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In the absence of gravity, one can prove that tunneling instantons exhibit exactly one negative mode in
their spectrum of fluctuations. It is precisely the existence of this tunneling negative mode that warrants an
interpretation of these solutions as mediating the decay of a metastable vacuum. In the presence of gravity
the situation is much more subtle, not least because of diffeomorphism invariance. New complications arise
here: in particular, the kinetic term of the fluctuations can change sign somewhere along the instanton. We
show that in this case the mode functions remain nonsingular, and the tunneling negative mode continues to
exist. Moreover, the eigenvalues vary continuously when the potential is varied such that the kinetic term of
the fluctuations switches sign. However, the negative kinetic term implies the additional existence of an
infinite tower of negative modes, whose significance and interpretation remain elusive.
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I. INTRODUCTION

Since the pioneering work of Coleman and De Luccia
(CdL) [1] many articles were devoted to the investigation
of metastable vacuum decay with gravity. The recent
discovery of a Higgs boson at the LHC highlights the
importance of knowing all possible corrections (including
gravitational ones) to the vacuum decay rate, given that the
present Higgs boson and top-quark mass values indicate
that we may live in a metastable vacuum [2–14]. In spite of
many investigations of various aspects of metastable
vacuum decay with gravity,1 there remain several important
open questions in the field. One of them is the negative
mode problem. While in flat space-time it is relatively easy
to show that a bounce solution describing metastable
vacuum decay [19–21] contains exactly one eigenmode
with a negative eigenvalue (we refer to this as the tunneling
negative mode) in its spectrum of linear perturbations (as it
should; see Ref. [22]), once gravity is included this
question is still not completely solved [23–37].
The quadratic action for small perturbations about CdL

bounces was first calculated by Lavrelashvili, Rubakov and
Tinyakov (LRT) [23] using a Lagrangian formulation and
fixing the gauge in order to obtain an action for the single
remaining degree of freedom. It was found that this action
has the following structure: one obtains a factor QLRT,
given by Eq. (26) below, in front of the kinetic term of the

perturbations. This factor QLRT depends on a certain
combination of background quantities and typically
becomes negative on some interval along the bounce
trajectories. This specific gauge choice was criticized in
Ref. [24], where it was argued that the gauge is ill defined at
the middle of the instanton, i.e. at the location of maximal
3-volume of the geometry.2 In fact, in the Lagrangian
approach, where only configuration variables are involved,
many gauge choices lead to similar kinds of trouble.
Motivated by this, Tanaka and Sasaki (TS) [24] derived
a quadratic action using the Hamiltonian formalism. After
excluding matter degrees of freedom TS obtained the action
for one (gravitational) degree of freedom and showed that
there are no negative modes associated with this quadratic
action [24,26]. Realizing that the approach of TS is not
fully satisfactory, in particular because it does not allow one
to recover the flat-space limit when gravity is turned off and
because it hinges on a number of delicate analytic contin-
uations, a new approach was suggested by Khvedelidze,
Lavrelashvili and Tanaka (KLT) [27]. Using the full
machinery of constrained dynamical systems, the quadratic
action for the single physical degree of freedom was
obtained, and in this framework the flat-space limit is
successfully recovered. Note that similar results were later
rederived in Refs. [29] and [32]. The end result of the KLT
approach is similar to the earlier Lagrangian approach
action, but it contains a different factor Q in front of the
kinetic term of the fluctuations; see Eq. (27) below. It has*koehn@physics.upenn.edu
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2This is reminiscent of the issue of gauge fixing in bouncing
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extremum; see e.g. Ref. [38].
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been proven [27] that for bounces where Q is everywhere
positive there exists exactly one negative mode in the
spectrum of linear perturbations (see also Refs. [28,29,32]).
In this case, in complete analogy with the nongravitational
case, one can interpret the instanton as mediating the decay
of a metastable vacuum.
A recent study of gravitational instantons in flat potential

barriers has highlighted the fact that for large classes of
instantons, Q becomes negative somewhere along the
instanton [35]. This has motivated us to study the issue of
negative modes in some detail for these cases. Our findings
are twofold.
First, we will demonstrate (analytically) that the eigen-

value equation retains nonsingular solutions whenQ passes
through zero. In other words, at Q ¼ 0 the equation is
seemingly singular, but its solutions remain continuous and
at least twice differentiable. Moreover, the eigenvalue
evolves continuously as the potential is varied from cases
whereQ > 0 everywhere to cases whereQ < 0 somewhere.
In all the cases that we have investigated (numerically), the
eigenvalue of the tunneling negativemode remains negative.
This supports the view that for CdL bounces the tunneling
negative mode always exists.
Second, we will confirm the existence of an infinite

tower of additional negative modes when Q becomes
negative. They were already conjectured to exist by LRT
in their early work [23], and here we provide some explicit
numerical examples. These additional negative modes,
which are always present in the region where Q < 0,
remain puzzling: on the one hand, it does not seem possible
to remove them by a canonical transformation (see
Appendix C), but on the other hand the associated
instantons do not appear to be physically significantly
different from those where Q > 0 everywhere. The exist-
ence of this additional set of modes remains somewhat
mysterious and will require further clarification.

II. DESCRIPTION OF FALSE VACUUM DECAY IN
THE EUCLIDEAN APPROACH

Let us consider the theory of a single self-interacting
scalar field which is defined by the following Euclidean
action:

SE ¼
Z

d4x

�
1

2
∂μφ∂μφþ VðφÞ

�
: ð1Þ

Further, let us assume that VðφÞ is an asymmetric double-
well potential and that it has a local minimum (false
vacuum) at some φ ¼ φf, an absolute minimum (true
vacuum) at φ ¼ φt and a local maximum (top) at some
φ ¼ φtop, such that φt < φtop < φf.
The energy E0 of the lowest energy state localized

around the false vacuum gets a correction due to quantum
tunneling effects,

Ef ¼ E0 − γ: ð2Þ

It turns out that the correction is purely imaginary γ ¼ ijγj,
which is a sign of metastability and shows that Γ≡ jγj
actually describes the decay width of the false vacuum.
This decay width is given by the functional integral

γ ¼ 1

N−

Z
Dφe−SEðφÞ ð3Þ

where N− is a normalization factor. In the quasiclassical
approximation the functional integral (3) can be evaluated
by considering small perturbations about the classical
saddle-point Euclidean solution known as the “bounce.”
The Euclidean action can be expanded as

SE ¼ SðclÞðφbÞ þ Sð2ÞðδφÞjφ¼φb : ð4Þ

The normalization factor is the same functional integral
calculated about the false vacuum φ ¼ φf. So, for γ we find
the Arrhenius formula

