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The propagation of waves for which the wave length is amall compared to the
length scale over which the medium changes is usually treated within geometric op-
tics. In this formalism the wave beam is represented by a number of rays which are
independently traced through the medium. In the case of a focussed beam the rays
can cross. The geometric optics approximation then leads to caustics, where the elec-
tric field amplitude is infinite. In the region where a caustic is formed the geometric
optics approximation breaks down. For 2 correct description of the wave propagation,
diffraction effects must then be taken into account.

In the literature several methods to include diffraction effects in the description of
wave propagation in a magnetized plasma are given. A generalization of the method of
S. Choudary and L.B. Felsen [1,2] was developped by E. Mazzucato [3]. This method
uses a complex cikonal function, where the imaginary part describes the electric field
prefile of the beam. This method will be investigated in detail in this paper.

COMPLEX EIKONAL METHOD
In the eikonal method the electric field E is written in the form

E = e{x)Eo{x) exp(iS(x)), (1)

where § i3 the eikonal function. Normally, this function is taken to be real and,
consequently, the wave vector and frequency, defined by k = 85/8x, w = —85/8¢, are
real. The functions Eo(x) and e(x) give the amplitude and polarization of the wave.
If the length scale over which the plasma parameters change is much larger than the
wave length these functions change only slightly over 2 wave length. In the dispersion
relation, which is derived through the substitution of Eg. {1} in the wave equation
the terms which contain derivatives of these functions with respect to position can
be neglected in comparison with the terms which contain derivatives of the eikonal
funetion §. After deviding by Eo(x), the wave equation and the dispersion relation
do not contain any information on the profile of the wave amplitude. Because the ray
equations of geometric optics are derived from the dispersion relation, no proﬁle, effects
arc retained in this description, :

The method that uses a complex eikonal function intends to include effects of the
profile in the description of the wave propagation. For this purpose an imaginary part
of the function § is introduced Im(S(x)) = — la{Eg(x)). The complex eikonal function
leads to a complex wave vector. The imaginary part k; = dIm[S]/dx contains the
profile information. The medium in which the wave propagates is assumed o be in
steady state. The wave source is assumed to have constant frequency and strength.
These assumptions make that the wave frequency in the medium is real and constant.

The same derivation that gave the ray equations of gecmetric optics can now
be repeated. A dispersion relation is obtained which depends on the electric feld
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profile. From this dispersion relation ray equalions, which include diffraction effects,
are obtained. .

Below the equations will be expanded in a small parameter to obtain a tractable
set of equations. To be able to expand varicus quanitities in the same dimensionless
small pararneter §, the velocity of light ¢ and a frequency wo close to the wave frequency
will be used to make all length and time scales dimensionless.

Three different length scales are discerned, the wave length A, the width w of the
beam, and the length scale L over which the plasma parameters change. It is assumed
that these length scales can be ordened in the following way

Lo:ow: A~ &2 4§01 (2)

where & is a small parameter,

Because of the ordening (2) the imaginairy part of the wave vector k; which
describes the clectric field profile, is of the order § compared with the real part Ik,.
Consistency with wy & d77, where wy is the waste of the beam, demands that the
heam focussing is moderate. It turns out that the gradient dk,/dx, which is related to
the curvature of the phase front, must be taken of the order 42 or smaller to satisfy this
demand. The imaginary part of the wave vector ky, its gradieni dk;/dx, and dk,/dx
are allowed to vary over the width of the beam, ie. d"k;/dx"™ = O(§"+1) with n > 0,
and d"k,/dx" = Q{6 with n > 1.

DISPERBION RELATION

It will be shown below that the leading order description of diffraction effects requires
an expansion of the dispersion relation up to and including second order terms in the
small quantity § = |lg[/|k,|. 1t is clear that all terms of the order 4% in the dispersion
relation can generabe effects of the same order. The usual derivation of this relation
assumes a homogeneous plasma and a constant wave vector. This assumption can no
lenger be made if the dispersion relation is to be derived including all terms of the order
&%, because & consistent ordening of texns requires that both dk,/dx and dk;/dx are
of the order &%,

A methed to derive the dispersion relation including all second order terms in the
small parameter § is given in Ref. [4]). The final result can be written in the general
form ok

w = wall, x) + iFplwolk, x), k, x) -—, 2
amp
where w = wy(k, x) is the usual dispersion relation of the homogeneous medinm with
constant wave vector. This wave vector, however, now is complex and the dispersion
relation must be evalnated as wo(k, + ik, x). The tensor Fp is, like wy, of the order
&%, Therefore, the second term of the right hand side of Eq. (8) is a correction of the
order é* to the usual dispersion relation.

