
Depth profile determination with confidence
intervals from Rutherford backscattering data

U v Toussaint, R Fischer, K Krieger and V Dose
Max-Planck-Institut f̈ur Plasmaphysik, EURATOM Association, POB 1533,
D-85740 Garching, Germany
E-mail: udo.v.toussaint@ipp.mpg.de

New Journal of Physics 1 (1999) 11.1–11.13 (http://www.njp.org/)
Received 10 February 1999; online 26 May 1999

Abstract. A new simulation program for Rutherford backscattering spec-
troscopy (RBS) together with an adaptive kernel method in the Bayesian proba-
bility theory framework was applied to the analysis of RBS data. Reconstructed
depth profiles are free from noise-induced ringing, even for strongly overlapping
RBS peaks. This has been achieved by the use of the adaptive kernel method,
which generates the least informative depth profile according to the data and in
addition allows one to calculate the uncertainty of the obtained depth profiles.
The method is applied to erosion measurements of carbon samples.

1. Introduction

Rutherford backscattering is one of the most important and commonly applied techniques in
quantitative surface analysis. Its main advantage is that it is fully quantitative. Moreover, in
favourable cases, the elemental composition of the sample may be determined to precisions as
high as 1% [1]. Often the depth-dependent elemental composition of the sample, the depth
profile is at the centre of interest. However, the majority of spectra are complex and do not allow
for a simple interpretation.

During the last decade several computer programs for the forward simulation of RBS spectra
(direct calculation)assuming a depth profilesuch as RUMP [2] or SIMNRA [3] have been
developed. These programs are well suited to compare the calculated and measured spectra
from a sample of known composition. But the usual problem is to infer the depth profile from
the measured spectra (inverse calculation). The determination of the depth distribution of sample
constituents remains a matter of trial and error with these programs. The user has to prescribe
depth profiles of all constituents and has to compare the simulated spectrum calculated from
the input profiles with the data. Using repeated adaption the depth profiles are adjusted until
a reasonable agreement of simulated and measured data is obtained. Obviously this evaluation
procedure has several shortcomings. It is a time consuming and cumbersome task, the accuracy
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of the achieved depth profile is unknown and, in many cases, there is an ambiguity between
various depth profiles which fit the data equally well.

Bayes’ theorem enables us to overcome this trial and error procedure and to determine
the most probable depth profile underlying a measured RBS spectrum. The combination of
the adaptive kernel method in the Bayesian framework [4] with an RBS simulation program
allows us for the first time to carry out this backward calculation. Together with the ability of
calculating the uncertainty of a determined depth profile, this extends the potential of RBS as a
tool for quantitative surface analysis.

In the following section the basic ideas of the Bayesian probability theory are outlined.
The RBS simulation program is described in section3 and the experimental details are given
in section4. Subsequently, the results obtained with the presented approach are discussed in
section5, and we conclude in section6.

2. Theory

2.1. Structure of the problem

Depth profile determination from RBS data is an inverse problem which is ill-posed due to energy
straggling, noise and limited energy resolution. The general inverse problem can be described
by:

D = Of + n, (1)

whereD represents the measured datadi, i = 1...Nd, n the noise andO a nonlinear operator
which transforms the unknown quantityf with its N degrees of freedom into the data space.
The operatorO includes the model of the Rutherford backscattering process and the apparatus
transfer function. In our case it is convenient to splitO into

O = AB. (2)

The linear operatorA represents the convolution of the unblurred spectrum with the apparatus
function and the nonlinear operatorB the Rutherford scattering process. The aim is to inferf
from the knowledge ofD,O and the noise statistics.

2.2. Bayes inference

Bayesian probability theory provides a self-consistent mathematical tool for such inversion
problems. It allows us to exploit any type of testable information, such as experimental data
disturbed by noise, or additional knowledge such as expectation values or positivity constraints.
In the following we will merely outline the key ideas of the applied adaptive kernel method. The
mathematical and numerical details are explained in more detail in [4, 5].