γ ¼ Ae−B; ð5Þ
with

B ¼ SðclÞðφbÞ − SðclÞðφfÞ ð6Þ

and A is the ratio of the corresponding integrals:

A ¼
R
Dδφe−S

ð2ÞðδφÞjφ¼φbR
Dδφe−S

ð2ÞðδφÞjφ¼φf

: ð7Þ

The quadratic action for the Oð4Þ-symmetric configura-
tions takes the form

Sð2ÞE ¼ 2π2
Z

η3dηδφÔFδφ; with

ÔF ¼ −
1

2η3
d
dη

η3
d
dη

þ 1

2
V 00ðφÞ: ð8Þ

So, the mode equation diagonalizing the quadratic action
(8) has the form of a Schrödinger equation

�
−

d2

dη2
−
3

η

d
dη

þ V 00ðφÞ
�
δφn ¼ λnδφn: ð9Þ

Since any perturbation with proper boundary conditions
can be decomposed into a complete set of functions of the
fluctuation operator ÔF,

δφ ¼
X
n

cnδφn; ð10Þ

integration over δφ in Eq. (7) can be replaced by integration
over cn. Taking Gaussian integrals, one obtains the product
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of eigenvalues, i.e. determinants of the corresponding
operators

A ¼ B2

4π2

�Q
n0λ

b
nQ

nλ
f
n

�−1
2 ¼ B2

4π2

�
det0½−∂2 þ V 00ðφbÞ�
det½−∂2 þ V 00ðφfÞ�

�−1
2

:

ð11Þ

Here a prime indicates that the zero modes must be omitted;
as described by Callan and Coleman [20], a proper treat-
ment of the zero modes results in the B2=4π2 prefactors.
While finding bounce solutions and calculating the expo-
nential factor in the thin-wall approximation (or numeri-
cally) is a relatively easy task, the calculation of the
preexponential factor in field theory is considerably more
involved [32,39,40]; in particular, one has to deal with
possible one-loop divergences.

III. BOUNCE SOLUTIONS WITH GRAVITY

Let us consider the theory of a single scalar field
minimally coupled to gravity, which is defined by the
following Euclidean action:

SE ¼
Z

d4x
ffiffiffi
g

p �
−

1

2κ
Rþ 1

2
∇μφ∇μφþ VðφÞ

�
; ð12Þ

where κ ¼ 8πGN is the reduced Newton’s gravitational
constant. The most general Oð4Þ-invariant metric is para-
metrized as

ds2 ¼ N2ðηÞdη2 þ ρ2ðηÞdΩ2
3; ð13Þ

whereNðηÞ is the lapse function, ρðηÞ is the scale factor and
dΩ2

3 is metric of the unit 3-sphere,

dΩ2
3 ¼ dχ2 þ sin2χðdθ2 þ sin2ðθÞdϕ2Þ: ð14Þ

For the metric in Eq. (13) the curvature scalar looks like

R ¼ 6

ρ2
−

6_ρ2

ρ2N2
−

6ρ̈

ρN2
þ 6_ρ _N

ρN3
; ð15Þ

where : ¼ d=dη. Using the ansatz (13) and assuming that
φ ¼ φðηÞ, we get the reduced action in the form

SE ¼ SEðφ; N; ρÞ

¼ 2π2
Z

dη

�
ρ3

2N
_φ2 þ ρ3NVðφÞ − 3ρN

κ
þ 3ρ_ρ2

κN

þ 3ρ2ρ̈

κN
−
3ρ2 _ρ _N
κN2

�
: ð16Þ

In proper-time gauge, N ¼ 1, the corresponding field
equations are

φ̈þ 3
_ρ

ρ
_φ ¼ ∂V

∂φ ; ð17Þ

ρ̈ ¼ −
κρ

3
ð _φ2 þ VðφÞÞ; ð18Þ

_ρ2 ¼ 1þ κρ2

3

�
_φ2

2
− V

�
: ð19Þ

Now let us assume that the potential VðφÞ has two
nondegenerate local minima at φ ¼ φt and φ ¼ φf , with
VðφfÞ > VðφtÞ, and a local maximum for some φ ¼ φtop,
with φt < φtop < φf . The Euclidean solution describing
vacuum decay—the bounce—satisfies these equations, and
when VðφÞ > 0 one has the boundary conditions

φð0Þ ¼ φ0; _φð0Þ ¼ 0; ρð0Þ ¼ 0; _ρð0Þ ¼ 1

ð20Þ

at η ¼ 0 and

φðηmaxÞ ¼ φm; _φðηmaxÞ ¼ 0; ρðηmaxÞ ¼ 0;

_ρðηmaxÞ ¼ 1
ð21Þ

at some η ¼ ηmax. This assumes the following Taylor series
as η → 0:

φðηÞ ¼ φ0 þ
V 0ðφ0Þ

8
η2 þ V 0ðφ0Þ

192

�
V 00ðφ0Þ þ

2κVðφ0Þ
3

�
η4

þ V 0ðφ0Þ
829440

½135V 0ðφ0ÞV 000ðφ0Þ
þ 90V 00ðφ0Þ2 þ 162κV 0ðφ0Þ2 þ 180κVðφ0ÞV 00ðφ0Þ
þ 112κ2 Vðφ0Þ2�η6 þOðη8Þ; ð22Þ

ρðηÞ ¼ η −
κ

18
Vðφ0Þη3 −

κ

120

�
3

8
V 0ðφ0Þ2 −

κ

9
Vðφ0Þ2

�
η5

−
κ

2177280
½405V 0ðφ0Þ2V 00ðφ0Þ − 54κVðφ0ÞV 0ðφ0Þ2

þ 16κ2 Vðφ0Þ3�η7 þOðη9Þ; ð23Þ

where V 0ðφ0Þ≡ ∂V
∂φ jφ¼φ0

etc. Similar power-law behavior
is valid for nonsingular bounces for x → 0, where
x ¼ ηmax − η. These Taylor series are required when
numerically solving for instanton solutions, as one cannot
directly integrate from η ¼ 0 (given the above boundary
conditions), but rather has to start the integration at some
small value η ¼ ϵ ≪ 1.