THE BRAY EQUATIONS

The dispersion relation can be written in the form w = w(k, x, 8k/8x). The ray equa-
tions are derived from the demand that the dispersion relation is satisfied for all pesi-
tions

dw_?i
dx  dx

_a_ci)_
wdkpdx 0K
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The ray equations can be derived from this equation by taking the real and imaginary
part, taking the ray to propagate in the direction

L Re(gf ) (5)
x,dkfdx

dr Ak
and expanding the squations in the small parameter § = ;| /|l The final result can
be written in the form [4]

drg O .
dr - Bk:‘,ﬂ* (SCI,)
¢ 1 1
dhro 3’&; ke %, _(.l_/chg_ L F diki‘-,.
Tdar 8T ny Ol Okry dag n dzpdag {60)
5’2 (52 J:l 53
dkie -, P, ks 8w, dy 2k,
dr 1‘7519,-?731'0 B Qi Okt dzg e drydzg (6c)
& 52 5% ¢

where
wy = wplk,, x)

Fr = Flwo(k,, %), k,, x)

are real functions which do not depend on the imaginary part of the wave vector., To
derive Bas. (8) the dispersion relation (3) had to be cxpanded up fo second order in
the small quantity 6.

The first term on the right hand side of Eq. (6a), and the first term on the right
hand side of Fq. (6b), are the terms of geometric optics. The other terms in these
equations are atb least one order in magnitude smaller. The direction of propagation
of a ray is equal to that of geometric optics. The diffraction effects appear indirectly
through a modification of the real part of the wave vector which is driven by the electric
field profile through k;, dk:/dx, and d%k;/dxdx. If the width of the beam decreases
the gradient of the electric field profile increases and the second and third terms on
the right hand side of Eq. (6b) hecome larger, causing more bending of the rays away
from each other, The rays will, therefore, never eross and no caustics wilt be formed.

RELATION TO OTHER WORK )
Using the complex eikonal method Mazzuéato [3] derived a set of ray equations which
include diffraction. It can be shown that his equations differ from the ray equations
(Bqs. (6)) in this paper through the terms containing the tensor F. This tensor entered
our equations through the correction on the dispersion relation that contains the gra-
dients of the wave vector. In Ref. [3] it was assumed that the Altar-Appleton-Hartree
dispersion relation is satisfied,

‘The statement that all terms of the order 4% have to be retained in the dispersion
relation would be too strong. In principle, one could treat the effects of the gradient
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of the wave vector in the transport of amplitude equation. This solution, however,
is unnatural because effects of the same order are then treated in a different way,
It also goes sgainst the philosophy of the complex cikonal method, where the beam
profile effects are introduced through the dispersion relation to derive ray equalions
that properly describe the diffraction effects. If the transport of amplitude equation
has to be considered seperately one can just as well treat all diffraction effects in this
equation.

It must be noted, however, that Ref, [3], applies the formalism to the treaiment
of 2 Gaussian heam. An example of the electric field of such a beam would be

1 24yt Lt byt ]
E= mexp[_w +1kz+1kﬁ;(;)— - iwt|, (7)

where the beam is assumed bto propagate along the z-axis, w{z) is the width of the
beam and R(z) is the radius of curvature. Both w and 1/R are assumed to vary on the
long length scale L = §=2. It can be verified that in this case d2k,/dx? = 0O(¢), and
dk,/dx? = O(§*). Therefore, all terms including the tensor F\. can be neglected in
Eqs. (6). In the set of Eqs. (6) then the function w,(k,,x) appears, and it is equivalent
to that of Mazzucato.

In the case of a Gaussian beam the beam can be described entirely with a few
perameters {width and radius of curvature of the phase front). In this case a reduced
set of equations can be derived that gives the evolution of these parameters. Such a
set is discussed in Refs. [4-6],

CONCLUSIONS

In this paper an extension of the ray equations of geometric optics to include diffraction
effects for a wave beam propagating in 2 dispersive anisotropic medium js derived. The
results of this paper extend the previous results to more general beams, and shed light
on the conditions under which the assumptions made in previons work break down.
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