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Abstract

Concern surrounds Alfvén instabilities driven by super-Alfvénic fusion-born a-particles
and their possible consequences for a-particle transport in fusion tokamak reactors.
This has motivated work upon the self-consistent calculation of the power transfer from
a highly energetic a-particle population to Alfvén waves and the ensuing nonlinear wave
evolution.

A Monte-Carlo approach has been developed which allows fast ions to be studied
in the presence of low-frequency (w < w,;) electromagnetic perturbations in a toroidal
plasma. Fast particle motion is treated using a guiding centre Hamiltonian description
in straight magnetic field line coordinates. The electromagnetic field is modelled as
the superposition of an axisymmetric magnetic field and a spectrum of time dependent
Alfvén Eigenmodes (AE), with the perturbed fields accorded two degrees of freedom
corresponding to their amplitudes and phase shifts.

The model accounts for nonlinear wave-particle interactions but ignores MHD fluid
nonlinearities which are small for typical AE amplitudes. Hence both the spatial struc-
ture and eigenfrequencies of the AEs are taken directly from linear MHD eigenfunctions.

Numerical noise in the system is reduced by considering only those *particles’ present
in the system that constitute the change in the fast particle distribution function, this
being the so-called &f technique. Such an approach allows studies to be focused upon
an accurate description of those resonant particles which provide a transfer of fast-ion
free energy to the unstable AE. The growth in AE amplitude eventually leads to a
modification of resonant a-particle orbits and ultimately to the wave itself saturating.

Results identify mechanisms of a-particle redistribution and loss in the presence of

fixed and self-consistently varying amplitude AEs in large tokamaks such as JET and
ITER.
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Chapter 1

Introduction

1.1 General Introduction

The controlled nuclear fusion of hydrogen isotopes in a plasma promises a practically
inexhaustible source of energy and high environmental safety as compared to nuclear
fission. However, in order to reach the ‘ignition’ conditions (when the fusion born par-
ticles heat the plasma and compensate for the heat losses) even for the most favourable
fusion reaction between deuterium and tritium

D+ T —*He+n+ 17.6 MeV, (1.1)

the D-T plasma must be heated to a temperature of T > 20 keV (230 million K) and
must be confined for long enough to satisfy the Lawson criterion [1]:

ntg > 1.5 x 10°°m3s,
where 71 is the energy confinement time, the ratio of the energy stored in the plasma
to the heat loss rate, and n is the D-T fuel density.

The most advanced approach towards the achievement of the relevant fusion reac-
tor parameters is the confinement of a plasma within a magnetic field in a so-called
tokamak' configuration [2, 3] as shown in Fig. 1.1. The tokamak is an axisymmetric
toroidal device characterized by a large magnetic field in the toroidal direction and a
smaller poloidal field. The toroidal field is produced by large external field coils and the
poloidal field by a large toroidal current in the plasma. The latter current is induced
by a transformer, with the plasma forming the secondary winding.

To reach the ignition conditions described above the tokamak plasma is heated by
the ohmic dissipation of the induced current and by additional heating schemes such as
the injection of high energy neutral beams, or by launching electromagnetic waves into

'From the Russian toroidalnaya kamera s magnitnym polem (toroidal chamber with magnetic field).
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Coils wound around torus to
produce toroidal magnetic field

Transformer winding
(primary circuit)

Poloidal
magnetic field
Iron transformer core
Toroidal
magnetic field / Plasma current

(secondary circuit)
Helical field
Plasma particles contained

by magnetic field

Figure 1.1: Schematic drawing of a tokamak.

the plasma [3]. Once ignited the plasma is intended to become entirely self-heating
through the fusion-born a-particles (He* nuclei of energy 3.52 MeV). The transport
properties of these highly energetic a-particles is therefore of crucial importance since
they will determine the plasma heating profiles, the plasma dilution due to the *helium
ash’ accumulation and the power loading upon the first wall in an ignited tokamak-
reactor.

During the a-particle slowing-down time the classical cross-field transport of a-
particles is generally negligible. However, significant anomalous transport and losses of
supra-thermal particles may take place in the presence of Alfvén waves which resonate
with them [4, 5]. For typical tokamak-reactor parameters (density n ~ 102 m~2,
magnetic field B ~ 6 T) of particular importance are weakly-damped Toroidal Alfvén
Eigenmodes (TAE) [6, 7] with phase velocities of the order of the a-particle speeds
before thermalisation.

Experiments with neutral beam injection (NBI) on tokamaks DIII-D [8] and TFTR [9]
and experiments with a-particles in D-T plasmas [10] have shown that weakly damped
TAE can indeed be driven by fast particles and that under certain conditions Alfvén
instabilities can cause a significant loss of those particles [11, 12] causing problems for
the first wall [12].

The Alfvén wave [13] describes a basic oscillation between perpendicular plasma
kinetic energy and perpendicular ‘line bending’ magnetic energy and is analogous to
the familiar case of waves travelling along a taut string. These waves propagate along
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the magnetic field lines at the Alfvén speed,
B
Viop'

where p is the plasma mass density and B the magnetic field strength. Due to their
relatively high phase velocity, vq ~ 5 x 10° m/s, Alfvén waves mainly resonate with
highly energetic particles. To analyse this resonant wave-particle interaction in a fu-
sion reactor it is appropriate to decompose the total particle distribution into two
parts: A thermal (generally non-Maxwellian) background component forming the bulk
of the plasma, and a smaller, but more energetic, super-Alfvénic distribution of hot
a-particles. The collective motion of the low energy background component which is
frozen in the magnetic field is suitably described by the well developed magnetohydro-
dynamic (MHD) approach, but this is not the case for the energetic particles whose
motion is decoupled from the magnetic field lines. Their dynamics are best described
using the guiding centre approach in which their rapid gyration and resulting helical
path is approximated by a smooth drifting trajectory.

Vg =

The unperturbed magnetic field structure is responsible for determining both the
particle orbits and the spatial structure of the Alfvén eigenmodes (AE) that the sys-
tem can support. Consequently the careful choice of coordinate system is of crucial
importance for simplifying the problem, since a suitable choice allows both the field
structure itself and the particle motion to be easily described. The total field structure
will be represented as the superposition of an axisymmetric equilibrium magnetic field
generated from a consideration of force balance, and a small electromagnetic pertur-
bation representing the AE. The spatial structure of the AE is found from an MHD
description of the waves that the thermal background plasma and equilibrium field can
support. In toroidal geometry due to the periodicity in the poloidal and toroidal direc-
tions each eigenmode can be naturally decomposed into Fourier components with each
of the distinct AE allowed two degrees of freedom: amplitude and phase-shift. The
radial structure of the AE present is assumed invariant since it is determined by the
background plasma distribution and equilibrium field parameters which remain unper-
turbed. The evolution equations for each AE are derived from a Lagrangian formulation
in which the full wave-particle interactions are included whilst wave-wave nonlinearities
are ignored in accordance with previous findings [14].

It is apparent that the problem that this thesis addresses, namely that of studying
the interaction of fast particles with Alfvén eigenmodes, is in general nonlinear, since
both the waves and particles evolve in response to the collective motion of the other,
necessitating a self-consistent treatment. To enable the problem to become mathemat-
ically and computationally tractable several simplifying assumptions have been made,
consistent with the underlying physical processes. The equations governing the evolu-
tion of the system that results from these assumptions can be set up in the form of a
Monte-Carlo model. Recent developments [15, 16] have suggested an enhanced algo-
rithm for performing such simulations that has come to be known as the &f method.
This method produces superior results without the need to use excessive numbers of
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Monte-Carlo points by only modelling the change in the particle distribution function
rather than the whole ensemble. The inclusion of the &f technique into the model
suggests many other potential developments such as the inclusion of an energetic ion
source and sink and also possibly a complete treatment of the energetic ion collisional
evolution in terms of the Fokker-Planck equation [17, 18].

The goal of this thesis is to develop a self-consistent §f model and to apply it tostudy
a particular class of kinetic instabilities of Toroidal Alfvén Eigenmodes (TAE) that exist
in toroidal geometry and may be excited by energetic particles. Due to the high a-
particle pressure in future machines such as the proposed International Thermonuclear
Experimental Reactor (ITER), it is feared that TAE could grow to amplitudes sufficient
to cause an anomalous radial transport/losses of energetic particles. Estimates for
ITER indicate that a-particle losses greater than 5% being repeated from shot to shot
may be sufficient to cause damage to the first wall, whilst higher losses may even lead to
the quench of ignition [19]. In this thesis the effect of various fast particle distributions
upon the growth rates and saturation amplitudes of AE instabilities are demonstrated
for a number of experimental conditions in large tokamaks.

The thesis is organised as follows: Chapter 2 presents a review of the MHD model
for AE and describes particle motion in a tokamak. Chapter 3 begins by introducing
the specific coordinate system defined by the magnetic field structure that is used in
the model before deriving the dynamical equations governing the fast particle motion
and the wave evolution. It closes with a presentation of the novel §f scheme employed
in the model. Chapter 4 describes the details concerning the model’s computational
implementation and subsequent validation. Chapter 5 presents and discusses the results
of applying the model to the AE problem in tokamaks. Conclusions are drawn in
Chapter 6 with indications for further work.




Chapter 2

Theoretical Review

2.1 MHD Description of Alfvén Eigenmodes

One of the most useful models for describing plasma behaviour is that formed by taking
velocity moments of the kinetic equation for ion and electron distribution functions. It
respects the main physical conservation laws and permits analysis in the complicated
magnetic configurations required for the confinement of plasmas. The moment equa-
tions have a form similar to the equations which describe the behaviour of a conducting
fluid immersed in a magnetic field, consequently the moment approach in plasma stud-
ies is known as the magnetohydrodynamic (MHD) approach. By only considering scale
lengths greater than the Debye length, a plasma may be considered quasi-neutral with
ne = Zn;. In the approximation of infinite plasma conductivity the moment equations
take the following form of ‘ideal MHD’:

dp - 3
— + V- (pv) =0 (Mass continuity)

. ot
p(;—:, +pv-Vv+ VP -jAB =0 (Momentum balance) Momc"nt
JP . . ) equations
B +v-VP+ PV .v=0 (Adiabatic equation of state)
E+vAB=0 (Ohm’s Law) )
v B =0 (No m\agfletic monopoles) (Pre-)

aVB/‘\ B —uoj=0 (Ampere’s Law) 1\'Ia.x“:'ell's
¥ + VAE =0 (Faraday’s Law) equations

where p is the mass density of the plasma, j is the current density, v is the plasma
velocity, P is the plasma pressure and + is the adiabaticity index. The electric and
magnetic fields, E and B, that appear in these expressions consist of the externally
applied fields and the averaged internal fields arising from long-range inter-particle
interactions.
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An important consequence of ideal MHD is that the plasma fluid is *frozen’ to the
magnetic field lines. Consequently, it follows that the plasma motion is intricately linked
to the magnetic field configuration and that a simple field description is tantamount to
obtaining a simple description of the plasma motion.

The MHD model is usually applied to three problems: determining a realistic equi-
librium configuration, investigating the stability of that equilibrium, and examining the
different waves which the equilibrium can support. The last two of these are closely
linked and are necessary for practical purposes such as examining methods of plasma
heating and diagnosing the plasma by launching waves which aid the understanding of
observed plasma instabilities.

2.1.1 Stability and Waves
Normal Mode Approach

The equations of ideal MHD are nonlinear but can be made more amenable to analysis
in the first instance by linearizing them to identify classes of waves and instabilities. The
justification for linearising is the observation that the bulk plasma remains essentially
static whilst experiencing only small magnitude perturbations when examined over
timescales that are long compared with those associated with the small scale dynamics.
All quantities can thus be written as the sum of an equilibrium time-independent term
and a small first-order time-dependent perturbation:

Q(r,t) = Qo(r) + Qi (r,1)

Higher order terms describing the perturbations are neglected since Q1/Qo < 1. Ne-
glecting plasma motion by assuming that vy = 0 the linearized equations of ideal MHD
become:

P
§+V-(pov1) —0 (2.1a)
dvy e . 5 ”
POW+V[1—J1/\BO—J0/\B1:O (2.1b)
JP

—aTl+v1-VP0+jPUV-V1 = (2.1c)
V-B; =0 (2.1d)

JB
S+ VAR =0 (2.1e)
V/\Bl—ﬂgjl =0 (2.1[)
E1 + Vi A Bg =0 (2[%)

Introducing the fluid displacement vector £(r,t) such that

e

e (2.2)

Vi
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and eliminating j; and E; from equations (2.1) leads to the condensed set of equations:
0*¢
Pog +VP1+—(B1 A(VABo)+BoA(VABy)) =0

P +£-VFE+ vFBV-£=0
Bi+VABgAE) =0
The first of these equations is the linearized momentum balance equation, which upon

using the other two equations to eliminate P; and By, reduces to the force-operator
equation of linearized MHD:

0% N
pos = F(E), (2.3)
with,
F(€) = V(€ V Pty oV -£)+ 1[VAVA(&ABO)JABOHVABDJA(VALEABDJ)J-

One approach in studying linear stability and waves is to reformulate equation (2.3)
as a normal mode problem. In this case the time variation of all the perturbed quantities
is taken to be of the form Q(r,t) = Q(r)e~™*! representing disturbances that have
always been present and not requiring any initial conditions. With this formulation
solutions of equation (2.3) can be written as

; 1
—wit=— 2.
€ pDF(f) (2.1)

with £ no longer an explicit function of time. Equation (2.4) together with appropriate
boundary conditions on £ represents an eigenvalue problem for the eigenvalue w?.
The force-operator F(£) is self-adjoint, or Hermitian [20], and as a consequence the
eigenvalues of w? are real, so that the spectrum of the operator po ' F considered in
the complex w-plane is confined to the real and imaginary axes. This is important
since it implies that within the ideal MHD model either exponentially growing modes
(w? < 0) or oscillatory waves (w? > 0) are obtained as indicated in Fig. 2.1. A further

.

Exponential growth/decay < > Stable waves

A /
€

N AV4 b d N
N N N N\

-ve 0 +ve

Figure 2.1: Spectrum of frequency eigenvalues w? in ideal MHD

consequence of the operator p5 ' F being Hermitian is that the discrete modes present are
orthogonal and can therefore be used as a set of basis functions to describe any small




N Chapter 2. Theoretical Review

disturbance in a perturbative approach. The addition of a fast particle distribution
upon a steady-state background plasma may perturb the stable eigenvalues of the
system so that weakly growing or decaying oscillatory waves are obtained as illustrated
in Fig. 2.2.

A
Im o
Exponentially o Perturbed
growing mode oscillatory Unstable
eigenvalue A
X
Oscillatory wave Oscillatory wave  Re o
Y
Expopentially N Stable
decaying mode

Figure 2.2: Spectrum of frequency eigenvalues in the presence of a fast particle distri-
bution

2.1.2 Homogeneous Plasma

In this section the waves that occur in a infinite, homogeneous, and stationary slab
of plasma are analysed. Since the equilibrium quantities are constant, it is helpful to
Fourier transform the force operator equation (2.3) in both space and time:

1 .
.;JE[)UE + *,P(J(k . &)k + [T {k A [k A (E/\ B(])]} A B() = [J); [2))
0
where w is the frequency and k is the wave vector. In so doing the system of differential

equations is transformed to a set of algebraic equations. Further assuming with no loss
of generality that By = Boz and k = k § + kZ allows equation (2.5) to be written as

we— i\'ﬁ i 0 0 &
2 g .8 Dce) 2
0 w® —kjvg *7)‘!"2“_71 —‘)A‘ﬂ"lg)‘ﬂs; & | =0
0 —k ks W= 'I"ﬂl's 3
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where vy = \/BE/popo is the Alfvén speed and vg = V7 Fo/po is the adiabatic sound
speed. Non-trivial solutions of these equations follow by demanding that the determi-
nant of the matrix be zero, giving the dispersion relation,

(& = K2) [ = (0 + )2 4 (kkyusa)?] = 0, (2:5)

Fach solution of this equation represents a mode of oscillation of the plasma and since
it is a cubic polynomial in w? three modes are expected.

The first solution,
w? = I.‘ﬁvi, (2:7)

corresponds to the Alfvén branch and is independent of £, even when &, > k|- These
are incompressible (p; = P, = 0) transverse waves with both v; and B; perpendicular
to Bgp. They represent a balance between plasma inertia and field line tension, with the
field line tension understood by noting that the j A B force in a plasma is equivalent
to an isotropic pressure P = B*/2j, together with a tension 7' = B?/uo per m?. The
plasma is carried along with these waves by the (E A B)/B? drift velocity which is in
the same direction as the Poynting flux.

The quadratic term for w? in equation (2.6) gives rise to two further branches, the
fast and slow magnetosonic waves, which arise from the coupling between magnetic
compression (Alfvénic) and fluid compression (sonic). The solutions are

1 .
W= ok (34 03) |11l A (2.8)

By inspection it is easily seen that the square root term is always positive and less than
unity, implying that the homogeneous magnetic field configuration is exponentially
stable. This is consistent with the observation that the system is in thermodynamic
equilibrium and there are no sources of free energy available to drive instabilities.

The positive sign in equation (2.8) corresponds to the fast magnetosonic or magne-
toacoustic wave and always oscillates at frequencies greater than the Alfvén wave. This
is a compressional wave, and so V - vy and P, are non-zero, with B; having compo-
nents both parallel and perpendicular to the equilibrium field By. A useful parameter
characterising the equilibrium is the plasma 3. The plasma is in equilibrium when the
force balance condition j A B = VP holds everywhere. Since this equation is linear in
the plasma pressure, but quadratic in the field strength by Ampere’s law, it is the ratio

P
ey
B?/2p0
that characterizes the equilibrium. Following on from the observation above that the

plasma fluid is frozen to the magnetic field lines, it becomes apparent that in a high-3
situation, such as that where the solar wind encounters the Earth’s magnetic field,
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the magnetic field lines follow the plasma motion, whilst in a low-3 situation such
as a typical tokamak equilibrium, the reverse is true. Physically, 3 is a measure of
the plasma energy density compared to the magnetic field energy density. It is also
convenient to relate 3 to the characteristic wave speeds in the plasma through

L
[T

=2
<
Y

In the low-3 limit, 3 ~ v/v} <« 1, the fast magnetosonic wave reduces to the com-
pressional Alfvén wave, or fast wave, with

w? = (i} + k1)vh = K20} (2.9)

and propagates isotropically with speed v4. A further consequence of the low-/3 limit
is that poP,/BoB; ~ 3 < 1, indicating that most of the compression involves the
magnetic field and not the plasma. Waves of this type describe the interchange between
the energy needed to compress and bend the magnetic field with perpendicular plasma
kinetic energy. Since the parallel velocity is of order 3 compared with the perpendicular
energy the plasma motion is nearly transverse.

The negative sign in equation (2.8) corresponds to the slow magnetosonic wave with
this wave alwayvs oscillating at frequencies below that of the Alfvén wave. As for the
fast branch, the wave is polarized so that the plasma pressure and the magnetic field
are compressed. In the low-3 limit the slow wave reduces to the familiar ion sound
wave in the parallel direction, w? ~ kZv?, and does not propagate in the perpendicular
direction. In this case the mode is almost longitudinal since k; - vy = 0. The sound
wave describes a basic oscillation between the parallel plasma kinetic energy and the
plasma internal energy.

The ideal MHD waves display a strong anisotropy as is clear from a consideration
of the phase velocity of plane waves. All three MHD wave modes have constant phase
velocities given by equations (2.7) and (2.8) for all frequencies and hence there is no
wave dispersion. The phase velocity surfaces, or wave normal surfaces, for each of these
waves are shown in Figs. 2.3 and 2.4 for the cases when vy > vs and vy < vs. In these
diagrams the magnitude of a vector drawn from the origin to a point on the curve

represents the phase velocity of a plane wave propagating in that direction relative to
By.

2.1.3 Inhomogeneous Plasma

The plasma waves described by the ideal MHD equation (2.5) are stable in homogeneous
equilibria. An important result concerning the general instability problem in inhomo-
geneous geometry is that the most unstable perturbations (such as pressure driven
flute-like modes and current driven modes) are almost always coupled with the shear
Alfvén wave. The reason for this can be seen by examining the dispersion relations in
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Figure 2.3: Phase velocities of ideal MHD Figure 2.4: Phase velocities of ideal MHD
plasma waves for vy > vg plasma waves for vy < vg

equations (2.7) and (2.9) and viewing the wave numbers as effective spring constants.
The larger the spring constant the greater the plasma is able to maintain its state under
the influence of external perturbations. Consequently the shear Alfvén waves are more
likely to go unstable in comparison with the compressional waves since ky <4/ k2 + k2.

From a consideration of typical dimensions in tokamak plasmas k; > k|, further tip-
ping the instability balance towards the shear Alfvén wave. In this thesis only the
effects associated with the shear Alfvén branch are considered.

To begin a description of the Alfvén instabilities driven by super-Alfvénic energetic
particles it is first noted that the presence of inhomogeneities in the plasma density and
magnetic fields strongly affects the character of the Alfvén waves described above [21].
Particularly, it is easy to see that no wave packet of finite size across the magnetic field
can persist for a long time, since the requirement that each ‘slice” along the wave packet
satisfies the local dispersion relation

w = ky(rjva(r)

implies that each slice moves with a different velocity and in a different direction. This
effect, known as phase mixing [22], effectively leads to the damping of any initial Alfvén
perturbation in an inhomogeneous plasma at the rate

Y ™ ==

d
arkn(r)valr)

It was mainly for this reason that Alfvén instabilities driven by energetic ions were
not considered a threat to future tokamak reactors. However, the discovery of weakly
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damped Global Alfvén Eigenmodes (GAE) [23, 24] and weakly damped Toroidal Alfvén
Eigenmodes (TAE) [6, 7] has changed this perspective.

2.1.4 The Alfvén Wave Resonant Absorption in Cylindrical Inhomo-
geneous Plasma

A description of the specific properties of the weakly-damped GAE and TAE which
distinguishes them from the local Alfvén wave may be obtained from an initial con-
sideration of the effect of Alfvén wave resonant absorption (see for example [25]) in
more realistic cylindrical plasmas. Allowing the plasma density to depend on the ra-
dius introduces some new physical effects which are important for the consideration of
tokamaks since in some respects a torus can be approximated by a bent cylinder upon
applying periodic boundary conditions at the ends.