IV. NEGATIVE MODE PROBLEM IN THE
HAMILTONIAN APPROACH

Let us expand the metric and the scalar field over an
Oð4Þ-symmetric background as follows:
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ds2 ¼ ð1þ 2AðηÞÞdη2 þ ρðηÞ2ð1 − 2ΨðηÞÞdΩ2
3;

φ ¼ φðηÞ þ ΦðηÞ; ð24Þ

where a and φ are the background field values and A,Ψ and
Φ are small perturbations. In what follows, we will be
interested in the lowest (purely η-dependent, “homo-
geneous”) modes and consider only scalar metric pertur-
bations. Expanding the total action to second order in
perturbations and using the background equations of
motion, we find

S ¼ Sð0Þ½a;φ� þ Sð2Þ½A;Ψ;Φ�; ð25Þ

where Sð0Þ is the action of the background solution and
Sð2Þ½A;Ψ;Φ� is the quadratic action given below.
The quadratic action about CdL bounces was first

derived in Ref. [23] using the Lagrangian approach and
in particular it was noted that when gravity is taken into
account the corresponding operator ÔG in front of the
kinetic term contains a factor (see the Appendix B for more
details)

QLRT ¼ 1 −
κρ2 VðφÞ

3
¼ _ρ2 −

κρ2 _φ2

6
: ð26Þ

This factor typically becomes negative somewhere along a
bounce solution. Later, using a Hamiltonian approach in the
context of the theory of constrained dynamical systems, the
quadratic action was rederived [27] and it was shown to
have a similar structure, but with a different factor in front
of the kinetic term of the perturbations,

QKLT ≡Q ¼ 1 −
κρ2 _φ2

6
: ð27Þ

The original quadratic action Sð2Þ½A;Ψ;Φ� is degenerate
and describes a constrained dynamical system. Applying
Dirac’s formalism as in Ref. [27], one gets an uncon-
strained quadratic action for a single physical degree of
freedom (which for this gauge-fixing procedure is simply
the scalar field perturbation Φ)

Sð2ÞE ½Φ� ¼ π2
Z

dηΦ

�
−

d
dη

�
ρ3ðηÞ
QðηÞ

d
dη

�

þ ρ3ðηÞU½φðηÞ; ρðηÞ�
�
Φ; ð28Þ

where the factor Q was given above in Eq. (27) and the
potential U is expressed in terms of the bounce solution as

U½φðηÞ; ρðηÞ�≡ V 00ðφÞ
Q

þ 2κ _φ2

Q
þ κ

3Q2
ð6_ρ2 _φ2 þ ρ2V 02ðφÞ

− 5ρ_ρ _φV 0ðφÞÞ: ð29Þ

The exact form of the fluctuation operator depends on the
choice of a weight function, which can be specified by
defining a norm. In the context of general relativity the
natural choice is [32]

∥Φ∥2 ≡
Z

d4x
ffiffiffi
g

p
Φ2 ¼ 2π2

Z
dηρðηÞ3Φ2: ð30Þ

The fluctuation equation diagonalizing the quadratic action
(28) then has the form

−
1

ρ3
d
dη

�
ρ3

Q
dΦn

dη

�
þU½φðηÞ; ρðηÞ�Φn ¼ λnΦn; ð31Þ

where Φn and λn are eigenfunctions and eigenvalues of our
Dirichlet boundary value problem. Note that this equation
correctly reduces to the flat-space equation (9) in the limit
κ → 0, ρ → η.
The potential U, close to η ¼ 0, behaves as

U ¼ U0 þ U2η
2 þO½η4�; ð32Þ

with

U0 ¼ V 00ðφ0Þ; and

U2 ¼
1

6
κV 02ðφ0Þ þ

1

8
V 0ðφ0ÞV 000ðφ0Þ: ð33Þ

Regular solutions (eigenfunctions) close to η ¼ 0 then
behave as

Φ ¼ A0

�
1þ 1

8
ðV 00ðφ0Þ − λÞη2 þ 1

576
½3ðV 00ðφ0Þ − λÞ2

þ 2κðV 00ðφ0Þ − λÞVðφ0Þ

þ 4κV 02ðφ0Þ þ 3V 0ðφ0ÞV 000ðφ0Þ�η4 þO½η6�
�
; ð34Þ

with A0 being a normalization constant. Obviously, the
potential U and the regular branch of the wave functions
Φreg have the same behavior in powers of x ¼ ηmax − η at
the end of the interval, close to ηmax. Whereas in general

there exists also a singular branch behaving as Φsing ∝
fðλ−λnÞ

x2 with some function f having the property that
fð0Þ ¼ 0, one can adjust the value of λ such that the
singular branch is suppressed. In fact, in this way one may
determine the (quantized) energy eigenvalues of the
eigenfunctions.

V. REGULARITY OF THE PERTURBATIONS
WHEN Q PASSES THROUGH A ZERO

As was discussed in Sec. IV, the equation for linear
perturbations in the Hamiltonian approach has the form
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−
1

Q
d2Φ
dη2

þ
�

_Q
Q2

−
3_ρ

ρQ

�
dΦ
dη

þ UΦ ¼ λΦ; ð35Þ

with the potential U given in Eq. (29). Note that the
functionQ tends to 1 at the ends of the interval ½0; ηmax�, but
for some bounces it can become negative for some interval
of η. The case where Q becomes negative has long been
considered as puzzling [27,29,32] because Eq. (35) then
shows an apparent singularity whenQ passes through zero.
We will now show that whenQðη̄Þ ¼ 0 the general solution
of Eq. (35) is nevertheless C2 across the point η̄. We treat the
cases where _Qðη̄Þ ≠ 0 and _Qðη̄Þ ¼ 0 separately. We will
assume that Q and the other background quantities are at
least C2 functions of η.

A. _Qðη̄Þ ≠ 0 case

Let x≡ η − η̄. We can rewrite Eq. (35) as

−QΦ̈þ
�
_Q − 3

_ρ

ρ
Q
�
_Φþ UΦ ¼ λQ2Φ; ð36Þ

with

U ≡Q2U ¼ QV 00 þ 2κQ _φ2 þ κρ2V 02

3

−
5κρ_ρ _φV 0

3
þ 2κ _ρ2 _φ2: ð37Þ

We start with the consideration of the zero-mode equation,
i.e. we assume λ ¼ 0 in Eq. (36). Since we are interested in
showing the regularity of the wave function in the vicinity
of x ¼ 0, we rewrite Eq. (36) as

