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1. Introduction

A physies-based understanding and prediction of plasma-edge confinement requires the
investigation of the complete two-fluid drift-Braginskii equations [1] in realistic geometry.
In this paper we extend previous approaches (see Refs. [2,3] and citations withiz) in two
ways. (e lon temperature dynamics are self-consistently taken into account. This allows
us to study, within the same system, turbulence driven by resistive modes, which was
previously treated in the cold ion limit, and #-mode turbulence. It also enables us to
check whether the nonadiabatic electron response at the plasma-edge modifies the ;-
mode, since resistive effects usually are neglected in simulations of m-mode turbulence
{see e.g. Refs. [4-6]). (b} To account for the fully nonlinear self-consistent evolution of
the plastna~edge profile and to make efficient use of parallel computers with distributed
memory architecture, we have developed and applied an anisotropic multrigrid Poisson
solver to simulate resistive drift-wave turbnlence in sheared magnetic geometry.

2. Ion temperature fluctuations

Our investigations of ion temperature effects are based on the elecirostatic drift-Braginskii
equations [1] in a flux-tube domain with field-aligned coordinates [3],
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with p, = n+Te, py=n-+Tj, b = ¢ — alp. + 0.71T,), and V2, the total time derivative
d/dt, and the curvature operator C' defined as in [3]. The time and space units
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chosen to balance the three terms in Eq. (1a), are the natural choice for the resistive

ballooning mode {but not for the 7-mode which scales like p,, as we will show). This nor-
malization yields the dimensionless parameters & = (p;cst0)/[(1 + 7)LnL ], €, = 2L, /R,
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= Tio/Tons %) = 160%€a(1 +7), % = Ln/Lr, m = Ln/Lm with ¢ = (Toy + T}/,
ps = Csftug, the profile e-folding lengths Ly, Lz, and Ly, and the magnetic shear para-
meter §.

To calculate the linear properties of resistive ballooning and toroidal #-modes we drop
the electron temperature fluctuations and Fourier-transform Eqs. (1a), (1b), (1d) in z ard ¥
keeping only the modes with k. = 0. Along the magnetic field we expand in the orthogonal
functions 1y (2) = exp{—(}2)?/2}H.(A\z) wheze H, are the Hermite polynomials. This
leads to a generalized matrix eigenvalue problem for the growth rate -y, which we solve by
standard numerical techniques. .

We perform the eigenvalue calculations in the range of typical edge parameters a ~ 1,
€, ~ 0L05, 5 ~ 1, § = 1. Three main results are chtained: First, the resistive bal-
looning and the curvature driven n-mode appear as two different branches at comparable
wavelengths, depending on the parameters. Second, the n;-mode is unaffected by the non-
adiabatic electron response. Its growth rate agrees surprisingly well with the one obtained
without paraliel resistivity. Third, the ion pressure gradient strongly supports the resistive
hallooning mode. Consistent with Ref. [7] the resistive ballooning mode has a wavelength
which scales like L, and is restricted to the low-or regime (o < 0.5) by electron and ion
diamagnetic effects. The 7;-mode is compared to the adiabatic limit (¢ = an} where the
dispersion relation can be solved analytically. The analytic solution matches the numer-
ical result obtained for arbitrary resistivity. The analytic solution allows us to show that
unstable roots exist if and only if n; > 2/3. Furthermore, we obtain the approximate
scaling for the spectrum of unstable modes k2l ~ 1/[r(n — 2/3)]. This shows that
needs to be sufficiently larger than 2/3 to destabilize the mode in the transport relevant
long wavelength regime. The characteristic wavelength of the n~mode scales like g, in
contrast to the L -scaling of the resistive ballodning mede. Thus, we conclude that the
relative importance of resistive ballooning and #;-modes is largely controlled by the ratio
of the two scale lengths p,/L. = ol + 7)€/ and by the parameter 7;, since steepening
the temperature gradient boosts the m-mode due fo an increased growth rate at larger
wavelength. .