To begin with, consider the radial penetration of an externally applied wave with
frequency w and axial and azimuthal mode numbers k. and m into a cylindrical inhomo-
geneous plasma immersed in a homogeneous magnetic field Bo. Using the ideal MHD
approach and describing the radial component of the perturbed plasma displacement
in the form,

Er(r,0,2,8) = Y Em(r)e!tmiHhezr),
m

the equation which describes radial penetration of an externally applied electromagnetic
wave of the Alfvén frequency wave range may be written [23, 24],

d 5fw? 5\ d g N B N

where it is recalled that the Alfvén speed is determined by the local plasma density
and is therefore generally a function of radius, v4y = v4(r); rising at the plasma edge
as the density decreases.

In order to obtain the radial structure of the electromagnetic wave it is noted that
the displacement €. has a singularity centered upon the surface r = rq where the wave
frequency coincides with the frequency of the local Alfvén continuum,

w = A‘”?_-‘A (?)

as illustrated in Fig. 2.5. The singularity appears because of the fact that ideal MHD
does not permit the propagation of the shear Alfvén wave across the magnetic field.
To solve the wave equation on both sides of the resonant point rg in term of ideal
MHD one should use the analytic continuation of the solutions in the ranges r < rg
and r > ro to obtain an imaginary contribution to the solution [21]. This imaginary
part represents the resonant absorption of the external perturbation at r = rp where
the applied frequency resonates with the local Alfvén wave. This resonant absorption
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r

Figure 2.5: Cylindrical frequency continuum and continuum mode eigenfunction excited
by externally applied wave with frequency wy.

(also known as ‘continuum damping’) can be shown [25] to be almost complete if r/m
is chosen to be of the order of the plasma non-uniformity scale length.

Solutions such as these are referred to as continuum modes since they form a
bounded frequency continuum. The restricted frequency range arises from the bounded
range of vy which generally has a maximum at the plasma edge as the density drops
and a minimum at some radius, not necessarily the axis. Hence the plasma will only
support shear Alfvén waves over a restricted frequency range, with each cylindrical
surface oscillating at its own local frequency for a given k-

For a detailed description of the electromagnetic wave absorption in a high-temperature
plasma in terms of the wave interaction with ions and electrons, one should go beyond
the ideal MHD model and take into account finite Larmor radius effects (FLR). This
introduces additional higher-order derivatives into equation (2.10) in the vicinity of the
resonance and ultimately resolves the singularities.

Above it was demonstrated that the ideal MHD shear Alfvén wave is not dispersive,

Ow

However, in the vicinity of a local Alfvén resonant surface where vy = w‘/k“ the per-
pendicular wavelength 27 /k; becomes comparable with the ion gyroradius p; so that
the ideal MHD description breaks down and finite Larmor radius (FLR) effects become
important. In these circumstances the ions need no longer follow the magnetic field
lines, whereas the electrons do because of their smaller Larmor radius. This effect
produces charge separation and coupling to the Kinetic Alfvén Waves (IKAW) having
a dispersion relation for oblique propagation to the magnetic field lines:

Jw

R = PgEl;
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The inclusion of these kinetic effects in the dispersion relation yields the modification

W2=d14+ (2 4+ =) (1 - id) kL p? L")lt'i.
4 T; I
with the dispersive behaviour controlled by the ion gyroradius, p;. 7. and T, are the
ion and electron temperatures respectively and &, characterises the electron damping
of the kinetic Alfvén waves by introducing a small imaginary term.

2.1.5 Cylinder With Axial Current

The addition of an axial current to the cylindrical model results in the magnetic field
lines becoming helical in nature and k|| gaining a radial dependence, k| = k(). When-

ever 7
k *
.. Y4

ki U4

the Alfvén continuum branch has a minimum off axis as shown in Fig. 2.6. Applying an

1

Figure 2.6: Frequency continuum in a current carrying cylinder and the corresponding
discrete global eigenmode with poloidal harmonic number m excited by an externally
applied wave of frequency wy.

external wave with a frequency just below the minimum of wi the authors [23, 24] have
found a surprising new discrete solution, the so-called weakly damped Global Alfvén
Eigenmode (GAE). This result can be explained by reformulating equation (2.10) and
including the effects of the additional current [23, 24],

d 4 w? 5 \ d& % w? 2 w? ,.2 B R
o (;__.Tl—l.“m) —E—(m — 1) E;A”m &+ 171 79Ex =il. (2.11)

N e
Current dependent
term
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Qualitatively it is seen from equation (2.11) that if w is just below the frequency
continuum minimum such that w? a w%, then there exists a region where the second
term may be neglected and it is possible to integrate the resulting equation as before.
However, the singularity in the eigenfunction no longer occurs at r ~ rg due to the
inclusion of the current dependent terms. The weakly damped nature of the GAE is
a consequence of a specific property of this AE: It does not satisfy the local Alfvén
resonance condition at any point across the plasma. Physically, this solution may be
understood by drawing an analogy with a fibre-optic filament: Moving away from the
minimum point at » = rg, the local Alfvén frequency grows and the effective perpendic-
ular refractive index N; = ¢k, /w decreases from its maximum at r = ro. Consequently
electromagnetic waves are reflected by the decreasing N| and are localised around this
point.

Summarizing the structure of the Alfvén spectrum in an inhomogeneous cylindrical
plasma with longitudinal current, it is seen that under certain conditions the spec-
trum consists of the usual shear Alfvén continuum and weakly damped discrete global
eigenmodes.

2.1.6 Toroidal Plasma

In a torus, by virtue of the periodicity in the poloidal and toroidal directions, a wave
field perturbation may be described by a Fourier decomposition in poloidal and toroidal
harmonics as

&(r, 0, (F”) = Z frn,n(r)fi(nv_mg_wr) (2.12)

m,n

where n is the toroidal mode number. Since the equilibrium magnetic field B ~ By(1 —
r/Rocosf) is a function of 6, a coupling of the different poloidal harmonics arises in
. For a particular toroidal mode number, and to the lowest order in the expansion
parameter £ = a/ Ry, each poloidal harmonic &, only couples to its nearest neighbouring
sidebands, &,,+1.

Neglecting kinetic effects, the force-operator equation (2.3) can be written as a set
of coupled equations in the form [26]

Pm Q ‘Sm _ ‘
( Q Pm+! ) ( ferl ) =40 (213)

where

2 dr ti a dr
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and the subscripts m and m 4 1 denote the two dominant poloidal mode numbers
present. The quantities kj and ¢ are approximately given by

.f. 1 ( m ) (r) By

it = — | B=—=] ; =g

||m R Q'(’) 1 q Bpof

where = = r/Ry. In the cylindrical limit (¢ = 0) the two poloidal harmonics decouple

and the cylindrical equation discussed above is recovered.

At each surface non-trivial solutions still exist corresponding to a set of eigenvalues
of w? which form a continuous spectrum for the equilibrium as in the cylindrical and
homogeneous cases considered above. However, since the parallel component of the
wave vector now also depends on m and 8, curves of the form w? = kﬁmvi can be
expected to cross. Toroidicity resolves this degeneracy at the points of intersection to

produce gaps in the frequency continuum as shown in Fig. 2.7. In the cylindrical case

w = -kmpr(r)valr) w= +]\‘-||m(")t’.4(")

/ \ -
&
w?
m - >~.m+1
0
qg=m/n r=To g=(m+1)/n T =Tg
5
Kijm =0 Kjjpm+1 =0
—_—
.

Figure 2.7: Coupling of poloidal harmonics in a torus and the corresponding TAE
eigenfunctions

it was the occurrence of an off-axis minimum in the profile of w?* which permitted GAE
to exist. In the toroidal case the Alfvén continuum already contains a minimum at the
surface where r = rg with rg determined by the condition

Ejjm(r0) = =Kjjm+1(r0)
which is approximately equivalent to the position where

m+%

n

q(ro) =
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as seen from Fig. 2.7. Consequently, global Alfvén solutions of equation (2.13) may be
expected to exist by analogy to the GAE case described above. These weakly damped
Alfvén eigenmodes were discovered in references [6, 7] where they were called Toroidal
Alfvén Eigenmodes (TAE).

Like the cylindrical GAE, the TAE eigenfrequency does not satisfy the local Alfvén
resonance condition since it lies in the gap in the frequency continuum. Consequently
the TAE does not experience heavy continuum damping and is therefore weakly damped.
The global eigenfunctions are mainly located around the region of the minimum of w?
as for the GAE and as indicated in Figs. 2.6 and 2.7, but every TAE consists of two
poloidal harmonics in contrast to the GAE. Since the toroidal minimum is the result of
the interaction between neighbouring harmonics there are primarily two poloidal global
eigenfunctions associated with each toroidal frequency gap.

It is also possible to obtain GAE in toroidal geometry as in the cylindrical case if
w? has an off-axis minimum due to the plasma deunsity and field profiles. It can be
shown that a GAE oscillating at a frequency w just below the continuum minimum
will intersect the continuum since k|| goes to zero on the rational ¢ surfaces. At these
locations the global mode will resonate with the local continuum mode which results
in strong continuum damping of the GAE [27].

2.2 Growth and Damping Mechanisms of AE

The following discussion introduces the dominant damping mechanisms experienced by
Alfvén Eigenmodes. The particular plasma parameters of the system under consider-
ation determine which particular mechanisms act as the strongest energy source and
strongest sink.

Consider an AE instability driven by super-Alfvénic ions whose energy content is
small in comparison with the bulk energy content. In this case a perturbative approach
may be used where the zeroth order solution is determined by the bulk plasma and the
energetic particles produce only a small imaginary contribution to the eigenfrequency
— the growth rate of the wave. Such a perturbative approach requires that

¥ L w.
Considering an exponentially growing wave amplitude such that
A= floéh’!

allows the growth rate to be easily described by considering the power transfer from
particles to wave. The energy possessed by each wave is proportional to the square of
its amplitude and so

E = Ege*
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where P = P; — P is the sum of the power transfers to the wave from the energetic
particles P; and the bulk plasma P;. Thus the total linear growth rate arising from
the contributions from the fast particles present and any damping mechanisms may be

written
Py~ Fy Power transfer to wave
Y =Yg — “'d = = = > =
P 2F 2 x Wave Energy
The remainder of this section provides a brief qualitative description of the principal

damping mechanisms experienced by AE within tokamak plasmas.

2.2.1 Damping Mechanisms due to the Bulk Plasma
Continuum Damping

[t was mentioned above that the main reason that toroidal Alfvén eigenmodes are
weakly damped is the absence of continuum damping in the region where the mode is
localised. However it is possible for the tail of the eigenfunction to spread up to a local
Alfvén resonance surface where it can experience a small residual amount of continuum
damping. For low-n TAE this continuum damping was considered in the paper [28]
and for high-n in [29, 30].

Ton Landau Damping

For typical tokamak plasma parameters a Maxwellian distribution of thermal ions con-
tains a negligibly small number of ions capable of resonating with the AE at the v = v
resonance. However it was shown in [4, 5] that the magnetic field curvature modifies
the resonant condition such that it becomes

W — lll“l‘ﬂ — kl Vi = 0,
where v,; is the magnetic drift velocity,

o+t
Vi = [B A V(In B)].
Wei
The k| - v4 term in this expression effectively reduces the frequency of the eigenmode
and allows the wave to resonate with sub-Alfvénic particles through a v = v4/3
resonance. The resonant contribution of the ions at v4/3 can be estimated for a D-T
plasma as [32, 33]

-

. & 1
_fiz 2 .
w zuf Z B P\p( 93)'
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where g is the safety factor and 3; = 27;/m;v? is the ion beta.

The ion Landau damping is one of the most important stabilizing effects in ignited
tokamak plasmas. Note however, that this damping mechanism is exponentially sensi-
tive with respect to 3; so that it can be difficult to predict the level of damping with a
high degree of reliability.

Electron Collisional Damping

For typical tokamak reactor parameters, the characteristic electron thermal velocity
vre is much greater than the Alfvén velocity. Thus only electrons with Vjle € ULe can
move longitudinally with the Alfvén velocity. All these electrons are trapped! however
and cannot contribute significantly to electron Landau damping [4, 34]. An alternative
electron damping mechanism has been proposed in [31, 35]. The effect arises from the
transitions of the electrons from trapped to passing orbits due to collisions.

Radiative Damping of TAE

The small but finite coupling of the ideal MHD TAE with a kinetic Alfvén wave can
be described by the dispersion relation:

Y 9
W= kv -+ — ) (kip;
w==x kjpva [1+(4+E)(J‘p)]
—— -— P
dwfdk; =0 Adw [k #0

The inclusion of FLR corrections reveals a finite radial group velocity which carries
energy away from the localisation of the TAE eigenfunction in the form of an outgoing
radiative kinetic Alfvén wave (KAW). This effect is known as the ‘radiative damping’
of TAE [36]. Tt has also been shown [33, 36, 37, 38, 39] that kinetic Alfvén waves
with frequencies above the toroidicity induced gap can form weakly-damped AE called
kinetic TAE (KTAE).

2.3 Enmnergetic Particle Drive For Weakly Damped AE

2.3.1 Linear Theory

Before going on to discuss particle motion in detail it is possible to gain a qualitative
understanding of the principle effects arising from wave-particle interaction by consid-
ering the interaction of a single wave with a solitary passing particle. Denoting the
phase of the wave by © it is observed that the © seen by the particle will in general be

'See Fig. 2.14 and the preceding discussion for an explanation of this term.
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continuously changing and the forces exerted by the wave upon the particle will average
to zero. However if on average © is almost constant, then these forces will allow the
particle to resonately exchange energy with the wave. The resonance condition is thus

(©) ~ 0. (2.14)

Upon assuming that passing particles approximately follow magnetic field lines with
an orbit deviation of the order of

2
o f L q
Ape = (l” + 5) ) 0@ Ba

accounted for through a Fourier expansion in [6 harmonics, the resonance condition
becomes

il‘ B m 41
Il qR

This may be rearranged to give

l.‘” —w=0.

qRw

U= —
I ng—m—1

which is the condition on the particle’s parallel velocity for it to experience a nearly
constant phase of a particular wave whose wave vector is described through the mode
numbers m and n. For TAE modes the global eigenfunction associated with the poloidal
harmonics m and m + 1 is primarily localised in the region ¢ = (2m + 1)/2n, as can
be seen from Fig. 2.7. Thus it is expected that the strongest wave-particle interaction
will occur in this region. Evaluating the above expression for v) at this location gives

U4

W =]

where [ = 0 corresponds to the primary resonance v| = va4, and other values of [
correspond to sideband resonances at lower velocities. In JET, fusion a-particles are
born nearly isotropically with a velocity v ~ 2.2 v, allowing them to resonate with the
v4 primary resonance and all other sidebands. The NBI system in JET however injects
particles with an energy of 140 keV corresponding to v = 0.56 v4. These particles are
thus only capable of resonating with the v,4/3 resonance and lower.

In contrast to the bulk ion Landau damping, the interaction of a-particles and
Alfvén waves must include the principle v|| = v resonance. For a typical slowing-down
distribution of a-particles the wave-particle interaction can be estimated as [26)

4 9 w 1 v
! =¥ .-1 =
e 2 ——|F{Z2). 2.1:
w 4 ! ( W 2) (l‘cx) ( j)
where
T, dlnjy
Wy = —hg——r—+

eaBo dr



2.3. FEnergetic Particle Drive For Weakly Damped AE 21

v/w

~ Wen ~ M

~ m?

X L m

Figure 2.8: Scaling of linear growth rate with ratio of orbit width to radial scale length
of eigenmode for passing particles

is the drift frequency associated with the spatial gradient of a-particles, w is the AE
frequency and
%
F(z) = x(1+ 22% 4 22%)e~2"".

The first term in equation (2.15) represents the free energy source associated with the
radial a-particle pressure gradient and the second term is due to the negative gradient
of a-particle energy, F/0f < 0. The second term is therefore responsible for the
damping due to the energetic particles. For highly centrally peaked a-particle pressure
profiles, the first term can lead to an instability of AE, releasing the free energy due
to the radial gradient in the form of a growing AE through the resonant interaction
between particles and wave. Note here that the expression above has been obtained
in the limit of small particle orbits. However, for particle orbit widths comparable
with the radial scale length of the AE, the growth rate was found to saturate [43] at
Ay ~ O(%) and then decay at a rate proportional to m =2 [39] for Ay larger than r/m
as shown in Fig. 2.8. The problem of calculating the linear growth rate in the case of
arbitrary magnetic field geometry and general particle orbits is much more complicated
than for simple passing particles and a more numerical treatment is needed in this case.

2.3.2 Nonlinear Modelling of Resonant Wave-Particle Interaction

To the extent that the source of free energy driving an AE comes from the radial
2 g

gradient of the fast particle population, the nonlinear stage of the eigenmodes’ evolution

(in the absence of sources and sinks) corresponds to the plateau formation on the
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distribution function. The plateau being centered around the flux surfaces where the
AE is localised. Numerous efforts [14, 40, 41, 42] have previously been devoted to
numerically modelling this effect for TAE and for the more simple (1-D) problem of
the bump-on-tail instability.

In the early studies of the problem, without the §f formalism, the main results
were obtained for the bump-on-tail instability [40] and for the TAE with enormous
strains upon computing resources. As mentioned above, the éf formalism was found to
be the most efficient method for the Monte-Carlo modelling of wave-particle resonant
interactions.

The first successful results for the nonlinear evolution of TAE instabilities were
obtained by Fu and Park [14] using 200,000 particles without using the df technique.
In this work the contribution of the energetic particles was taken into account in the
form of the pressure-stress tensor. However, such an approach does not allow the
finite orbit geometry effects to be taken into account. One of the important results
of this work was an explicit demonstration that the main saturation mechanism is
wave-particle trapping and that wave-wave nonlinearities may be neglected up to wave
amplitudes of §B/B ~ 2 x 107 at least.

In the mid-1980’s White and Chance at Princeton developed a Hamiltonian guiding
centre code, ORBIT [54], to examine particle trajectories in the presence of a spectrum
of fixed amplitude AE [55]. This code was recently successfully used to model the
nonlinear interaction of energetic particles and a single AE using a df approach [42].
However, by choosing to update the wave amplitude from a consideration of energy
conservation the treatment of systems with more than one AE becomes difficult. In
our code we use a differential equation to continuously update the amplitude and phase
of each AE. In particular, this allows us to analyse the behaviour of several AE.

Another advanced approach has recently been used by Berk, Breizman and Pekker [41]
to analyse the nonlinear interaction of the resonant particles and an AL using a map-
ping technique to rapidly describe the particle motion. However, generating the matrix
elements for the mapping requires detailed information about both the particle orbits
and the wave structure a-priori.

In this thesis a numerical model is developed based upon the J§f formalism for arbi-
trary particle orbits, arbitrary eigenmode structure and arbitrary toroidally symmetric
field geometries. Although this thesis does not consider the effects arising from the
inclusion of particle sources and sinks, the &f formalism promises to allow these effects
to be included in a very natural way.
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2.4 Particle Motion in Toroidal Magnetic Devices

In approaching any problem, the solution generally begins with some form of kinematic
analysis: the analysis of how the system can move, as opposed to how it actually
does move under the influence of a particular set of forces. In this first stage, the
essential step is the introduction of an independent coordinate system which labels all
the possible configurations of the system. Since the case being dealt with here is the
complex problem of the interaction of energetic particles with a perturbed magnetic
field, a representation is chosen that simplifies the equilibrium magnetic field description
and exploits any symmetry properties of the field. This simplifies the equations of
motion for the particles but means employing a non-orthogonal coordinate system,
and hence a tensor description requiring the language of covariant and contravariant
representations.

The second stage, the dynamical part of the problem, uses Newton’s second law to
determine the actual motion: to find out how the coordinates evolve as functions of
time when the system is subjected to given forces. The Hamiltonian approach simplifies
this second stage by providing techniques for finding the dynamical equations of the
system, isolating the constants of the motion and exploiting them to solve for the
particle trajectories.

2.4.1 Reference Frames

Since the fields and equilibria must ultimately be described in terms of a convenient
laboratory coordinate system the coordinates used are taken to be functions of the
familiar Cartesian system x = (z,y, z) or (2!, 22, 2%) by giving a set of three functions
€i(x) = & (a.y,2) for i = 1,2,3, where by convention, coordinates are denoted with
a superscript. The &' form a non-degenerate coordinate system if, and only if, the

Jacobian,
1

51 ; V£2 A V‘Ss’
is well behaved. The coordinate system is right-handed when 7 > 0.

JSV

More general bases can be written in terms of a set of three vector fields that span
the set of directions at every point in space. Any vector can be described in two forms

namely the covariant form, 2
A=A VE
and the contravariant form,
_ Sk igei p ek = 49X
A= 5 AVEAVE = A e

where ¢;;1. denotes the completely antisymmetric Levi-Civita symbol.

?Summation is henceforth assumed on repeated indices.
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Magnetic Flux Coordinates

Due to the solenoidal nature of the magnetic field, a torus is the simplest topological
configuration that can be assumed having no field lines exiting from it’s bounded sur-
face. A tokamak is such a configuration and in studying tokamak plasmas and fields it
naturally makes sense to adopt a set of toroidal coordinates such as (¥, 8, () shown in
Fig 2.9.

Figure 2.9: A general set of toroidal coordinates.

For an equilibrium with a scalar pressure the pressure gradient is balanced by the
Lorentz force, jA B = VP, and it is seen that j and B lie in surfaces of constant
pressure. These are usually referred to as magnetic surfaces since the field lines must
lie in them, or as flux surfaces since the magnetic flux within each surface is necessarily
constant through any cross-section. In such cases it is common to use so-called flux
coordinates. These are curvilinear coordinate systems in which one of the coordinates,
usually denoted by ¢, is constant over each flux surface. The other two coordinates
form a grid within each surface such that they close upon themselves once around the
torus in each direction. With such a definition, ©» = constant then defines a sequence
of nested tori and B - V¢ = 0.

The ultimate aim is to obtain a simple form for the Hamiltonian description of the
particle motion. To realise this goal, the coordinate system must be chosen carefully.
The trajectories of charged particles in a magnetic field are strongly tied to the field
lines, so flux coordinates form a natural system because they allow the rapid particle
motion along the field lines to be separated from the slow drift across the flux surfaces.
Further, it is convenient to choose a set of flux coordinates such that as many of the
relevant vector components as possible are constant within a flux surface. This enables

FEN
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the description to be characterized by the flux label .