−xAðxÞΦ̈þ BðxÞ _Φþ u
_q
CðxÞΦ ¼ 0; ð38Þ

where we denote

_q≡ _Qðη̄Þ; q̈≡ Q̈ðη̄Þ;…; ð39Þ

u≡ Uðη̄Þ; _u≡ _Uðη̄Þ;…; ð40Þ

AðxÞ ¼ 1þOðxÞ; ð41Þ

BðxÞ ¼ 1þ bxþOðx2Þ; b ¼ q̈
_q
− 3

_̄ρ

ρ̄
; ð42Þ

CðxÞ ¼ 1þ cxþOðx2Þ; c ¼ _u
u
: ð43Þ

We tentatively solve the equation by keeping the dominant
behavior of the coefficients first,

−xΦ̈þ _Φþ u
_q
Φ ¼ 0: ð44Þ

The general solution of this equation can be written in terms
of Bessel functions. The leading behavior of the solution is
of two different kinds:

Φ ¼ α

�
1 −

u
_q
x −

u2

2_q2
x2 ln jxj þ � � �

�
þ βx2ð1þ � � �Þ:

ð45Þ

However, the second subleading term in the first asymptotic
solution is not relevant, since it contributes a term of order x
to the perturbation equation, which is the same as the
dominant order we neglected in going from Eqs. (36) to
(44). To find the right expression for the subleading term
and make sure that Φ̈ is well defined at x ¼ 0, we set

Φ ¼ α

�
1 −

u
_q
xþ xψ

�
: ð46Þ

The asymptotic equation for ψ reads

−x2ψ̈ − x _ψ þ ψ þ u
_q

�
c − b −

u
_q

�
x ¼ 0: ð47Þ

Discarding the solution ∼1=x, which simply changes the
value of α, the leading behavior of the solution is the same
as in Eq. (45), albeit with a different coefficient:

Φ ¼ α

�
1 −

u
_q
xþ u

2_q

�
c − b −

u
_q

�
x2 ln jxj þ � � �

�

þ βx2ð1þ � � �Þ: ð48Þ

However, a closer analysis of the nonhomogeneous piece
appearing in Eq. (47) shows that its coefficient vanishes due
to the background field equations. This means that one
should move to the next-to-leading order for the nonho-
mogeneous piece, and the solution for ψ is of order x with
no logarithmic corrections:

Φ ¼ α

�
1 −

u
_q
xþOðx2Þ

�
þ βx2ð1þ � � �Þ: ð49Þ

This completes our proof: the apparent singularity in the
perturbation equation forces a fixed relation between Φðη̄Þ
and _Φðη̄Þ, but does not cause any divergence in the solution,
at least for Φ and its first two derivatives.
We now note that, if one considers the eigenvalue

equation (35) with λ ≠ 0 the result above is still valid,
since this merely amounts to a change in CðxÞ by a term of
order x2. Therefore, the generic solution of the eigenvalue
equation is also nonsingular at η ¼ η̄.

B. _Qðη̄Þ ¼ 0 case

In this case, we cannot simply borrow the previous
results, as _q ¼ 0. The field equations alone do not

TOWARDS A SOLUTION OF THE NEGATIVE MODE … PHYSICAL REVIEW D 92, 023506 (2015)

023506-5



determine the leading degree of the Q polynomial around
η ¼ η̄. Keeping it general, we will write

Q ¼ qðkÞ

k!
xk þ qðkþ1Þ

ðkþ 1Þ! x
kþ1 þOðxkþ2Þ; k > 1: ð50Þ

We require k > 1 to be an integer. At first glance, one
would think that U ≡ ðQ2UÞ should not generally vanish at
η ¼ η̄, so that the leading terms of the perturbation equation
would read

−xkΦ̈þ kxk−1 _Φþ k!
u

qðkÞ
Φ ¼ 0; ð51Þ

where again u≡ Uðη̄Þ is generally nonzero. This would be
a problem, as the equation above admits solutions which
diverge near η ¼ η̄. A closer analysis shows that, in fact, the
behavior of U near η̄ is related to that of Q itself. Let us
show that, under the condition (50), one has

jUj≲ jxjk−1: ð52Þ

We have

U ¼ QðV 00 þ 2κ _φ2Þ þ ū; ð53Þ

ū≡ κρ2V 02

3
−
5κρ_ρ _φV 0

3
þ 2κ _ρ2 _φ2: ð54Þ

The first two terms in Eq. (53) separately satisfy the bound
(52). Concerning the last piece, using the background field
equations one can show that

ū ¼ _ρ _Q
ρ

þ 3 _Q2

κρ2 _φ2
: ð55Þ

This relation is valid everywhere, not only at η ¼ η̄. Taking
its derivatives up to order k − 2, one easily deduces that
[remembering that _φðη̄Þ ≠ 0 since Qðη̄Þ ¼ 0]

ūðnÞðη̄Þ ¼ 0∶ n ¼ 0;…; k − 2; ð56Þ

and hence Eq. (52),

U ¼ ūðk−1Þ

ðk − 1Þ! x
k−1 þ ūðkÞ

k!
xk þ � � � : ð57Þ

Now, dividing through by xk−1 and keeping the leading
terms near η ¼ η̄, we obtain an equation very similar to
Eq. (44), namely

−xΦ̈þ k _Φþ k
ūðk−1Þ

qðkÞ
Φ ¼ 0: ð58Þ

The asymptotic form of the general solution can be
obtained following the previous procedure, finding

Φ ¼ α

�
1 −

ūðk−1Þ

qðkÞ
xþ d

2
x2 þ � � �

�
þ βxkþ1ð1þ � � �Þ;

ð59Þ

d ¼ ūðk−1Þ

ðk − 1ÞqðkÞ
�
k
ūðk−1Þ

qðkÞ
þ qðkþ1Þ

qðkÞ
− 3

_̄ρ

ρ̄

�
−

ūðkÞ

ðk − 1ÞqðkÞ :

ð60Þ

Note that in this case (i.e. for k > 1), the x2 ln jxj term right
away does not appear in the expansion.3 We conclude that
also in this case, the apparent singularity in the perturbation
equation does not lead to a singularity in the general
solution.

VI. NUMERICAL RESULTS

We have studied the existence and the properties of
fluctuation modes about CdL bounces numerically for a
range of representative potentials. We have mostly used the
same potentials as those used by Lee and Weinberg in their
related study [36], as this allows us to better compare our
results with theirs (see Appendix A).
In order to find a bounce solution we have to integrate

Eqs. (17) and (18) with the initial conditions (20). But since
Eq. (17) has a regular singular point at η ¼ 0 we cannot
start the numerical integration there. Instead we start the
numerical integration at some small η ¼ ϵ, with initial
conditions at this point provided by the Taylor series
(22)–(23). This is a one-dimensional shooting problem
with the shooting parameter being the initial value of the
scalar field, φ0. For the compact bounces under consid-
eration, one has to choose φ0 such that at η ¼ ηmax one gets
the behavior given by Eq. (21). Since the initial conditions
are given with finite precision, at some η < ηmax any such
numerical solutions will start to deviate from the exact
solution, because of a mixture with the singular branch. For
some potentials, one needs to adjust the initial values to
very high precision to construct the bounce solution. The
presented Taylor series of Eqs. (22)–(23) guarantees a
precision of about 10−40 for ϵ ¼ 10−5. In the following, we
specify different potentials and report our numerical results
regarding concrete examples for various potentials and
varying values of κ. The numerical method that we
employed is the Runge-Kutta of fourth order with an
adaptive step size for the background quantities and with
a fixed step size for the mode functions, and we imple-
mented it in the C++ programming language.