Statistical inference in the Bayesian formulation is a calculus based on two axioms: the
sum rule

P (H | I) + P (H | I) = 1 (3)

and the product rule

P (H,D |I) = P (H |I)P (D |H, I) = P (D |I)P (H |D, I). (4)
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We consider hypothesesH, which we might have reason to formulate in the light of some
background informationI. The sum rule states that the probability of a hypothesisH being true
plus the probability ofH, the negation ofH, being true add up to 1. The product rule states that
the probability forH andD being true, given the background informationI, may be expressed
as either the probability forH being true conditional onI times the probability forD given that
H is true or vice versa. Solving equation (4) for P (H | D, I) we arrive at Bayes’ theorem

P (H | D, I) =
P (H | I)P (D | H, I)

P (D | I)
. (5)

Bayes’ theorem describes a type of learning: how the probability for a hypothesisH should
be modified on obtaining new information,D. The probabilityP (H | I) is called the prior
probability forH, i.e. the probability that we assign toH being true before new dataD become
available.P (D | H, I) is the probability for the data given thatH is true and is normally called
the likelihood.P (D | I) is called evidence and is in our case a normalization constant. Finally
P (H | D, I) is the posterior probability forH being true in the light of the newly acquired data
D.

A simple consequence of the sum and product rule but nevertheless important ingredient
of Bayesian inference is marginalization, which allows us to eliminate a parameter from our
calculation that is essential but whose particular value is uninteresting by integrating it out

P (D | H, I) =
∫

dχP (χ | H, I)P (D | χ,H, I). (6)

2.3. The likelihood function

In our case, the posterior probabilityP (f | D, σ, I) for a certain depth profilef depends on
the measured RBS dataD, the respective errorσ, and on further prior knowledgeI. Examples
for I are the positivity of the concentration values and the known bulk concentrations. The
probability that a certain depth profile is true given the data, is connected by Bayes’ theorem
to the term we are able to calculate and which describes the probability that we would have
observed the measured spectrum given a certain depth profileP (D | f, σ, I). The likelihood
functionP (D | f, σ, I) encodes all the information the data provide about the depth profile. In
the present case of a counting experiment with a large number of counts, the Poisson statistics
can be replaced by a Gaussian likelihood function,

P (D | f, σ, I) =
1∏Nd

i=1

√
2πσi

exp
(
−1

2
χ2
)
, (7)

where

χ2 =
Nd∑
i=1

di −∑Nd
j=1Aij(Bf)j
σi

2

. (8)

An estimation for the variance is usually given byσ′2i = di, but for an experimentally determined
apparatus function a modifiedσ must be used [6]:

σ2
i = σ′

2
i +

Nd∑
k=1

∆2
ik(Bf)2

k. (9)
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A is the best estimate of the apparatus function and∆ the matrix of the pointwise uncertainties
of A. The likelihood variance from the data measurement is increased due to the contribution
from the finite precision of the measurement of the apparatus matrixA.

A crucial part of solving an ill-posed inversion problem is the choice of the appropriate
number of free parameters (Nopt), which is usually unknown in advance. If, on the one hand,
the layers the sample is divided in are chosen too small, the reconstruction is done with a
resolution which is at least locally too high(N > Nopt). This leads to noise fitting and therefore
to oscillating depth profiles. If, on the other hand, the layer thicknesses are too large(N < Nopt),
the reconstruction fails in resolving structures which are supported by the measured data.

The adaptive kernel method is a powerful technique for adaptively reducing the effective
number of degrees of freedom (eDOF) of a form-free reconstruction. This multi-resolution
technique provides a local smoothness level depending on the amount of information in the data.
Smoothness of the depth profilef is imposed through a convolution of a hidden (‘pseudo’) profile
h with a smoothing kernelK [8, 9, 10]:

f(x, h, b) =
∫

dy K
(
x− y
b(y)

)
h(y) (10)

with a local kernel widthb(y) depending ony. We use a Gaussian kernel,

K

(
x− y
b(y)

)
=

1√
2πb(y)

exp

−1
2

(
x− y
b(y)

)2
. (11)

If we choose a positiveh a positive depth profilef is insured, sinceK > 0. In the limitb→ 0, the
kernelK approaches aδ-function, resulting inf = h, which allows us to reconstruct arbitrarily
sharp structures. We obtain the conventional result where the depth profile is reconstructed with
N degrees of freedom. If we omit the convolution (b → 0) and maximize equation (7) with
respect toh we do a usualχ2-fit. A measure for the effective number of degrees of freedom
remaining after convolution withK is given by

eDOF =
∑
i

√
eigenvaluei(KTK), (12)

with eDOF∈ [1, N ].