Any unique labelling of the flux surfaces may be used for the radial coordinate 1,
although clearly it must be a monotonic function. Suitable labels include the volume
inside a flux surface [44] and the toroidal or poloidal flux within the flux surface. Any
function f that is constant on flux surfaces is referred to as a flux label and obviously
B -Vf = 0. Any radial coordinate that vanishes on the magnetic axis, increases
monotonically outwards, and has the dimensions of length, can loosely be identified
with the minor radius.

Since the magnetic field lines lie on the flux surfaces, the contravariant component
in the radial direction vanishes B - V¢» = B¥ = 0. The divergence-free nature of the
magnetic field then implies that

1[0 J
V-B=—|5(IB%) 4+ —=(JBY| =0,
7 (55 B") + 527 B9
from which it follows that the magnetic field may be defined in terms of a stream
function » such that 5 9
J ac J 9" (2.16)

where v(¢,0,() may be multi-valued in the angles  and (. To ensure that the field
itself is single-valued » must be the sum of terms that are linear or periodic in # and (:

v = u($)8+ v(¥)C + (¥, 6,0), (2.17)

where A is a periodic function in € and . Functions such as v are known as surface
potentials, with the name reflecting the fact that it is the gradient of v that is ultimately
of physical significance.

Using the contravariant form for B and equation (2.16) it is seen that

dv dv
B=—Vv¢ —V 0 2.18
ac LAVC+89V¢/\V, (2.18)
but since P p 9
v v v
Vv=_—Vuv+ —-Vi+-—-V(
v EIy v+ 90 + ac G,
this implies that
B=VyAVy, (2.19)

where ¢ represents an arbitrary flux label, and v a surface potential. Obviously, this
form is only applicable when nested flux surfaces exist, however it is possible to char-
acterize any toroidal magnetic field by writing

B=VaAVj,

for some suitable functions a and 3 [46]. The functions a and 3 form part of what is
known as close-line flux coordinates and can be used to describe any divergence-free
vector field [45].
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It is expected that the functions u(v) and v(v’) that appear in the definition of v are
uniquely related to the toroidal and poloidal fluxes, ¥; and v, respectively. Therefore
consider the fluxes between the adjacent surfaces, ¢ and ¢ + v,

1 Y+dy
diy = —/ B . V(dz*
21 Ju
27 plmw
» du.-// BE 7 d6 d¢
o Jo

2w 2K8U
= dv — db d¢
av [ [ Gy dedc

27 2w O\ .
=5 dy/u fo (ll(t_’)-l- %) df dC

= diy = w(v)dv.
Similarly for the poloidal flux,
dpp, = —v(¥) dip.

Thus
diby

Y,
i) =—- and wv(¢) = _&¥p

dv

By inspection it is easily seen from equation (2.19) that B is perpendicular to Vv
everywhere, implying that field lines lie on surfaces of constant v, whence the equation
of a field line on a flux surface is defined by the integral

v(i, 8. C) = constant, 1 = constant. (2.20)

Straight Field Line Coordinates

Since the form of the ‘angle’ coordinates # and ¢ has not been specified, they may be
deformed at will provided that they close upon themselves once around the torus in
each direction. This makes it possible to construct either orthogonal coordinates, or
coordinates in which the magnetic field lines appear as straight lines, as in Fig. 2.10.
Such straight field lines will result on a flux surface when a representation is obtained
in which the equation of a field line (2.20) is linear in the angular coordinates é and
(. Consequently it is seen from equation (2.17) that this form will occur when A is
eliminated from v. This may be achieved by either deforming # or ¢ individually,

A . .
Bncu- = gold - N Grew = Gold;
u(r)
or,
. . A
gnew = 90{d~ anu' =ilold = =77
v(¥)

It is assumed here that 8 and ¢ have periodicities of 27.

—




2.4. Particle Motion in Toroidal Magnetic Devices 27

2n

C —

Figure 2.10: Toroidal flux surface showing straight magnetic field lines in the appro-
priate 8-C coordinates.

or by some linear combination of these two transformations, the choice is not unique,
from which it follows that

v = u(v)f+v(v)(,

= Vv = u(¢¥)Ve+ B%Vg‘? + v(V)V(+ Cng,
8¢7 ()w

and hence from equation (2.19),
B =u(¥)VAVE —v(¢) V(A V.

Using the expressions for v and v this can be written as

aly f'.‘r!
B=Yvyavetr Pucavy, (221)
dip dip

which by inspection can be seen to be consistent with a vector potential of the form,
A=YVl -9, VC(.

It is notable that the covariant components of the vector potential in straight field line
coordinates are flux functions. All variation of A, and therefore B, upon a flux surface
is hidden in the definitions of the basis vectors, V8 and V(.

Selecting a particular flux label ¥ and constraining 6 and ¢ to produce straight
field lines still leaves one remaining degree of freedom that can be exploited in the
specification of the coordinate triplet ¢, 8, (. This freedom may be used to obtain a
specific form for the Jacobian. For numerical calculations this choice can be relevant,
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as it determines the nature of the spacing of grid points in the discrete coordinate
mesh. Hamada [47] used this freedom to produce a magnetic coordinate system with a
Jacobian that is constant on a flux surface. By specifically choosing the Jacobian to be
unity throughout the field, the physical volume element is simply given by dgt dg? de>.
For example, a Jacobian of 7 o R? is used in the MHD stability code CASTOR [49],
and in the equilibrium code HELENA [48]. This choice is made so that the toroidal
angle coordinate is equal to the familiar azimuthal angle, ¢. Boozer [50] has also
demonstrated that this freedom can be used to simplify the covariant representation of
the field such that the angular components become flux surface quantities.

Above it was demonstrated that the use of flux coordinates implies that field lines
are described by the contours of constant v on a flux surface. In a straight field line
representation the description becomes trivial since v is now linear:

¢ — q(¥)0 = constant, i = constant.

where ¢ is the so-called safety factor,’ and corresponds to the reciprocal of the gra-
dient of the field line in Fig. 2.10. It is clear from this that ¢ is just the ratio of the
contravariant components of B, ¢ = B‘;/BG, which from equation (2.21) means that
diy

f=i——s

: di,
Thus in any straight field line coordinates it is seen that the ratio of the angular
contravariant components of the magnetic field is constant within a flux surface.

2.4.2 Guiding Centre Motion

Much insight into the macroscopic behaviour of a plasma can be obtained from a
consideration of single particle motion. The equation of motion of a non-relativistic
particle of charge ¢ in an electric field, E, magnetic induction field, B, and external

force F is .
m%:F—I—e(E-i—v/\B) (2.22)

d
For tokamaks, external fields such as gravity are negligible in comparison with the

electromagnetic forces present.

Energy Conservation

By only considering the effect of the B field upon a particle the equation of motion (2.22)
reduces to

mf{‘i =ev AB. (2.23)
di

*q is known as the safety factor because of the important réle it plays in plasma stability. In
particular, rational values of g correspond to surfaces with closed field lines that are especially vulnerable
to electromagnetic perturbations.
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Since the magnetic force is perpendicular to v it does no work on the particle and
taking the dot product of (2.23) with v gives

&Y _i(l 2)_0
ta YT \2™ )T

which shows that the particle kinetic energy (%mvz) and speed are both constants.

This result is valid for any spatial dependence of B, provided it doesn’t vary with time.
If it does depend on time then Faraday’s Law implies that an electric field will also be
present which can do work on the particle thereby changing it’s kinetic energy.

When both magnetostatic and electrostatic fields are present, then from (2.22)
d /1 .
g (Ernuz) =ekE-v.

In this case VAE = 0 so the electric field may be expressed in terms of the electrostatic
potential according to E = —V¢ giving

© Lo — i
(. nu.)_ eVo-v = e

Rearranging the result gives the following conservation law

d

(1 l’2+'¢)_0
i\ tee) =0,

which reveals that the sum of the particle’s kinetic and electric potential energies re-
mains constant in the presence of static electromagnetic fields.

It was assumed above that the particle energy changes only as a result of the work
done by the external fields. This assumption is not strictly true since an accelerating
charged particle radiates energy in the form of electromagnetic waves [51]. However,
this effect is very small and will be neglected in this thesis.

Uniform Magnetic Field
The relevant equation of motion is
dv
m— =evAB
dt

which by considering components parallel and perpendicular to B becomes

(lV“
2= (2.24a)
Vi _ 2o AB) (2.24b)

dt m
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Thus the particle’s velocity parallel to B does not change, in accordance with equa-
tion (2.24a), and remains equal to it’s initial value. For motion in the plane perpendic-
ular to B equation (2.24b) can be written in the form

dv .
= =v] Aw,, (2.25)
dt
where the vector w. is defined by
eB
we = —.
m

The motion described by equation (2.25) is that of rotation with constant angular
velocity w., and can be directly integrated, noting that w,. is constant and taking
v, = dp./dt, to obtain

Vi = pcAwe

where p. is interpreted as the particle position vector with respect to the centre of
gyration in the plane perpendicular to B which contains the particle. Thus the trajec-
tory of the particle is given by a superposition of a uniform motion parallel to B and
a circular motion in the plane perpendicular to B resulting in a helical trajectory.

The magnitude of the angular velocity vector, w,, is known as the cyclotron fre-
quency or gyro-frequency. Table 2.1 gives values for the cyclotron frequency w. and
Jo(= |we|/27) for electrons and protons.

I'requency Magnetic field
1 Tesla 3 Tesla 5 Tesla
|wee| (%107 rads/s) 176 528 879
wei (x10% rads/s) 95.8 287 479
foe (GHz) 98.0  84.0 140
fei (MHz) 15.2 45.7 76.2

Table 2.1: Cyclotron frequency for electrons and protons in various magnetic fields.

The radius of the circular orbit is given by
vy muvy
pib w. |e|B

and is referred to as the gyroradius or Larmor radius. Typical values for electrons and
protons are shown in Table 2.2 for various plasma temperatures (in eV), where it is

observed that v; contains two degrees of freedom with each contributing an energy of

1

1- . B
3T giving smv] =T.

E A B Drift

Now consider a charged particle in a uniform magnetic field B and a perpendicular
electric field E. (The situation where E is parallel to B is trivial.)
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Magunetic  Larmor Temperature
field radius ~ 10eV  100eV 1keV 10 keV
3 pe (pm)  3.55 11.2 355 1i2
Teslas  p, (mm) 0.152  0.482 1.52 4.82
D Pe (pm)  2.13 6.74 21.3 67.4

Teslas  p, (mm) 0.0914 0.289 0.914 2.89

Table 2.2: Larmor radius for electrons and protons in plasmas of various temperatures.

In the absence of an electric field it was demonstrated above that the motion resolves
itself into a gyratory motion around the field lines and a uniform drift along the field
lines. Qualitatively it is seen that for a positive ion the effect of the perpendicular
electric field is to accelerate the ion whilst travelling in the same direction as the field
and to decelerate it when travelling in the opposite direction. From above it is also
seen that the radius of gyration depends on the perpendicular speed of the particle,
thus as the ion is accelerated it’s Larmor radius increases, and conversely decreases
as it is decelerated. The effect of this changing radius is to produce a drift of the
centre of gyration, or guiding centre, that is perpendicular to both the magnetic and
electric fields as indicated in Fig. 2.11. This drift may be quantified by returning to the

G L00000000)

Electron

© . AR

B
@ @?
Figure 2.11: E A B drift for ions and electrons.

equation of motion, equation (2.22), and neglecting all other external fields F. Taking
the cross product with B gives

1
m%/\B:e[EAB—{—(V-B)B—B?v].‘

and averaging over one complete period gives
0=e[EAB- B ax|,

giving
EAB

B?

Viave = VE =
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It is interesting to note that this drift is the same for all particles, independent of mass,
charge, or velocity.

Drift with External Force F

The effect of an external force F may be simply calculated by replacing E in the above
derivation of the E A B drift to give

FAB

VF = ——. 2.26

F= g3 (2.26)

In this case it is observed that the drift depends on the charge, e, and thus ions and

electrons in the plasma drift in opposite directions and give rise to a net current. A

simple calculation shows however that the j A B force that this current gives rise to
exactly cancels with F.

Magnetic Moment

Due to the circular motion of a charged particle in a magnetic field there is associated
with it a circulating electric current, I. The magnetic field generated by this ring
current at distances much larger than the Larmor radius, p., is similar to that of a
magnetic dipole. For a given magnetic field direction the ring currents of both ions and
electrons flow in the same direction, even though the actual particles orbit in opposite
directions. The magnetic fields generated by these currents oppose the external B field
inside the orbits. A plasma therefore possesses diamagnetic properties. The magnetic
moment of a charged particle is defined as [52]

1 I 1 %
no= 5/(1‘/\‘1) (13;1‘:§frA(ll:A§£pca!J_B
1.2
5MUY o €L -
= - B H
B B

Conservation of Magnetic Moment

The magnetic moment remains almost constant during the motion with it’s invariance
depending upon the slowness of the variation of B on the time scale of the particle
orbit. Consider the situation of a time varying magnetic field. Faraday’s law implies
that this will lead to an induced electric field which can do work on the particle and
change it’s energy. The change in energy over one cyclotron orbit, 7' = 27 /w, is

A&y :(-.fE-dl: —e %-ds.
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If the variation is slow enough such that B is effectively constant over one orbit, then

,0B &, 0B
/ == =
AfL TPar T B w
_ &1
= 5 AB.
This implies that
A (%) =0= Ap,

and thus the magnetic moment remains invariant as B changes. As the field strength
increases, the particle moves faster in a smaller orbit and gives rise to the corollary
that the magnetic flux through a gyro-orbit remains constant as the field changes. u is
said to be an adiabatic invariant.

Mirror Force

The forces and torques acting on a magnetic moment may be considered to be derived
from a potential of the form [51]

V=-(p-B).
For an individual charged particle in a plasma this implies a force of the form
F=-uVB

since it has already been remarked that p is an adiabatic invariant and anti-parallel
to B. Inserting this force into the expression for the drift due to an external force,
equation (2.26), produces the expression

VBAB c VBAB
f——— = e

¥E=F eB? T TeBs

known as the grad-B drift.

Thus as a consequence of the adiabatic invariance of u, as a particle moves into a
region of increased field strength (i.e. converging field lines) it’s perpendicular velocity
increases whilst it’s parallel velocity decreases in order to keep p and &, the particle
energy, constant as depicted in Fig. 2.12. If the B field becomes strong enough then
ultimately the parallel velocity may reduce to zero and then be reversed, before the
particle is accelerated in the direction of the weaker field.

Curvature Drift

In terms of the straight field line coordinates introduced in §2.4.1, there is no magnetic
field curvature (by definition) and the drift which this section discusses is hidden in
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|-:II

q<0

Figure 2.12: Particle reflection due to an increasing field strength.

the transformation back to a convenient laboratory reference frame. However, to un-
derstand the physical nature of particle motion in real space arising from the effects
of curved magnetic field lines a local coordinate system, gliding along the magnetic
field line with the same parallel velocity as the particle, is introduced. This is not an
inertial coordinate system because of the curvature of the field lines which gives rise to
a centripetal force of the form

m U|2|

R2
where R is a vector from the instantaneous centre of curvature to the particle location.
From equation (2.26) the curvature drift associated with this force is given by

F.=—

m L’|2|

—EB_ZRQR/\B.

V=

When currents can be neglected within the plasma, such as in a vacuum field
V AB = 0, the drifts due to curvature and field gradients can be combined to give

a total drift of the form,
_4&RAB

V=3 BR!
1 2

where an isotropic velocity distribution has been assumed and & = Smv~.

Guiding Centre Approximation

Above it was shown that the Lorentz force experienced by a charged particle moving
in a magnetic field causes it to gyrate about an axis parallel to the local magnetic field
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whilst the centre of gyration, or guiding centre, undergoes various drifts. If the radius
of gyration, or Larmor radius, p, is much smaller than the scale length of any field inho-
mogeneity and the gyro (or Larmor) frequency is much higher than any characteristic
field frequency then the guiding centre drift approximation applies. In this approach
the helical trajectory of the particle in a magnetic field is approximated by a smooth
drift motion as depicted in Fig. 2.13. The guiding-centre equations of motion which
describe this drift motion were first developed by Alfvén in 1940 [13]. From the point
of view of computationally treating the motion of a particle as an initial value problem
and evolving it’s position in time, this transition allows significantly larger time steps
to be used since the fine scale motion associated with the particle’s gyration is not
explicitly followed.

Guiding Centre

Particle Trajectory Trajectory
/

—_— -—_—

Magnetic Field
Line

Figure 2.13: Helical trajeétory of a charged particle around a field
line with guiding centre trajectory indicated.

Collecting together the various drift mechanisms described above, Morozov and
Solov’ev [53] have shown that the guiding centre drift velocity can be written as

v = -v”B—t- %/\ (mvﬁ(f’» -V)B + uVEB +eVo). (2.27)
The first term in this expression clearly represents the parallel velocity of the guiding
centre along a field line, whilst the second term describes the perpendicular drift away
from it. This second term may be considered to be made up of three separate parts,
the first of which describes the perpendicular drift motion due to the curvature of the
field lines. Particles following a curved field line experience a centripetal force which
gives rise to a drift motion perpendicular to the instantaneous curvature vector and the
magnetic field. The next term describes the so-called VB drift which occurs whenever
the field strength varies. As the particle moves into a region of stronger or weaker field
its Larmor radius changes and its guiding centre drifts accordingly. The final term in
the above expression represents the so-called E A B drift. This is the drift away from
the magnetic field lines due to the perpendicular component of the electric field.
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Typical Particle Trajectories in a Tokamak

This section describes the types of particle orbit that arise in a tokamak as a result of
the various drifts discussed above.

A simple application of Ampere’s law indicates that the stronger toroidal field, By,
varies in inverse proportion to the distance from the axis of symmetry,

foliy
By =——,
! 2R’

where 1,7 is the sum of the currents in the toroidal field coils. As has already been
observed in §2.4.1 the magnetic field lines lie on nested surfaces of constant flux, v,
and slowly spiral around these surface. Without the smaller poloidal field, a vertical
drift would occur in opposite directions for the ions and electrons. This leads to charge
separation and subsequently a vertical electric field giving rise to an E A B drift in the
radial direction. This would then lead to an unacceptable loss of particles from the
confinement system. By adding a small poloidal field the particles still primarily follow
the field lines, but they now traverse the entire poloidal cross section before returning
close to where they started. Each species still has a vertical drift associated with it but
this now cancels in the upper and lower halves of the torus with the effect that there
is no net drift.

The curvature of the field lines and the variation in the field strength leads to various
distinct classes of particles which can be divided into two main classes; trapped and
passing particles, as shown in Fig. 2.14.

The trapped particles have insufficient parallel kinetic energy compared with their
perpendicular energy to penetrate into the high-field side of the torus and are conse-
quently located in the outer low-field side of the tokamak. They bounce backwards
and forwards between their mirror points experiencing a continual vertical drift due to
the combined effects of field curvature and gradient. When projected into a poloidal
plane the trajectories traced out by these particles earn them the appropriate name of
banana orbits.

Passing particles are not reflected anywhere and spiral around the torus following
the helical path of the field lines. Like the trapped particles they also experience a
continual vertical V B and curvature drift independent of their direction of travel around
the tokamak. This results in co-passing and counter-passing (particles travelling with
and against the field) appearing to drift radially inwards or outwards depending on the
direction of the plasma current.
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Figure 2.14: Poloidal projection of typical charged particle orbits in a tokamak. The
particles experience a vertical drift dependent upon their velocity parallel to the mag-
netic field.
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Chapter 3

Development of Model

The theoretical background material presented in the previous chapter enables a nu-
merical model to be developed to examine the interaction of fast particles with Alfvén
eigenmodes supported by the system. A schematic overview of the problem is presented
in Fig. 3.1. As can be seen the plasma equilibrium is responsible for determining the
AE supported, as well as the specifics of the particle trajectories which may be simpli-
fied through the adoption of a guiding centre approach. The wave-particle interactions
that take place lead to a modification of the fast particle distribution function which
in turn affects the wave-particle interactions that occur.

The task of obtaining the guiding centre equations of motion can be simplified
by adopting a Hamiltonian formalism as indicated in §2.4. The specific form of the
Hamiltonian, and therefore the equations ol motion to which it gives rise, depends upon
the canonical coordinates used. The crux for finding simple canonical variables lies in
the proper choice of the spatial coordinates which should be suited to the geometry of
the magnetic field. From the point of view of describing the waves present, all that is
needed is the adoption of a set of flux coordinates since it is natural to decompose the
waves into Fourier harmonics in the toroidal and poloidal directions.

Littlejohn [56] has shown that the guiding centre Lagrangian may be written as,

X v Loom
L=c¢ (A—I— “B) X+ —pé—H,

We e
where H is the guiding centre Hamiltonian and x and £ are the guiding centre position
and gvro-phase respectively as shown in Fig: 2.13. This implies that the canonical
variables satisfy the relation,

: &l L Mmoo
pigi=elA+—B| -x+ —pué.
We €

Due to the Lagrangian’s scalar nature it guarantees general covariance and allows any
coordinate system to be used. The easiest way to express the velocity term in this
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Figure 3.1: Schematic diagram showing an overview of the model. The plasma equi-
librium determines the AE supported by the system as well as the topology of the
particle orbits. The distribution of fast particles interacts with the waves changing
their amplitudes and phases whilst causing a re-distribution of the fast particles.

equation is in contravariant form,

.o 0x
X = ‘Ei 862'!
then by expressing A and B in covariant form any components of the metric tensor
arising from the dot product with x are avoided. It has already been demonstrated in
§2.4.1 that for any straight field line coordinates the covariant components of A are flux
functions. Thus by seeking a specific straight field line coordinate system that allows
B to be expressed in covariant form, with as many components as possible being flux

functions, enables the description to be characterized by the flux label 1.

3.1 Boozer Coordinates
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In the early 1980s Boozer [50, 57] used a specific choice of Jacobian to successfully
obtain a covariant straight field line representation in which the angular covariant field
components were flux functions. ie. By = Bg(v) and Be = B¢(v). In the literature
such coordinates are sometimes referred to as Boozer coordinates.