3We also note that the term linear in x may be absent if
ūðk−1Þ ¼ 0. Equation (55) shows that this can happen if

_̄ρ
ρ̄ ¼ 0,

which in turn can only happen when V 0ðη̄Þ ¼ 0, as can be seen by
combining the expression for _Q and the scalar field equation of
motion.
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A. Example 1

As a first example, we have chosen the double-well
potential also studied in Ref. [36], namely

VðφÞ ¼ ðφ − 3Þ2φ2 þ 1

2
φ2 þ 3

2
: ð61Þ

In this potential the true vacuum at φt ¼ 0 and the false
vacuum at φf ≈ 2.81 are separated by a potential barrier
with a local maximum at φtop ≈ 1.69.
We are interested in bounce solutions in this potential,

but for different values of the gravitational coupling κ.
Figure 1(a) shows the CdL bounce solution for this
potential when κ ¼ 0.055, while Fig. 1(b) shows the
bounce solution for κ ¼ 0.09. It was claimed in
Ref. [36] that a single tunneling negative mode is present
for small values of κ such as κ ¼ 0.055, but that no negative
mode is present for larger values, namely for κ ¼ 0.057,
κ ¼ 0.07 or κ ¼ 0.09. By contrast, we find that a single

tunneling negative mode exists in each of these cases. Note
that the quantity Q is always positive for these choices of κ
(see Fig. 2), and that the (negative) eigenvalue of the lowest
mode evolves continuously as a function of the gravita-
tional strength κ, as shown in Fig. 3. Thus, for this example,
the story unfolds just as in the case of tunneling in the
absence of gravity.

B. Example 2

As the second example we choose the potential
(cf. Ref. [36])

VðφÞ ¼ B

�
φ2 −

1

4

�
2

þ 1

10
ðφþ 1Þ: ð62Þ

This potential has two local minima separated by a barrier,
as long as the parameter B > Bcr, with Bcr ≈ 0.52. A CdL
bounce exists for B > BHM, where BHM ≈ 0.55. Varying
the parameter B is instructive because for the potential (62),

 0

0.5

 1

1.5

 2

2.5

 3

3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

φ(η)
ρ(η)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

φ(η)
ρ(η)

(b)

FIG. 1 (color online). Profile of the bounce: φðηÞ and ρðηÞ for the potential (61) and two different values of κ. (a) κ ¼ 0.055;
(b) κ ¼ 0.09.

0.6

0.7

0.8

0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

Q(0.055)(η)
Q(0.057)(η)

(a)

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

Q(0.07)(η)
Q(0.09)(η)

(b)

FIG. 2 (color online). The kinetic prefactor QðηÞ for the potential (61) and different values of κ. (a) κ ¼ 0.055 and κ ¼ 0.057;
(b) κ ¼ 0.07 and κ ¼ 0.09.
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the factor Q is always positive along the bounce trajectory
in the case of small values of B, while for B > B0 with
B0 ≈ 3.22, the bounce solution develops a region of
negative Q. Therefore this potential is ideally suited for
studying the case of principal interest here, namely what
happens when Q becomes negative. We analyzed the
solutions for selected parameter values B varying between

1 and 10. Our main finding is that nothing special happens
with the tunneling negative mode when Q becomes
negative (as can now be expected, given the analytic
treatment in Sec. V). Figure 4(a) shows the bounce profile
for B ¼ 3, while Fig. 4(b) displays the corresponding
bounce when B ¼ 10. Note that the factor QðηÞ is always
positive for B < B0 and is negative in some interval of η for
B > B0; see Fig. 5. In this setup we investigated the
tunneling negative mode and the first few positive modes
in detail. Figure 6 illustrates the dependence of the
eigenvalue of the tunneling negative mode ψ0 as well as
the first two excited positive modes ψ1;2 on the value of B.
The characteristic profiles of these modes are shown in
Fig. 7 for the particular value of B ¼ 10. Note that the
eigenvalues evolve continuously as a function of B and in
particular that the eigenvalue of the tunneling negative
mode always remains negative, regardless of whether Q is
positive everywhere or negative somewhere.
For values of B > B0, the kinetic prefactor Q has

negative values in some interval and infinitely many addi-
tional negative modes are expected to have support here
[23,36]. For the first time, we will exhibit such modes
explicitly here. The wave functions of the first two addi-
tional negative modes are shown in Fig. 8 for the particular
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FIG. 3. Lowest eigenvalues λ0 of the fluctuation equation (31)
versus κ for the potential (61).
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FIG. 4 (color online). Profile of the bounce: φðηÞ and ρðηÞ for the potential (62) and different choices of B. (a) B ¼ 3; (b) B ¼ 10.
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FIG. 5 (color online). The kinetic prefactor QðηÞ for the potential (62) and different values of B. For B⪆ 3.22 Q becomes negative
along some interval of Euclidean time η. (a) B ¼ 2 and B ¼ 3; (b) B ¼ 3.22 (Q < 0 briefly); (c) B ¼ 5 and B ¼ 10.
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equation (31) versus B for the potential (62).
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value of B ¼ 10. As expected, these modes have support in
the region over whichQ is negative. The two modes shown
here have eigenvalues λ−1 ¼ −18.22 and λ−2 ¼ −78.45
respectively. As is intuitively clear, the magnitude of these

eigenvalues is inversely proportional to the length of the
interval over whichQ becomes negative. In Fig. 9 we show
how the eigenvalues of the first two additional negative
modes evolve as the parameter B in the potential is varied.
The eigenvalues already reach λ−1 ¼ −907, λ−2 ¼ −9537
at B ¼ 3.4 and tend to −∞ as B approaches B0 from above,
while for B < B0 these additional negative modes disap-
pear altogether as Q remains positive throughout. Note
that over a substantial range of B the magnitude of the
eigenvalues of the additional negative modes is vastly
larger than those of the tunneling negative mode and the
first couple of positive modes.
We also studied the dependence of the above cases on the

