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Abstract

We derive the universal terms of entanglement entropy for 6d CFTs by applying the holographic

and the field theoretical approaches, respectively. Our formulas are conformal invariant and agree

with the results of [34, 35]. Remarkably, we find that the holographic and the field theoretical

results match exactly for the C
2 and Ck

2 terms. Here C and k denote the Weyl tensor and the

extrinsic curvature, respectively. As for the k
4 terms, we meet the splitting problem of the conical

metrics. The splitting problem in the bulk can be fixed by equations of motion. As for the splitting

on the boundary, we assume the general forms and find that there indeed exists suitable splitting

which can make the holographic and the field theoretical k4 terms match. Since we have much

more equations than the free parameters, the match for k
4 terms is non-trivial.
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1 Introduction

Entanglement entropy (EE) plays an important rule in the fields of gravity [1] and quantum many-

body physics [2, 3]. It is non-local and provides a useful tool to probe the quantum correlations. It

can be calculated by applying the holographic method [4, 5] and the perturbative approach [6]. For

recent developments in EE, please refer to [7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28]. The leading term of EE obeys the area law. However, in spacetime dimensions higher

than two, it is not universal but depends on the cutoff of the system. In contrast to the leading term,

the logarithmic term of EE in even spacetime dimensions is universal and thus is of great interest.

The logarithmic term of EE for CFTs in 2d is given by [29, 30]

SΣ|log =
c

3
log

( L

πδ
sin(

πl

L
)
)

(1)

where l and L are the length of the subsystem and total system, repesctively. δ denotes the cutoff and

c is the central charge of the CFT.

The logarithmic term of EE for 4d CFTs is proposed by [31]

SΣ|log = log(ℓ/δ)
1

2π

∫

Σ

[

c(Cijklhikhjk − trk2 +
1

2
(trk)2)− aRΣ

]

, (2)
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where Cijkl is the Weyl tensor, k is the extrinsic curvature and RΣ is the intrinsic Ricci scalar. a and

c are the central charges of 4d CFTs. Eq.(2) is firstly derived by using the holographic entanglement

entropy (HEE) of Einstein gravity [31]. Later, by applying Dong’s formula [32], it is shown in [33]

that the general higher derivative gravity S(g,R) yields the same results.

So far, not much is known about the logarithmic term of EE for 6d CFTs except [34, 35]. In

[34], Hung, Myers and Smolkin (HMS) obtain the logarithmic term of EE for 6d CFTs in case of zero

extrinsic curvatures. Because the condition Kaij = 0 breaks the conformal invariance, their formulas

are not conformal invariant. In [35], Safdi study the cases with B3 =
B2−

B1
2

3 in flat space, where Bi

are the central charges of 6d CFTs. Since the ‘flat-space condition’ is imposed, the results of [35] are

not conformal invariant either. Now let us briefly review their works.

HMS derive the universal terms of EE for CFTs as the entropy of its Weyl anomaly [34, 36]. In

six dimensions, the trace anomaly takes the following form

〈T i
i 〉 =

3
∑

n=1

Bn In + 2AE6, (3)

where E6 is the Euler density and Ii are conformal invariants defined by

I1 = CkijlC
imnjC kl

m n , I2 = C kl
ij C mn

kl C ij
mn ,

I3 = Ciklm(∇2 δij + 4Ri
j −

6

5
Rδij)C

jklm . (4)

For entangling surfaces with the rotational symmetry, only Wald entropy contributes to HEE. Thus,

we have

SEE = log(ℓ/δ)

∫

d4x
√
h

[

2π

3
∑

n=1

Bn
∂In

∂Rij
kl

ε̃ij ε̃kl + 2AE4

]

Σ

, (5)

where

∂I1
∂Rij

kl
ε̃ij ε̃kl = 3

(

Cjmnk C il
m n ε̃ij ε̃kl −

1

4
Ciklm Cj

klm g̃⊥ij +
1

20
Cijkl Cijkl

)

