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The propagation of waves for which the wave length is small compared to the
length scale over which the medium changes is usually treated within geometric op-
tics. In this formalism the wave beam is represented by a number of rays which are

I independently traced through the medium. In the case of a focussed beam the rays
can cross. The geometric optics approximation then leads to caustics, where the elec~
tric field amplitude is infinite. In the region where a caustic is formed the geometric
optics approximation breaks down. For a correct description of the wave propagation,
diffraction eEects must then be taken into account.

In the literature several methods to include diffraction effects in the description of
wave propagation in a magnetized plasma are given. A generalisation of the method of
S. Choudary and LB. Felsen [1,2] was developped by E. Maesucato [3]. This method
uses a complex eikonal function, where the imaginary part describes the electric field
profile of the beam. This method will be investigated in detail in this paper.

COMPLEX EIKONAL METHOD
In the eikonal method the electric field E is written in the form

E = e{x)Eg(x)exp(iS[x)), [1)

where S’ is the eikonal function. Normally, this function is taken to be real and,
consequently, the wave vector and frequency, defined by k E 53/31:, a: E —53/3t, are
real. The functions Educ) and e(x) give the amplitude and polarization of the wave.
If the length scale over which'the plasma parameters change is much larger than the
wave length these functions change only slightly over a wave length. In the dispersion
relation, which is derived through the substitution of Eq. (1) in the wave equation
the terms which contain derivatives of these functions with respect to position can
be neglected in comparison with the terms which contain derivatives of the eikonal
function .9. After deviding by Eg(x), the wave equation and the dispersion relation
do not contain any information on the profile of the wave amplitude. Because the ray
equations of geometric optics are derived from the dispersion relation, no profile effects
are retained in this description. - '

The method that uses a complex eiltonal function intends to include effects of the
profile in the description of the wave propagation. For this purpose an imaginary part
of the function 3 is introduced Im(3[x)) = -—~ ln(Eg(x)). The complex eilconal function
leads to a complex wave vector. The imaginary part 1:; E dIm[S]/dx contains the
profile information. The medium in which the wave propagates is assumed to be in
steady state. The wave source is assumed to have constant frequency and strength.
These assumptions make that the wave frequency in the medium is real and constant.

The same derivation that gave the ray equations of geometric optics can now
be repeated. A dispersion relation is obtained which depends on the electric field
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profile. From this dispersion relation ray equations. which include diffraction effects.
are obtained. .

Below the equations will be expanded in a small parameter to obtain a tractable
set of equations. To be able to expand various quanitities in the same dimensionless
small parameter (5. the velocity of light c and a frequencyr tug close to the wave frequency
will be used to make all length and time scales dimensionless.

Three difie1*ent length scales are discerned. the wave length A. the width. w of the
beam. and the length scale L over which the plasma parameters change. It is assumed
that these length scales can be ordened in the following way

Ltw:}t~5"2:5"1:1. (2)
where :5 is a small parameter.

Because of the ordening (2) the imaginairv part of the wave vector k.- which
describes the electric field profile. is of the order 5 compared with the real part It...
Consistency' with tea m 5"}. where leg is the waste of the beam. demands that the
Ioeam ibcussing is moderate. It turns out that the gradient dkr/dx. which is related to
the curvature of the phase front. must he taken of the order 52 or smaller to satisfyr this
demand. The imaginary part of the wave vector In. its gradient dk./dx. and dkr/dx
are allowed to vary over the width of the beam. i.e. d"lc./dx” : Own“) with n 23 0.
and drlkr/dx" = GET“) with at 3 l.

DISPERSION RELATION
It will be shown below that the leading order description of diffraction. effects requires
an expansion of the dispersion relation up to and including second order terms in the
small quantityr 5 : ltd/IRA. It is clear that all terms of the order (52 in the dispersion
relation can generate effects of the same order. The usual derivation of this relation
assumes a homogeneous plasma and a constant wave vector. This assumption can no
longer be made if the dispersion relation is to he derived including all terms of the order
62. because a consistent ordening of terms requires that both dkr/dx and dkf/dx are
of the order 62.

A method to derive the dispersion relation including all second order terms in the
small parameter 5 is given in Ref. [4]. The final result can he written in the general
form

at...
aa*w = wfik. x) + iFflflwdk. x). k.x) (3)

where at :2 wg(k.x) is the usual dispersion relation of the homogeneous medium with
constant wave vector. This wave vector. however. now is complex and the dispersion
relation must be evaluated as wg(k.. + ik;.x). The tensor -Ffl§ is. like tug. of the order
6:”. Therefore. the second term of the right hand side of Eq. (3] is a correction of the
order 63 to the usual dispersion relation.