gravitational strength κ. As an example, we fixed B ¼ 3
and decreased the value of κ. Figure 10 shows plots ofQ for
different values of κ when B ¼ 3. Figure 11 shows the
dependence of λ0 with respect to different choices of κ.
Once again, we can see that nothing special happens to the
tunneling negative mode as Q reaches negative values, and
in particular the eigenvalue evolves smoothly. As before,
we would expect the existence of an additional tower of
negative modes wherever Q is negative.
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FIG. 10 (color online). The kinetic prefactor QðηÞ (plotted only over the region of greatest interest) for decreasing values of κ with
fixed parameter B ¼ 3 for the potential (62). (a) κ ¼ 0.9; (b) κ ¼ 0.7; (c) κ ¼ 0.5.
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FIG. 12 (color online). The quantity QðηÞ for different values of B for the symmetric potential (63). (a) B ¼ 2 and B ¼ 2.5;
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negative.
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C. Symmetric potential

As the third example we consider a symmetric potential.
This case is interesting because, in flat space, finite-action
Euclidean solutions in a symmetric potential have at most
zero modes. When gravity is included, it was first found in
Ref. [41] that the corresponding instantons develop a
negative mode. For the numerical investigation, we choose
the potential

VðφÞ ¼ B

�
φ2 −

1

4

�
2

þ 1

10
ð63Þ

and we vary the parameter B in the interval [2,4]. Once
again we find a single tunneling negative mode in all
cases, as well as a tower of additional negative modes for
parameter values for which Q becomes negative. Figure 12
shows the kinetic prefactor Q for selected values of B and
Fig. 13 illustrates the dependence of λ0 on B. The
eigenvalue evolves continuously and remains negative as
Q first reaches zero and then takes on negative values along
an interval of Euclidean time η along the instanton.

VII. DISCUSSION

We investigated tunneling transitions with gravity with
an emphasis on the cases where the factor Q, which sits in
front of the kinetic term of fluctuations about the instan-
tons, is negative in some interval of Euclidean time. We
have shown that the perturbation equations remain well
defined when Q crosses zero, and that the eigenvalues of
existing mode functions vary continuously as we pass from
situations with Q > 0 everywhere to Q < 0 somewhere.
Thus, in particular, all bounces contain a single tunneling
negative mode in their spectrum of perturbations. We
should point out that these results are partly at odds with
a recent study of Lee and Weinberg [36,37]; we provide a
comparison of the two approaches in Appendices A and B.
As we have discussed, whenQ < 0 an additional infinite

tower of negative modes appears, in analogy with the first

description of the problem by LRT [23]. In the present
study we found the first few of these additional negative
modes for concrete potentials numerically and determined
their eigenvalues. We observed that over a substantial range
of parameters the magnitude of the eigenvalues of the
additional negative modes is vastly larger than those of the
tunneling negative mode. In our opinion this is another
manifestation of the fact that they have a different nature.
Furthermore, it is interesting to note that nodal theorems
[42] are not fulfilled in this case, namely the number of
nodes of the zero-energy wave function does not count the
number of negative energy states in a given potential
anymore.
As is known in certain cases, a proper choice of variables

(obtained with the help of canonical transformations in
the Hamiltonian formalism) can significantly simplify the
description of a system. In Appendix C we study the
influence of canonical transformations on these additional
negative modes and provide arguments that they cannot be
removed by a canonical transformation of variables. The
consideration of canonical transformations shows that,
even though the prefactor of the kinetic term cannot be
made positive in general, the classes of instantons for which
it is negative can be changed; this suggests that the
negativity of the prefactor is a technical problem, not
related to a fundamental physical cause. The existence and
significance of the additional negative modes remain
somewhat mysterious, and further work will be required
to fully elucidate the negative mode problem.
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APPENDIX A: COMPARISON TO THE WORK OF
LEE AND WEINBERG

It may be useful to compare our results with those of
Lee and Weinberg (LW) [36,37], who recently performed
a related study of the negative mode problem. Their
work was performed in the Lagrangian formalism; in
Appendix B, we discuss the Lagrangian approach in more
detail. The main difference between our results and those of
LW is that there are cases where LW claim that no tunneling
negative mode is present. In particular, for instantons where
the wall of the instanton is close to the maximum of ρ (and
where the initial and final vacua are nearly degenerate),
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FIG. 13. Dependence of λ0 on different choices of B for the
symmetric potential (63).
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they found that the tunneling negative mode is absent. We
disagree with these results, as we have explicitly demon-
strated the existence of the tunneling negative mode for
such cases, even for the case of exactly degenerate initial
and final vacua (a possible explanation of the discrepancy
between our results and those of LW is discussed in
Appendix B). Moreover, we have provided a proof that
solutions to the eigenvalue equation evolve smoothly from
cases where Q is everywhere positive to Q going negative
somewhere. This analytic result boosts our confidence that
our results are correct. We note that LW also confirmed the
existence of an additional infinite tower of negative modes
in regions where Q is negative, though it should be
emphasized that in the Lagrangian approach it is the factor
QLRT ¼ _ρ2 − κ

6
ρ2 _φ2 that is the relevant one, rather than the

function Q ¼ 1 − κ
6
ρ2 _φ2 that appears in the Hamiltonian

formalism used here. This makes a difference, as QLRT
becomes negative near _ρ ¼ 0 for all bounces (and thus all
bounces will have an infinite number of negative modes in
the approach of LW), while the function Q is only negative
for certain classes of bounces. We certainly do agree with
LW that these additional modes are not properly understood
yet, and that their nature and physical significance must be
studied further.