When introducing straight field line coordinate systems in §2.4.1 it was assumed
that the system under consideration was in scalar pressure equilibrium and from this the
existence of nested flux surfaces was postulated. This assumption may be re-examined
by noting that due to it’s solenoidal nature the magnetic field line flow is incompressible,
resembling the flow in phase-space of a Hamiltonian system. If the magnetic field has
a continuous symmetry such as toroidal symmetry (dB/d¢ = 0 with ¢ the toroidal
angle), the field lines reduce to an integrable Hamiltonian form. In the absence of any
such ignorable coordinates Yoshida [58] has shown that the flux coordinate form for
representing a magnetic field in scalar pressure equilibrium, such as that developed
above, can be generalized to represent any solenoidal field in a toroidal domain by
writing it in the form

B=V¢AVI+ VAV, (1,0,0). (3.1)

It is in this form that Boozer represents an arbitrary magnetic field B(x). In the case
of a field with perfect surfaces one can choose v, 8, and ¢ so that ¥, is a function of ¥
alone and thereby recover the flux coordinate representation. However for a field with
a complex topology such that it cannot be described by a set of nested flux surfaces no
such 1,0, and ¢ exist and W, must be considered a function of all three coordinates [57].

The field lines are defined by the equations

dy _B-Vy dd _B-VH (3.2)
i ~ B-V(’ d¢ ~ B-V(’ N

which upon substituting for equation (3.1) become

dy oW, do 0w,

dc a8 ¢~ v
where the poloidal flux function W, (v, #,¢) is identified as the field-line Hamiltonian,
with 6, ©» and ¢ playing the roles of position, momentum and time, respectively.

The existence of exact surfaces is equivalent to the Hamiltonian ¥, having a non-
trivial constant of the motion. If the Hamiltonian is independent of # it’s canonically
conjugate momentum 1 is a constant of the motion.

ow .
v, =H(¥) = a()p =0 = ¥, = const. along a field line.
In the absence of a constant of the motion one cannot choose t»,6,( to make ¥, a

function of ¢» alone. However if there is a nearby field with good surfaces one can
choose W, so that

W, (4, 6,¢) = ¥p(¥) + 9(2,6,0),
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Figure 3.2: The toroidal flux ¢, the poloidal flux ¥, the toroidal current I, and the
poloidal current g, are defined by integrals over the two enclosed areas of the torus.

with 9] < [¥,).

By only considering systems for which it is assumed that good magnetic surfaces
exist, W, (¢, 0,() can be replaced by ¢, () and ¥,0,(, and 1, can be interpreted as
given in Fig. 3.2. The coordinate i represents the toroidal flux inside a magnetic
surface and ¢, can be interpreted as the poloidal flux outside a magnetic surface, or
poloidal flux through a closed ribbon-like surface bounded by the magnetic axis and a
magnetic surface. These two interpretations are equivalent, with the two definitions of
¥, differing only by a constant.

In the discussion of tokamak field representations in this section it has been possi-
ble to progress from completely general field representations to those possessing nested
flux surfaces by assuming that a nearby field configuration with good surfaces exists.
Making the further assumption that this adjacent representation is toroidally symmet-
ric allows the adoption of the Boozer coordinate system used by White & Chance [54].
This combines the advantages of using a straight field line representation, enabling the
fast streaming of particles along the field lines to be separated from the slow perpendic-
ular drift, with the property that the magnetic field components required to describe
the particle motion are functions of ¥, alone. The coordinate system takes 1, as the
radial coordinate and deforms the toroidal angle coordinate ¢ to obtain straight field
lines. The general poloidal angle is chosen by selecting a specific form for the Jacobian
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to obtain a covariant representation of the magnetic field in which the angular com-
ponents are functions of the poloidal flux alone. Toroidal symmetry implies that all
equilibrium quantities such as the metric tensor and field components are independent
of the azimuthal angle (.

By observing that B - V1, = 0, B can be written using any two vectors orthogonal
to Vi, Greene [59] showed it is convenient to write

B = ByV, A VO + Bo(Vi, A V) AV, (3.3)

where By and Bg are functions of ¢, and @ to be determined. From V -B =0, it is
found that V - [Bo(V ¥, A V#) A Vib,] = 0, which implies

d I'(vp)
R N b 2 = — ! _
5 [JBO(V;.})/\ Vo) =0, = Bo o0, A (3.4)

for some flux label T'(2,).

Equilibrium force balance implies that the plasma current flows in a magnetic sur-
face since j- Vb, = 0 provided p’ # 0. Using (VAB) -V, =V - (BAVY,) =0itis
found on substituting for B from equation (3.3) that

0 o(ty)

— |TBa(Vi, AVE?| =0, By = , 3.
a0 [‘7 H(Vp A V) ] 0. = bBu T(V, A V6)? (3:5)
for some flux label g(v,).
Equations (3.4) and (3.5) allow equation (3.3) to be rewritten as
1 ‘ ‘ ; , a g
B [g(¥p) (VU A V) + L (1) (VU AVE) AV Y] (3.6)

= J(Vi, AVE)?

Choosing 27¢, to be the poloidal flux inside the surface labelled by ¢, implies that

e, = i /f/(B . V0) T dib, dB dC.

But from equation (3.6),

S0

Iy, = Zl"' /ffT(L'p) dip, df d¢,

= '27:/1"(@-‘,)) dyp,

and hence I'(¢,) = 1.
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Using the usual notation, the covariant form for B can be written
B= B*ﬁ’pVE‘P + BQVB + BQVC,

where the covariant components are found by taking the scalar product of equation (3.6)
with the appropriate contravariant basis vectors to give,

Bv—" - (Vd’p/\VB)z l:g(vltp/\ VG) (V(?'/\ VC) 7 ’ (3.1&)
- —1_____ hy . h (VL”},)Q o

b = v, rvep lg(vz,,,,/\va) (VCAVY) +— ] . (3.7

= = (3.7¢)

The coordinate ¢ is chosen so that the field lines are straight in the 6, plane, ie. the
local helicity (B - V()/(B - V#) = B¢/BY = ¢(v,) is taken to be independent of 6.
Calculating the ¢ and 6 contravariant components of the field it is found that

B = B = 9 (Ve AVO AV -V
.

B = B.vo=—_.
J

Thus in coordinates in which the field lines are straight,
(V, AVE) - (VCAVY,) = % — q(V, A V)2, (3.8)

Now, B? = By, B¥? + BgBY + BcBC which gives,

1

7 S
B = T2(Vi, A VE)?

(V)7 +¢7]. (3.9)
Substituting equation (3.9) into equation (3.7b), and using equation (3.8) gives,
B6’ — t.TBZ — gq.

Calculating the toroidal flux within the flux surface v, it is found that

B = L///(B.vg)jdwpdadc,
2T

1
o= [ [ atw) v, aeac,

giving ¥ = [ ¢(¢,) d¢op, or dv/dib, = ¢(v,). Thus in a coordinate system with straight
field lines 1 is a function of ¥, alone, both being constant on a magnetic surface.
2 P & &

The contravariant form of B may now be written as

B = V(AVY, +qV,A V8, (3.10a)
= V(C—q(¥y)8) AV, (3.10D)
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from which it follows that the vector potential A can be written as
A =9YVo -9, V(. (3.11)

This contravariant form for B is seen to be the same as that given in equation (2.21),
with u(v) = (l‘y’;/(lﬁ‘p =q. and v(1) = dtf;"p/dwp =1;

Introducing & to represent the radial covariant component of B, the covariant rep-
resentation becomes,

B = 6(4,, )V, + (T B% — q9) VO + g(1) VG,

which if the Jacobian is chosen to be of the form J = F(v,)/B?, ensures that By is
a flux function since By = F(¢,) — ¢(¥)q(¥p) = I(1,). The final covariant form thus
becomes,

B = (15, 0) Vi, + 1(£) VO + 9(1,) VG, (3.12)

with g
99 g9
g = 52 (3.13)

The dependence of the angular covariant components I and g on ¥, alone arises from the
choice of Jacobian and is an important ingredient in the development of the Hamiltonian
formulation. The radial covariant component § can be found from B - Vi, = 0 giving

IVO -V, +gV(-V,  Ig'?+gg'
|V¢p|2 - gll !

5(¢‘[}1 9) ==

where the superscripted terms g/ represent the contravariant components of the metric
tensor § and the triplet ordering is (¢, 6,¢). As may be seen, 4 is related to the degree
of non-orthogonality of the system and is very small for equilibria with nearly circular
cross-section.

Simple physical interpretations can be found for the functions I(1,) and g(¢,) in
terms of the currents flowing in the device. Using the covariant expression for B allows
the current density j to be written as,

Y a1 dg
=— | =VaAViY — Vi, AV8+ —V, AV(].
J [o (()9 Vot é)wp vp *j Q"'p Vr (‘)

Integrating this expression separately over the poloidal and toroidal areas as defined in
Fig. 3.2 reveals that 27/ /g is the total toroidal current inside the flux surface ¢», and
that 2mg /g is the poloidal current.
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3.2 Guiding Centre Equations

In this section the steps leading up to the derivation of the guiding centre equations
of motion are outlined. The guiding centre Lagrangian is obtained from that for a free
charged particle in an electromagnetic field through a gyro-averaging procedure [56)
and the canonical variables identified. As a consequence of the gyro-averaging process
the phase-space of the problem is reduced, lowering the number of variables that must
be evolved. The equations of motion follow by differentiating the guiding centre Hamil-
tonian with respect to these canonical variables.

The Boozer coordinate system introduced in the last section may in general form
a non-inertial reference frame since it is defined with respect to the magnetic field
structure which may be time dependent. Using a Lagrangian approach allows a trans-
formation from an inertial laboratory reference frame to a set of non-inertial coordinates
describing a time dependent magnetic field. Consider the exact particle Lagrangian in
a stationary reference frame,

1 F
L= 517114"‘)'+6V-A5—e<1)_9, (3.14)
where V, @5, and Ag, represent the exact particle velocity, V = dx/dt, and the scalar
and vector potentials in this reference frame.
If the magnetic field is time dependent the exact particle velocity can be written as
Jdx  dx

ot ag

ol

using the transformation equations x(¢,6,(,t) where ! = ¢, €2 = 6, and € = (.
The first term in this expression represents the velocity of the magnetic field, Vg say,
and the second term is the velocity of the particle relative to the magnetic field in
contravariant form, v say. The exact Lagrangian in terms of the particle’s velocity may
be written in the same form as that given in equation (3.14) by defining,

A:A5+(E) Vg, and (I)—‘I’s—As-VBg;(m) pgt
e €
to give

1
L= Emv2 +eA v —ed,

Recalling that the Larmor radius may be expressed as p = muv, /e B and that B = VAA
implying B = A/L where L is a typical scale length upon which the field varies,
allows the relative magnitudes of the latter two terms in each of these definitions to be

considered:
ImVg| Ve
leAs| — V
where V' is a typical particle velocity. As a consequence of both Vg/V and p/L being
small it can be assumed that A = Ag and the final term in the expression for the

L
L’
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electric potential ® may be neglected leaving ® = ®5 — As - Vg. Further assuming
the exact invariance of the magnetic moment, y = mv? /2B, it effectively becomes an
‘internal’ process analogous to electron spin and is coupled to the external degrees of
freedom by means of the mirror force, F,,, = —V(pB). This suggests the interpretation
of uB as a potential energy term rather than a kinetic one and allows the Lagrangian
to be written in the form first given by Taylor [60],

1L
F— 5mvﬁ+eA-v—,uB —e®.

The Euler-Lagrange equations obtained from this Lagrangian are degenerate since this
Lagrangian depends only linearly on the components of the guiding centre velocity
perpendicular to B. This implies the equations of motion in these perpendicular direc-
tions are first order in time and serve merely to define the perpendicular drift velocity
in terms of the guiding centre position. Attempting to construct a Hamiltonian descrip-
tion reveals the same degeneracy seen through the definition of the canonical momenta,

ar i
= — =my B +cA
P % Il s
where B is a unit vector parallel to B. This indicates that the two components of p
perpendicular to B are simply functions of x since

pPL=¢€A].

Thus, although the Hamiltonian

da; _ s

Hix, p. t)=pi— — L(x,x,t),
dt
appears to depend on six phase-space coordinates, only four are independent. This
four-dimensional phase-space of independent coordinates is called the ‘reduced’ phase-
space and consists of the parallel velocity v and the three components of the spatial
position of the guiding centre x. The dependence on only four variables instead of
six has arisen because the magnetic moment g, which is determined by v, has been
assumed to be conserved. The gyro-phase, which is the coordinate conjugate to y and
rotates at the gyro-frequency, is irrelevant to the guiding centre motion.

Suitable canonical variables were initially found [54, 61] by a rather laborious
procedure involving trying to find the time variation of a particular coordinate, ¢;
say, whilst following the guiding centre position. This meant demonstrating that
G = v-Vq = 0H/Op;, where the Hamiltonian H is the total energy of the system
expressed in terms of the canonical variables and v is the guiding centre drift velocity
given in equation (2.27). By adopting a Lagrangian approach, Littlejohn [56] was able
to considerably reduce the labour involved in finding a reduced set of guiding centre
canonical variables. The procedure used is based upon Hamilton’s variational principle
which may be written as

5[1: dt =0,
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with the guiding centre Lagrangian, £, given by [56]
. L oL.om -
L =€eA -x+?,u£—?{, (3.15)

where £ is the gyro-phase and x is the guiding centre velocity and represents the total
time derivative of the guiding centre location, x. The term A* = A + pB is known as
the ‘modified vector potential” and was first used by Morozov & Solov’ev in 1963 [53].
It makes use of P = v”/wm- which is referred to as the parallel gyroradius, with the
Hamiltonian given by

1
H= §mvﬁ + uB 4+ e®. (3.16)

It is convenient to choose units based around characteristic system quantities. Since
the case being examined is the interaction of a distribution of fast particles with a
perturbed magnetic field it is appropriate to express all masses and charges in terms
of those of the fast particles and to express all lengths in terms of the toroidal major
radius at the magnetic axis. Time units are specified in terms of the inverse fast particle
cyclotron time at the magnetic axis, 1/Q = 1/Bg in these units. Since we only consider
a single species of fast particle we may subsequently omit all occurrences of charge and
mass in the following formulae. Physical formulae consequently result by restoring
these physical factors.

Canonical variables are obtained by substituting expressions for A and B into
equation (3.15) and rewriting it as

L=Y pigi—H.
i

Once this form is obtained, the canonical momenta and coordinates can immediately
be identified. Substituting equations (3.11) and (3.12) for A and B into the Lagrangian
gives

= (pyI +9) 0+ (pyg — o) C+ 1 —H + Spyihy (3.17)

As already noted any coordinate system may be used, provided it labels all configu-
rations of the system. It is thus natural to select the Boozer coordinates introduced in
$3.1 to form the canonical coordinates, enabling the canonically conjugate momentum
variables to be read straight from equation (3.17). Upon closer inspection however there
are seen to be four terms of the form p;¢;. To resolve this, 1, is viewed as a momentum
term and consequently the final term interferes with this interpretation and must be
removed.

One method of achieving this involves the observation that the equations of motion
remain invariant under the addition of exact differentials to the Lagrangian [52]. Thus
terms such as d(dp)1)/dt may be safely subtracted from equation (3.17) with no effect
and the remaining terms absorbed into the canonical coordinates ¢ and (¢ through
their redefinition, or neglected if they are higher order in p [54, 62]. This approach
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is unsatisfactory however, since the resulting canonical coordinates no longer coincide
with the Boozer magnetic coordinates derived above and also since the equations of
motion that ensue do not exactly conserve H. A more desirable approach is one that
whilst only reproducing particle motion to second order in p, exactly conserves the
Hamiltonian. This is achievable by a modification of the guiding centre velocity x = v,
so that v.— v + w. This adds an additional term to equation (3.17) of the form
A* - w, where w may be chosen such that

A*w = —dpyip. (3.18)

With this choice the reduced set of canonical coordinates are €, ¢ and &, with the
corresponding canonical momenta given by

Pﬂ = P||I+ we

P19 = Vs
Fe = p

~
[

and the equations of motion following from the Hamiltonian in the usual manner,

. _ o o
b = ap Fo = —%g
: OH . oH
¢ = ()—PCq Fr = "I (3.19)
: OH : OH

= — P = ——.

Before proceeding to derive the equations of motion that follow from equations (3.19)
consider the inclusion of a general electromagnetic perturbation described by the vector
and scalar potentials,

A(x, t) = f‘ig.PVq'!p + ApVo + ACV(;, and fil'(x, t).
Replacing A with A+ A, and ® with ® + ®, means that the Lagrangian now becomes,
C=(ppl+v+40) 0+ (pyg —p+ Ac) St € = H+ (0py + Ay, ) by (3.20)

The final term in this Lagrangian is treated as before and the canonical variables are
now modified such that the canonical momenta are,

P, = p”I + ¥+ ;—15-. (3.21a)
P, = pyg—tp+ A, (3.21b)
P = p. (3.21c)
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Examining these equations it is reassuring to observe that they are of the same struc-
ture as a free particle in classical electrodynamics for which the canonical momenta
P =p+ A, where p is the familiar mechanical momentum. This is seen from equa-
tion (3.11) where it is observed that ¢» and —%, are the # and ¢ covariant components
of A. Noting that p;B is the parallel momentum it follows from equation (3.12) that
the particle momenta corresponding to 6 and ¢ are pif and pyg.

The Hamiltonian for this system is the total energy and is therefore given by equa-
tion (3.16). Interpreting pj| as the normalised parallel velocity (since m = e = 1in the
units adopted here) the Hamiltonian can be re-written as

H=~mﬁ2+p8+@

where the possibility of an equilibrium electrostatic potential ®(x) has been excluded
since it would immediately be shorted out by the very mobile electrons present.

The equations of motion may now be evaluated in accordance with equations (3.19).
Since M is not written in terms of the canonical momenta this first involves eval-
uating the partial derivatives of ¥, and py| with respect to the canonical variables.
Recalling that g, I, and ¢ are all functions of v, alone, equations (3.21) give that
Vp = Up(0, G, By, F) and that py = p)(0,¢, Fy, F¢). Eliminating pj from the first two
of these equations gives

q (P(, — ‘ig) =1 (PC + ‘li?p - Lic) .

Differentiating this expression with respect to 8, ¢, Py and F; gives

%?:: 1[%? J%?] (3.22a)
88_1?, _ % llaé‘z_c _g()a_?'} ’ (3.22b)
g%_: %’ (3.22¢)
%% _ 7%’ (3.22d)

where

D= p“[gl' —¢'N+1+qg— 1':1'( + gAj,
with primes referring to differentiation with respect to v,.

Differentiating equations (3.21a) and (3.21b) with respect to 8, ¢, P; and P; gives

(')p“ 1 ai
98 — D (pyg’ - — (o' + g+ - Ap) =

94,
1+ Ay =2~ -

20 (3.23a)
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— = = R I A; 2:23b
C 5 (ppy’ — 1+ ) ()C — (' +q+ ) 0(, ( )
Oy _ Ll-my - A

= . 3.23
0P D (3.23¢)
7d q+pyl'+ A

= . 3.2
aF; D (3.23d)

Having computed the partial derivatives of ¢, and p with respect to 8, ¢, Fy and F,
it is now possible to find the equations of motion from equations (3.19) by making use
of the chain rule

()H . ()H (‘)L‘p (??{ ap“

du Db, dx  Opy O

where x represents one of the canonical variables to give,

] ! / 1/ y = :
# = D [PIIBz(l - o9 — Aty {(pﬁB +u)B' + @’}] , (3.24a)
. 1 ‘ . . ‘ |
G = E[Plle(Pnt"Jerie) —1{(p}B+m)B +¥'}], (3.24D)
; p| B dAg DA,
Fo = - '19 l(PnJ 1+. 1)00 (ol + g+ A7) c)a]
: aB (M)
2 4 .
—WjiB+r5g a0 08’ (3.24c)
: aB | -, 0A oA o0d
Fe = - Ib [(P”g -1+ Ap) age (P||I +q+ 4’) BCC] - 52: (3.24d)

Although these equations completely describe the guiding centre motion they do not
represent the easiest numerical scheme to implement since it is necessary to invert Fy
and P to obtain ¥, and p;. A more practical approach is to evolve ¢, and p) directly
by means of their total time derivatives. -@‘.’p is simply expressed through the chain rule
and equations (3.22) and once ;,Z:p is known, a simple expression for gy can be formed
from either of the expressions for the canonical momenta, equations (3.21a), or (3.21b).

"‘ _ 1 (j)/‘ic axig - ()4C - a'i o a ar
¥ = [ [(IW*QTJG )9-!- (1’ ac g ac )Q-I—ng IPI,:I (3.25a)
T 0;10 . 5.49 . 3‘49 afiﬂ sy 2 & HE
A= 7 [P€ 8Tt T o (‘“’ I, ””1) L"'} B

These equations are then augmented by equations (3.24).

In deriving the above equations of motion a modification was made to the guiding
centre velocity, v. — v + w such that equation (3.18) was satisfied. To obtain an
expression for w first assume that w is parallel to B. This a valid assumption since to
lowest order particles follow magnetic field lines. Hence,

w = AB.
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and thus,
A" w=\(AB+pB?)

__(opy + Ay, )p

from equation (3.18).

The functions I(¢,), 9(¥y), q(¥p), B(¥p,0), A(1,,0,¢,1), and ®(¢,,0,¢,t) define
the particle trajectories through the equations (3.24a), (3.24b), (3.25a) and (3.25b).
To describe the path in real space, the vector function x = x(¢,,6,¢) which allows
the transformation to the inertial laboratory frame of reference, must be known, as
indicated in §2.4.1.

The form used above to represent the perturbed field was completely general. By
choosing a particular form for the perturbed vector potential A, the equations of motion
may be simplified at the expense of this generality. The description of low-3 shear
Alfvén waves in §2.1 indicated that §B) = 0 and Ej = 0. The first of these conditions
places a constraint upon A; which can be encompassed by representing the perturbed
magnetic field through the variable, a(i,,8,(,t) defined through the relation

A = a(x,t)B.

From this definition it can be seen that & is closely related to the parallel component
of the perturbed vector potential and it follows that the resulting perturbation to the
magnetic field is given by

0B = V A (aBy) .

The condition that Ej = 0 provides a relationship between @ and the scalar potential
P: 5
Hence only one scalar field is required to describe the field perturbations arising from the
AE present. Substituting for the covariant components of aB into the above equations
of motion produces the same expressions as used by White and Chance [54]:

Ey=-vjo-

x A 2 / ~1 2 oy & :

0 = 5 |mB (-’ ~9d) +g{(ofB + B + 9}, (3.26a)
A i 1 .