2.4. Posterior probability

For the calculation of the posterior probability we need, besides the likelihood, the prior
distribution and the evidence. The prior distributionP (f | I) quantifies our knowledge about
the solutionf prior to the measurement of the dataD. The prior knowledge we include is thatf
(the concentrations in the individual layers) is a positive additive distribution function for which
the adequate prior is the entropic oneP (f | I) ∝ exp(αS) [7], with S being the relative entropy

S =
N∑
i

(
fi −mi − fi ln

fi
mi

)
(13)

of the depth profilef relative to a default modelm. We use a constantm. S penalizes structure
relative to the default model, depending on the hyperparameterα. We marginalize the parameters
α,h andb using equation (6), since we are only interested inf .
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The posterior probability encodes our complete knowledge about the problem. Therefore
the knowledge ofP (f | D, σ, I) allows to determine the expectation value〈f〉:

〈f〉 =
∫

dNf fP (f | D, σ, I) (14)

and the confidence intervals via the variance var(fi) = 〈f 2
i 〉 − 〈fi〉2. The boundary conditions

for the concentrations
∑
j cij = 1 andcij ≥ 0 lead to an asymmetric posterior probability density

function. While the mean of the posterior can still be regarded as giving the best estimate, the
concept of an error-bar does not seem appropriate in this case, as it implicitly entails the idea
of symmetry. So we give as confidence interval the shortest interval[fL, fU ] that encloses the
correct value with a probability of67%

P (fL < fi < fU | D, σ, I) =
∫ fU

fL
dfiP (fi | D, σ, I) = 0.67. (15)

Finally we evaluate the multi-dimensional integral with a Markov Chain Monte Carlo integration.

3. RBS simulation

For RBS the operatorB includes the relationship between a given depth profilef and the
corresponding ideal RBS spectrumD0.

3.1. Sample Description

The first step in spectrum synthesis is to subdivide the sample normal to the surface. The sample
is divided into layersLi, i = 1...NL, with thicknesses∆xi. The∆xi have to be sufficiently
small to achieve the resolution supported by the data. For each layeri the concentrationscij,
j = 1...Nc, (withNc the number of constituents in the sample) on the layer boundaries have to be
assigned. Since the rear side of a layer coincides with the front side of the next layer, one obtains
forNL layers(NL + 1) ·Nc concentration values. This corresponds toN = (NL + 1) · (Nc− 1)
degrees of freedom, because the concentrations in each layer add up to1. Inside a layer the
concentration profile is linearly interpolated. The spectrumD0 is composed of the contributions
of scattering processes of the constituents in all layers of the sample (figure1).

3.2. Energy loss

The ion beam traverses the layers of the sample before and after the backscattering process. The
two dominant processes of beam ion energy loss are the interaction with bound or free electrons
in the target (‘electronic stopping’), and the interactions of the beam ions with the screened or
unscreened nuclei of the target atoms. The electronic stopping power data are taken from Ziegler
et al [11]. The nuclear stopping power for helium is calculated with the formula given in [12].
With the stopping power

(
dE(x)

dx

)
ij

of constituentj inside layeri and concentrationcij, the total

stopping powerεi in layeri can be approximated by Bragg’s rule:

εi = −
(

dE
dx

)
i

= −
∑
j

cij

(
dE
dx

)
ij

. (16)
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Figure 1. Schematic view of the sample composition (a) and the spectrum
contribution of one layer (b).