APPENDIX B: NEGATIVE MODE PROBLEM IN
THE LAGRANGIAN APPROACH

We will briefly describe the derivation of the equations
for linear perturbations in the Lagrangian approach. For the
Oð4Þ-symmetric situation, Eq. (24), after fixing the gauge
Ψ ¼ 0 and using the constraint equation to eliminate A, one
gets the quadratic action [23]

Sð2ÞΦ ¼ 2π2
Z

ρ3dη
2QLRT

�
_ρ2 _Φ2 −

κρ2 _φV 0

3
Φ _Φ

þ
�
QLRTV 00 þ 1

6
κρ2V 02

�
Φ2

�
: ðB1Þ

Integrating by parts and using the background equations of
motion, one obtains

Sð2ÞΦ ¼ 2π2
Z

ρ3dη

�
_ρ2

2QLRT

_Φ2 þ 1

2
UΦΦ2

�
ðB2Þ

with the potential

UΦ ¼ _ρ2V 00

QLRT
þ κρ2 _ρ2V 02

3Q2
LRT

þ κρ_ρ _φV 0

3Q2
LRT

: ðB3Þ

The exact form of the fluctuation operator depends on the
choice of a weight function which can be specified by
defining the norm. With the choice

∥Φ∥2 ≡
Z

d4x
ffiffiffi
g

p
Φ2 ¼ 2π2

Z
dηρðηÞ3Φ2; ðB4Þ

the fluctuation equation diagonalizing the quadratic action
(B2) has the form

−
1

ρ3
d
dη

�
ρ3 _ρ2

QLRT

dΦn

dη

�
þ UΦ½φðηÞ; ρðηÞ�Φn ¼ λnΦn; ðB5Þ

where Φn and λn are eigenfunctions and eigenvalues of the
Dirichlet boundary value problem. The potential UΦ close
to η ¼ 0 behaves as

UΦ ¼ Uð0Þ
Φ þ Uð2Þ

Φ η2 þOðη4Þ ðB6Þ

with

Uð0Þ
Φ ¼ V 00ðφ0Þ −

4

3
κVðφ0Þ; and

Uð2Þ
Φ ¼ 5κ

12
V 02ðφ0Þ þ

1

8
V 0ðφ0ÞV 000ðφ0Þ: ðB7Þ

Regular solutions (eigenfunctions) close to η ¼ 0 then
admit the asymptotic behavior

Φ ¼ D0

�
1þ 1

8
ðV 00ðφ0Þ − λÞη2 þ 1

576
½3ðV 00ðφ0Þ − λÞ2

þ 2κðV 00ðφ0Þ − λÞVðφ0Þ

þ 10κV 02ðφ0Þ þ 3V 0ðφ0ÞV 000ðφ0Þ�η4 þO½η6�
�
; ðB8Þ

with D0 being a normalization constant.
This gauge-fixed approach can easily be promoted to the

gauge-invariant approach adopted by LW [36]. For the
gauge-invariant variable

χ ¼ _ρΦþ ρ _φΨ ðB9Þ

one gets a simple quadratic action

Sð2Þχ ¼ 2π2
Z

ρ3dη

�
1

2QLRT
_χ2 þ 1

2
Uχχ

2

�
; ðB10Þ

with the potential

Uχ ¼
V 00

QLRT
þ κρ2V 02

3Q2
LRT

þ κρ _φV 0

3_ρQ2
LRT

þ 2κ _φ2

3QLRT
−
κρ _φV 0

_ρQLRT

−
4κV
3QLRT

−
ρ̈ _QLRT

_ρQ2
LRT

: ðB11Þ

Choosing the norm to be given by
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∥χ∥2 ≡
Z

d4x
ffiffiffi
g

p
χ2 ¼ 2π2

Z
dηρðηÞ3χ2; ðB12Þ

the fluctuation equation takes the form

−
1

ρ3
d
dη

�
ρ3

QLRT

dχn
dη

�
þUχ ½φðηÞ; ρðηÞ�χn ¼ λnχn; ðB13Þ

where χn and λn are eigenfunctions and eigenvalues of the
Dirichlet boundary value problem. For completeness, we
will also write out the asymptotic behavior: the potential
Uχ , close to η ¼ 0, behaves as

Uχ ¼ Uð0Þ
χ þ Uð2Þ

χ η2 þOðη4Þ; ðB14Þ

with

Uð0Þ
χ ¼ V 00ðφ0Þ −

4

3
κVðφ0Þ;

Uð2Þ
χ ¼ κ

24
V 02ðφ0Þ þ

κ

3
Vðφ0ÞV 00ðφ0Þ −

2κ2

3
V2ðφ0Þ

þ 1

8
V 0ðφ0ÞV 000ðφ0Þ: ðB15Þ

Regular solutions (eigenfunctions) close to η ¼ 0 behave as

χ ¼ χ0

�
1þ 1

8

�
V 00ðφ0Þ −

4

3
κVðφ0Þ − λ

�
η2

þ 1

1728
½9V 0ðφ0ÞV 000ðφ0Þ þ 9ðV 00ðφ0Þ − λÞ2

− 6κVðφ0Þð5V 00ðφ0Þ − 9λÞ þ 3κV 02ðφ0Þ

þ 8κ2V2ðφ0Þ�η4 þO½η6�
�
; ðB16Þ

where χ0 is a normalization constant.
We will finish with a simple, but important, remark: the

definition of χ is gauge invariant, but let us pick the typical
gauge where one sets Ψ ¼ 0, so that we have the relation
χ ¼ _ρΦ. Now when Φ describes the lowest eigenmode, i.e.
the negative mode, it has a dependence on η in the shape of
a typical bell curve, without nodes. However, note that at
the middle of the instanton _ρ ¼ 0, so that χ will thus
necessarily possess an extra node compared to Φ, even for
the lowest-lying eigenfunction! The lowest-lying eigen-
function is peaked near the wall of the instanton, i.e. near
the region where the scalar field φ varies the most. If this
region is well separated from _ρ ¼ 0, one may therefore not
see the node, and it may look like χ is nodeless. However,
when the wall is located near _ρ ¼ 0, the negative mode,
expressed in terms of χ, will have one node and will naively
look like the first excited mode. In this case, one must be
careful not to discard it erroneously. This observation may
in part explain the discrepancy between our results and the
claims in Ref. [36].

APPENDIX C: CANONICAL
TRANSFORMATIONS

The classical equations of motion of a system can be
derived by requiring the stationarity of the action, the
integral of the Lagrangian function,

δS ¼ 0 → δ

Z
ðpq;t −HÞdt; ðC1Þ

where ðq; pÞ are the canonical coordinate and momentum,
while H is the Hamiltonian of the system. The resulting
equations of motion are

q;t ¼
∂H
∂p ; p;t ¼ −

∂H
∂q : ðC2Þ

We could equally well describe this system with different
canonically conjugate coordinates ð ~q; ~pÞ and a new
Hamiltonian K,

δ

Z
ð ~p ~q;t−KÞdt; ~q;t¼

∂K
∂ ~p ; ~p;t¼−

∂K
∂ ~q : ðC3Þ

These two descriptions are equivalent if the two variational
principles agree, i.e. if

pq;t −H ¼ ~p ~q;t − K þ dF
dt

; ðC4Þ
where it is important to note that one may add an arbitrary
total time derivative to the right-hand side of the above
equation (we are ignoring scaling transformations here,
which would have arisen by allowing the right-hand side to
also be multiplied by an overall factor). This function F
may depend on various combinations of the old and new
coordinates; for us, the particular choice

