
NONLOCAL THREE-DIMENSIONAL SIMULATIONS
OF PLASMA EDGE TURBULENCE

K. Hallatschek1, A. Zeiler1, D. Biskamp1, J.F. Drake2, and B.N. Rogers2

1Max-Planck-Institut für Plasmaphysik,

85748 Garching, Germany

2Institute for Plasma Research

University of Maryland, College Park, MD 20742

1. Introduction

The anomalous transport in the plasma edge has a great influence on overall tokamak confine-

ment, since the central temperature to a great deal depends on the temperature reached at the

edge. Most fluid simulations of plasma edge turbulence assume the plasma parameters and

their gradients to be constant throughout the computational domain (local approximation). This

assumption is not completely valid in the edge since the density and temperature gradient scale

lengths there approach the turbulence scale lengths. In this work, we take the radial variation

of the plasma parameters into account, so that different turbulence regimes are contained in the

simulation volume and the different types of turbulence can interact with each other. The tur-

bulence in turn self-consistently determines the evolution of the temperature and density profiles.

2. Equations

At the present stage we use the electrostatic drift-Braginskii equations with complete ion-

dynamics [1] in a flux-tube domain [2]. The equations are normalized to the typical space and

time scales of the resistive ballooning mode [2,3].
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where Te0, Ti0, n0 are typical values of the simulated plasma, Ln is the density e-folding length,

ωci is the ion gyro frequency. Dimensional quantities are indicated by a “P”. The parameter λn
is a measure for the “locality” of the simulation. In these units, the typical density fluctuation

amplitude (for the ballooning mode) is (λn/n0)(n0L⊥/Ln) = 1. Similar estimates hold for φ

and Ti if LTi ∼ Ln. The background profiles 〈n〉 and 〈Ti〉 are by definition of order λn. Hence

the parameter λn is also the ratio of the background quantities to the fluctuations.



In particular, the following equations are advanced in time:
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where 〈.〉 means the flux surface average, 〈Te〉 is assumed to be equal to 〈Ti〉, and

h = φ− α〈Te〉n/〈n〉, Dt = ∂t + v · ∇,

v = ẑ×∇φ, Ĉ = (cos(2πz)− ε) ∂y + sin(2πz)∂x, ∂‖ = ∂z + 2πŝx∂y.

The flux surface averages in the vorticity equation (1) and the parallel derivatives are applied

in a way to maintain as many nonlinear terms as possible while still being able to solve the

equations with a pseudospectral solver in the y-direction.

The curvature operators are applied on the fluctuating quantities only and flux surface

averages are allowed to commute past the curvature operators since for now we are not interested

in an exact reproduction of the plasma equilibrium in the presence of neoclassical effects.

With the above equations, the local limit can be readily obtained by letting λn → ∞,

keeping the other parameters fixed and noting the following proportionalities:

〈n〉 ∝ 〈Ti〉 ∝ λn n− 〈n〉 ∝ Ti − 〈Ti〉 ∝ φ ∝ const. ∇⊥〈ξ〉 ∝ Dt〈ξ〉 ∝ 1/λn〈ξ〉.

Some additional perpendicular and parallel diffusion and viscosity terms with low ampli-

tude have been introduced to damp the turbulence at the grid scale.

3. Numerical scheme

To allow the use of a large time step, the time integration of the resistive terms is carried out

semi-implicitly with the trapezoidal rule, while all other terms are integrated with the mid-point

rule. The resulting equations are Fourier transformed in the y-direction, and the equations (1),

(2) and (3) are combined into a single equation for h at the next time step, which is then solved

by direct matrix inversion in the x–z-plane. To limit the matrix band width, the computational

domain is divided in the z direction into 8-16 boxes, of which the boundarys are treated explicitly

by a Du-Fort-Frankel scheme. This is possible because the ∂2
‖ contributions in the equation carry



a small factor ∆t, the numerical time step. The resulting value of h is substituted back into

equations (2) and (3). Equation (4) is solved explicitly since it does not contain large diffusive

terms.

The convection terms are calculated in configuration space while the rest of the computa-

tion takes place with y in Fourier space. The flux surface averages and the inverse matrix used

in the solver are recalculated only every∼ 1000 time steps, since they change very slowly. The

numerical scheme has been implemented on a Cray T3E and runs on 256 processors with about

20% overhead due to communication.

4. Simulations

The results of a simulation with an initial profile covering the range of local α = 0.1− 1.1 and

nearly constant local εn = .05 and ηi = LTi/Ln = 3 and other paramaters λn = 25, τ = 1, εv =

0.01, ε = 0.2, ŝ = 1 are presented.

Figure 1. Particle and heat flux at t = 16 and t = 32

Figure shows the smoothed turbulence-driven particle (nvr) and heat fluxes (Tivr) at

t = 16, where the turbulence is not yet saturated, and at t = 32, where it is saturated, but the

temperature and density profiles are not yet relaxed. At the outside of the tokamak the ballooning

mode is observed, with a ratio of heat to density flux of order ofLnTi/(LTin), while at the inside



the ηi-mode, with practically no particle transport, prevails. In the course of saturation of the

turbulence the two regimes mix, but the ratio of heat transport to particle transport at the inside

is still much larger than in the outer region. The occurrence of both modes is consistent [3] with

the initial local α and ηi shown in figure (dashed).

Figure 2. ηi and α profiles at t = 0 and t = 270

After a while, the unequal ratios of particle transport to heat transport for the ballooning

and ηi modes leads to an increase in ηi at the outside and a decrease at the inside as shown in

figure . This leads to only marginally unstable long-wavelength ηi-modes in the hot region of

the computational domain [3].

5. Summary and Conclusions

A simulation code for the electrostatic drift Braginskii equations with ion temperature has been

developed, which takes into account non-local effects and the self-consistent relaxation of the

profiles. The code runs in parallel on up to 256 processors on a T3E. First results show a

transition from ηi to ballooning-like turbulence from the inside to the outside of the simulation

volume in the expected parameter range. Due to the relatively low particle transport rate of the

ηi turbulence, the profiles relax to a state where ηi is very high at the outermost edge and is at

the threshold for long-wavelength ηi-modes at the inner boundary of the computational domain.

To model the physical situation more closely, it is planned to include the ionization of neutrals

in the edge in the simulation.
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