, (6)

∂I2
∂Rij

kl
ε̃ij ε̃kl = 3

(

Cklmn C ij
mn ε̃ij ε̃kl − Ciklm Cj

klm g̃⊥ij +
1

5
Cijkl Cijkl

)

, (7)

∂I3
∂Rij

kl
ε̃ij ε̃kl = 2

(

�Cijkl + 4Ri
mCmjkl − 6

5
RCijkl

)

ε̃ij ε̃kl − 4Cijkl Rik g̃
⊥
jl

+4Ciklm Cj
klm g̃⊥ij −

12

5
Cijkl Cijkl .

For entangling surfaces without the rotational symmetry but with zero extrinsic curvature, the

anomaly of entropy of Cijkl�Cijkl should be added to eq.(5). This contribution is used by [37]

to explain the HMS mismatch [34] recently. It should be mentioned that there is another proposal for

the resolution of HMS puzzle. In [38, 39], the authors suggest to use the entropy of total derivatives

to explain the HMS mismatch. It is really counterintuitive that total derivatives could contribute

to non-trivial entropy. If so, the logarithmic term of EE would violate the conformal invariance and

depend on the approach of regularization. This strongly implies the results of [38, 39] are unreliable.

Actually, by applying the LM regularization [7], it is found that the entropy of total derivatives is

indeed trivial [40].
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Now let us turn to the work of [35]. The universal term of EE for 6d CFTs with B3 =
B2−

B1
2

3 in

flat space is given by

SΣ|log = log(ℓ/δ)

∫

Σ

2AE4 + 6π
[

3(B2 −
B1

4
)J +B3T3

]

, (8)

where J = T1 − 2T2 and Ti is given by

T1 = (trk̄2)2, T2 = trk̄4, T3 = (∇ak)
2 − 25

16
k4 + 11k2trk2 − 6(trk2)2 − 16ktrk3 + 12trk4. (9)

Here k̄ denotes the traceless part of the extrinsic curvature. For simplicity the extrinsic curvature in

the time-like direction is set to be zero in [35]. In our notation, we have Kzij = Kz̄ij =
1
2kij . It should

be mentioned that the ‘flat-space condition breaks the conformal invariance. As a result, T3 is not

conformal invariant [35].

In this paper, we investigate the most general cases. By applying the holographic and the field

theoretical methods respectively, we derive the universal terms of EE for 6d CFTs. Our formulas are

conformal invariant and reduce to those of [34, 35] when imposing the conditions they use. Remarkably,

we find that the holographic and the field theoretical results match for the C2 and Ck2 terms. As for

the k4 terms, we have to deal with the splitting problem of the conical metrics. The splitting problem

appears because one can not distinguish r2 and r2n (n → 1) in the expansions of the conical metrics.

We can fix the splitting problem in the bulk by applying equations of motion. As for the splitting

problem on the boundary, we assume the general expressions and find that there does exist suitable

splittings which can make the holographic and the field theoretical k4 terms match.

It should be mentioned that the splitting problem does not affect the logarithmic term of EE for 4d

CFTs. By using the field theoretical method, we only need the entropy of curvature-squared terms to

determine the logarithmic term. It can be easily checked that the splittings do not affect the entropy

of curvature-squared terms. As in the holographic approach, applying the background method [33],

we can expand the action S(g,R) around a background curvature R̄. According to [33], only the

squared terms (R − R̄)2 contribute to the 4d logarithmic terms. However, as we have mentioned

above, the squared terms are irrelevant to the splitting problem. Thus, the splittings do not affect

the 4d logarithmic terms from both the field theoretical and the holographic viewpoints. For the 6d

logarithmic terms, we need to calculate the entropy of cubic curvature terms. It turns out that the only

cubic curvature term that is irrelevant to the splittings is the Love-lock term. However, the central

charges of CFTs dual to Love-lock gravity and the curvature-squared gravity are not independent but

constrained by B3 =
B2−

B1
2

3 . Thus, to study the most general case in 6d, we have to deal with the

splitting problem.

