

Speaking rate and spectral context affect the Dutch "a" – "aa" contrast

Matthias Sjerps & Eva Reinisch

Max Planck Institute for Psycholinguistics, Nijmegen

Matthias.Sjerps@mpi.nl Eva.Reinisch@mpi.nl

- Dutch listeners distinguish the vowels "a" and "aa" by duration (temporal content) and by timbre (spectral content)
- But speakers differ in timbre and speaking rate
- -> Speech sounds are interpreted relative to temporal and spectral context

Do compensation for durational and spectral variation occur at the same processing level?

Different levels could be assumed if there was a difference in the timing of compensation for context

What is the time course of temporal and spectral context effects?

Methods

28 minimal pairs (e.g., *gas – gaas*; "gas" - "gauze") Pretest: select temporally and spectrally ambiguous vowel

Categorization of vowel continua along two dimensions: **Duration**: varied from 100 ms to 180 ms

Timbre: F2 value of recorded "aa" was altered in steps of 75 Hz from +100 Hz to -200 Hz of original value

Percent "a" responses

((a a]]		Duration						
	aa	long	\leq		$ \rightarrow$	short		
	high	0	0.03	0.11	0.33	0.64		
Timbre	\wedge	0.02	0.03	0.1	0.36	0.67		
		0.03	0.09	0.31	0.77	0.86		
	\downarrow	0.22	0.31	0.69	0.92	0.95		
	low	0.32	0.49	0.81	0.93	0.98		

Experiment 1:

Printed-word eye tracking Manipulated sentences, 4 context conditions

			_		
rate	timbr	e	expected fixations	smak	gas
slow slow	high Iow	->	more "a"		\overrightarrow{x}
fast	high		» <i>"</i>	gaas	smaak
fast	IOW	->	more "aa"		0

Klik nu een keer op het woord ga(a)s boven de ster "Now click once on the word gas/gauze above the star"

Random disambiguation of the target by the shape

Fixation lag: 250 ms (fixations on distractor decrease) More looks to "a" words

- in the slow rate condition
- in the high timbre condition

Numerical precedence of spectral information over temporal information

Overall context effects are similar in size but late and emerge at or after word offset

- -> First saccade is driven by word onset, not by the vowel
- -> Random disambiguation may increase uncertainty

Experiment 2:

Printed-word eye tracking Two alternative forced choice task Same speech materials as in first experiment but following context did not disambiguate the words

Effects of rate and spectral context

- in listeners' responses
- in eye movements

Time course effects emerge during target processing

- Spectral context from 140 ms after vowel onset
- Rate context from 180 ms after vowel onset

CONCLUSIONS

Speaking rate and spectral information of a context sentence influence phoneme perception These compensation processes operate over a very similar time-span

-> Suggests similar levels of context processing

Small precedence of spectral over temporal context influences

-> Could reflect differences in cue uptake rather than different compensation mechanisms