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1. Introduction

Resistive drift waves are one possible mechanism for anomalous transport in the boundary region

of fusion devices. Much work has been done on drift waves in tokamaks and their non-linear

development into the turbulent regime can now be simulated.

Owing to their complicated structure the situation is totally different for stellarators: Even

simple models of drift waves are not well understood.

In [1][2][3] the structure of linear non-resistive drift waves in stellarators was investigated.

Instabilities caused by resistivity or trapped particles were considered in [4][5]. All these

works make use of the ballooning formalism to reduce the drift wave equation to an ordinary

differential equation which for each magnetic surface is solved along a field line and together

with appropriate boundary conditions gives the eigenvalues.

This approach assumes perturbations varying rapidly perpendicular to the magnetic field.

It also does not give the radial structure of the eigenmode.

Solving the general problem is much more difficult but gives the full mode structure.

2. Model equations

In order to obtain a model for resistive drift waves one starts with the linearized two-fluid-

equations and make the following assumptions: Perturbed quantities∼ e−iωt, cold ions, isother-

mal electrons, neglect of temperature perturbation, charge neutrality, electrostatic perturbations

(β � 1, ~E = −∇Ψ), constant electron collision time τe, vanishing electron mass in the electron

equation, low frequency ω � ωc,e (ωc,e: electron gyrofrequency) and τe ωc,e � 1 which allows

to neglect the influence of the perpendicular resistivity. Also is is assumed that in the equilibrium

state the electric field and the velocity vanish. Additionally the perturbation of the parallel ion

velocity is neglected which eliminates the sound waves and thus reduces the dispersion relation

from third to second order.

After normalizing space, time and potential to minor radius a, sound crossing time τc =

a/cs (c2
s = Te/mi) and Te/e the following equations in general geometry can be derived for

density and potential perturbations (ñ, Ψ̃) :
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which for a vacuum field reduces to the curvature drift velocity. The parameters
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represent a measure for inertia length and resistivity. In the limit of low resistivity (high C)

equation (2) gives the constituting relation for Boltzmann electrons.

Together with boundary conditions equations (1),(2) pose an eigenvalue problem for ω.

The inner boundary condition stems from the requirement of a regular solution at s = 0 (s: flux

label):

Ψ̃m,n(0) = 0 m 6= 0

∂

∂s
Ψ̃0,n(0) = 0

(the same condition applies for ñ) while at the outer boundary the perturbation is forced to

vanish

Ψ̃m,n(s = 1) = 0.

After formulating equations (1),(2) in magnetic (Boozer) coordinates a Fourier-decom-

position in the poloidal and toroidal angle-like variables (Θ,Φ) is used:

Ψ̃ = ei(MpΘ+NpΦ)
M∑

m=−M

N∑
n=−N

Ψ̃m,n(s) ei(mΘ+nΦ).

The numerical treatment of rapidly varying modes with high mode number is facilitated by

introducing a phasefactor transformation which allows to shift the Fourier window [−M :

M ]× [−N : N ] to (Mp, Np).

In the flux label the equations are discretized by 2nd-order Finite-Differences.

The resulting generalized complex non-hermitian matrix eigenvalue problem is solved by

an implicitely restarted Arnoldi method. Since the Arnoldi method calculates a fixed number

of eigenvalues nearest to a given spectral shift the complex plane has to be scanned to find the

eigenvalues of interest.

A typical eigenmode calculation uses 100 gridpoints in the s-range [0.9 : 0.97] (the outer

boundary is located at s = 0.97) and 21 Fourier components.



3. Equilibrium configuration

The code was developed to handle general three-dimensional equilibria as they are given by

e.g. VMEC. Owing to the formulation in magnetic coordinates it only uses three independent

metric coefficients which reflect all possible changes of geometry.

In order to keep the computational effort initially small, a straight l=2-stellarator with

five field periods (topological torus), aspect ratio A = 10 and rotational transform ι running in

the range 0.38 . . . 0.42 was investigated. The density profile is bell shaped and gives a density

scalelength Ln = |∇n/n|−1 which decreases towards the outer boundary.

The helical symmetry of the straight stellarator is exploited by a transformation to the

helical coordinate α = 2Θ − 5Φ which reduces the problem to a two-dimensional one. In the

case considered here (l=2-stellarator) the equilibrium can be described with sufficient accuracy

by the two lowest helical Fourier components of the equilibrium quantities.

The physical parameters were fixed by using values for a typical edge region:

a = 0.4 m, n = 10−19 m−3, B = 3 T and Te = 200 eV givingA = 10−3 and C = 4 · 103.

4. Results

For givenMP, NP (whereMP > 200 was choosen) the growthrateωi of the most unstable mode

was calculated (these always have ωr < 0 while the modes with ωr > 0 are damped). Variation

ofMP for fixedNP shows that the growthrate has a maximum if the position of the corresponding

resonant surface ι(sR) = −(NP − 5h)(MP + 2h)−1 (h denotes the helical Fourier number) is

near the minimum of Ln which in Figure 1 happens for MP = 245 and 255. The modes are

dominated by the h = 0 Fourier component and modified by small sideband contributions.
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Figure 1. Imaginary and real part of ω as a func-

tion of MP for NP = −105 for different modes.

Colors indicate the dominant helical Fourier com-

ponent hD .
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Figure 2. Modulus of the main Fourier com-

ponents over flux label for the most unsta-

ble modes with MP as shown and NP =

−110,−213,−341,−469.



They have no radial nodes and are located in a small region near the outer boundary (Figure

2). Modes with a higher radial node number start to become concentrated on both sides of the

resonant surface but have a smaller growthrate than those with low node number (see Figure 3

where the resonant surface is resides at s = 0.93). If MP is varied up to ≈ 2200 (Figure 4) the

growthrate shows a maximum near MP = 800 (AMP ≈ 0.8).
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Figure 3. Real part of the main Fourier compo-

nents for a mode with MP = 259, NP = −110

(ωi = −0.58 + 0.13i).
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Figure 4. Growthrate of the most unstable mode

(with h = 0 as dominant component) for given

MP and NP.

5. Conclusion

For the first time eigenmodes of resistive drift waves in a straight l=2-stellarator were calculated

without approximations regarding the equilibrium geometry or the mode structure. Since the

developed code allows to investigate fully three-dimensional equilibria the topic of further study

will be the influence of curvature and local shear on drift waves in toroidal stellarators. The code

will also be applied to tokamak configurations in order to find possible structural differences in

the drift mode structure.

Acknowledgements

I wish to thank J. Nührenberg for fruitful and encouraging discussions.

References

[1] A. Bhattacharjee et al.: Phys. Fluids 26, 880 (1983)

[2] R.E. Waltz and A.H. Boozer: Phys. Fluids B 5, 2201 (1993)

[3] M. Persson, J.L.V. Lewandowski, and H. Nordmann: Phys. Plasmas 3, 3720 (1996)

[4] J.L.V. Lewandowski: Phys. Plasmas 4, 4023 (1997)

[5] N. Dominguez et al.: Phys. Fluids B 4, 2894 (1992)