THE RAY EQUATIONS
The dispersion relation can be written in the form a: 2 refit. x. BIC/fix). The ray equa-
tions are derived from the demand that the dispersion relation is satisfied for all posi-
tions

dk as ' (121:+ —-~m _ =
xallcfdxdx 6(8k/5X) kmdxg

dwmaw
dx T3}:

do:

as wax - 5E, fl. (4)
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The ray equations can be derived from this equation by taking the real and imaginary
part, taking the ray to propagate in the dimctifln

4—3“ 2 v = seeii ) (5)
x,dl-r,r’dxdr 3k

and expanding the equations in the small parameter 6 2 [lri|/|k,.[. The final result can
be written in the form [4]

dfl_ 3e .
d'r ” 5km. (5,1)

t l 1

die 3w. 32w die,- dgk-_.-3;:£L m n ._._‘.1 h,- e_‘"_,.u_..il?. ._ Fr midi.
dr as?” + 'Tfihrdfihrfl, deg, i ‘W clearing, (:35)

62 631 53 . 53

{1km .. . it“ (32.21,. t: diam,- dirt” dam-1.,
ts _ *1’Yet,-,,etfl. “sense, etc. "1*” r1m,,d:r,, , (5c)

53 53 d3 53

where
Lur- : Wfl(kr, X)

Fr = F(wfl(kftx)ik1"1x)

are real functions which do not depend on the imaginary part of the wave vector. To
derive Eqs. {6) the dispersion relation [3) had to be expanded up to second order in
the small quantity 5.

The first term on the right hand side of Eq. (6a), and the first term on the right
hand side of Eq. (6b), are the terms of geometric optics. The ether terms in these
equations are at least one order in magnitude smaller.. The direction of propagation
of a ray is equal to that of" geometric optics. The diffraction effects appear indirectly
through a modification of the real part of the wave vector which is driven by the electric
field profile through kg, dki/dx, and dglq/dxdx. If the width of the beam decreases
the gradient of the electric field profile increases and the second and third terms on
the right hand side of Eq. (6b) become larger, causing more bending of the rays away
from each other. The rays will, therefore, never cross and no caustics will he formed.
RELATION TE? 0THER WORK _
Using the complex eiltonal method Maseueato [3] dorived a set of ray equations which
include diffraction. It can be shown that his equations differ from the ratr equations
(Eqs. (6)) in this paper through the terms containing the tensor 3?”. This tensor entered
our equations through the correction on the dispersion relation that contains the gra-
dients of the wave vector. In Ref. [3] it was assumed that the Altar-Appleton-Hartree
dispersion relation is satisfied.

The statement that all terms oi" the order 52 have to be retained in the dispersion
relation would he too strong. In principle, one could treat the effects of the'gradient
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of the wave vector in the transport of amplitude equation. This solution, however,
is unnatural because effects of the same order are then treated in a different way,
It also goes against the philosophy of the complex eikonal method, where the beam
profile effects are introduced through the dispersion relation to derive ragr equations
that properly describe the diffraction effects. If the transport of amplitude equation
has to be considered separately one can just as well treat all diffraction effects in this
equation.

It must he noted, however, that Ref. [3], applies the formalism to the treatment
of a Gaussian beam. An example of the electric field of such a beam would be

2 s 2 2a: +3; +3; -iwt], l?)E-—s3- —te 'sfu m(z) EXP *- w2(z] 1 3+1 213(2)

where the beam is assumed to propagate along the zwaxis, w(s) is the width of the
beam and R(s) is the radius of curvature. Both is and 1/R are assumed to vary on the
long length scale L =: 5—2. It can be verified that in this case dflc,g/dx2 : (ME), and
rifles/d3»:2 1: C)(54). Therefore, all terms including the tensor if“,- can be neglected in
Eqs. [6). In the set of Eqs. (6] then the function wr(kr,x] appears, and it is equivalent
to that of Massucato.

In the case of a Gaussian beam the beam can be described entirely,r with a few
parameters (width and radius of curvature of the phase front). In this case a reduced
set of equations can be derived that gives the evolution of these parameters. Such a
set is discussed in Refs. [4—6].
CONCLUSIONS
In this paper an extension of the ray equations of geometric optics to include diffraction
effects for a wave beam propagating in a dispersive anisotropic medium is derived. The
results of this paper extend the previous results to more general beams, and shed. light
on the conditions under which the assumptions made in previous work break down.
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