F ¼ q · pþ F3ðp; ~q; tÞ; ðC5Þ

will be useful, where F3 denotes an arbitrary function of the
old momentum, the new coordinate and of time. With this
choice for F, Eq. (C4) becomes

−H ¼ ~p ~q;t − K þ p;tqþ ∂F3

∂t þ ∂F3

∂p p;t þ
∂F3

∂ ~q ~q;t: ðC6Þ

Since we are treating the old and new coordinates and
momenta as independent variables, we can see that the
equation above is satisfied if we identify

q ¼ −
∂F3

∂p ; ~p ¼ −
∂F3

∂ ~q ; K ¼ H þ ∂F3

∂t : ðC7Þ

Now let us specialize further to the choice

F3 ¼ −
1

d
~qp −

1

2dc;t
p2; ðC8Þ
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where cðtÞ; dðtÞ are explicit, a priori arbitrary, functions of
time. We have included a time-derivative term in the
denominator of the second term such that c; d are dimen-
sionless functions of time. This leads to the canonical
transformations

q ¼ 1

d
~qþ 1

c;t
~p; ~q ¼ dq −

1

c;t
p;

K ¼ Hð ~q; ~pÞ − 1

2

∂ðd=c;tÞ
∂t ~p2:

p ¼ d ~p; ~p ¼ 1

d
p; ðC9Þ

The important change is in the last term: the momentum-
squared part of the Hamiltonian (which is responsible for
the kinetic term in the Lagrangian description) gets
modified by this transformation.
Now let us look in more detail at the case we are

interested in. The Euclidean action SE was given in Eq. (28)
(where we will drop the overall factor of 2π2 arising from
the volume of S3). Its Lorentzian equivalent is given by

St ¼
Z

dtLt ¼
Z

dt

�
ρ3

2Q
Φ2

;t −
ρ3

2
UΦ2

�
; ðC10Þ

where Q;U are here understood to be given in terms of
ordinary time t ¼ −iη, e.g. Q ¼ 1þ ρ2ϕ2

;t=6. With the

canonical momentum given by Π ¼ ρ3

Q Φ;t, the correspond-
ing Hamiltonian reads

H ¼ ΠΦ;t − Lt ¼
Q
2ρ3

Π2 þ ρ3U
2

Φ2: ðC11Þ

If we now apply the canonical transformation above, with
ðΦ;ΠÞ ¼ ðq; pÞ → ð ~q; ~pÞ, we obtain the new Hamiltonian

K ¼ 1

2

�
d2Q
ρ3

þ 1

c2;t
ρ3U − ðd=c;tÞ;t

�
~p2 þ ρ3U

c;td
~p ~q

þ 1

2

ρ3U
d2

~q2: ðC12Þ

This theory can be equally well described by a Lagrangian
of the form

~L ¼ 1

2½d2Q
ρ3

þ ρ3

c2;t
U − ðd=c;tÞ;t�

Φ2
;t þ ð� � �ÞΦ2; ðC13Þ

where the explicit form of the mass term is not important
for our present purposes. Transforming to Euclidean time
leads to the Lagrangian

~LE ¼ 1

2½d2Q
ρ3

− ρ3

_c2 U − ðd=_cÞ;η�
_Φ2 − ð� � �ÞΦ2; ðC14Þ

where now Q;U take their Euclidean expressions (27) and
(29). Note the most important consequence of the canonical
transformation: the coefficient in front of the kinetic term
has changed. Can it be made positive? Unfortunately, this
seems impossible in general: in order to make the kinetic
coefficient nonsingular, we should take 1=_c ∝ Q (with no
other zeros than those of Q) in order to cancel the
divergence in U; see Eq. (37). For some cases of interest,
e.g. the potential in Eq. (62) with B ¼ 4, Q2U is positive
everywhere. Then, in the interval where Q < 0, the second
term in the kinetic coefficient will make the coefficient even
more negative. Hence the sign of the overall coefficient will
depend on the last term, −ðd=_cÞ;η. At the moments where

Q ¼ 0, this last term will contribute in proportion to −d _Q.
Keeping in mind that _Q has different signs at both ends of
the Q < 0 interval, it implies that d must change sign, and
hence pass through zero during that interval. But when d
passes through zero the ~p~q and ~q2 terms in Eq. (C12) will
be divergent, rendering the new theory singular. There is
nevertheless one lesson that one can draw from this
discussion: even though this type of canonical transforma-
tion cannot make the kinetic coefficient positive and
nonsingular, it can change the class of instantons for which
it is negative. For instance, for instantons where Q > 0
throughout, one may transform to a theory where the
coefficient is negative somewhere. This suggests that the
sign of Q might be “just” a technical issue, and not
something with fundamental physical significance.
There is another set of canonical transformations worth

considering. These arise by considering the generating
function

F ¼ F1ðq; ~q; tÞ; ðC15Þ
leading to

p ¼ ∂F1

∂q ; ~p ¼ −
∂F1

∂ ~q ; K ¼ H þ ∂F1

∂t : ðC16Þ

If we choose F1 ¼ fðtÞq ~q, we obtain

q ¼ −
1

fðtÞ ~p; p ¼ fðtÞ ~q;

K ¼ H þ ð− ~q ~pÞ;t ¼ H: ðC17Þ
This transformation interchanges coordinates and
momenta. Above, we saw that there are examples, such
as the potential (62) with B ¼ 4, where the potential is
everywhere positive. Hence one may ask whether it is
possible to use the transformation just described to
exchange a theory with a (partly) negative kinetic term
and a positive potential for one with a positive kinetic term
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and a (partly) negative potential (see also Ref. [29]). This
would remove the unwanted infinite tower of negative
modes. Specializing to the model of interest, we find the
resulting Euclidean theory

~LE ¼ f2

2ρ3U
_Φ2 þQf2

2ρ3
Φ2: ðC18Þ

Note that now the kinetic term is indeed manifestly
positive when U > 0! However, as it stands the theory is

still singular, due to the singularities in U. We can
remove those by choosing f ∝ 1=Q, with no other poles
than those of 1=Q. This renders the kinetic term regular,
but unfortunately leads to a new potential ∝ 1=Q, which
is divergent when Q passes through zero. Thus, even
though we can cure the kinetic term by this procedure,
we are in effect shifting the singularity to the potential.
Thus, unfortunately it appears that it is impossible to
cure the negative Q complications by a canonical
transformation.
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