The equation for the energyE(x) inside of layeri, given a linear dependence of the concentrations
cij(x) = aijx + bij and for the stopping powerεij = −

(
dE
dx

)
ij

= − (dijE + fij), is a linear

inhomogeneous differential equation with non-constant coefficients,(
dE
dx

)
i

= −
Nc∑
j

(aijx+ bij) (dijE + fij) , (17)

which is solved analytically. The energy loss inside a layer is calculated by a self-consistent
iterative algorithm, because the stopping power at the back side of the layer depends on the
energy of the ions there and vice versa. First the stopping powerεf is calculated with the known
composition of the layer and the given energyEf at the front of the layer. With thisεf the energy
Eb and the stopping powerεb is then calculated at the back of the layer. Now we make use of
equation (17) and calculate successively better approximations forEb andεb until a self-consistent
value forEb is achieved. The calculated energyEb at the back side is the new entrance energy
Ef for the next layer. In most cases only 3 to 4 steps are needed for a relative accuracy of10−8.
This procedure replaces the usually used stepwise approximation of concentration profiles with
a continuous one. Consequently, fewer layers are needed for an accurate description of a smooth
profile. Since the computational cost for calculating a depth profile is proportional toN2

LNc

the corresponding reduction of computation time allows to implement an interactive simulation
on contemporary hardware. Another advantage is the simple use of tabulated stopping-power
data because derivatives of the stopping power are not needed. In contrast, the well established
algorithm of Doolittle [2] used in many computer codes requires the second derivative. Since
different codes take different ways (spline approximation, second difference etc) to calculate the
second derivative, they derive different stopping powers from the same data, leading to difficulties
in comparing the respective results.

3.3. Kinematics

The energy of the ions at the detector depends in addition to the energy loss due to the stopping-
power on the scattering kinematics. Ions undergoing elastic Coulomb collisions with sample
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atoms are recorded in a detector which is positioned at a fixed angleθ relative to the incident ion
beam. The energyE ′ of the backscattered ions depends on the initial energyE, on the mass of
the incident ionsm0, on the mass of their colliding partnerMj and the deflection angleθ given
in the laboratory system and is given by:

E ′ = E


√

1−
(
m0
Mj

)2
sin2 θ + m0

Mj
cos θ

1 + m0
Mj


2

. (18)

According to this equation, ions undergoing a collision with a heavy target atom lose less energy
than ions colliding with a target atom of lower atomic mass.

3.4. Cross section data

The actual cross sectionσ deviates from the Rutherford cross section

σR[b/sr] = 5.18× 103 ·
(

Z0Zi
E[keV ]

)2
[√

1− x2 sin2 θ + cos θ
]2

sin4 θ
√

1− x2 sin2 θ
, (19)

with x = m0
Mj

for both low and high energies as well as at small scattering angles.Z0 and
Zj are the nuclear charges of the projectile and the target atom, respectively. The low-energy
discrepancy is caused by partial screening of the nuclear charges through the electronic shells
[13]. This screening is taken into account by a correction factor from L’Ecuyer [14] C(E):

σ = σR · C(E) with C(E) = 1−
0.049Z0Z

4/3
j

ECM[keV]
. (20)

ECM is the energy in the center of mass system. At high energies the cross sections deviate
from the Rutherford cross section due to the influence of the nuclear force [15], which is,
however, of minor importance in the present case. Deviations from the angular dependence of
the Rutherford cross section are negligible for Rutherford backscattering spectroscopy, because
of the large scattering angles.

3.5. Energy loss straggling

The energy loss of charged particles penetrating the material is accompanied by a spread of
the beam energy due to statistical fluctuations of the energy transfer in the various energy loss
channels. Since the number of interactions is high, the energy broadening can be approximated
by a Gaussian. The program uses the correction of Lindhard and Scharff [16] in conjunction with
Bohr’s theory of electronic straggling [17]. This correction gives electronic straggling values
κe which are considerably lower than those given by Bohr’s theory. For high precision Chu’s
corrections [18] may be included. For the nuclear energy loss straggling of constituentj inside
layeri κijn Bohr’s theory of nuclear straggling is used:

κ2
ijn[keV2] = 0.26Z2

0Z
2
j

(
m0

m0 +Mj

)2

∆xi[1018atoms/cm2]. (21)

Usually the nuclear energy loss straggling is much smaller than the electronic energy loss
straggling. Since we are dealing with Gaussian distributions, the total straggling of a constituent
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j inside layeri is given by quadratically adding the two independent contributions of electronic
and nuclear straggling:

κ2
ij = κ2

ije + κ2
ijn. (22)

For compounds, a simple addition rule, similar to Bragg’s rule, for energy loss straggling is
used [19]. The straggling in the composite layeri is the quadratic sum of the straggling of each
constituent weighted with the concentrationcij:

