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1. Introduction

A physicsvbased unclerstandingland prediction of plasmaedge confinement requires the
investigation of the complete two—fluid drift-Braginskii equations [1] in realistic geometry.
In this paper we extend previous approaches (see Refs. [2,3] and citatiOns within) in two
ways. (a) Ion temperature dynamics are self-consistently taken into account. This allows
us to study1 within the same system, turbulence driven by resistive modes, which was
previously treated in the cold ion limit, and m—mode turbulence. It also enables us to
check whether the nonadiabatic electron response at the plasma~edge modifies the 7]!»
mode, since resistive effects usually are neglected in simulations of rig-mode turbulence
(see eg. Refs. [Li-6]), (b) To account for the fully nonlinear self—consistent evolution of
the piasma~edge profile and to make efficient use of parallel computers with distributed
memory architecture, we have developed and applied an anisotropic multrigrid Poisson
solver to Simulate resistive drift-wave turbulence in sheared magnetic geometry.

2. Ion temperature fluctuations

Our investigations of ion temperature effects are based on the electrostatic drift-Braginskii
equations [1] in a flux-tube domain with field«aligned coordinates [3],
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with p8 = n + T9, pi = n + Ti, h : qfi — 04(1),; + 04717;), and Vi, the total time derivative
(1/dt, and the curvature operator 6' defined as in [3]. The time and space units
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chosen to balance the three terms in Eq. (1a), are the natural choice for the resistive
ballooning mode (but not for the m-mode which scales like p5, as we will show). This nor-
malization yields the dimensionless parameters oz = (pscstgl/[U + T)LnLL], en = QLH/H,
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’T' = Tao/Ten, K‘il : 1‘6a25ni1 + TL 77:: : LII/LE: ”'2 = Lin/LT; With Cg : (T20 ‘l‘ Ti'fll/Ymiy

p5 : cS/wci, the profile e—foldiug lengths Ln, Ln, and LT” and the magnetic shear para-

meter e.
To calculate the linear properties of resistive ballooning and toroidal m—modes we drop

the electron temperature fluctuations and Fourier-transform Eqs. (la), (11)), (id) in a; and y
keeping only,r the modes with km 2 0. Along the magnetic field we expand in the orthogonal
functions 1/242} = exp{—(Az)2/2}Hn(/\Z) where H,, are the Hermite polynomials. This
leads to a generalized matrix eigenvalue problem for the growth rate ”r, which we solve by
standard numerical techniques.

\Ve perform the eigenvalue calculations in the range of typical edge parameters or N 1,
5,, ~ 0.05, m w 1, s = 1. Three main results are obtained: First, the resistive bal—

looning and the curvature driven ni-mode appear as two different branches at comparable
wavelengths, depending on the parameters. Second, the m—mode is unaffected by the non—
adiabatic electron response, Its growth rate agrees surprisingly well with the one obtained

without parallel resistivity. Third, the ion pressure gradient strongly supports the resistive
ballooning mode. Consistent with Ref. [7] the resistive ballooning mode has a wavelength
which scales like Ly and is restricted to the low-a regime (a S 0.5) by electron and ion
diamagnetic effects. The im—mode is compared to the adiabatic limit (gt = om) where the
dispersion relation can be solved analytically. The analytic solution matches the numer-
ical result obtained for arbitrary resistivity. The analytic solution allows us to show that
unstable roots exist if and only if n, > 2/3. Furthermore, we obtain the approximate

scaling for the spectrum of unstable modes lisp: N l/["r(77 H 2/3)] This shows that m
needs to be sulficiently larger than 2/3 to destabilize the mode in the transport relevant
long wavelength regime. The characteristic wavelength of the mumode scales like p,, in
contrast to the Ll—scaling of the resistive ballooning mode. Thus, we conclude that the
relative importance of resistive ballooning and rig—modes is largely controlled by the ratio
of the two scale lengths ps/LL = all + flea/2 and by the parameter 72,-, since steepening

the temperature gradient boosts the vii-mode due to an increased growth rate at larger
wavelength.