¢ = o _p”BZ(pCI’ +q+Id') - I{(pﬁB +up)B' + (I)'}] . (3.26b)
, L[ .( da da ob  Od : 0B
v = p”BZ (g% = II) - (ggé- — IE) ﬁg(pﬁB-l—,u)fda] . (3.26¢)
. 106  0da ) - ;0P
A= 3 “(Iac—y"a“g) {(P”B +p)B +‘1’}—(Q+pcf -i—Ia)a—(;

(3.26d)

B 0d i
08 08

+(Pc9’—1+§5’){(pﬁB+;t)—+—— ~
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where p. = p| + a and,
D=plgl'—g'Il+ I+ qg.

Given the equilibrium functions, ¢, I, ¢ and B, and the perturbation parameter
a, particle trajectories may be accurately followed in the presence of an AE. Math-
ematically the model allows any spatial and temporal wave structure to be imposed
providing it meets the assumptions of the guiding centre approach described in §2.4.2.
In this thesis the spatial structure of the waves present are determined using existing
MHD codes to solve equation (2.13) with the relevant background plasma parameters.

In the next section the model is closed by specifying the waves’ response to the
ensemble interaction with a distribution of fast particles. In this way the model becomes
self-consistent as well as nonlinear; the individual particles move in response to the wave
fields, the waves evolve in response to their collective interaction with the particles
which then determines the particle motion in the wave field.

3.3 Self-consistent Wave Evolution

In this section the equations governing the self-consistent response of the waves to the
fast particles in the system are derived. The approximation is made that the spatial
structure of the waves remain invariant with only a time-varying amplitude and phase.
The method through which the perturbed electrostatic potential is calculated from the
perturbed fluid velocity supplied by the MHD code CASTOR is also presented. This
closes the system of equations necessary to model the interaction of fast particles with
AL in tokamak plasmas.

3.3.1 Wave Equations

The wave evolution, like the particle motion, can be derived by a consideration of the
system Lagrangian. The total system Lagrangian may be resolved into four compo-
nents: the fast particle Lagrangian Lj, describing the motion of the energetic ions
in an equilibrium field; the interaction Lagrangian L;,; describing the effect of the
Alfvén waves upon the particle motion; the background, or bulk, plasma contribution
to the Alfvén waves Ly, ; the electromagnetic wave Lagrangian L., describing the
electromagnetic component of the Alfvén waves.

Particle Wave
Lagrangian given Lagrangian,
in equation (3.15) Long
——— i e 8
Lsys - pr + L’inf + Lbu!k + 'L’Eﬂl
Wave

equations
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Interaction Lagrangian

The interaction Lagrangian for an ensemble of n, particles (labelled by the subscript
J) and a spectrum of n,, waves (subscript k) consists of the usual velocity dependent
potential that appears in the description of a free particle in an electromagnetic field
[52] and can be seen by inspection in the particle Lagrangian, equation (3.15), in the
presence of a perturbed field. In it’s simplest form, this may be expressed as,

ﬂ.p

Lint =) _(Aj-vj—®)),

=1
where the subscript j refers to the fact that the corresponding quantity is to be eval-
uated at the spatial location of the jth particle, (v,;,0;,(;), and A; and ®; represent
the sum of all the contributions from each of the waves present along the particle
trajectories.

Before proceeding further the representation used to describe the perturbed fields
is introduced. Each wave is characterized by a distinct toroidal eigenfunction (index
k), and represented as a sum of poloidal harmonics m, so that

i =D om (p)eEmmI Y = B G (9) eI,
m m

where the wave vector,
ki = nV({ —mV8,

and in general ¢y, may be a complex quantity containing information regarding the
relative phase-shifts between neighbouring harmonics.

The inclusion of non-ideal FLR effects within the ideal MHD model to treat KTAE
leads to a finite parallel electric field in a thin layer around the ¢(v,) = (m+ 1/2)/n
surface. Since the energetic particle orbit width is typically much larger than the width
of this layer, the majority of the wave-particle power transfer occurs at surfaces away
from this region [39]. It is therefore appropriate to make the assumption that Ej=0
everywhere thereby defining a relationship between ®; and éy:

Ep=0 =  V&+ 9 (6xBg) = 0

ot
1 (np(—mb—w.t ~ i(np—mb—wpi
= Zk”m‘pkmﬁl(nkc TRk~ v} :“)ICBDZQA'JHEI(HAC ikt
m m
N p Riim ~
km — A L2
m uJ,l;BU m

This relationship will be used below to eliminate ap,, in favour of ¢, .

The notation used to describe ®; can be simplified by defining the real and imagi-
nary parts of the electrostatic scalar potential to be

C’j,l;m = -)RE'[(E}]Hn ('l‘._!pj)fi(_)jkm]’

Sj.i:m = 3”7[51.-111(li‘pj)eiefk"*],
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where
Ojtm = ni(; — mb; — wil.
Further, by including a slowly varving complex amplitude term, Ap(t)e~ %0 for each
wave k, and defining A} and )} such that
X = Ne [A;;f.*""*'] 2
= Apcos(oy),
Y = -Sm [Ake‘i““‘] .

A sin(oy),

so that
Ap(O)e™ 0 = X (t) — iV (2)
we can write the full potential at the jth particle position as

Tw

®; = 33 [X(®)Clikm + Vi (t) Sjkm]

k=1 m
from which it also follows that

) 1 Mw 1 ) r . )
4 =B kz o > Ky (Y (8)Cikm 4 Vie(t) Sjkm] -
— m

The introduction of A and ). to describe the degrees of freedom of the waves rather
than simply the wave amplitude, Ay, and phase-shift, oy, is undertaken to improve the
numerical properties of the ensuing equations of motion. This change is equivalent to
the change from polar to Cartesian coordinates where although both formulations are
equivalent, the appearance of apparent singularities in the polar equations of motion at
the axis introduces computational difficulties. Returning to the interaction Lagrangian,
it is seen that it may now be written as

Mp ny 1

I T = > (kjmvy; — @) [XCiikm + YiSikm] - (3.27)

=1 k=1

Wave Lagrangian

In this section the wave Lagrangian for Alfvén waves is derived. As indicated in §2.1.2,
Alfvén waves represent a balance between plasma inertia and field line tension and
consequently the wave Lagrangian £,, must account for these components by including
contributions from the bulk plasma particles labelled by subscript j providing the
inertia, and an electromagnetic component [63] with subscript k,

. 1. 1 S T
Lu.:Z{vaf—&—f-(AJ-v‘,-q)j)}—i- {ﬁb-“—Bz}(Is.r.
J

2u0 Jv L 2

7
" ~

'Cbuu.- Eem
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3.3. Self-consistent Wave Evolution

This expression may be simplified by specifying the bulk plasma’s perturbed velocity
in terms of the perturbed MHD fluid velocity,
EAB

B2
and writing all quantities as the sum of an equilibrium component and small perturbed
parts, B = Bg + ¥, By, to give

v =

- s 2
‘ 1 E /\B Ei. AByr
Ly = Z Eﬂ? VO-I-Z k 0 z ABZ k
bulk 0 e 5
plasma
2 E; /\B Er A By .
B u-' 0 5
_._1_._ l 2 2 ” = =2 3
Q;IU[;{CZ%:EIC_BO_%:(ZBO‘BA--I-B;\.)}d.1,

where it has been assumed that the unperturbed electric fields are identically zero
everywhere within the plasma volume. The orthogonality of the MIID eigenfunctions
prevents the formation of a double sum over the perturbed waves present in the final
volume integral by ensuring that all of the cross terms are zero.

Proceeding to the continuum limit of an integral over the plasma volume and ex-
panding the Lagrangian in perturbed powers gives,

1
Ly = f {Zn mvZ + nieAg - vo — —BO} Pz,
I/
(Equilibrium force balance = Ly = 0)
i E;. A Bg Ei. A By 1 - 3
L = ]{n-mv -—A—-+n-e(A r*@)ﬁB -B.}d.r,
1 ; " 1 0 B{‘} i 0- B§ k 1o 0 k

(1st order force balance = £, =0)

= 1 (E;\ /\Bg E;. /\Bp
i f —1;m + 2

: T p4a
2 k B k k!
E; ABy ExAB 1 1 ‘ .
e (o = AJFAA"ATSD)_'BTUZ(;" o) o
Y *

where n; is the ion number density. The two lowest order terms are identically zero for
the reasons given and consequently the wave Lagrangian may be approximated by the
next order term, L,. This expression may be further simplified by observing that for
shear-Alfvén waves By and E; are orthogonal to By, so that it becomes

E;. /\BAI 1 (l 2

Lo :/ —n; mz 2 + n; CZAQ Bz —Q-Ek — Bf) P,

ke k! 2*”0 K N\




56 Chapter 3. Development of Model

The observation that Ejj = 0 enables the term Ag-E,AB; to be dropped, since choosing
the equilibrium gauge ®; = 0 ensures that Ag = Ao, and Ay, E;, and B; become
co-planar from which it follows that the Lagrangian can now be written as

. nim 9 |
Ly = Z/{ ( :0) tk_?,t_luBk}d £

where v4(v,0) = B/(ugn;m) is the local Alfvén velocity. Typical tokamak plasma
parameters ensure that ¢2/v} > 1 and allow the wave Lagrangian to be written as:

= .I. 1 9 2 3
= —_— —F{ - B »d’z.
Ly Ek I ‘/, { ) k A}( v

This may be re-written in terms of ® and a by recalling that

E.x = —V&,—
Bi = V A(@Bo)
~ —Bg A V(arBo),

where the term a; VABy is neglected from the final expression to ensure that Bo-By = 0
and the waves are transverse. By defining the ‘super-potential” y such that,
- _ O
(I) b — T,
k ot '

it then follows from the Ej;. = 0 condition, that
1

ar= -3
0

=(Bo - V)xx

and the wave Lagrangian may be expressed in terms of this single variable as

()\L
S Z Ao ] {_ ‘

If the slowly varying complex amplitude term is made explicit in the notation used to
denote y,

~ [BoA V(Bo- V)U.|2} Pa.

Xk —* -1;‘(1‘) Yk E_'.-u‘kf—-igk({).

then an expansion in the time variation using powers of Ay /(wrAg) and 4 /wy. reveals
that to lowest order,

w : 2 ,
L"u_:O 1# / { A |Vi\}\ ‘BO/\V(BU VJ\A| } (!3.1'.
0
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This is the Lagrangian formulation of the wave equation describing shear Alfvén waves
and is equivalent to equation (2.13). This equation is solved as an eigenvalue problem
for w} to obtain the spatial eigenfunction, Y. The assumption that this eigenfunc-
tion remains spatially invariant means that £, = 0 and need not be retained within
the formulation. Only the next order corrections to the eigenvalue w} are included
through the time variation of A; and ;. Collecting together the remaining terms the
Lagrangian becomes,

a\.'\ a‘u, 2 } 3
E,:g -V "Vixe - Vivirda,
w - 4#()/; v { ()t i ot — WL V1Xk 1LXpp @ X,

which is equivalent to the wave Lagrangian given by Breizman and Sharapov [39],

AR [qu)A
. L L
2,(10“);‘
which when written in terms of what. may be referred to as the ‘wave energy’ becomes

= 12

Ey 1 |VL¢’A-|
L = [A ] with By e —-/ L B
u ; Wk L0k k 2119 Jv pi

From the above definitions,

Al = A2 4 and or = arctan ('}3)
A

Ve — U

= O v, ;
allowing £,, to be written in the final form,
Nw
. tw E}; Y 2 N9 « ]
Ev= . [(‘»A—J/k = r’tk}‘k] . (3.28)
k=1 ¥k

As indicated at the beginning of this section, the relevant Lagrangian to vary to
obtain the wave evolution equations is L;,,;+L,,, which from equations (3.27) and (3.28)
becomes

np

L= Z ZZ "‘”ml“_} ) [‘1ACJLHI +yk5].t.m] + ER l-{i\.)’l. - 1 yl\] . (329)

k= 1 j=1 m

Varying with respect to A} and ) gives

1 np
A = ZZ A“Hlv”j _""F.)S_)Am, (3‘30‘1)
Zf"“ j=1 m
Tt;,
yk = Z Z A“m[”-' — Wi )Cj,gm, (330]))
2}4 Zae

which forms a set of 2 x n,, first order differential equations for the time evolution of
the waves present.
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3.3.2 Calculation of Scalar Potential

The scalar potential used in the model may be calculated directly from the perturbed
fluid velocity eigenfunction obtained from the MHD code, CASTOR. In ideal MHD the
fluid velocity is related to the field variables through Ohm’s law,

EAB
E4+vAB=0 =% v:?

Writing the electric field in terms of the vector and scalar potentials,

JA

E = —f= =
® -

this becomes
VdAB 1 9A

B BXat
In the low-73 limit pressure effects can be ignored and the field perturbations are almost
transverse. An easy way of ensuring this (5B” ~ 0) is by setting A} = 0. Thus
A AB = 0 and the second term in this expression may be neglected. Substituting
for B, expanding V&, recalling the ansatz ® = 3", dpp e’ ¢=m0=<1) and restricting
attention to the radial component gives,

A B.

. IT+gqg oV

Okm = —1
e mg + ng I

providing a simple closed expression for the scalar potential. The magnetic perturbation
parameter, «, is simply related to ¢ through

3.4 of method

Having derived the equations describing the motion of energetic ions in the presence of a
spectrum of wave perturbations it is now possible to develop a model to perform simula-
tions of realistic situations. To obtain a specific particle distribution several approaches
have been identified. The first approach is to initialise the ensemble of particles with
the desired initial distribution. This has the obvious disadvantage of requiring large
computing resources since many simulation particles are needed to adequately fill the
5-D phase-space. The second approach makes an effort to prevent the number of dif-
ferential equations that need to be solved spiralling into computational unfeasibility by
reducing the number of particles that need to be followed. This is achieved by uniformly
weighting each particle and represents a significant step forward, since now many more
particles can be represented than are actually followed. Obviously the dynamics of
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these weighted particles, or ‘markers’, remains unaltered from their unweighted coun-
terparts, with the only change being the inclusion of the constant weighting factor in
the wave-particle interaction. Allowing markers to have different weights, and there-
fore represent different numbers of particles, removes the initialisation constraint that
markers must be loaded with the same distribution as required for the fast particles.
This enables more markers to be loaded around the regions where the wave-particle
interaction is the strongest, thereby improving the resolution whilst still representing
the required fast particle distribution. Such a procedure assumes however that the
regions of resonant interaction are known a-priori, which is generally not the case.

To resolve small fluctuations in the energetic ion density it becomes necessary to use
very large numbers of simulation particles [64]. The desire to improve the resolution
of such simulations, and therefore reduce the number of particles required, was the
driving impetus behind the development of a new class of techniques now know as &f
methods. Early attempts at improving numerical resolution made use of techniques
such as ‘quiet starts’ [65], and also by using linearization techniques [66] to track the
perturbed quantities in terms of the equilibrium trajectories. The &f algorithm was
first conceptualized by Tajima and Perkins [67] and has been further developed by
many others. Dimits and Lee [66] successfully implemented the first ‘partially linear’
gyro-kinetic &f algorithm, whilst Kotschenreuther independently developed a similar
algorithm [16]. Parker and Lee [15] developed the first fully nonlinear gyro-kinetic
method in connection with their simulations of drift-waves, which Candy [68] refined
and went on to make more generally applicable.

In a conventional particle code using the first initialisation technique outlined above,
the real particle density is related to the density of the simulation particles. In the §f
algorithm each “particle’ is a marker at which the value of the distribution function is
known. The method becomes analogous to the solution of the Vlasov equation using a
fluid model on a Lagrangian grid. The value of the distribution function for each marker
is evolved according to the method of characteristics. The position of each marker is
the tip of each characteristic of the distribution function, that is, the latest position of
one of the natural paths for the solution of the equations. The markers are like particles
in that they move in space with the same equations of motion. However, rather than
representing single particles, they represent evolving values of the distribution function.

The step from which the §f method takes it’s name is the decomposition of the fast
particle distribution function f into two parts, an analytically described background
component fy, and the remaining component §f,

fo= fo@®) + &,
i S i D
analytic markers

where I'(?) represents the physical phase-space comprised of the six components of
space and velocity. The key element of the §f method is that only the change in the
distribution function is represented by the markers. Since the initial distribution is
only expected to be weakly distorted through it’s interaction with the waves present,
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choosing fo to represent this initial distribution allows the finite lattice of markers to
represent the small change §f and affords a favourable reduction in numerical noise in
the system of the order |3f/f|? [69]. Note that the separation of f into an analytically
described component fy and a numerically described component §f is formally valid in
all cases and makes no assumptions regarding the fact that the latter be much smaller
than the former. However, it is only for the case where df < f, that substantial
reductions in simulation noise are expected.

The decomposition of the fast particle distribution function suggests the following
transformation rule for integral operators:

np

/f ) ) ) g(I'P) 1) dre) <_,fo (@) (p(p) t)dl (r) +de r(r ),t) AD®),

where AI'®) is the finite physical phase-space volume element associated with each
marker. If fy is specified such that it is toroidally symmetric then upon applying this
transformation rule to the wave equations (3.30) it is found that the term containing
fo is identically zero, leaving only the contribution from the perturbed part of the
distribution function, éf. To exploit this property, fy is chosen to be independent of (,
and since in the absence of any plasma waves fj is expected to be invariant it is defined
in terms of the unperturbed constants of the motion,

fO = fO(‘PC(O)a E{O)aﬂ)a

where,
Péu) = Pc—dg,
£0 = ¢_o.

This ensures that fy does not contribute to the wave growth and allows the statistical
noise which would otherwise result from representing fy by a finite number of markers
to be reduced. By demanding that fy is an analytical function of the unperturbed

. 0 ;
constants of the motion, Pé ), €0 and jt, ensures that in the absence of any waves the
initial number of particles,

nozj fQ(PéO).E(D):;a)d[‘(P).
-

is time-invariant since fy has no explicit time dependence. It follows then, that in the
absence of any particle sources and sinks the change in the number of particles,

5;::/ 8f ar®) = q.
.

The use of the § f method imparts an additional attribute to each marker, namely
the change in the value of the distribution function at that point. The evolution of
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this quantity is given by the relevant kinetic equation which in the absence of sources
or sinks becomes f = 0 and can be rearranged to give

: 0) 0fo 20) 9 fo

T | T, (3.31)

J ¢ 4 p(0) 1 a0(0)?
OF;; aE;

where j is the index identifying each marker. This may be related to the more intuitive

notion of the change in the number of particles represented by each marker dn; through,

dn;(t) = 8f;(t) AT (0). (3.32)

It is reassuring to note that by specifying fo = 0 so that §f = f, then the model
regresses to a conventional particle simulation with fixed weight markers, df = 0.

In terms of the formulation adopted within this thesis it is necessary to express the

volume element AF?) ) in terms of the Boozer magnetic coordinate system introduced
in §3.1 and spherical coordinates for the velocity components as depicted in Fig. 3.3.
These are the most appropriate velocity variables to use since they naturally allow the

/\B

Figure 3.3: Spherical coordinates used to represent the velocity components.

degeneracy associated with the guiding centre motion to be exploited to reduce the
number of dimensions of the problem. The velocity volume element expressed in these
coordinates is

d*v = dv (vd#,) (v sin 8, dp,),

where ¢, is the velocity azimuthal angle and the velocity polar angle 8, is referred to
as the pitch angle since it represents the angle between the particle motion and the
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local magnetic field lines. Defining A to be the cosine of the pitch angle,

il
A=cosf, = —,

L’
allows the velocity volume element to be written as
v = v dvdA dgp,.

In §3.2 it was indicated that once p is specified, the only velocity dimension required
is v. Since p = mv? /2B the direction of vy is not required, just the magnitude.
Hence the azimuthal velocity angle ¢, is irrelevant and can be integrated out to give
the reduced phase-space form,

v = 2r v dvdA.
The infinitesimal physical phase-space volume element is thus,

dr'P) = Cod®z = 2 vidvd\ T dv, df d¢,
velocity spatial
element element

where 7 is the Jacobian given in equation (3.13).

Evaluating A at each marker location is not an easy task since the volume ele-
ments dl’ S-p ) are com pressible and therefore change with the marker flow. However, their
calculation is facilitated by the fact that the flow in canonical space is incompressible
(a consequence of Liouville’s theorem) and that therefore the canonical volume element
associated with each marker is independent of time and need only be calculated once.
The relationship between the canonical and physical phase-space elements is described
by the Jacobian JP9)(t) and provides an elegant way of obtaining the physical phase-
space volume elements at any time during the simulation. The caveat is however, that
it is necessary to determine the canonical phase-space volume element associated with
each marker.

Uniformly loading some chosen phase-space i offers a simple solution to this prob-
lem since providing the total phase-volume is known, the volume associated with each
marker AU is trivially calculated. This may then be related to the canonical volume
element through the relevant Jacobian, T Choosing U to consist of physically
more familiar variables, rather than the canonical variables, allows the problem to be-
come more intuitively transparent and avoids difficulties associated with inverting the
canonical variables into the physical ones.

The infinitesimal canonical volume element is
dr(9) = d¢ dp df d Py d¢ dP; =2rdpdfdPs d(dF;,

where as before the factor 27 has arisen from an integration over the gyro-phase, &.

This volume element is related to the physical phase-space element through

dre) = J(pf) drte
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where
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After a little algebraic manipulation 7(°) is obtained in the form,

implying that

The choice of the uniformly loaded phase-space, U, is not unique and is chosen here

such that

JB*

(pe) —
v D

7B?
drt) = ”—TD—dFM.

dU = dvdA dsdfdC,

|
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BE

Q|
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where s = |/, /1, (a) is a normalized radial coordinate having the dimensions of length

and v, (a) is the value of ¢, at the plasma edge. The volume element of { associated
with each marker, Al{; is given by

VU -
L, with 1([4') = jdbf = (27-")2(“111&: = Umfn)(/\ma.r o ’\min)(smar = Smin)s

ny

Al; =

and is related (at t = 0) to the corresponding canonical phase-space volume element,
AFE,-C) through the relation,

A i) — lev) .