κ2
ic =

∑
j

cijκ
2
ij. (23)

The energy dependence of the stopping power inside a layer results further in a non-stochastic
broadening (or squeezing) of the energy distribution of the ion beam. This effect is calculated
analytically under the used linear approximation and leads to a correction factorgi. The standard
deviationκi of an ion beam with the initial standard deviation ofκi−1 after passing layeri is
given by

κ2
i = (gi · κi−1)2 + κ2

ic. (24)

The contribution of geometrical straggling due to finite beam size and width of the detector
aperture is negligible in the RBS geometry, unlike in ERDA experiments [20].

3.6. Plural and multiple scattering

A principal assumption used in the simulation of RBS spectra is that the incoming particles suffer
only one significant angular deflection, i.e. the Rutherford backscattering event. A particular
fraction of the beam, however, undergoes further significant deflections along the incoming or
outgoing trajectories. This is called plural scattering. Furthermore, the particles are multiply
scattered at small scattering angles. It is possible to calculate plural scattering effects, which is,
however, extremely time consuming. Hence the calculation of dual scattering is usually only
used to check if plural scattering has a significant influence on the calculated spectrum. Multiple
scattering and the resulting energy spread has been recently reviewed by Szilàgy [21], but is not
included in the program.

4. Experiment

The interpretation of RBS data is required for the analysis of erosion measurements of plasma
facing materials in the ASDEX Upgrade fusion experiment [22]. The solid inner walls
surrounding the plasma are exposed to an intense bombardment by plasma particles because
the confinement of the plasma by the magnetic field is not perfect. The surfaces of the inner
walls are mainly modified by ion implantation, erosion and by deposition of material from other
wall areas.

The importance of this problem for planned fusion power plants is emphasized by an
erosion analysis for ITER [23]. The modeled gross erosion yield of a carbon divertor could
reach a maximum of5m/burning-year, which is reduced by redeposition to about0.5m/burning-
year according to the simulation. The modeling, however, faces exceptional difficulties due
to complex hydrocarbon transport phenomena and the lack of input data (e.g. for low energy
sputtering). Therefore, experimental determination of erosion and redeposition rates is necessary
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Figure 2. Apparatus transfer function measured on a 0.7 nm thick Co layer on
Si.

to validate the modeling and to improve the quantitative knowledge of the fundamental erosion
processes.

To determine carbon erosion rates in the divertor of ASDEX Upgrade, graphite probes
covered with a150 nm layer of13C were exposed to single plasma discharges.13C was used
because chemical erosion is unaffected by isotope substitution and to allow the measurement
of redeposited12C eroded at other plasma facing components. Furthermore, the electronic
stopping power in13C and12C is the same and so the limited accuracy of the stopping power in
the simulation is cancelled. The sample was exposed in the outer divertor of ASDEX Upgrade at
the strike point region, which is the point where the outermost closed magnetic flux line touches
the plate surface with a corresponding maximum of the power load.

The samples were analysed using RBS with2.0 MeV 4He ions before and after plasma
exposure with a total plasma exposure time of approximately 4 seconds. The backscattered
particles were detected at a scattering angle ofΘ = 165◦. The apparatus transfer functionA
in equation (2) is given pointwise by the RBS spectrum of a thin (0.7 nm) Co film on top of a
Si sample (see figure2). The statistical uncertainty of the measured apparatus transfer function
modifiesσi of equations (7) and (8) via equation (9). Notice the deviation from the Gaussian
shape at the high energy side (channel no.> 0). The apparatus function is energy dependent, but
its shape varies only slowly with the energy. For simplicity we use the same apparatus function
for all energies.

Figure3 shows typical spectra before and after plasma exposure. Before plasma exposure
the signal from the13C layer at 430–580 keV is separated by a gap from the part of the spectrum
corresponding to the12C bulk material beneath the13C layer. After plasma exposure the high
energy edge of the13C signal has shifted towards lower energies (500 keV). This indicates that
there is no longer13C at the surface of the sample. The peak at 430 keV is caused by12C at the
sample surface and by the13C fraction below the surface. The difference of the RBS spectra
before and after exposure contains the information about the erosion and redeposition yields.
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Figure 3. Typical RBS spectra before and after plasma exposure. The shift of
the high energy edge of13C is clearly visible.
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Figure 4. Depth profile calculated with a constrainedχ2-Fit (c > 0 and∑
j cij = 1) using the RBS data shown as dashed line in figure3. The sample

was divided in 23 layers with a thickness of150× 1015atoms/cm2.