In order to check the relevance of the linear results we proceed to direct numerical

simulation of the complete set of nonlinear equations (1) using the numerical methods

described in Ref. [3] In the low-o: regime the ratio pas/LL = all + 7):}? is always small
for realistic values of En, hence we do not expect the iii-mode to contribute unless m > 1;

this result is confirmed by the numerical simulations. In the high—a regime (a = 1.25),
where the resistive ballooning mode is stable, the ni-mode can become important for

realistic values of 6". At 5,, t 0.2, corresponding to large ps/LL, the transport rates
are high and strongly peaked at the torus outside, demonstrating the importance of the
toroidal rig-mode. Consequently the turbulence level is strongly altered if n,» is changed. If
an is reduced (6,, = 0.1]. the ratio ps/Li becomes smaller and the transport coefficients
are lower until, at 6,, = 0.05, the transition to nonlinearly driven drift—wave turbulence
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occurs (cf. Ref. [3] and citations within). A further reduction to 6,, = 0.02 again strongly
drives the transport. In this regime the inside/outside asymmetry is weak, reflecting the
fact that the nonlinear drive does not depend on toroidicity.

3. Anisotropic multigrid Poisson solver

We have developed an object~oriented three-dimensional anisotropic multi—grid Poisson
solver for simulating nonlocal collisional electrostatic drift-wave turbulence. In the design
of this solver considerable effort was made to ensure that the presence of anisotropy (cg,
arising from magnetic shear) does not lead to a significant degradation in performance.
A three-dimensional slab version of the solver, which can be readily extended to more
realistic geometries, has already been implemented for the Hasegawa—Wakatani equations.
The code has been designed in a manner so that the complete nonlinear reduced Braginskii
equations (cf, Sec. 2), including ion thermal dynamics, can be readily incorporated.

For nonlocal simulations of resistive drift-wave turbulence, we normalize (:5, y, z, t) to
(p,,p,,L“,Q~‘ ) and the total fields (do) to (T /e, n). Here p5 = cs/Qi, Q; = (EB/(mic),

= (Te/771,) 1”, Te'is the electron temperature, m, is the ion mass, L“ = p,[B/(ecn”fi)]1/2,
:nd 7'1 is some characteristic density. In this normalization, the coupled set of equations
for the potential and density studied by Hasegawa and Wakatani (Ref. {8]) appear as

Vi ' (TlgtrVJ_¢) + Vii ' <V|l_ Vunin): D¢VLB¢7 (28,)
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In terms of the shear scale length L5 one may express
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The hyperviscosity coefficients D¢ and D" are chosen to minimize the range of scales
devoted to modelling small~scale dissipation.

The coupled equations (2) are solved as an initialvalue problem, using a second—
order predictoracorrector scheme. To avoid unnecessary restriction of the time step by the
parallel-gradient terms, we treat these terms implicitly with a second-order trapezoidal
approximation. At the 2"“ time step, this requires the inversion of an anisotropic elliptic
operator of the form

VJ.’(ni-1V,L¢i)+92jvll'(Vllqsi— :.L?:')— f.-. (4%)

At v , n+ li‘ (Vul¢:- '—'n—) = z- ; (4b)
714—1

The advective nonlinearities, treated explicitly, are incorporated into the right-hand side.
The resulting operator, linear in n,- and $6, is inverted with an anisotropic multigrid solver.
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Figure 1: Typical dry—cross section of <25 and n in the absence of magnetic shear.

This solver, which is based on an my-zebra—surface Gauss-Seidel smoother, in turn requires
the solution of

Vi‘i71i—1Vi¢il 2 fi- i5)
Solutions to this 2D anisotropic Poisson equation are obtained with a secondary multigrid
solver based on an y—zebradine Gauss-Seidel tridiagonai smoother (cf. Ref. [9]).

Our algorithm has distinct advantages relative to a pseudospectral Poisson solver. On
a scalar machine, the computation time for our anisotropic multigrid solver is comparable
to. that of a pseudospectral code. However, a multi—grid solver parallelizes much more ef-
fectively over a distributed memory architecture (a parallel version of the code is currently
being developed for a Cray T313 computer). A multigrid algorithm also allows the use of
more general boundary conditions. Furthermore, all nonlinear terms can be retained in
a straightforward manner; in contrast, pseudospectral solvers require linearization of the
712:1 factor appearing in ( 5). While the execution time for a single step of our semi—implicit
algorithm is not substantially greater than that for an explicit code (based on a 2D Poisson

solver), we have found that the implicit treatment of the parallel—gradient terms typically
permits a time step of about four times larger. In Fig. l we illustrate a typical turbulent

state obtained with our multigrid solver,
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