An overview of this paper is as follows: We begin with the discussions of the splitting problem

for the conical metrics in Sect. 2. In Sect. 3, we derive the universal terms of EE for 6d CFTs by

applying the holographic method. We firstly derive the results from a smart-constructed action and

then prove that the general action produces the same results. In Sect. 4, we use the field theoretical

method to calculate the universal terms of EE for 6d CFTs. We compare the field theoretical results

with the holographic ones and get good agreements. We conclude with a brief discussion of our results

in Sect. 5.

4



2 The splitting problem

In general, we have to deal with the splitting problem for the squashed cones in order to derive the

holographic entanglement entropy (HEE). Let us briefly review this problem in this section. The

splitting problems appear because we can not distinguish r2 and r2n in the expansions of conical

metrics. That is because r2 and r2n become the same order in the limit n → 1 when we calculate

HEE. According to [32, 41], the general regularized squashed conical metric is

ds2 = e2A[dzdz̄ + T (z̄dz − zdz̄)2] + 2iVi(z̄dz − zdz̄)dyi

+(gij +Qij)dy
idyj, (10)

where gij is the metric on the transverse space and is independent of z, z̄. A = − ǫ
2 lg(zz̄ + a2) is

regularized warp factor. T, Vi, Qij are defined as [32, 37, 41]

T =

∞
∑

n=0

Pa1...an+1
∑

m=0

e2mATm a1...an
xa1 ...xan ,

Vi =
∞
∑

n=0

Pa1...an+1
∑

m=0

e2mAVm a1...anix
a1 ...xan ,

Qij =

∞
∑

n=1

Pa1...an
∑

m=0

e2mAQm a1...anijx
a1 ...xan . (11)

Here z, z̄ are denoted by xa and Pa1...an
is the number of pairs of z, z̄ appearing in a1...an. For

example, we have Pzzz̄ = Pzz̄z = Pz̄zz = 1, Pzz̄zz̄ = 2 and Pzz...z = 0. Expanding T, V,Q to the first

few terms in Dong’s notations, we have

T = T0 + e2AT1 +O(x),

Vi = U0 i + e2AU1 i +O(x),

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) (12)

How to split W (W denote T, V,Q) into {W0,W1, ...,WP+1} is an important problem. It should be

mentioned that the splitting problem is ignored in the initial works of Dong and Camps [32, 41].

However they both change their mind and realize the splitting is necessary later 1. Recently Camps

etal generalize the conical metrics to the case without Zn symmetry, where the splitting problem

appears naturally [42]. Our metric eq.(10) can be regarded as a special case of [42] that with Zn

symmetry. Inspired by [7], it is expected that the splitting problem can be fixed by equations of

motion. Let us take Einstein gravity in vacumm as an example. We denote the quations of motion

by Eµν = Rµν − R−2Λ
2 Gµν = 0 . Focus on terms which are important near xa = 0, we have

Rab = 2K(a∇b)A− gabK
c∇cA+ e2A[(12T1 + 4U2)gab −Q i

1 abi ]

+KaijK
ij

b + (12T0 + 8U0U1)gab −Q i
0 abi

Rai = 3εbaV
b
i +DmKami −DiKa,

1We thank Dong and Camps for discussions on this problem.
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Rij = rij + 8UiUj −Q a
1 aij + e−2A[2KaimKam

j −KaKaij + 16U0 (iU1 j) −Q a
0 aij ],

R = r + 16U2 + 24T1 − 2Q a i
1 a i + e−2A(3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1),(13)

where A = − ǫ
2 log zz̄, εzz̄ = i

2 and gzz̄ = 1
2 . Let us firstly consider the leading term of Ezz, we get

Ezz = 2Kz∇z + ... = −ǫ
Kz

z
+ ... = 0. (14)

Requiring the above equation to be regular near the cone, we obtain the minimal surface condition

Kz = Kz̄ = 0 [7]. To derive T0 and Q0, we need consider the subleading terms of Ezz̄ , Eij and Eµ
µ .