5. Results

For determining the depth profiles from the measured RBS data a simpleχ2-fit is insufficient
and results in depth profiles with negative concentration values. Even a constrainedχ2-fit with
the boundary conditionsc > 0 respectivelyh > 0 and

∑
j cij = 1 leads to pointwise oscillating

depth profiles as shown in figure4. This is due to the ill-conditioned nature of the inversion
problem which results from the spectral broadening by energy straggling, the finite apparatus
energy resolution and the counting statistics. Under these circumstances, the data don’t contain
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Figure 5. 12C and13C distribution before (a) and after (b) plasma exposure with
asymmetric confidence intervals using the data shown in figure3. The sample
was divided in 23 layers with a thickness of150× 1015atoms/cm2.

enough information for a stable inversion, even in the present caseN = 48 < Nd = 221.
For this kind of problems the adaptive kernel method is well suited. The concept of adaptive
kernels provides local smoothness which makes the result robust against noise corruption. The
statistically significant information content in the data is optimally preserved by the local varying
kernel widths.

Figure5(a) shows the reconstructed12C and13C depth profiles of a sample before plasma
exposure with the depth expressed in terms of the areal atom density. The underlying RBS data
are given in figure3 as a solid line. The concentrations in each of the 23 layers add up to one.
The surface concentration of13C (on the left-hand side) is above 90% and decreases slightly to
a depth corresponding to2000 × 1015 atoms/cm2. The remaining 10%–20% fraction of12C is
caused by impurities in the coating process. The broad transition between the13C layer and the
12C bulk can be explained by the interface roughness of the virgin sample.

After 4 seconds of plasma exposure the depth profiles have changed dramatically, as shown
in figure5(b), calculated with the RBS data given as a dashed line in figure3. There is a12C
layer with a thickness of approximately250× 1015atoms/cm2 on top of the13C. The maximum
concentration of13C has decreased, however, the thickness of the13C layer is nearly unchanged
corresponding to approximately2500 × 1015 atoms/cm2. Furthermore, there is a continuous
fraction of12C in the whole sample with a minimum concentration of 20%. The soft transition
of the12C concentration at the surface to the12C concentration inside the13C layer can be inter-
preted by12C atoms deposited into the pores of the EK98 graphite used as base material. This
conjecture is supported by the small (about 5%) but significant amount (note the very small con-
fidence intervals of16O in figure5(b) of 16O inside the whole13C layer after exposure, because
oxygen forms, apart from carbon, the second largest impurity fraction of the ASDEX Upgrade
plasma. Inside the deposited layer of12C at the surface of the sample the16O concentration
decreases from 20% at the surface to 5%. A detailed report of the erosion and redeposition in
fusion experiments will be presented elsewhere [24]. Notice the smaller size of the confidence
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Figure 6. RBS data (dots) together with selected error bars and calculated
spectrum (solid line) from the depth profile shown in figure5(b).

intervals in figure5(b) compared to the initial measurement (figure5(a)). This is due to the
better counting statistics (about 10 times higher ion beam fluence) which is also visible by the
lower noise in the underlying spectrum (figure3, dashed line). Figure6 shows the RBS data
as black dots and the calculated RBS spectrum (solid line) based on the depth profile shown in
figure5(b). The agreement is within the counting statistics. The effective number of degrees of
freedom of the depth profiles before and after exposure are7.2 (N = 24) and15.3 (N = 48),
respectively. This indicates a strong correlation of the concentrations between adjacent layers.

6. Conclusions

By combining an RBS simulation program with the adaptive kernel method the potential of depth
profile reconstruction from RBS spectra has been considerably extended. It is a powerful method
for obtaining information from measurements with limited resolution and/or overlapping RBS
peaks. The unique property of depth profile reconstructions and simultaneous determination of
confidence intervals allows a reliable estimation of the quality of achieved depth profiles.
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