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Introduction

Codes for solving the MHD equilibrium equations

J:<B:Vp.V><B=J,V-B=U (l)

for finite-a.spect~ratio, high‘beta, 3-D configurations are necessary for the design of fusion
machines and analysis of experimental data.
Due to the absence of symmetries, which guarantee the existence of nested magnetic
surfaces, in stellarators the treatment of magnetic fields with islands and /or stochastic
regions is required.
The VlVIEC code [1] solves the equilibrium equations by a variational method in which
the total plasma energy is minimized. The VMEC code presumes a. nested toroidal flux
surface geometry. and hence can not deal with the magnetic islands and stochastic regions
mentioned above. However, it is generally believed that the solutions found by the VMEC
code represent good approximations to the solutions including islands and stochastic
regions. The VMEC code is robust and yields an accurate description of the flux surfaces
with a. minimum of computational effort and a minimum number of poloidal and toroidal
harmonics. These features make the VMEC code the the most Widely used of the 3—D
equilibrium codes
The PIES code [2] solves the MHD equilibrium equations (1) by a Picard—like iteration
scheme

V >< Btu“) : Just”). (2)
Bi”J is the magnetic field at the start of the nth iteration, The computationally intensive
part of the code is the calculation of the current density HEW) : J; + J“ from the
equilibrium equations (1) and V . J = 0. Here, J; is the diamagnetic part and J“ is the
parallel part of the current density. These current densities are found from

V ><BJl=— p32 . (3)
B‘Viu—i-V-Jizo with JllzuB. (4)

Using this non—variational method; the PIES code is able to handle systems which do not
have a nested toroidal flux surface geometry.
Due to the use oi'the Picard iteration scheme. the PIES code shows a very slow convergence
rate, eSpecially when large blending parameters (see below) have to be used to avoid
numerical instabilities. in this work, finitewbeta solutions obtained with the VMEC code
are used as initial guesses for the PIES code in order to accelerate the convergence.
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PIES convergence
Using magnetic coordinates (p, 6,1,5) and solving the equilibrium equations (1).

, I F
J : Vt!) >< V6 (WWI) + (if—:2 fificosfitqfi — 1116))

+V¢ x V 3 us ’(fill + EEV‘i—Lj'é'” s( ¢ — m6) (5). 1; g . d¢‘m(nm¢m)co pn .

flab) and 9(a)) are the net toroidal and net poloidal current, respectively, L7,?“ are the
Fourier coefficients of the Jacobian between laboratory and magnetic coordinates. mm
label the poloidal and toroidal mode number, respectively. As seen from equation (2)
and depending on the shape of the local pressure profile, there may occur current density
resonances near rational surfaces with L : m/n . The observed numerical instabilities
mentioned often appear close to these resonances.
It was found to be useful or even necessary in this connection to blend the Fourier coeffi—
cients of the coordinates and fields with those of the previous iteration(s). This blending
is accomplished with the algorithm, A(n.+1) = fl(n+ 1) +174 - (AU!) A A(n.+1)).A are
the coefficients to be blended, e. g. coefficients of B'fi', x and L, and 5A is the blending pa-
rameter for A, Particularly in the case of low shear and/or high values of (/3), large values
of blending parameters are necessary to avoid instability and to achieve convergence The
result is a very slow convergence rate. This slow convergence can be illustrated by the
computation of VVYvX equilibria (for W7—X, see c. g. [3]). For an equilibrium with islands,
([3) = 3.75 ‘76, and using the vacuum field as initial guess, several hundred iteration are
needed for convergence [4] Generally, blending factors of 0.950 to 0.995 are found to be
necessary for VV7~X configurations.
It is possible to improve the convergence rate by using of ’Chebychev’ periodic sequences
of iterations with various blending parameters. Such a sequence allDWs the algorithm to
perform one iteration step with a rather small blending parameter after some steps with
large blending parameter Without loss of stability.
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Figure 1: man. correction ABmM/B versus the number of iterations. Iteration # 2 to 5554 3]
with u Chebyshcv sequence from yéé 24 to # 28 are shown. W7—X configuration, (/3) = 4.1 %.