ATl = J;77 Al;,
where 7<%} is found through an analogous procedure to that used to find 79 to be,

2
aglew) Sﬂ’p((I)DU
T — 471'—32 ;
The relationship between the various phase-space elements, _\FSPJ. -_\Fff) and AU;
can be summarized as

AP =gl ) 7%y aug,
O

Ao
Al;7(0)
and is schematically depicted in Fig. 3.4.

Uniformly loaded space Canonical phase space Physical phase space
U F(C) F(P)

| . [

[

) I

Incompressible Time dependent
volume elements volume elements

Figure 3.4: Markers are uniformly loaded throughout some arbitrary phase space U
and the volume element Al{; associated with each calculated. These elements are then

related to the incompressible canonical volume elements _\Fgc) which are subsequently

related to the physical phase-space volume elements AFSP) at all later times.

The programme described above is suitable for use with an arbitrary analytic distri-
bution function fy, however in special cases where fg is highly anisotropic in one of the
dimensions then additional simplification becomes possible. The fast particle distribu-
tion that arises as a result of neutral beam injection (NBI) can be highly anisotropic
with all the injected particles’ velocity vectors distributed within a narrow cone around
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A = 1. The assumption that the velocity distribution is uni-directional permits one of
the velocity dimensions to be integrated out, with the consequence that the phase-spaces
required to describe the distribution become 4-D. The volume elements and Jacobians
used to represent general and uni-directional velocity distributions are summarized in
Table 3.1.

Quantity General Uni-directional

did dvdAdsdfdC dvy ds df d¢

dr(©) 2 dp df dPy dC dP; 2nd8 dPp dC dP;
dre) 2r v dvdA T d,dod¢ 2w Ul'“’l dv J di, df d¢
Jew) 47 sy, (a) Dv?/ B2 47 s¢,(a)D/B

J (Pe) JB%/D viJ B/D

Table 3.1: Volume elements and Jacobians used to represent general and beam-like
(A = 1) distributions of fast particles.

The inclusion of the §f formalism into the model modifies the wave equations derived
in §3.3.1 such that they become,

: L ) )
Yo = 553 LAY S (ko = k) S, (3.34a)
g=1 m
. 1 p |
Ye = —3g, > AGAT S (kymvyj — wi)Clikan- (3.34b)
¥ =1 m

As can be seen the only difference from equations (3.30) is the inclusion of the additional
weighting factor 5fj;}.Ff,-p) = dn;, representing the change in the distribution function
at each marker location.

3.4.1 Loading Phase-space U

Perhaps the most common way to initialise a uniform distribution of n, markers over
each of the dimensions of the hyperspace U is to use a pseudo-random number gen-
erator to produce a uniform distribution over the interval (0,1) and then to map this
to the desired interval. Intuitively, this approach models the random distribution of
actual plasma particles and has the advantage of being convenient since pseudo-random
number generators are widely available. However, random starts such as these have
the disadvantage of introducing noise levels that are often too large to permit the ob-
servation of subtle physical effects such as wave growth. In what have become known
as ‘quiet starts’, an effort is made to eliminate this noise by achieving a distribution
that is closer to a uniform distribution. An elementary way of achieving this is by
regularly loading the particles upon a regular lattice, however, this creates problems of
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it’s own since regular patterns of beams are produced in each of the dimensions leading
to aliasing errors. This problem can be overcome by staggering each layer of the lattice,
although for the full physical 6-dimensional case this in itself is not trivial.

There are many ways of approximating a continuous distribution function over a
phase-space I' by a finite set of n, points, wy,, = {(x1,V1), ... (Xn, v,ip)} such that the
number of points &, in any region of phase-space R tends, in the limit of an infinite
number of points, to the integrated distribution function. i.e.

. T, Vs
lim E J(@i,v) = [ fdxdv,
L my R

np—>x

where [ is normalized such that

f Pl = 1.
]

From a physical point of view, proof of convergence as n, — oo is not actually needed,
since plasmas are themselves discrete. Indeed, the whole argument can be turned
around to prove the validity of the continuous Vlasov formulation for discrete plasmas!

A convenient approach is to make use of an analytically defined, multi-dimensional,
low-discrepancy! sequence, an example of which is Hammersley’s sequence [70]. This
is an N-dimensional sequence generated using radical-inverse functions ¢,(z), where r
is a prime number: if the integer ¢ is written in base r,

i =ag+ ayr + axr? 4 - --
then
or(1) = aor— ! + (111’72 +agr 34

Hammersley’s sequence is given by

x; = {i/np, ¢2(i), - . --.@P(A\'q)}a

where 2,..., P(N — 1) denote the first N — 1 primes and in order to make these distri-
butions symmetric over the interval (0, 1) in each of the dimensions, 1/2n, is added to
each of the coordinates. This method of loading achieves a discrepancy o 1/n,, whereas
a random distribution has a discrepancy o 1/,/m,, indicating [aster convergence to a
uniform continuum of markers than random methods [71].

Each of the radical-inverse functions, ¢,(i), has a periodicity associated with it that
is equal to it’s associated base, r. Hence, in order to fill an N-dimensional hypercube,
the number of points chosen should be a multiple of &K', where

N
K= H P(n-1).

n=1

'This is a measure of the departure from uniform using measure and number theory methods [71].
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Thus for the general case where the phase-space I is

67

5-D, it should be ensured that

a multiple of 210 markers is selected to fill the phase-space. The actual number of
particles required for a given simulation depends upon the accuracy of the answer
required and the computational time available. In practice several different runs are
compared to demonstrate that convergence with respect to particle number has taken
place. An example of this bit-reversal loading scheme is illustrated in Fig 3.5 where 210
markers have been uniformly loaded within a 5-D hypercube. For comparison, Fig. 3.6

Figure 3.5: 2-D projections of a uniformly loaded 5-D hypercube with 210 markers.

depicts the same hypercube uniformly distributed with markers using a pseudo-random
Y

number generator.

- aiw 2
.
. o K
o
L, .
e
» o
. .
. ..
* % e
il
- ..l
.,
. 4
. -
LY .
an
o LIRS
-
s -
v .
Y "t ¢ .
AR

Figure 3.6: 2-D projections of a pseudo-randomly loaded 5-D hypercube with 210

markers.
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3.4.2 Representation of Particle Distributions

The distribution of fast particles is specified through the analytic distribution function
fo. which as indicated above is defined in terms of the unperturbed constants of the
motion. In general however, it is more natural to specify the distribution function
in terms of a radial flux function and the particle energy. This can be achieved by
constructing an expression representing an averaged radial flux value () in terms of
the constants of the motion, allowing fo to be written as,

o= Jo((¥p), EO; ).

Clearly the best choice for (¢,) is the time-averaged v, value but to avoid the computa-
tional overhead associated with calculating (1,) for each particle it is more convenient
to construct an approximate prescription for it in terms of the constants of the motion.
This will necessarily depend upon the orbit topology of the particle under considera-
tion. The definition, Péo) = 9P| — ¥p; allows the averaged value of (¢¥,) to be written
as,

(bp) = <ﬁ§fi‘;) V2IE - #-B(wp,e)]> - PY,

where o is the sign of v. For trapped particles it is sufficient to define (¢,) as the
values of v, at the tips of their orbits where v = 0, since this is where the particles
spend the majority of their time. To lowest order in an inverse-aspect-ratio expansion
the definitions covering all classes of particle may be summarized as,

V2(E—p) — PC(D), for £ > p (Co-passing)
(Vp) =4 — éo), for £ < p (Trapped)

—\2(E — p) — PC(D), for £ > u (Counter-passing)

which corresponds to the (¢,) surfaces indicated in Fig. 3.7. A simple form for fo ex-

x(“Pp)

Figure 3.7: Characteristic ¢, values, (¢,), for trapped and passing particles.
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sloiting these definitions is to specifv as the product of a radial distribution function
I g J JO I
hl P and an energy distribution function hg £):

P 5.

Jo = Chi(¥y) ha(E), (3.35)

where (' is determined by specifying a global parameter such as the volume averaged fast
particle beta (3;), or the ratio of the number of fast ions to the number of background
ions, ny/n;. The form used in equation (3.35) is sufficient to represent the main types
of energetic particle distributions typically found in tokamaks such as those classified in

‘able 3.2. These distributions are found by solving the Fokker-Planck equation [17, 18]

Source Physical Spatial Angular Initial
Mechanism Distribution Distribution  Energy
a-particles Fusion Centrally I[sotropic 3.52 MeV
reactions peaked
Neutral beam  Charge exchange, Depends upon Anisotropic Injection
injection electron impact energy and (depends upon  energies
ionization line density injection angle)
ICRF minority Cyclotron Peaked near Anisotropic —
heating damping resonance (perpendicular)
layer

Table 3.2: Principal sources of fast ions.

with each identified by the particle heating method used since they lead to very different
particle distributions. In a realistic device, the actual distribution would generally be
some combination of these three forms, with the external heating methods dominating
the distribution until sufficient levels of fusion power were produced that they could
be turned off. Even in this idealistic scenario it may be advantageous to retain some
sources of external heating as a method of helium ash control.

3.5 Summary

In this chapter all the components necessary to construct the model describing the
interaction of a distribution of fast particles with a set of AE have been derived. In
§3.1 and §3.2 the Boozer coordinate system defined by the magnetic field structure was
introduced and shown to lead to a simple Hamiltonian guiding centre description of
the fast particle motion. The response of the AE present to their interaction with the
distribution of fast particles was formulated in §3.3, whilst in §3.4 it was demonstrated
how the whole model may be cast in terms of the §f formalism to enhance it’s numerical
properties.
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Chapter 4

Implementation of Model

The model developed in the preceding chapter forms an initial value problem comprised
of a system of 5 x n, + 2 x n,, first order ordinary differential equations together with
appropriate initial conditions. The code written to perform the task of solving them is
HAGIS, (HAmiltonian Gulding centre System.) It takes the specified initial conditions
together with equations (3.26), (3.31) and (3.34) to simultaneously advance the spatial
location of each marker, its parallel velocity, and the change in the distribution function
at that position, as well to update the amplitude and phase of each wave present. The
input data required by the HAGIS code consists of three parts; the equilibrium field
data, the perturbed field data, and the fast particles’ initial conditions. The first of
these, the equilibrium data is supplied by the HELENA code [48] by solving the Grad-
Shafranov equation [3] and the second by the MHD stability code CASTOR [49]. The
initial distribution of energetic ions and the initial amplitude and phase of each of the
waves are specified in an input data file supplied by the user. An overview of the data
handled by the HAGIS code and the other codes which supply it is shown in Fig. 4.1.

All values and derivatives of the plasma equilibrium required by the code are calcu-
lated by splining the equilibrium data using standard finite difference approximations.
Since the equilibrium is toroidally symmetric this is only necessary over the poloidal
plane; 1-D data using radial cubic spline interpolation, and 2-D data using bi-cubic
splines with appropriate boundary conditions in the poloidal direction. The HAGIS
code uses a 4th order Runge-Kutta integration algorithm chosen in preference to more
sophisticated adaptive methods since if the phase-space is properly loaded there is a
homogeneity associated with the differential equations that must be advanced at each
time step and there is no advantage in making modifications to the step size. Higher
order methods were rejected upon performance grounds. The accuracy achievable by
the model is shown to scale correctly with the integrator step size used and is ultimately
limited by the accuracy of the spline representation.
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HELENA CASTOR USER INPUT
Equilibrium Waves supported by Fast particle and wave

configuration the equilibrium initial conditions
Wave evolution Particle evolution
data data

Figure 4.1: Overview of the HAGIS code showing flow of data.

4.1 Code Validation

To verify the computational implementation of the numerical model and assess its
accuracy, the HAGIS code has been extensively tested and validated. In this section
the details of these tests and comparisons with previous numerical and analytic results
are presented.

In the first section the accuracy of the integration algorithm used is assessed by
examining the conservation of various system invariants. This is followed by an ex-
amination and comparison of various particle trajectories for which the exact orbits
are known, allowing the implementation of equations (3.26) that describe the particle
motion to be verified. From a consideration of the behaviour of a single particle in the
presence of a fixed amplitude single harmonic wave, it is then possible to test that the
correct wave-particle interaction is taking place. The final tests performed were bench-
mark comparisons with other codes. These represented the ultimate testing ground
since they covered the full spectrum of the codes abilities and proved invaluable for
detecting subtle coding errors that had eluded detection during previous tests.
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4.1.1 Integrator Performance and System Invariants

The integrator used within the HAGIS model determines the evolution of all the quan-
tities advanced within the model. Consequently a stringent examination of its per-
formance was paramount before any further tests of the code were made. One of the
easiest tests to achieve this goal is to examine how well the code conserves various
system invariants. In the absence of any field perturbations all the particles can be
expected to conserve both energy and toroidal angular momentum since a stationary
magnetic field can do no work upon the particles and the equilibria are toroidally sym-
metric. However, in the presence of a single distinct toroidal eigenfunction with label
k,
Gjkm ~ Ei(nk(jj—mﬁ}—ukt),

particle energy is no longer conserved since d&/dt = oM /Ot # 0. Similarly, ¢; is no
longer a cyclic coordinate and the toroidal component of canonical angular momentum
is also not conserved. Thus particle energy and angular momentum can no longer be
used as a measure of the code’s performance. However due to the use of the above
ansatz, the field perturbation rotates around the equilibrium field’s axis of symmetry
and a new constant of the motion exists. This can be seen be observing that for a
single particle j, the differential operator

J; + (;.u'k/n.;_.)acj =0,

d Wi
E(EJ;;PCJ =0

follows by acting on the particle Hamiltonian with the above operator. Hence for each
particle,

from which the result

SJ — (W';‘./n,g.)PC) = Ifj,

where K is some constant. The additional rotation of the field perturbation in the
poloidal direction does not give rise to further constants of the motion due to the
inhomogeneity of the equilibrium field with respect to the poloidal angle.

Simulations with a single co-passing (A = 1) a-particle in the JET equilibrium
summarized in Table 4.1 have been performed in the presence of a single fixed amplitude

Parameter Value

3 0.334
Ry 3.0 m
Bo 287 T
o 0.87

Table 4.1: JET equilibrium parameters used for examination of integrator performance
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Figure 4.2: Principle poloidal harmonics of the n = 5 KTAE eigenfunction in JET.

(6B/B = 107%) n = 5 KTAE shown in Fig. 4.2. The scaling of & — “EPj with
the integrator step size used (measured in terms of the number of steps per wave
period) is as shown in Fig. 4.3, showing convergence down to the accuracy of the spline
representation which is close to machine precision. The HAGIS code employs a fixed
time step 4th order Runge-Kutta integration algorithm and as expected the error scales
as approximately O(h°), where h is the time step size. The run time of a particular
simulation is inversely proportional to the size of h chosen. Thus as a compromise
between run time and accuracy, h is typically chosen such that the integrator makes

G4 steps per wave period.

Despite the fact that the energy and the toroidal component of canonical angu-
lar momentum is not conserved for individual particles, the total energy and angular
momentum of the wave-particle system is still conserved as it must be for any isolated
system. By considering the variation in F; for a single particle j due to a single toroidal
harmonic £ as described by equation (3.29),

- ac oM
T gt g
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Figure 4.3: Plot showing the scaling of the conservation of &; — (wi/ny) F; = K with
time measured in terms of the number of wave periods, for various integrator step sizes,

h.

np G, 2 5
= - (k”m v — 'w‘k) [A%Sikm — ViClikm)

wk m
it follows that in the presence of a spectrum of waves the total rate of change of canonical
toroidal momentum for a particle j may be written as
. w .
Fej =) Pejk.
k=1
Now, the rate of change of particle energy,

oH; “Bﬂj B _aﬁintJ

¢; = =

ot a1 ot
= =33 (kymoy; — we) XeSiem = VeCikn]
k=1 m
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Thus the total rate of change of particle energy is

- "p o nw \Ul. -
=2 D o
=1 k=1

which may be written as,
) np ny
&y ==223_ 3 (K = x) [XeSsiom — MiCin]
j=lk=1 m
The energy of a single wave & is given by

& = ALE;,

from which it follows using equations (3.30) that

Il

b = 28 (Vi + Vi)

tp
Z Z (LT||,111P||j = (-'Jk) [A)k-gjk111 = ykcrjkm] g

Summing over all the waves in the system gives the total change in the wave energy as,

w
Gw = 3 &
k=1
nw Np
= 3 3% (ﬂ‘“m V) — wk) [XkSikm — YiClikm)
k=1j3=1 m
np

= - %P

2 n.
i=1 "k

—

Hence,

d
— (& +&w) =0
dt( p T Ew)
and the conservation of system energy is demonstrated. The analogous relation for the
conservation of system momentum follows in a similar manner. It is apparent from
the above derivation that Fig. 4.3 may be equivalently viewed as a plot showing the

conservation of the total system energy with integrator step size.

4.1.2 Particle Trajectories

With the successful implementation of the integrator demonstrated, the next tests
undertaken compare various particle trajectories in an equilibrium field with those
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predicted by theory. These tests confirm that the equilibrium field has been correctly
represented and that the equations of motion correctly describe the particles spatial
trajectories. To aid comparisons with theoretical predictions they were performed in a
large aspect ratio tokamak possessing circular flux surfaces and with the parameters as
in Table 4.2.

Parameter Value

£ 0.01
Ro 3.0m
By 2.87T
qo 0.87

Table 4.2: Equilibrium parameters used for particle comparisons

Theoretical predictions of the particle trajectories are obtained by eliminating pj
from the conservation relations for energy and momentum, & = 1/2pﬁB2 + puB and
Fe = gp|—¥p to obtain an equation for 1, = ¥,(#). Whilst this is an easy way to obtain
the orbit topology, no time evolution is given. This is analogous to the consideration of
a pendulum where obtaining the time evolution requires the integration of an elliptic
function, whilst the range over which the particle will swing is immediately obvious
from a consideration of the energy in the system.

Three particles were selected for these tests, chosen because of the unusual topology
of their trajectories enabling deviations in their orbits to be immediately identified. All
of the test particles were launched at a major radius R = 3.025 m upon the out-board
mid-plane (6 = 0) with their energy components as described in Table 4.3. Each of the

Particle ol £,
I 170 eV 40 eV
11 50 eV 49.585 eV

[11 164 eV 161.832 eV

Table 4.3: Parameters used for comparing particle orbits

particles was followed for a period of 1 second during which time they made 234, 479,
and 63 complete poloidal transits respectively.

The trajectory 1 is a very fat banana orbit close to the trapped/passing bound-
ary. That is, as the particle moved poloidally around the magnetic axis it entered the
stronger field region on the inboard side, and was reflected due to the mirror force as
shown in Figs. 4.4 and 4.5. The orbits are visually indistinguishable even when overlaid,
indicating that the particle has bounced in the same location.
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=1

4

N

Figure 4.4: HAGIS trajectory I Figure 4.5: Analytic trajectory |

Trajectory II is that traced out by a particle with energy and magnetic moment
chosen such that it is reflected at the vertical surface passing through the magnetic
axis. Particles with trajectories such as these are sometimes referred to as ‘potato’

orbits and as before, the orbit shown in Fig. 4.6 is visibly indistinguishable from the
analytical trajectory shown in Fig. 4.7.

\‘\

e

R

Figure 4.6: HAGIS trajectory II Figure 4.7: Analytic trajectory Il

The final trajectory analysed is that of the pathological banana orbit known as
the ‘pinch’ orbit and is shown in Figs. 4.8 and 4.9. This type of orbit constitutes a
particularly difficult test of the code’s abilities since the particle spends a long time at
the tips of this rather extreme banana and any error would visibly modify the particle

orbit such that it either becomes more deeply trapped, or so that it became an axis-
encircling passing particle.

=]
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Figure 4.8: HAGIS trajectory III Figure 4.9: Analytic trajectory III

These tests have demonstrated that the HAGIS code accurately reproduces single
particle trajectories. The results are visually indistinguishable from analytical predic-
tions and integration errors are negligible.

4.1.3 Magnetic Island Formation

The inclusion of a small helical magnetic perturbation changes the topology ol the
magnetic field structure such that it no longer possesses nested flux surfaces. In par-
ticular, magnetic islands may form upon the flux surfaces for which the field lines are
orthogonal to the wave vector of the perturbation since no energy is required to bend
the magnetic field lines. In this section an expression for the width of these island is
derived which is used to compare with the islands found using the HAGIS code.

To illustrate the destruction of nested flux surfaces, consider a small time indepen-
dent perturbation of the poloidal flux function described by the perturbation parameter
é. When decomposed into Fourier harmonics and written in terms of the unperturbed
toroidal flux, ?» this becomes,

1 e
U,= [ adw — > Qe bnt=mf)

m,n
From equations (3.2) this implies that the field lines are described by the equations,

dU : ([9 1
; - i(n(—mé&) —
Tl{ = E LI € ; &= 7

m,n
and from equation (3.1) that

1 _ .
B-Vy=— Z imay,, e (—m9)

Y mn
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indicating that the perturbation has introduced a small component of B across the
original flux surfaces. If a,,, is finite and ¢ is not close to a rational surface ¢ = m/n,
then ¢ may be approximated by a constant and the equations integrated to give,

9:C

_+601
q

and

+ vo.

Mt ge' ™)
=g,

— m — ng

The flux surfaces are thus distorted but remain topologically nested. If m —ng(v) = 0
however, the resonant denominator creates large excursions in ¢» and this solution is
not valid.

Restricting attention to a single harmonic described by the mode numbers m and
n, it is seen from above that this will be resonant upon the surface where ¢ = m/n.
Field lines upon this surface define a helix and y = # — n{/m is a convenient angular
coordinate orthogonal to this helix (parallel to k; upon this surface). Expanding ¢
around g such that

m d
q(¥) = — + d%(g, — o)
gives
v nZg! " N
% =5 .. (’;Ig ) (¢ — ), and % = imae~"™X,

where ¢’ = dgq/di. These equations may be integrated to give,

o, 2m? i
(¢ = to)* = n2q’a [e TNt c] ’

where ¢ is a constant determined by the initial position. A useful plot often made when
examining island structures is the Poincaré puncture plot. This is formed by plotting
the position of a field line in the v, 8 plane at a particular toroidal angle ¢ at successive
transits of the device. For such a plot at { = 0, it is seen from the definition of y that
x = 0. Expanding near § = Iz /m,l € Z it is found that

2
am?
n?q

(¥ — o) + (m#)* = constant,

which for a/¢" > 0 and ¢ < 1 describes elliptical surfaces, whilst for ¢ > 1 describes
hyperbolic surfaces. As shown in Fig. 4.10 a chain of ‘magnetic islands’ is formed
along the ¢ = m/n surface which is separated from the toroidally nested surfaces by a
separatrix. The width of this separatrix is found by choosing ¢ = 1 above to give,

Ao = (2) (4.1)
n q
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Figure 4.10: Magnetic field structure due to a perturbation described by the mode
number m, n showing the chain of islands formed.