We have

Ezz̄ = e2A(...) + [Q i
0 zz̄i − 2KzijK

ij
z̄ +KzKz̄ − 4U0U1] = 0,

Eij = (...) + e−2A[2KaimKam
j −KaKaij + 16U0 (iU1 j) −Q a

0 aij

−1

2
gij(3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1)] = 0,

Eµ
µ = (...) +

2−D

2
e−2A[3KaijK

aij −KaKa + 24T0 − 2Q a i
0 a i + 32U0U1] = 0. (15)

Here (...) denote the leading terms which can be used to determine T1, U1i, Q1zz̄ij and gij . From the

subleading terms of the above equations, we can derive a unique solution

T0 =
1

24
(KaijK

aij −KaK
a),

Q0zz̄ij = (KzimK m
zj − 1

2
KzKz̄ij + c.c.) + 4U0 (iU1 j) (16)

As we shall show below, a natural choice would be U0 i = 0. It should be mentioned that eq.(16) are

also solutions to the general higher derivative gravity if we require that the higher derivative gravity

has an AdS solution. In the next section, we shall use eq.(16) to derive the universal terms of EE for

6d CFTs. Actually, we only need a weaker condition near the boundary

T0 =
1

24
(KaijK

aij − x KaK
a) +O(ρ2),

Q0zz̄ij = KzimK m
zj − y KzKz̄ij − z gijKzKz̄ + c.c+O(ρ) (17)

with x, y, z are some constants which are not important. Here ρ is defined in the FG expansion eq.(78)

and ρ → 0 corresponds to the boundary. Actually, as we shall show in sect.3.2, eq.(17) is the necessary

condition that all the higher derivative gravity in the bulk gives the same formulas of the universal

terms of EE.

To end this section, let us make some comments. Besides the equations of motion, there are several

other constraints which may help to fix the splitting.

1. The entropy reduces to Wald entropy in stationary spacetime.

Let us take ∇µRνρσα∇µRνρσα as an example. In stationary spacetime, we have Kaij = Qzzij =

Qz̄z̄ij = 0. Applying the method of [37], we can derive the HEE as

SHEE = SWald +

∫

dyD−2√g128π(Q0zz̄ijQ
ij

0zz̄ + 9T 2
0 + 5(U0 iU

i
0 )2 +mixed terms of T0, Q0, U0). (18)

6



To be consistent with Wald entropy, we must have T0 = U0 i = Q0zz̄ij = 0 in stationary spacetime.

This implies that T0, U0 i and Q0zz̄ij should be either zero or functions of the extrinsic curvatures.

This is indeed the case for the splitting eqs.(16). By dimensional analysis, we note that U0 i ∼ O(K).

However, it is impossible to express U0 i in terms of the extrinsic curvature Kaij . Thus, a natural

choice would be U0 i = 0.

2. The entropy of conformal invariant action is also conformal invariant.

In the bulk, we can use gravitational equations of motion to fix the splittings of conical metrics.

However, we do not have dynamic gravitational fields on the boundary. Then how can we determine

the splittings on the boundary? For the cases with gravity duals, in principle, we can derive the

conical metric on the boundary from the one in the bulk. As for the general cases, we do not know

how to fix the splittings. If we focus on the case of CFTs, the conformal symmetry can help. As

we know, the universal terms of EE for CFTs are conformal invariant. Recall that we can derive

the the universal terms of EE as the entropy of the Weyl anomaly [34, 31, 36]. Thus, the entropy of

conformal invariants (Weyl anomaly) must be also conformal invariant. Let us call this condition as

the ‘conformal constraint’ . Expanding the Weyl tensor in powers of e2A, we have

Czz̄zz̄ = e4AC1 zz̄zz̄ + e2AC0 zz̄zz̄

Cziz̄j = e2AC1 ziz̄j + C0 ziz̄j ,

Cikjl = C1 ikjl + e−2AC0 ikjl (19)