in fig. 1, the convergence of the magnetic field B is shown by plotting the change AB
of E versus the number of iterations. One Chebychev sequence with a period of N = 5
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from iteration N0. 24 to iteration No. 28 is shown. Iteration No. 28 is the one with the
smallest blending factor, the acceleration of the convergence is clearly visible.
Fixed«boundary results
Another method to improve the. convergence rate is to improve the initial guess for the
magnetic field. Here, VMEC results are used as initial guess. The field resulting from
a. VMEC run is transformed into PIES coordinates via an interface code. To illustrate
this method of accelerated convergence, extensive computations of fixed—boundary WT—X
equilibria with (B) from 3 to about 5 % with and without islands were done. The number
of iterations necessary for a PIES run to converge with a VMEC field as initial guess
was found to decrease by nearly one order of magnitude compared with corresponding
PIES runs using the vacuum field as initial guess. For W7—X configurations without
islands, about 30 to 40 iterations were found to be necessary to compute a. equilibrium,
in cases with islands, about 'F0 to 110 iterations were required depending on island size
and possibilities to use Chebychev sequences. The number of toroidal and poloidal mode
numbers used were lnl g 8 and {mi S 10 to 16, The numbers of radial points used
were from 33 for configurations Without islands up to 65 in casias with islands. For all
considered W7—X configurations, the island widths were found to be very small compared
with the plasma radius although the islands were located in the low-shear region of the L
profile, for example at t = 5/ 6. Typical values are in the region of a few percent.

J .3 I J i! .0 r7 l I .9 A ‘1‘;

S

Figure 2: Rotational transforms L versus the normalized radius for W7-X equilibria with
(fl) = 3 2'6 (left) and (,8) = 5 % (right).
Dashed line: VMEC calculations, full line: PIES calculations.

In fig, 2, the rotational transforms L versus the radial flux label for a W7—X equilibrium
with (JG) 2 3 ”/6 and no islands (more specifically, with islands which size are below the
discretization length] and for a case with (13) = about 5 % and (small) islands are shown.
Both PIES and VMEC profiles are plotted in order to illustrate the practicality of using
VMEC inputs. The profiles are quite similar for these configurations. In fig. 3, flux
surfaces of a WT—X equilibrium with (3) = 5 % obtained from PIES for three different
iterations are shown. The left one is the field obtained from VMEC, the right One is the
converged equilibrium field. The corresponding L profile is on the right side of fig. 2. The
island chain is associated with a transform of t 2 5/6.
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Figure 3: Flux surfaces of a '7—X equilibrium with 56> = 5 %, obtained from PIES after the
0th {left}, the 11m (center) and the 96th (right) iteration.
Number ofpoloeidal, toroidal modes: m g 10) [NI 3 8, 65 media! mesh points.

Conclusions
Using VMEC equilibrie as PIES input, a considerable acoeleraition of the fixedvboundary
PIES convergence has been realized. This makes the PIES code a suitable tool to perform
equilibrium and, particularly. island studies for V ”7—K and other configurations.
Our next step, is the calculation of free-boundary equilibria. The NEMEC code combines
the VMEC fixed boundary code and the NESTOR code [5]. The NESTOR code is used
to calculate the Neumann problem in the vacuum region. The NEMEC code can thus he
used to solve the free—boundary MHD equilibrium equations assuming ’good’ flux surfaces
in the plasma region. Combining the PIES code and the NESTOR vacuum code, one gets
a free~boundary PIES code that solves the froenboundary equilibrium problem for a
given external magnetic field.
The use of NEMEC W'7—X results as input for the free—boundary PIES code is under
development in order to accelerate convergence as in the fixed~b0undary case.
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