To compare numerically obtained island widths using the HAGIS code with the-
oretical estimates found using equation (4.1), a relatively large aspect ratio ¢ = 0.1
circular boundary equilibrium is employed, to which an n = 3 wave is applied with
magnitude §B/B = 2.5 x 10™* at the ¢ = 4/3 surface. By using very low energy (1 eV)
deeply passing particles for which the adiabatic invariant, y, was zero, it was possible
to obtain particles that, to a good approximation, effectively followed the field lines. By
launching particles close to the ¢ = 4/3 surface, and using the HAGIS code to calculate
their trajectories, it was possible to produce a Poincaré puncture plot which allowed
the island structure formed to be easily seen, as in Fig. 4.11. In real space, this island
had a width of 2.0 cm, which was in good agreement with that calculated analytically
using equation (4.1) which predicted a width of 2.2 cm.

In the presence of many different Fourier harmonics m and n the magnetic flux
surfaces break up into islands at each rational surface where ¢ = m/n. The nonlinear
interaction of two island chains with ¢ = m;/n; and my/ny produces a smaller island
chain at the surface ¢ = (my + m2)/(ny + nz). This leads to a Fibonacci sequence of
surfaces at which islands form, generated by the original mode numbers. As the pertur-
bation size increases the island widths grow until neighbouring chains start to overlap
and the field becomes stochastic. Field lines within a stochastic region wander around
throughout some volume forming a region with very poor confinement properties.
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Figure 4.11: Magnetic island in the 8 = 0 plane at ¢ = 4/3.
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4.1.4 Side-band Resonances

Particles with higher energies and pitch angles experience increased drifts and their
motion is no longer coincident with a single flux surface. If the excursion in safety
factor, Ag, is large enough it is possible to obtain resonant island structures shifted
away from the original resonant surfaces known as side-band resonances.

The resonance condition that the particle always sees the same phase of the per-
turbing wave is described by equation (2.14). In the large aspect ratio, circular flux
surface limit this defines the radial position of an island as,

m+41 1
3 — 4.2
4(¥) n 1-wR/ny’ L2

where v is the particle’s velocity parallel to the magnetic field, R is the major radius, m
and n are the poloidal and toroidal mode numbers, [ is an integer value corresponding
to the different side-band resonances arising from the radial drift of the particle and w
is the wave frequency.

To test for the presence of main and side-band resonances, the circular boundary
equilibrium used in the above tests was used in conjunction with a single harmonic
(n = 3, m = 5) of a TAE perturbation. The TAE had a frequency of w = 2.7x 10" rad /s
and Fig. 4.12 shows the structure of this harmonic.

Particles were launched from a range of radii and with ¢ = 18 eV/T and & —
(w/n)P: = 3.661 keV such that at the position of the primary resonance these particles
had a total energy of &,; = 3 keV, and £, = 50 eV. The maximum variation of energy
experienced by these particles is shown in Fig. 4.13. The energy variation due to the
particle-wave interaction can be seen to increase strongly when close to a resonance
and allows the radial locations of the resonances to be deduced. The ¢ at resonance
calculated using equation (4.2), and the average ¢, ¢, seen by the resonant particles
calculated using the HAGIS code, agree to within 0.8%.
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Figure 4.12: m = 5,n = 3 harmonic of a TAE perturbation for the aspect ratio 10
equilibrium.
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Figure 4.13: Variation of particle energy with average safety factor showing the location
of the primary and side-band resonances.
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4.1.5 System Convergence

For any simulation there are two primary factors that dictate how well converged the
model’s answer is. These are the number of simulation markers used n,, and the
integrator time step taken, h. It important to have a quantitative understanding of
how the accuracy of any results is affected by these fundamental parameters, since there
is a trade-off between accuracy and computational time required.

To demonstrate convergence, scans were made in n, and h for a simulation demon-
strating saturation of the n =5, m = 4,5 KTAE shown in Fig. 4.2 through its interac-
tion with an isotropic centrally peaked slowing-down distribution of a-particles. The
number of markers used was increased in factors of 2 from an initial 210, and the results
presented in Fig. 4.14. For this scan h was held fixed such that the integrator made

5B/B,

PESSEPEE (SR

O 5 10 15 20 25
Time [wt/2]

Figure 4.14: Convergence of wave evolution with respect to the number of simulation
markers used n,,.

64 steps per wave period, h = 27/64w. As is clearly seen, rapid convergence occurs
to the linear growth phase of the evolution occurring before ~ 5 wave periods. The
convergence to the saturated state takes slightly more particles to resolve, although
this too is reasonably well converged with only n, = 6720.
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For this sequence of runs it is also possible to examine the conservation of the
number of simulation markers, n = ng+dn. This information is summarized through an
examination of the standard deviation of dn in Fig. 4.15. The plots show the oscillatory
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Figure 4.15: Plots showing the improvement in the conservation of particles with respect
to the number of simulation markers used.

fluctuations in dn/ng around a mean value close to 0 for increasing particle number and
the scaling of the standard deviation with respect to the number of simulation markers
used, n,. These latter data points are fitted using a least-squares procedure to a curve
of the form a/ni‘) to give a = 0.005 and b = 0.41 indicating that the convergence is
slightly slower than that for a random distribution of points for which it is expected
that b = 0.5.
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To examine the convergence with respect to the integrator time step used, h was
decreased in factors of 2 down to a minimum such that the integrator was making 512
steps per wave period, h = 27 /512w. The results of this scan are presented in Fig 4.16.
The plot shows that even for the largest integrator time step used! the wave evolution

= 13
I

m-
R
w
3
g

h = f;;’@&s_;_}
' h = 27a/128w ]
: ; : ,,g-""""“/w&
¢ ’//__,‘(o
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Figure 4.16: Convergence of wave evolution with respect to size of integrator time step
h.

is already well converged.

"This particular simulation failed to run for h > 27/16w.
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4.1.6 Benchmarking

Due to the complexity of making analytic estimates of quantities associated with the
interaction of fast particles with AE, comparisons with other codes are invaluable. They
avoid the need to perform simulations within restrictive regimes such as at large aspect
ratio (¢ < 1) and often provide the only indicators of subtle coding errors. For these
reasons the HAGIS code has been extensively benchmarked against many other codes
including the FAC and CASTOR-K codes.

The FAC code [72] is a Monte-Carlo §f code independently developed in parallel
with the HAGIS code. The CASTOR-K code [73] is a linearized §W code that uses
unperturbed guiding centre orbits. Due to the completely different approach used by
this code comparisons with it represent a particularly good test.

Beam-driven TAE

The parameters used for the first comparison are summarized in Table 4.4 and were

Parameter Value
£ 0.1
Ry 8.011 m
By 10 -50T
o 1.25
n 5
m T
w 3.131 x 10° rads/s
f 49.83 kHz
T *He
n; I %102 m=3
(m;) 2.0 my
(Br) 5% 107
n, 60000
s (0.02, 0.98)
&; (10 keV, 3.8 MeV)
Al 27 /80w

Table 4.4: Simulation parameters for beam-driven TAE

chosen such that the simulations fell into the category of small-orbit-width and large-
aspect-ratio, allowing additional comparisons with analytical estimates.
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The beam distribution used was

~ 2N
Jo = C exp(—=2.5¢,) exp (g?) a(A),
0
where A = uBg /&, & = 3.52 MeV and the field perturbation used consisted of a single
(m,n) = (7,5) harmonic. The results of scanning in magnetic field intensity are shown
in Fig. 4.17, where the dashed line represents the analytic prediction, whilst the points
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Figure 4.17: Variation of linear growth rate with magnetic field intensity.

represent simulations performed by the author using the HAGIS and FAC codes as
indicated. The solid line represents results from the CASTOR-K code. The agreement
is good, with small differences expected since the CASTOR-K code and the theoretical
estimate assumed that the particles had zero orbit width (ZOW) whilst the full orbit
width effects were retained within the HAGIS and FAC codes.
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For the cases where the phase of the wave was unlocked and allowed to vary self-
consistently in time, an additional comparison of the reactive frequency shift with time
was possible between that HAGIS and FAC codes. This is presented in Iig. 4.18
where again good agreement is observed. This plot also suggests a mechanism for the
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Figure 4.18: Comparison of frequency shift for various magnetic field intensities.

enhanced growth rate observed when the phase of the wave is allowed to vary selt-
consistently as compared to the locked phase case. As can be seen, the frequency
shifts are always downwards to lower frequencies allowing lower energy particles to
become resonant. Since there are more lower energy particles because of the use of a
slowing-down energy distribution, an increased fast particle drive is obtained.

a-particle driven TAE in ITER-like plasma

The next case compared was that of an isotropic distribution of a-particles in an I'TER-
like plasma interacting with an AE. The simulation parameters for this test are sum-
marize in Table 4.5,
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Parameter Value

€ 0.375

Ko 8.0 m

By 6.0T

do 0.8375

n 10

m 8,9

w 5.0 x 10° — 8.0 x 10° rads/s
A 1He

n; 1.1 x 10%2° m—3
(mi) 2.5 my
(,-'3;) 5x 10~%

i1 25 keV

T,' 23 keV

np 60000

At 27 /80w

Table 4.5: Simulation parameters for a-driven TAE in ITER-like plasma

The distribution of a-particle used was chosen to represent the expected distribution
within an ignited tokamak. The energy distribution of this so called ‘slowing-down’
distribution is determined by the effects of electron and ion drag upon the a-particle
population. Assuming that the D-T reactants share a common temperature 7}, and
that the a-particles are produced with a roughly Gaussian energy distribution,

(€ - 80)2]

S(€) = Soexp [— Ag?

the solution of the Fokker-Planck equation is [74],

1 L [E=éa .
16) = it 5 (1.3

where the cross over velocity, v., is the speed below which the a-particles feel the effect
of electron drag and is given by

3/mTm 7 n; Z?mq
Vg = (\/_—E Vte, where 7y = Z —
1

4m, T

i)

vie 18 the electron thermal velocity and Z; the charge on the ith species of ion.

The spatial distribution used takes the form of a Fermi distribution function with
the parameters chosen to fit those expected in ITER,
1
xp[(Y = Yo) /AU + 1

f(¥)=
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o is chosen to lie near the ¢ = 1 surface since m = 1 MHD instabilities (sawteeth) are
expected to flatten the distribution within this region [75]. Thus the final distribution

used is,
1 1 E-E&p
=0 ( , ) —Erf. [ - ]
Jo exp[(¢ — ¥o)/AY]+ 1 gy A€
with g = 0.2, Ay = 1/14, & = 3.52 MeV, & = 329.6 keV, AE = 335.2 keV.

For this comparison a scan was made in the wave frequency whilst the phase of
the wave was held fixed. The results for the three models are presented in Fig. 4.19
and as can be seen the agreement is again very good. The non-smoothness of the
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Figure 4.19: Comparison of growth rate variation with frequency.

curves is attributed to different classes of particles becoming resonant with different
wave {requencies.
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4.2 Summary

This chapter has outlined the computational implementation of the model developed in
Chapter 3. The validity of the resulting code has been demonstrated through a series
of tests that fall into two broad categories; those testing the numerical properties of
the code and those testing the physical results the code produces. The first of these
categories was satisfied by an examination of the code’s convergence properties and the
latter through a comparison with analytic results and other numerical work.

It has been shown that particles traverse the correct trajectories, and that system
invariants scale correctly with parameters such as integrator step size and the number
of markers employed.

There is a small overhead associated with the code’s initialisation procedure but
for realistic values the scaling of the run-time ¢ with the number of markers used n,,
the number of AE present n,,, the number of integrator steps per wave period ny and
the simulation duration in wave periods 7" is approximately linear and given by the
relation,

t = cnpgnynrT,

where the constant of proportionality ¢ ~ 107> for an IBM RS6000 590 workstation.
Hence for a run using 50,000 particles, two waves and running for 50 wave periods
taking 64 steps per wave period, the run time is around 53 hrs of CPU time.
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Chapter 5

Results

This chapter presents and discusses the results obtained by applying the HAGIS model
to examine the interaction of a distribution of a-particles with discrete AE within the
geometry of the JET tokamak.

5.1 Particle Prompt Loss Regions

In this first section the regions of phase-space where a-particles are unconfined even in
the absence of a perturbative wave are considered. This information is important to
avoid wastefully loading markers in those specific regions where they will be immedi-
ately lost during one poloidal transit period. These loss regions, known as prompt loss
regions, generally depend upon the value of the toroidal current in the tokamak. In
this chapter typical JET currents are considered in the range 1 — 3 MA. Losses due to
the ripples in the toroidal magnetic field are not considered.

For a particle with known energy, its trajectory in real space is completely defined,
up to the sign of v, by the phase-space variables A = iBo/&, the normalized pitch
angle, and F¢, the toroidal canonical momentum, which are constants of the motion in
an axisymmetric equilibrium field. Tt is therefore convenient to examine the limiting
case trajectories of 3.52 MeV a-particles in the (A, P;) phase-plane. Ilig. 5.1 shows the
(A, P;) phase-space topology of 3.5 MeV a-particles in JET, (B = 2.87 T, [ = 3 MA).
The curve AB in this diagram corresponds to the unconfined boundary for co-passing
particle orbits. Those to the right of AB are confined, but become closer to intersect-
ing the plasma edge as AB is approached.! The curve CD is the equivalent bound-
ary for counter-passing particles, with the region to the left of the curve representing
unconfined passing particles. BF represents the boundary between confined passing

'The terms ‘co’ and ‘counter’ are defined with respect to the plasma current which is directed into
the paper for the diagrams illustrating Iig. 5.1.
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Figure 5.1: Boundaries between different orbit types for 3.5 MeV a-particles in JET.

particles and confined trapped particles (ie. banana orbits). The trapped particles be-
coming unconfined at the BE boundary. The curve BC is the phase-space boundary
of counter-passing particles and trapped unconfined particles. Finally, the boundary
depicted by GH represents co-passing stagnation points, these are positions where all
the drift terms exactly cancel and the particle appears stationary in the poloidal plane
while moving uniformly in the toroidal direction.

It is thus seen that in a JET equilibrium field, a co-passing particle is a prompt loss
particle if it lies to the left of the phase-space boundary, ABE, and a counter-passing
particle is a prompt loss particle if it lies in the phase-space region to the left of the
curve EBCD.

The prompt loss markers that arise during a simulation form a localized zone just
below the outer mid-plane of the tokamak. In the case shown in Fig. 5.2 all the markers

have been loaded uniformly. in s over the range (0.0001,0.8) and in energy over the range
(10 keV, 3.8 MeV).
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Figure 5.2: Distribution of lost markers as they pass through the last closed flux surface.
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5.2 Enhancement of the Prompt Losses due to AE

The next step is to quantify the losses of a-particles near the prompt loss boundaries due
to the effect of an AE upon them. The most sensitive region of the phase-space where
AE can easily transform a confined particle into an unconfined one is the boundary
between counter-passing confined particles and trapped-unconfined particles.

In the presence of an AE perturbation a-particles close to the prompt loss bound-
aries shown in Fig. 5.1 may lose toroidal angular momentum, or gain or lose energy, and
cross over into the prompt loss region. The conversion of a counter-passing particle to
a trapped unconfined particle through this process is illustrated in Fig. 5.3, where the

A

1.0

E

S 00
-1.0

Figure 5.3: Conversion of counter passing particle to a trapped unconfined particle.

particle was launched close to the boundary BC in Fig. 5.1, with the launch location
corresponding to a distance of 1cm from the prompt loss boundary in real space. The
size of the perturbation was such that §BY?/B = 3 x 1072 and the particle lost ap-
proximately 1% of its initial energy (3.5 MeV), and approximately 0.03% of its initial
toroidal angular momentum, before passing through the last close flux surface.

Simulations with the HAGIS code [76] using a slowing down distribution in energy
as described by equation (4.3), a radial distribution of the form,

f it (J- == I;p)?'e
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and a uniform distribution of a-particles in pitch angle, poloidal angle and toroidal
angle indicate that in the presence of three n = 3 TAE an additional 1% of a-particles
become prompt loss particles. Since these losses arise from the distortions of the flux
surfaces due to the TAE modes, losses of this type scale as d B/ B in agreement with [55].

The regions of the phase-space where a-particles are promptly lost and the sensi-
tivity of these boundaries with respect to the AE have therefore been established.

Note that in the case of toroidal field ripples, the prompt loss regions may become
significantly larger and the AE effect upon the prompt loss boundaries may become
much more pronounced. For the particular case of TFTR the AE induced ripple-like
losses may be as high as 13% of the distribution [12], causing extensive damage to the
first wall.

5.3 Resonant Particles and the Onset of Orbit Stochas-
ticity

In this section the regions of the phase-space where a-particles experience the largest
interaction with the AE are considered, in addition to the prompt loss regions discussed
in §5.2. These regions of phase-space are governed by the resonance condition described
by equation (2.14) and can be particularly complicated within realistic tokamak geome-
tries with finite ellipticity and triangularity. If in addition the particle orbit requires
higher Fourier harmonics for it’s description due to the presence of a large amplitude
AL perturbation, additional nonlinear resonances appear. To identify the resonance
regions in arbitrary magnetic geometry and for finite amplitude perturbations it is
therefore necessary to use a numerical approach to treat the resonance condition. One
of the best ways to accomplish this is to analyse the wave to particle power transfer as
a function of the initial particle conditions, amplitude and the structure of the wave.
Performing a scan in initial a-particle energy and start location allows a figure to be
constructed indicating those a-particles which interact most strongly.

As an example, one of the best performance deuterium pulses made in JET so far
(shot #26087) is considered. An extensive study of TALE stability has been made for
this case [77], and assuming that there is an equal mix of deuterium and tritium fuelling
ions, it has been found that the n = 3 TAE modes are the most likely candidates for
a-driven TAE instability. Accordingly, a-particle losses due to n = 3 TAE modes are
focussed upon.
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The equilibrium flux surfaces for this case (shot #26087) are shown in Fig. 5.4,

whilst the n = 3 TAE eigenfunction harmonics corresponding to the m = 3 to 4
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Figure 5.4: Flux surfaces for JET shot #26087.

gap and g-profile are shown in 5.5. As can be seen from the flux surface plot, the
equilibrium JET configuration contains a certain amount of ellipticity and triangularity
which may be expected to give rise to some additional coupling between non-adjacent
poloidal harmonics. The inclusion of large amplitude TAE perturbations may also
cause nonlinear resonances.
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Figure 5.5: Harmonics of the perturbed scalar potential versus radius.
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The variation in energy of deeply passing a-particles (A = 0) that arises from their
interaction with this TAE is shown in Fig. 5.6 where the wave amplitude was held
fixed at dB/B = 1.5 x 1072 whilst the initial launch radius was varied. The scan was
performed for particles that were launched on the out-board mid-plane with the same
initial energy, £ = 2.2 MeV, and shows the change in particle energy after 50 poloidal
transits. The double peak of the primary resonance seen at B = 3.52 m occurs as
the scan passes through the particle island which is formed as a result of the particle
becoming trapped in the potential well of the n = 3 TAE. Examination of Fig. 5.6
shows that the number of resonances is larger than that obtained in a tokamak of

7 i I T 1 1] 1

AEJE (%)
b

335 34 345 35 355 36 365 37
R

-

Figure 5.6: Fractional change in energy as a function of initial major radius for same
case as Fig. 5.8 with 6 B/B = 1.5 x 1073,

circular cross-section, where the v = v and Y| = v4/3 are the dominant resonances.
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Additional side-band resonances are a result of the non-circularity and nonlinearity.

To analyse the structure of the resonances more thoroughly, a two dimensional
scan has been performed in initial particle energy and launch radius for the case of
a JET n = 5 AE of amplitude §B/B = 10~%. The particles considered were deeply
passing (A = 1) a-particles that were launched up to a maximum energy of & = 1.5
MeV, between R = 3.1 m and 3.6 m. Each of the particles were followed for 50 poloidal
transits with the change of energy represented in terms of the intensity used in Fig. 5.7.
The complex structure of the resonances (even for deeply passing particles with A = 1)
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Figure 5.7: Wave-particle energy exchange between deeply passing a-particles and an
n =5, p=0 KTAE. The primary resonance corresponding to particles moving at the
Alfvén velocity (E ~ 1 MeV) is clearly seen and is radially located near the peak in
the eigenfunction. The v4/3 sideband resonance is also discernable.

necessitates an accurate representation for the fast particle distribution, especially with
respect to energy, since it is seen that there will still be a relatively strong exchange of
wave-particle energy near the cut-off energy to which particles are loaded.

Particles that are close to the resonance regions of the phase-space become trapped
in the potential well of the AE and the orbits of these particles form island structures.
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As a particle’s energy increases, so its orbit increasingly deviates from a flux surface, and
Fourier analysing the magnetic field in the frame of reference of the particle one finds a
main harmonic and side-band harmonics. Stochasticity arises when the particle islands,
caused by the primary and side-band harmonics, overlap; this process differs from
magnetic island stochasticity, in that a single harmonic can give rise to stochastic orbit
motions. For deeply passing particles the location of the particle islands are determined
from the resonance condition given by equation (4.2). The primary resonance is [ = 0,
and the side-bands [ = 41, etc. For a given TAE frequency, w, the locations of the
particle islands are determined by the g-values which are resonant (ie. satisfy equation
(4.2)). Since for a TAE the eigenfunction harmonics peak at the gap, ¢ = (2m +1)/2n
for the m to m + 1 gap mode, the largest particle islands are obtained for resonance at
the gap g-value.

It can be demonstrated that above a certain threshold amplitude of the AE per-
turbation, particle orbits first become stochastic at the separatrix of the island, before
the stochasticity region increases to occupy a significant fraction of the plasma radius.
In terms of the resonances shown in Fig. 5.7 the onset of stochasticity corresponds to
the broadening of the resonance regions in the phase-space up to a coalescence of the
neighbouring resonances. If the stochasticity region is much smaller than the radius
of the plasma the stochasticity has a local character so that just an enhanced radial
re-distribution of the particle orbits results. However, in the case of large amplitude
AE, or in the case of multiple AE, the stochasticity regions can spread out across the
whole plasma radius, so that the stochasticity takes a global character and particle
losses follow.

