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1.  Introduction and Computational Model

Neoclassical tearing modes (NTM)[1,2] often lead to a β-limit lower than that given by

ideal MHD calculations or even to disruptions.  Therefore, the understanding of the growth

of nonlinear NTMs and the investigation of possible stabilising methods are very

important.  A straightforward method for suppressing NTMs is to drive an auxiliary non-

inductive current in the o-point of the magnetic island in order to substitute the missing

bootstrap current[3,4].  Due to its localised deposition, Electron Cyclotron Current Drive

(ECCD) is most appropriate for this purpose. Here we use a numerical simulation to study

the nonlinear growth and the saturation of NTMs and their stabilisation by phased ECCD

and Electron Cyclotron Resonance Heating (ECRH).

Ohm's law and the equation of motion
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are  utilised,  where  ψ  is  the  flux  function  defined  by  B=B0zez-(kr/m)B0zeθθθθ+∇ψ××××ez,

jz=-∇2ψ-2(n/mR)B0z is the current density, φ is stream function defined by v=∇φ××××ez,  and

B, v, jb and jE  denote the magnetic field, velocity, bootstrap current density and the driven

current density by ECCD  along the ez direction, respectively.  The  subscript 0 denotes an

equilibrium quantity,  and m/r and k are the wave vector in eθθθθ and ez direction, respectively.

The large aspect-ratio tokamak approximation (to the order ε ) is used.
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where p is plasma pressure,  χ b  and χ ⊥  are the parallel and perpendicular transport

coefficients, respectively, and Q is the heating power density.  g is a function of the minor

radius r depending on the collisional regime.  For the transport coefficients χ b =109a2/τR is

taken. χ b /χ ⊥  is taken as 108  at the magnetic axis, decreasing towards the plasma edge to

107.  τR=a2/η is the resistive time scale.



Assuming the location of the maximum driven current ψ(rE )  to be located inside the

magnetic island, the Ej  profile is approximately symmetric on the two sides of the island´s

o-point since the magnetic flux tubes on both sides of the o-point are connected inside the

island.  We  describe Ej , therefore, by a Gaussian  function of ψ,

jE=jE0exp −2
ψ - ψ(rE )[ ]

ψ(rE ) - ψ(rE - wE / 2)[ ]
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for rE≤ ro and rE>ro, respectively, where ro is the location of the island´s o-point, jE0 and

wE are the magnitude of the driven current and the width of the current layer, respectively.

The change of plasma resistivity due to ECRH is taken into account assuming
η = η0 + ����η  , (5)

where η0 indicates the influence of the magnetic island on the resistivity profile.  Along a

radial chord passing  through the x-point η0 is assumed to have the equilibrium value,

whereas elsewhere it is calculated according to η0=η0(ψ).  The ECRH resistivity

perturbation,����η , is taken to have a Gaussian profile similar to Eq. (4).  However, the

minimum value of ����η  is at the o-point of the island rather than at ψ(rE )  since we assume

the power loss from the island to be dominated by heat conduction, making η a monotonic

function of ψ inside the island.

2.  Modelling Results

We first model the effect of NTMs on energy confinement, arising from the thermal

shortcut of the energy flux through the island. In Fig. 1 the degradation due to a (3,2) NTM
is shown as a function of the perturbed bootstrap current density, fra=jb0(rs )/jz(rs ).  The

dotted line gives the results of our numerical simulation whereas the solid line results from

a linear theory for the island growth,  and a linearised equation for the confinement

degradation due to the magnetic island[5]. For a high fraction of bootstrap current one finds

thereby a saturation at ∆β/β=30% that is in good agreement with the experiment.  This

saturation is caused by a saturation of the island width for large bootstrap current rather

than a saturation in the confinement degradation for large islands.

Next we model  the stabilisation of NTMs by feedback-controlled ECCD and ECRH.

Fig. 2  shows the saturated (3,2) magnetic island width as a function of the relative

magnitude of the phased ECCD current for the case of rE=rs and wE=0.1a.  Curve(a) is

obtained with ∆η=0.0, curve(b) with ∆η=0.05, and curve(c) with ∆η=0.1, where

∆η= ��η 0 / 0η (rs )   
is the normalised magnitude of the resistivity perturbation due to ECRH,

and I=IE/Ip is the total driven current normalised to plasma current.  The saturated island

width decreases as I increases, and decreases further with additional ECRH for small driven

current.   However, the saturated island width does not become smaller than w/a=0.05 due

to the finite current layer width  wE.



Fig. 3 shows the saturated magnetic island width as a function of We=wE/a with rE=rs
and ∆η=0.0.  Curve(a) is obtained with I=0.005 and curve (b) with I=0.01. The saturated

island width is approximately proportional to wE.

As seen in Fig. 4 the effectiveness of the control current reduces if it is not driven

exactly at the rational surfaces.  The saturated island width is given here as a function of

∆ρ=(rE-rs)/a with wE=0.1a.  Curve (a) is obtained for I=0.005 and ∆η=0.0, curve (b) for

I=0.01 and ∆η=0.0, and curve (c) for I=0.005 and ∆η=0.1.  For large islands, the best radial

position for the ECCD current to reduce the island width is at 0.01a to the  inside of the

rational surface, since the o-point of the island is shifted radially inward from the original

rational surface. As I
 
and ∆η increase, the island and therefore, the shift of its o-point is

small so that the best position of rE for stabilisation is at the rational surface.

3.  Discussions and Summary

Assuming the width of the deposition profile of electron cyclotron wave to be small, the

width of the driven current profile is determined by τs=τf, where τs is the slowing down

time of the fast electrons, τf=wE
2

/ (4D)  is the local confinement time of the fast electrons,

and D is the diffusivity of the fast electrons.  For this case
w
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For typical ASDEX-Upgrade parameter: n=3××××1019m-3, D=1.0m2/s, and assuming the

effective temperature of the fast electrons to be Tfast=15keV, Eq. (6) gives wE/a≈ 0.1.  Since

wE/a�does not decrease much even for a large tokamak, the finite current layer width could

be a limitation for a complete stabilisation of neoclassical tearing modes by ECCD for a

reactor.

Assuming 
b
��j /jz0<<1 and jE/jz0<<1, the relative amplitude between the stabilising

effect due to ECCD and due to ECRH on the island can be found approximately to be
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where cj= J
z 0

π 2a /Ip , γ is current drive efficiency, and T0 is the electron temperature.  For

typical ASDEX-Upgrade parameters one finds RECCD/ECRH≈ 0.3.  For a tokamak reactor
and a not too large island RECCD/ECRH will be larger than one,  so that phased ECCD will be

more effective.



Fig.1  δβ/β versus the fraction of the bootstrap
 current density at the rational surface.  For 
larger fra, δβ/β saturates at 30% caused by a 
saturation of the island width for large fra. 

Fig.2 The saturated island width versus I=IE/Ip,
the relative amplitude of the driven current.  
Curve (a) is obtained with ∆η=0, curve (b)
 with ∆η=0.05,  and curve (c) with ∆η=0.1.

Fig.4  The saturated island width versus 
∆ρ=(rE-rs)/a.  Curve (a) is obtained with 
I=0.005 and ∆η=0.0, curve (b) with I=0.01 
and ∆η=0.0, and curve (c) with I=0.005 
and ∆η=0.1.
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Fig.4  The saturated island width versus 
the width of the driven current for rE=rs
and ∆η=0.  Curve (a) is obtained with 
I=0.005 and curve (b) with I=0.01.