The ‘conformal constraint’ requires that both C1 and C0 are conformal invariant. Assuming the

general splittings in 6d spacetime

T0 = z1KamnK
amn + z2KaK

a

Q0 zz̄ij = (x1KzimK m
z̄ j + x2 gijKzmnK

mn
z̄ + y1KzKz̄ij + y2 gijKzKz̄) + c.c. (20)

By using the ‘conformal constraint’, we get

x1 = 1− 2y1, x2 =
1

4
− 6z1 −

y1
3
, y2 = − 1

16
− 6z2 −

y1
24

. (21)

Thus the ‘conformal constraint’ cannot fix the splittings on the boundary completely.

3. The splittings should yield the correct universal terms of EE for CFTs.

Another natural constraint for the splittings on the boundary is that it should give the correct

universal term of EE for CFTs. By ‘correct’, we mean it agrees with holographic results. Remarkably,

the splitting problem does not affect the universal terms of EE for 4d CFTs . From the viewpoint of

CFTs, we can derive the universal terms of EE as the entropy of the Weyl anomaly. In 4d spacetime,

the Weyl anomaly are curvature-squared terms whose entropy can not include T0 and Q0 by using

Dong’s formula [32]. From the viewpoint of holography, the situation is similar. For the general higher

derivative gravity S(g,R), it has been proved that T0 and Q0 does not contribute to the logarithmic

terms of EE [33]. As for the 6d CFTs, the splitting problems do matter. To be consistent with the

holographic results, in sect. 4, we shall derive the splittings eq.(20) with

x1 = 1, x2 =
1

4
− 6z1, y1 = 0, y2 = − 1

16
− 6z2. (22)

7



This constraint is better than the ‘conformal constraint’ but still could not fix the splittings completely.

It seems that we have some freedom to split the conical metrics on the boundary and this freedom

does not affect the universal terms of EE.

4. The splittings does not affect the entropy of Love-lock gravity and topological invariants.

Love-lock gravity is special in several aspects. In particular, it becomes topological invariant in

critical dimensions. Thus the entropy of Love-lock gravity must be also topological invariant in critical

dimensions. This strong constrains the possible form of the entropy of Love-lock gravity. We know

the answer is the Jacobson-Myers formula [43]. In general, we would get different entropy from the

conical metrics with different splittings. Thus, we must check if the splittings affect the entropy of

Love-lock gravity. It is clear that the splittings does not affect the Wald entropy. Thus, we focus on

the anomaly of entropy KzijKz̄kl
∂2L

∂Rzizj∂Rz̄kz̄l
[32]. Note that T0 and Q0 only appear in the curvatures

Rzz̄zz̄ and Rziz̄j but not Rijkl. While only Rijkl can appear in ∂2L
∂Rzizj∂Rz̄kz̄l

for Love-lock gravity.

Thus the splittings indeed does not affect the entropy of Love-lock gravity.

3 Holographic method

In this section, we derive the universal logarithmic terms of EE for 6d CFTs by using the holographic

method. We firstly derive the results from a smart-constructed bulk action and then prove that the

general action produces the same results.

3.1 Logarithmic terms of EE from a smart-constructed action

For the curvature-squared gravity and Love-Lock gravity, the splitting problem does not matter.

However, the central charges of the corresponding CFTs are not independent but constrained by

B3 =
B2−

B1
2

3 . To cover the general CFTs, we must cosider at least one cubic curvature term. Below

we construct two special cubic curvature terms M1 and M2 which are designed to correspond to I1

and I2 eq.(4), respectively. We use these smart-constructed cubic curvature terms to derive universal

terms of EE for 6d CFTs. It turns out that they help quite a lot to simplify the calculations.

