs at different frequencies belonging to different branches;
Right: two n = 15 TAEs at different frequencies with different coupling through the gap

For the global TAE runs a radial resolution of up to 768 radial grid points with grid refinement
close to the continuum intersection point has been used. The number of poloidal harmonics
has been between 7 and 33, depending on the nature of the modes: whereas very low-n and
very high-n modes require a rather moderate number of poloidal harmonics, the intermediate
n’s (n ∼ 5...15) require many harmonics for convergence. Two different solution strategies
are used: for high-n modes with a few poloidal harmonics (typically 5) an iterative solver can
be employed (see chapter 3.2 of ref. [11]), for low-n modes with many harmonics the antenna
version of the code is used (chapter 3.3 of ref. [11]). In the high-n limit, both solvers agree
perfectly. The run-time for a the largest case is less than 24 hours on 32 cores of a present
day Linux cluster. Both the calculation of the matrix elements and the diagonalisation of the
matrix are parallelised (WSMP [47]).

3.4. Energetic particle drive

Adding energetic α-particles according to the density and pressure profiles given in figures 2
and 8 leads to weakly unstable modes. It is beyond the limitations of this paper to include
a full study for all toroidal mode numbers with different distribution functions. This work is
still in progress and will be reported as soon as possible. However, a few selected cases will
be presented here.
Again both solvers, the inverse vector iteration and the antenna version of the code are used.

Figure 11 illustrates what happens to the antenna response and phase when the instability
threshold is approached: as soon as one crosses the marginal point the phase between the
antenna drive and the plasma response jumps. In figure 11 an analytical hot Maxwellian for
a TAE with n = 20 was used. The temperature is chosen to be equivalent to a slowing down
distribution function in the sense that Tα = pα/nα. The numerical calculation (in the same
spirit as discussed in figure 1) for the same case leads to a slightly higher threshold (similar
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Figure 11. Left: response function (n = 20 TAE) for increasing α-particle drive given as the
fraction β/βnom of the nominal on-axis α-particle βnom = 1.15% : βα/βnom = 0 (red), 0.2
(blue), 0.5 (cyan), 0.58 (black), 0.75 (green) and 1 (grey); Right: phase between antenna drive
and mode response shows a jump at the instability threshold.

argumentation as above for ion Landau damping), i.e. βcrit = 0.85βnom with βnom = 1.15%.
Again the coefficients (as in figure 1) were benchmarked in the appropriate limit. For n = 25

and n = 30 the instability threshold lies at βcrit = 0.65, and βcrit = 0.6, respectively. The
growth rates at the nominal βnom are 0.31%, 1.3% and 1.5% for n = 20, 25 and 30. This is in
good agreement with HAGIS calculations for the same case [43], if the background damping
is subtracted. The remaining difference of about 0.5% is probably due to the finite Larmor
radius effects of the fast ions that are kept in LIGKA but neglected in HAGIS. Also, the low-n
branches are marginally unstable with γ/ω < 0.5%.
The NBI drive is estimated to be of similar importance for the overall drive [36]. Detailed ve-
locity space calculations from slowing down models will be used in a further study to exactly
determine its magnitude and to benchmark with other codes.

4. Conclusions and further work

Quantitative estimates of the linear instability threshold of AEs in ITER require a fully gyro-
kinetic treatment for the background species and hot ions. This has been demonstrated in
this paper in detail: dilution effects, trapped particles and diamagnetic effects (for medium
and high-n cases) have been shown to reduce the linear damping rates (figure 4). In order
to include radiative damping consistently, especially in the cases where the TAEs couple
through many gaps, a non-perturbative treatment is indispensable. Furthermore, the exact
mode structure is crucial to determine the continuum damping (figure 10). Altogether, this
illustrates the well known fact that the damping of global TAEs is rather complex since several
mechanisms interact in a local and non-local way and thus this work provides a basis for
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benchmarking and for non-linear perturbative studies.
To this end, the damping as a function of the toroidal mode number has been determined
(figure 9). For the standard TAE this function has a flat minimum around n = 27. However,
low-n TAEs can have a rather small damping due to their localisation in outer gap regions
(figures 9,10). This result demonstrates that the assumption made in ref.[12] that local TAEs
are always less damped than global ones is in general not necessarily fulfilled in this ITER
scenario. The α-particle drive can destabilise slightly (γ/ω < 1.5%) the TAEs between
n ∼ 20 and n ∼ 35. Also, low-n TAEs are marginally unstable.
In summary, this paper tries to document as detailed as possible the importance of kinetic
effects on the TAE stability for one ITER reference case. It also indicates that a local
treatment may not be sufficient for determining the overall EP transport. The proof to this
conjecture, however, has to be left to future non-linear simulations that have been started
recently ([43, 26]). The results presented in this paper support the qualitative discussion in
the ITER Physics Base, chapter 5 [48, 49], however it adds more detailed, comprehensive and
quantitative results concerning the marginal stability threshold for TAEs, that is a very crucial
ingredient to all non-linear transport studies.
Clearly, there are several other open issues that have to be addressed in the near future:
performing detailed linear EAE and NAE studies, expanding the EP drive to a wider range
of toroidal mode numbers, adding the NBI drive and starting non-linear simulations on the
basis of these results. Also a sensitivity study concerning the profiles (mainly the densities
and the q-profiles) is envisaged. As indicated in section 3.2, a q-profile with q0 = 0.9 (keeping
the shear constant) gives rise to the existence of isolated core localised ‘tornado’ modes and
reduces the density of overlapping TAEs at mid-radius and the outer core. A similar behaviour
is expected if q0 is raised to q0 ∼ 1.1. If the non-linear picture changes substantially due to
these modifications, how ‘optimal EP transport’ scenarios might look like and how bursty
the EP transport will be around the marginal stability profile will be the focus of future
investigations.
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