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1. Introduction
Fast (Jr-particles from fusion may destabilize toroidal Alfvén eigenmodes and ballooning
modes in tokamaks, as was found e.g. in ref. [1]. In a 3D plasma confinement device
there are reflected particles which are restricted to the period of the magnetic field.
The latter have also been shown to be destabilizing if they are energetic [2].
Thus, a stability analysis of 3D plasma equilibria from the kinetic point of view is
highly desirable.
2. Ideal MHD Energy Principle
The plasma potential energy of ideal MHD is given as [3,6]:

m :§ / f [a [W —- Ac?» Vsr +”/P(V - e2] (1)
Clearly, the stabilizing terms are the fluid compression term proportional to 7p and
C" = V x (5x J?) + %§s—V§§E¢ Vs, with f the perturbation and s the flux label. The fluid
compression term can be minimized to zero [6]
The only possibly destabilizing term A contains the curvature, local shear and parallel
current density as destabilizing contributions.
3. Kinetic Energy Principle
The guiding center description of a plasma yields an energy principle for low frequency
perturbations similar to the MHD one [4,5]. The kinetic energy principle is equivalent to
the adiabatic conservation of the magnetic moment a, the longitudinal action invariant
J = mvdl, and A in the case of energetic particles - the flux through the drift orbit,
the so called third adiabatic invariant (P = fadfi [5]. The triple (emit!) forms a
coordinate system of flux, poloidal and field line coordinates, respectively.
This energy functional differs only in its kinetic term from the MHD result, i.e. the
latter replaces the fluid compression term in eq. (1):

1 sW, 2 § / f / (13¢ [lolz— AGE-Va)? + Wk] (2)
In the case of thermal plasmas where the particles can be assumed to be attached to
the field lines the energy principle reduces to the well known Kruskal-Oberman result
[4] in which the kinetic term is stabilizing. This kinetic term is given by:

Wk = —%/.dadfidud.l (g?) (H)2 (3)
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The quantity (H) is the mean variation of the particle kinetic energy between the
reflection points whereas F denotes the distribution function of the plasma with e the
particle energy.
Introducing the perturbation 5, the field line curvature vector E and 1/ = 5/}; one

obtains:
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This kinetic energy principle (eq.(2)) is investigated for a sequence (with sequence

parameter t) of 3D magnetic field configurations interpolating between an unstable

121,2 stellarator (t = 0) and the stable Wendelstein T—X (t z: 1). The details of the

interpolation are given in ref. [7].
The stability analysis has been done with a kinetic generalization of the CASsD code

[6]. the numerical field line integration scheme has been adopted from NOVA-K [8] The
eigenvalue problem corresponding to eq. (2) has been solved.
4. Results
For the computation of eq.(_4) the possible particle trajectories along the field lines have

to be catalogued. The torodial periodicity and the special magnetic field structure of

W7-X like configurations allow a categorization of reflected particles on surfaces of

constant 3 and y in not more than three groups (Fig. 1).
The by far most important contributions to the kinetic energy term stem from the

reflected particles. The passing particles average over the whole flint surface and are

therefore almost negligible, see Fig.2. The eigenvalues of the kinetic energy principle

Fig.1: shows a cut through the mag-
netic field strength at the .9 = 0.343
surface at 1/1/ = Bref 2 1.6080.

The mean B is (B) = 1.4752. At 2-0 '
the white spots B > Bref is valid.
Their edges form the reflection m 0.0

4.0

points of the trajectories. It can be

seen that 5’ groups of particles exist:

reflected within 1/5 (block), 4/5
{dark gray), 5/5 (light gray) of the
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Fig.2: The main contribu-

tions to the kinetic energy

term arise from the reflected
particles which are character—

ized by an e/u value between
I/Bmw and 1/3mm on a flux
surface. (here. for example
the contribution fmm the s =

0.34 surface is given).
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have been calculated extending the CASSD code with eq. (2).
It. can be shown that although the structure of the functional of the kinetic term is
completely different from the MHD structure there exist so called mode families [6] as
in the MHD analysis. The toroidal Fourier indices within a mode family differ by an

families does not exist. Also, the so called phase factor transformation [6,7] to deal
with high mode numbers can be performed as in ideal MHD.
The inclusion of the kinetic energy term into the eigenvalue problem tends to shift the
main contributions from the perturbation to the plasma edge and, simultaneously, to
lower them (Figs. 3,4).

Fig.3: Contributions to the
plasma energy for the unsta-
ble t : 0A configuration and
for both. the ideal MED ease
{broken lines} and the kinetic
energy principle (full lines),

Fig.4: The radial dependence
of the four most prominent
E perturbation modes (out of
12} for the sequence parame—
ter 1. = 0.4. The ideal MHD 3”-
modes are those with broken
lines
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The point of marginal stability is shifted by approximately 0.1 towards lower values
of the sequence parameter t compared to the ideal MHD due to the stabilizing kinetic
term (Fig 5).
A perturbative treatment of TV]; with ideal eigenfunctions yields an eigenvalue which
is approximately 10% larger than that from the exact solution.

Fig.5: Eigenvalues calculated with 1-0
the CASSD—K code. for a sequence of 0.0
3D plasma equilibria. .10a .
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5. Conclusions
A kinetic energy principle for thermal plasmas ( neglecting drifts) has been investigated
in a. 3D n‘iagnetic field and the according eigenvalue problem has been solved.

In comparison to ideal MHD the kinetic. energy principle is more stable leading to a.
smell shift of the point of marginal stability in a sequence between stable and un-

stable equilibria. The reflected particles have been found to be the most important

contributors to the kinetic energy term in the functional.
The energy functional will serve as starting point for the investigation of hot particle
instabilities. For the latter particle drifts have to be included as outlined in [5]
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