Consider the following action

S =

∫

d7x

√

−Ĝ(R̂+ 30 + λ1M1 + λ2M2) (23)

where we have set the AdS radius l = 1 and M1,M2 are constructed as

M1 = R̃µνρσR̃
µαβσR̃ν

αβ
ρ, M2 = R̃ ρσ

µν R̃ αβ
ρσ R̃ µν

αβ . (24)

Here R̃ is defined by

R̃µνρσ = R̂µνρσ + (ĜµρĜνσ − ĜµσĜνρ),

R̃µν = R̂µν + 6Ĝµν ,

R̃ = R̂+ 42. (25)
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It should be mentioned that Mi (i = 1, 2) can be regarded as the bulk counterparts to the conformal

invariants Ii eq.(4). They only contribute to the holographicWeyl anomaly with respect to Ii (i = 1, 2).

According to [33], the holographic Weyl anomaly for the above action is

〈T i
i 〉 =

3
∑

n=1

Bn In + 2AE6, (26)

with the central charges given by

A = π3,

B1 = − 1

16
+ λ1,

B2 = − 1

64
+ λ2,

B3 =
1

192
. (27)

It is expected that the universal terms of EE for 6d CTFs takes the following form

SEE = log(ℓ/δ)

∫

Σ

d4x
√

h0

[

2π

3
∑

n=1

BnFn + 2AE4

]

(28)

where Fn are conformal invariants need to be determined and E4 is the Euler density. From eqs.(23,27),

it is clear that we can use HEE of M1 and M2 to derive F1 and F2, respectively. Knowing F1 and F2,

one can use HEE of Einstein gravity to obtain F3.

3.1.1 F1 and F2

Now let us start to derive the universal terms of EE. We kindly suggest the readers who are not

familiar with the related skills to read the Appendix. A firstly.

We firstly discuss the Wald entropy of action eq.(23). After some calculations, we get

SWald = 2π

∫

dρd4y
√
h
[

2 + 3λ1ǫ
µνǫρσR̃

αβσ
µ R̃ναβ

ρ + 3λ2ǫ
µνǫρσR̃

ρσαβR̃αβµν

= 2π

∫

dρd4y
√
h
[

2 + ρ2(3λ1ǫ̃
ij ǫ̃klC

mnl
i Cjmn

k + 3λ2ǫ̃
ij ǫ̃klC

kl
mnC

mn
ij

]

+ irrelevant terms

= SE + 2π

∫

dρd4y

√
h0

2ρ

[

3λ1ǫ̃
ij ǫ̃klC

mnl
i Cjmn

k + 3λ2ǫ̃
ij ǫ̃klC

kl
mnC

mn
ij + (4k1 + k2)CijklC

ijkl

−k2g
⊥
ijC

i
klmCjklm

]

+ irrelevant terms

= SE + 2π log(ℓ/δ)

∫

Σ

d4x
√

h0

[

3λ1(C
jmnk C il

m n ε̃ij ε̃kl −
1

4
Ciklm Cj

klm g̃⊥ij +
1

20
Cijkl Cijkl)

+3λ2(C
klmn C ij

mn ε̃ij ε̃kl − Ciklm Cj
klm g̃⊥ij +

1

5
Cijkl Cijkl)

]

, (29)

where SE is the universal terms of EE for pure Einstein gravity. We leave the derivation of SE to the

next subsection. Let us discuss the above calculations briefly. The R3 terms in action eq.(23) gives

two kinds of contributions. The first kind of contributions come from their Wald entropy, such as the

C2 terms in the second and third lines of eq.(29). The second kind of contributions are due to their

non-trivial corrections of
(2)

g ij eq.(80) and
(2)

X i eq.(84) in
√
h. The k1, k2 terms in the third and fourth

9



lines of eq.(29) come from corrections of
(2)

g ij . Note that
√
h contains only the linear term of

(2)

X i in

the relevant order 1
ρ . According to equations of motion δSHEE

δXi = 0, the linear terms of
(2)

X i should

vanish on-shell (at least for Einstein gravity). This is indeed the case. As we shall show in the next

subsection, the coefficient of
(2)

X i vanishes on-shell in the relevant order 1
ρ .