As an example, we consider the JET case (#26087) described above. Fig. 5.8 shows
the particle islands for a sequence of increasing amplitudes of a single TAE perturbation.
These plots show the particle orbit intersections with the # = 0 plane. To ensure that a
single particle class was followed the invariants £ — (w/n)P; and p were held constant
for all the a-particles at 107eV and 10%eV/T, respectively. At R = 3.67m this gives
Eiot = 2.2MeV and &£, = 2.2keV (ie a deeply passing particle). This particular energy
for the a-particle was chosen in order to locate the primary resonance near the m = 3
to 4 gap location for the computed TAE frequency of w = 9.77 x 10°rad/s. It can be
seen that stochasticity occurs for a relatively large value of §B/B ~ 5x 1072 at the gap.
This large value is partly a consequence of the low magnetic shear in the gap region,
since the required field for overlap is inversely proportional to the magnetic shear [78].
Consideration of a realistic spectrum of unstable TAE modes, as opposed to the single
mode considered here, is expected to lower this stochasticity threshold by at least one,
and probably two, orders of magnitude. The amplitudes quoted in the plots correspond
to the maximum values of the perturbed radial field, A = § B¥7/Bj.
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Figure 5.8: Particle islands in the # = 0 plane plotted versus the phase (¢ — wt/n)
arising from an n = 3 TAE for various amplitudes.
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5.4 Nonlinear Saturation of a Single a-Particle Driven
KTAE

In the previous sections of this chapter the effects of finite fixed amplitude AE upon
a-particles have been considered and in particular it was observed that particle stochas-
ticity appears in the system above some threshold. To establish whether this threshold
can be achieved due to the free energy source associated with the radial gradient of
the a-particles, a self-consistent nonlinear treatment is needed. This section is devoted
to the analysis of a KTAE interacting with a distribution of a-particles in JET. Mode
damping due to the bulk plasma is neglected in this treatment, as are particle sources
and sinks. Hence the case considered is an idealised scenario producing an approximate
upper limit for the AE growth rate and saturation amplitude.

The simulations presented in this section address the nonlinear AE evolution by
directly simulating the wave evolution and particle re-distribution arising from the
interaction of a single n = 5 KTAE and the expected distribution of a-particles within a
D-T JET plasma. The parameters used for this simulation are summarized in Table 5.1.

Parameter Value
5 0.334
Ry 3.0 m
By 3.0T
n 5
m 4,5
I 191.7 kHz
ZA ‘He
n; 4.8 x 10" m—3

(m;) 2.5 my
(Bf) 2.5% 1079
np 75000
Al 27 /64w

Table 5.1: Simulation parameters for a-particle driven n = 5 KTAE in JET.

The distribution function was chosen to represent an isotropic slowing down distri-
bution of a-particles,
£—-&o
A€

fo=C (1-4) mn[

3
2
C

(M1
-
o

E
d

where & = 3.52 MeV, &£, = 329.6 keV and A€ = 335.2 keV, and is shown in Fig. 5.9.
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Figure 5.9: Slowing down distribution of a-particles.
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The n = 5, m = 4,5 eigenfunctions used for these simulations are shown in Fig. 5.10
along with the g-profile and the radial distribution of fast particles.

4-'l|'**|"'|1"|'-
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Figure 5.10: Plot showing the radial structure of the principle poloidal harmonics of
the n = 5 KTAE together with the g-profile and the radial distribution of fast particles.
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The evolution of the KTAE that resulted from it’s interaction with this population
of a-particles is shown in Fig. 5.11 depicting the AE amplitude and growth rate as
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Figure 5.11: Evolution of an n = 5 KTAE in JET interacting with a slowing down
distribution of a-particles.

a function of time. The diagram clearly indicates the two generic stages of the wave
evolution that arise in simulations of this type. The first stage is the linear growth
stage during which the wave amplitude increases exponentially with time. This be-
haviour may be understood by observing from equations (3.31) and (3.34) that for
infinitesimally small &f,

A x &f

i ; A — AT
5fO(A}AOC;1“—¢'A—AQ£ ;
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The second stage in the wave evolution is a saturated state which may be understood
by observing that the radial profile of a-particles has been significantly modified such
that it no longer acts as a source of free energy, as in Fig. 5.12. The classes of particles
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Figure 5.12: Plot showing the radial redistribution of a-particles by an n = 5 KTAE
in JET with time (measured in seconds). The surface plot facilitates an intuitive
understanding of the change in the fast particle density (particles/m?), whilst the
contour plot (depicting the same information) provides a clear overview of the regions
affected.

which have interacted with the wave are revealed in the plot of the a-particle density
fluctuations against particle energy, as in Fig. 5.13. In this plot the passing particle
resonances, as well as the additional resonances due to the trapped particles resonating
through their precession and bounce frequencies can be seen at & ~ 150 keV, £ ~
750 keV, and £ ~ 1.8 MeV. The particle conservation for this simulation is presented
in Fig. 5.14 showing the exceptional conservation of particles during the early linear
stage and the characteristic oscillatory behaviour following the onset of saturation.

It can be seen from Fig. 5.11 that the saturated amplitude of the wave is related to
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Figure 5.13: Surface plot showing the change in the slowing down energy distribution
of a-particles with time (measured in seconds) that has arisen from the interaction
with an n = 5 KTAE in JET. The contour plot (whilst showing the same data) allows
the resonances to be clearly seen. The density change in this plot is measured in
particles/m?>.

the linear growth rate through,

L

s B
B ' (i> , where C = 1.38, (5.1)

w

which is in reasonable agreement with [11] and [12].
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Figure 5.14: Conservation of a-particles interacting with n = 5 KTAE in JET.
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The scalings of linear growth rate with volume averaged a-particle beta (3y). is
presented for this case in Fig. 5.15. As can be seen from this plot, the variation is
approximately linear over this range of (3;), with only a small departure when the
phase of the wave is allowed to vary.
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Figure 5.15: Variation of growth rate with respect to (3y) for an n =5 KTAE in JET
driven by an isotropic slowing-down distribution of a-particles.
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The variation of frequency shift with growth rate is shown in Fig. 5.16 where an
approximately linear downward shift in frequency is found with increasing growth rate,
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Figure 5.16: Variation of reactive [requency shift with growth rate for an n = 5 KTALE
in JET driven by an isotropic slowing-down distribution of a-particles.

It is interesting to note that the case presented has a growth rate of ~ 3% and
saturates by itsell at dB/B = 2 x 1073, in quantitative agreement with the results
found in [42, see Fig. 11], where an analogous treatment of the wave-particle problem
was performed without wave damping, particle sources or sinks.
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5.5 Self-Consistent Evolution of a-Particles and Multiple
KTAE

In the case of a system containing multiple KTAE the self-consistent dynamics of both
the waves and particles can be very different from those described in the previous
section.

In the first instance, even waves which are stable with respect to the initial distrib-
ution of a-particles may become unstable as a result of the particle re-distribution due
to neighbouring waves. This secondary instability known as the ‘domino effect’ was
considered in detail in [79, 80].

Secondly, for the case of several unstable waves of comparable wave energy, a non-
linear saturated phase may be significantly obscured, since the formation of a plateau
on the distribution function which saturates the growth rate of one wave will not nec-
essarily saturate the neighbouring wave as well.

Thirdly, as a result of several waves coupling through the energetic particle popu-
lation every individual wave can be enhanced significantly by the other waves present
and can reach higher amplitudes than it can alone. The strength of the wave coupling
through the energetic particle population may be expected to depend upon the ratio
of the growth rate and the eigenfrequency separation for different waves.

In this section a discrete spectrum of KTAE (n =5 - 9) is simultaneously evolved
with a slowing-down distribution of a-particles. The results of these simulations are
then compared with those for each of the AE singly to identify the key features arising
from the presence of multiple AE.

Due to the orthogonality of the KTAE eigenfunctions with different toroidal mode
numbers n, the wave energy of the bunch of KTAE is a simple sum of the individual
wave energies without any cross-terms. This fact allows an individual treatment of
amplitude and phase variations for each KTAE to be used.

5.5.1 Non-Interacting and Interacting Waves

A realistic slowing-down distribution of a-particles which is centrally peaked is used,
described by same form as used for the previous simulations in §5.4. Using this dis-
tribution, simulations have been performed showing the evolution of a spectrum of
KTAE in JET. By running simulations with each of the modes separately as well as
with the complete set at once, it is possible to examine the effect of the waves interact-
ing with each other through the fast particles. The eigenfunctions generated for these
simulations are shown in Fig. 5.17 together with the radial a-particle distribution and
g-profile. Table 5.2 summarizes the eigenfrequencies for each of the waves and indicates
the principle poloidal harmonics required for their description.
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Figure 5.17: Eigenfunctions corresponding to n = 5 — 9 KTAE in JET. The relative
sizes are accounted for through the normalization requirement that (JB‘i’P/BO)maX =1
for all modes with unit amplitude. Also shown in this plot is the radial distribution of
fast particles and the g-profile.

Toroidal Eigenfrequency, Principle
mode number, n f [kHz] poloidal harmonies, m
5 191.7 4,5
6 195.4 5,6
7 198.3 6,7
8 200.9 7,8
9 203.2 8,9

Table 5.2: Parameters for each of the KTAE used.
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The results of performing simulations with each of the eigenmodes separately is
shown in Fig. 5.18. As can be see from this plot, each individual eigenmode has a clear
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Figure 5.18: Evolution of each single (non-interacting) n =5 — 9 KTAE in JET.

saturation at around §B/Bg ~ O(107%). Due to the comparable wave energies and
regions of wave localisation for all the K'TAE running individually, the condition given
by equation (5.1) is fulfilled as expected. At such high wave amplitudes, the nonlinear
interaction of multiple KTAE coupled together through the a-particles may no longer
be negligibly small. As a result of the nonlinear coupling, Fig. 5.19 clearly shows that
every KTAE can reach either a much smaller ‘quasi-saturated’ amplitude, or a much
higher amplitude, than achieved alone.
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Figure 5.19: Evolution of n =5 — 9 KTAE in JET interacting through a slowing-down
distribution of a-particles.
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The particle re-distribution that arises from the collective effect of these IKTAE is
shown in Fig. 5.20. As can be seen from a comparison with Fig. 5.12, a-particle re-
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Figure 5.20: Plot showing the radial redistribution of a-particles caused by the collec-
tive effect of n =5 — 9 KTAE in JET with time (measured in seconds). The surface
plot facilitates an intuitive understanding of the change in the fast particle density
(particles/m?), whilst the contour plot (depicting the same information) provides a
clear overview of the regions affected.

distribution has occurred over a much larger area and to a far greater extent than for
that obtained through the interaction with a single eigenmode. An examination of the
perturbed energy distribution shown in Fig. 5.21 indicates that the loss of energy from
the a-particles to the waves has occurred across the whole of energy distribution.
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Figure 5.21: Plots showing the change in the slowing down energy distribution of a-
particles with time (measured in seconds) that has arisen from the interaction with
n =25 -9 KTAE in JET. The contour plot (whilst showing the same data) shows
the extensive region over which particle energy has been transfered to the waves. The
density change in this plot is measured in particles/m?>.
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The conservation of particles for this simulation is presented in Fig. 5.22 where
following the linear evolution regime, a linear degradation of particle conservation is
observed.
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Figure 5.22: Conservation of a-particles interacting with n =5 — 9 KTAE in JET.

At the higher amplitudes achieved in this simulation, the approximations made in
the model may be violated. In particular, MHD nonlinearities may become impor-
tant [81, 82, 83]. To overcome this possible violation of the model’s approximations,
future work may address the problem of multiple large amplitude AE coupled through
the fast particles in two ways. Firstly, additional damping effects can be included into
the model leading to far lower wave amplitudes, and secondly, the underlying physical
model may be adapted to accommodate the wave-wave nonlinearities.
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5.6 Summary

In this chapter the regions of phase-space corresponding to prompt-loss a-particles from
a JET plasma have been identified and the effect of the presence of a TAE upon them
quantified.

The effect of an AE upon the particle motion and the stochastic threshold for JET
shot #26087 is obtained. The complex range of resonant a-particles for an n = 5
KTAE in JET has been quantified in terms of their initial conditions.

The self-consistent evolution of a single Kinetic TAE and the a-particle population
in JET plasmas has been modelled in the absence of KTAE damping, sources and
sinks of a-particles. The a-particle re-distribution that arises from the wave-particle
interaction has been presented.

The self-consistent evolution of several unstable Kinetic TAE and the a-particles in
JET plasmas have been modelled in the absence of KTAE damping, sinks and sources
of alpha-particles. A much broader region of the a-particle phase-space is involved
in the nonlinear evolution in the case of multiple KTAE, and a more extensive radial
redistribution of alpha-particles is observed in this case. Due to the fact that all of
the KTAE are coupled through the same a-particle population, some new nonlinear
phenomena have been found in the case of multiple KTAE. In particular, due to the
effective energy redistribution between different KTAE some of the KTAE can reach
significantly higher amplitudes, whilst others are suppressed. Further development
of the code is however needed in this case, as the wave amplitudes may exceed the
approximations made in the current model.
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Chapter 6

Summary and Conclusions

6.1 Summary

[n this thesis the problem of weakly damped AE driven by populations of fast particles
within tokamak plasmas as outlined in Chapter 1, has been addressed. This generally
nonlinear problem has been approached by constructing a self-consistent model, the
HAGIS code. that combines a perturbative wave approach with a Hamiltonian guiding
centre treatment of the fast particles, as described in Chapter 3. The radial structure
of each eigenmode has been assumed to remain invariant throughout the simulations,
with each wave evolving through changes in its am plitude and phase. The variations in
wave amplitude and phase are described by the same wave Lagrangian that describes
the radial eigen-structure of the waves through the inclusion of higher order perturbing
terms. The complete self-consistent model is formulated within a &f framework, en-
abling simulations to be performed with far lower noise levels than has previously been
possible with conventional codes.

During the development of the HAGIS model it has been applied to study many
different aspects of the wave-particle interaction. The first of these was an examina-
tion of the topology of different energetic particle orbits, and the establishment of the
prompt loss regions of the particle phase-space. This was possible once the guiding cen-
tre trajectories of energetic particles in the presence of a discrete spectrum of Alfvén
waves in arbitrary toroidally symmetric geometry had been developed, implemented
and validated.

Two possible a-particle loss mechanisms arising from AE, and previously identi-
fied by [55], have been confirmed and quantified for a single TAE in JET. The first
mechanism is due to the TAE-induced broadening of the prompt loss boundary and
was found to scale as B/B. whilst the second mechanism, due to the TAE-induced
stochasticity of the particle orbits, scaled as (§B/Byp)?. Both of these scalings are in
agreement with [55]. However, the stochasticity threshold for this case (JET discharge
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#26087) was found to be higher than in [55] due to the smaller magnetic shear in JET.

The structure of the wave-particle resonances has been analysed for the case of a
single AE and passing a-particles in JET geometry. The model describes resonances
arising from the non-circularity of the plasma cross-section and from perturbations of
the particle orbits due to the finite amplitude of the AE (nonlinear resonances).

The onset of particle orbit stochasticity in the presence of fixed finite amplitude
AE has been numerically studied using the HAGIS code and explained in terms of the
wave-particle resonance overlap.

Further development of the HAGIS code towards a self-consistent wave-particle
model has been made. Keeping the spatial structure of the AE fixed, the time evolution
of the amplitude and phase of each AE present is described by a set of differential
equations.

To overcome numerical noise in the self-consistent model, the §f formalism was
implemented into the HAGIS code. The complete model was then validated through
a comparison of conservation laws and analytical results, as well as through direct
comparisons with other codes.

This model has been used to describe the self-consistent evolution of the Kinetic
TAE and the expected distribution of a-particles in JET plasmas in the absence of
KTAE-damping mechanisms and a-particles sources and sinks. The correct nonlinear
behaviour of the coupled KTAE and the a-particles has been found in these runs; the
saturated amplitude of the a-driven KTAE has been quantified as an upper estimate
of the single KTAE instability. The a-particles were found to be radially re-distributed
within a region close to the central region where the KTAE is localised.

The self-consistent evolution of several unstable Kinetic TAE and the expected
distribution of a-particles in JET plasmas has been modelled in the absence of KTAE-
damping mechanisms and sources or sinks of a-particles. A broader region of the
a-particle phase-space was found to be involved in the nonlinear evolution in this case,
and a more extensive radial redistribution of the a-particles was found. It was found
that due to the energy redistribution between different KTAE coupled through the a-
particle population, some of the KTAE reached significantly higher amplitudes, whilst
others were suppressed.

6.2 Conclusions

The principle conclusion of this thesis is the demonstration that in the absence of
any wave damping mechanisms, a single AE driven by a slowing-down distribution of
a-particles can reach an amplitude as high as §B/B > 107 for (3;) = 2.5 x 1073.
In systems with more than one AE present, even higher amplitudes are found to be
achievable leading to an enhanced radial redistribution of a-particles. Whilst for these
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simulations, wave damping mechanisms have been neglected, qualitatively the same
plateau formation upon the radial a-particle distribution at lower wave amplitudes is
expected within simulations in which wave damping is included.

In all of the cases considered the nonlinear redistribution of a-particles was in
a relatively small central region close to where the AE eigenfunction was localised.
Consequently, no significant a-particle losses to the first wall were found. However, the
central redistribution of a-particles may be expected to cause a change in the heating
profile which has important consequences for sustaining an ignited tokamak plasma.
Indeed, the modification that this would cause to the current profile may be such as to
drive current driven tearing modes leading to an enhanced radial transport of particles
and an increased risk of disruption.

6.3 Further Work

Future work will be focussed upon the further development of the model, its application,
and an analysis aimed at quantifying the effects of the redistribution of the fast particles
upon the heating profile and confinement properties.

In order to treat self-consistent simulations in which large amplitude AlS are cur-
rently obtained, it is first necessary to introduce into the current model the relevant AE
damping mechanisms arising from the bulk plasma and as discussed in §2.2.1. Further
dissipative effects, such as energetic particle sources and sinks, may also be incorpo-
rated into the Hamiltonian code through the additional freedom contained within the
of formalism’s use of time-dependent weighting factors for each of the macro-particles,
or markers.

Whilst the model developed in this thesis has been specifically devised to examine
the nonlinear interaction of fast particles with AE in tokamaks, it could also be modified
to describe perturbations to the fast particle distribution arising from other sources.
Such effects that could be considered include other low-frequency (w < w) wave
phenomena, as well as kinetic effects such as particle collisions. Due to the use of a &f
formalism, it is in principle possible to develop a Fokker-Planck-like code based upon
the Monte-Carlo model developed in this thesis with significantly reduced noise levels.
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Glossary

I Greek Symbols

a Perturbation parameter, A = aBy

Ié; Plasma beta (Ratio of particle energy density to magnetic energy density)
) Covariant ¢, component of B

& Energy of jth particle

£o Permittivity

€ Inverse aspect ratio, ¢ = a/Hy

n Resistivity

04 Adiabaticity index

7L Linear growth rate of instability Aj ~ e7L!
) Canonical phase-space

T Physical phase-space

A Cosine of the pitch angle, A = cos, = vy /v
A Normalised pitch angle, A = By /&

I Magnetic moment of jth particle

Jto Permeability

¢ Scalar potential

P Geometric toroidal angle

p Plasma mass density

Pe Canonical variable used in guiding centre description
pi Larmor radius

Pyl Useful guiding centre variable, p = v,/B

(i Toroidal flux which acts like a radial variable
Yp Poloidal flux which acts like a radial variable
Uy (a) Poloidal flux at edge of plasma

L‘Aﬁ'p Normalized poloidal flux, -gva = foI,/Ep

aL Phase of kth wave

0 Poloidal coordinate

a4, Pitch angle, see IMig. 3.3

Wee Electron cyclotron frequency

Wei lon cyclotron frequency
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f\{hmi_

IT

Angular frequency of kth wave
Fluid displacement
Gyro-phase of jth particle
Toroidal coordinate

Roman Symbols

Minor radius at edge of plasma

Amplitude of kth wave

Vector potential

Modified vector potential

Magnetic field strength (Magnetic inductance)
Magnetic field vector

Unit vector in direction of B

Infinitesimal volume element of canonical phase-space

Finite volume element of canonical phase-space associated with jth fast
particle
Infinitesimal volume element of physical phase-space

Finite volume element of physical phase-space associated with jth fast
particle

Infinitesimal volume element of uniformly loaded phase-space
Finite volume element of uniformly loaded phase-space associated with
jth fast particle

Charge of fast particle

Electric field strength

Electric field vector

Energy of jth particle

Wave energy of kth wave

Metric tensor element

Covariant ¢ component of B

Hamiltonian

Covariant # component of B

Current density

Jacobian

Wave Vector

Lagrangian

Poloidal mode number/Mass of fast particle

Electron number density

lon number density

Toroidal mode number of kth wave

Number of markers

Number of waves
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P Plasma pressure

q Safety factor

R Major radius

Ry Major radius at geometric axis of tokamak

Rysiag Major radius at magnetic axis

S Normalized radial variable, s = \/UP/BP

U Uniformly loaded phase-space

v4 Alfvén speed

Y|l Component of fast particle velocity parallel to magnetic field
A Real part of complex wave amplitude for k£th wave

Vi Imaginary part of complex wave amplitude for kth wave

VA Vertical distance from mid-plane/Charge in units of electron charge

III Acronyms

AE Alfvén Eigenmode

DII-D Doublet II-D (San Diego, USA)

EAE Ellipticity induced Alfv’en Eigenmode

FLR IFinite Larmor Radius

HAGIS Hamiltonian Guiding Centre System

ICRH lon Cyclotron Resonance Heating

ITER International Thermonuclear Experimental Reactor
JET Joint European Torus (Culham, UK)

KAW Kinetic Alfvén Wave

KTAE Kinetic TAE

MHD Magnetohydrodynamics

NBI Neutral Beam Injection

START Small Tight Aspect Ratio Tokamak (Culham, UK)
TAE Toroidicity Induced Alfvén Eigenmode

TFTR Tokamak Fusion Test Reactor (Princeton, USA)

ZOW Zero Orbit Width