In order to check the relevance of the linear results we proceed to direct numerical
simulation of the complete set of nonlinear equations (1} using the numerical methods
described in Ref. [3]. In the low-e regime the ratio p,/L; = a(l + 7)el/? is always small
for realistic values of €,, hence we do not expect the 7;-mode to contribute unless n; 3 1;
thig result is confirmed by the nmumerical simulations. In the high-o regime (o = 1.25},
where the resistive ballooning mode is stable, the 7-mode can become important for
realistic values of &;,. At e, = (.2, corresponding to large ;oa/L 1, the transport rates
are high and strongly peaked at the torus outside, demonstrating the importance of the
toroidal n;~mode. Consequently the turbulence level is strongly altered if »; is changed. If
€, 18 Teduced (e, = 0.1), the ratio p,/L, becomes smaller and the transpart coefficients
are lower until, at ¢, = 0.03, the transition to nenlinearly driven drift-wave turbulence
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occurs (cf. Ref. [3] and citations within). A further reduction to ¢, = 0.02 again strongly
drives the transport. In this regime the inside/outside asymmetry is weak, reflecting the
fact that the nonlinear drive does not depend on toroidicity.

3. Anisotropic multigrid Poisson solver

We have developed an object-oriented three-dimensionsl anisotropic multi-grid Poisson
solver for simulating nonlocal collisional electrostatic drift-wave turbulence. In the design
of this solver considerable effort was made to ensure that the presence of anisotropy (eg.,
arising from magnetic shear} does not lead to a significant degradation in performanece.
A three-dimensional slab version of the solver, which can be readily extended to more
realistic geometries, has already been implemented for the Hasegawa—Wakatani equations.
The code has been designed in a manner so that the complete nonlinear reduced Braginskii
equations (cf. Sec. 2), including ion thermal dynamics, can be readily incorporated.

For nonlocal simulations of resistive drift-wave turbulence, we normalize (z,y, z,1) to
(ps,p,,LH,Q !y and the total fields (¢, n) to {Ty/e, 7). Here p, = ¢,/ i = eB/(mqc),

= (T4 /my) 2, T, is the electron temperature, nt; is the fon mass, Ly = p,;[B/{ecyn)[/?,
and i is some characteristic density. In this normalization, the coupled set of equations
for the potential and density studied by Hasegawa and Wakatani (Ref. [8]) appear as

d
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In terms of the shear scals length L, one may express
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The hyperviscosity coefficients Dy and D, are chosén to minimize the range of scales
devoted to modelling small-scale dissipation. _

The coupled equations {2) are solved as an initial value problem, using a second-
order predictor-corrector scheme. To avoid unnecessary restriction of the time step by the
parallel-gradient terms, we treat these terms implicitly with a second-order trapezoidal
approximation. At the ¢ time step, this requires the inversion of an anisotropic elliptic
operator of the form

Vi (nio1Vidi) -+ %jvu ‘ (Vu¢e - —:—) 2 (4a)
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The advective nonlinearities, treated explicitly, sare incorporated into the right-hand side.
The resulting operator, linear in n; and ¢y, is inverted with an anisotropic multigrid solver.
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Figure 1: Typical xy-cross section of ¢ and » in the absence of magnetic shear.

This solver, which is based on an zy-zebra~surface Gauss-Seidel smoother, in turn requires
the solution of
Vi-{(niaVid) = fi. {8)

Solutions to this 2D anisotropic Poisson equation are obtained with a secondary multigrid
solver based on an y-zebra-line (Gauss-Seidel tridiagonal smoother (ef Ref. [9]).

Our algorithm has distinet advantages relative to a pseudospectral Poisson sclver. On
a scalar machine, the computation time for our anisotropic multigrid sclver is comparable
to that of & pseudospectral code. However, a multi-grid solver parallelizes much more ef-
fectively over a distributed memory architecture {a paralle! version of the code is currently
being developed for & Cray TSE computer). A multigrid algorithm also allows the use of
more general houndary conditions. Furthermore, all nonlinear terms can be retained in
a straightforward manner; in contrast, psendospectral solvers require linearization of the
n;-1 factor appearing in (5). While the execution time for a single step of our semi-implicit
algorithm is not substantially greater than that for an explicit code {based on a 2D Poisson
solver), we have found that the implicit treatment of the parallel-gradient terms typically
permits a time step of about four times largef. In Fig. 1 we illustrate a typical turbulent
state obtained with onr multigrid solver.
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