From eqs.(27,28,29), we can read out Wald-entropy-part of F1 and F2 as

FW1 = 3(Cjmnk C il
m n ε̃ij ε̃kl −

1

4
Ciklm Cj

klm g̃⊥ij +
1

20
Cijkl Cijkl)

FW2 = 3(Cklmn C ij
mn ε̃ij ε̃kl − Ciklm Cj

klm g̃⊥ij +
1

5
Cijkl Cijkl), (30)

which match the field theoretical results eqs.(6,7) exactly.

Now let us go on to discuss the anomaly of entropy for action eq.(23). According to eqs.(90,91),

we only need to keep trK4 and (trK2)2 among the K4 terms. Thus, we can drop all terms including

K m
am . This helps us to simplify calculations. Note also that, as we have shown in Sect. 2, Q0abij ∼

K2, T0 ∼ K2.

For M1 = R̃µνρσR̃
µαβσR̃ν

αβ
ρ, we derive

SA1 = 24πKzijKz̄mnR̃
imjn − 12πKzijKz̄mn(K

in
a Kajm −Kij

a Kamn)

−96πKzilK
l

z̄jR̃
ij

zz̄ + 48πKzilK
l

z̄j(KzjkK
k

z̄i −KzikK
k

z̄j )

+96πKzijK
ij

z̄ R̃zz̄zz̄ − 48πKzijK
ij

z̄ (−3T0)

= ρ2(24πk̄zij k̄z̄mnC
imjn − 12πk̄zij k̄z̄mn(k̄

in
a k̄ajm − k̄ija k̄amn)

−96πk̄zilk̄
l

z̄jC
ij

zz̄ + 48πk̄zilk̄
l

z̄j(k̄zjk k̄
k

z̄i − k̄zik k̄
k

z̄j )

+96πk̄zij k̄
ij

z̄ Czz̄zz̄ + 24π(k̄zij k̄
ij

z̄ )2) +O(ρ3) (31)

where kaij is the extrinsic curvature on the entangling surface Σ and k̄aij is the traceless part of kaij .

For M2 = R̃ ρσ
µν R̃ αβ

ρσ R̃ µν
αβ , we have

SA2 = −384πK
(i

zl K
j)l

z̄ R̃ziz̄j + 192πK
(i

zl K
j)l

z̄ (KzjkK
k

z̄i −Q0zz̄ij)

= −384πρ2k̄
(i

zl k̄
j)l

z̄ Cziz̄j − 192πρ2k̄
(i

zl k̄
j)l

z̄ k̄zjk k̄
k

z̄i +O(ρ3) (32)

From eq.(31,32), we can derive the ‘anomay’-part of F1 and F2 as

FA1 =
SA1

2π
= 12k̄zij k̄z̄mnC

imjn − 6k̄zij k̄z̄mn(k̄
in
a k̄ajm − k̄ija k̄amn)

−48k̄zilk̄
l

z̄jC
ij

zz̄ + 24k̄ i
zl k̄

lj
z̄ (k̄zjk k̄

k
z̄i − k̄zik k̄

k
z̄j ) + 48k̄zij k̄

ij
z̄ Czz̄zz̄ + 12(k̄zij k̄

ij
z̄ )2

FA2 =
SA2

2π

= −192k̄
(i
zl k̄

j)l
z̄ Cziz̄j − 96k̄

(i
zl k̄

j)l
z̄ k̄zjk k̄

k
z̄i . (33)

Now we can obtain F1 = FW1 + FA1 and F2 = FW2 + FA2 from eqs.(30,33). This is one of our main

results. Let us make some discussions. Firstly, we have used eqs.(17). So we require that our action

has an asymptotically AdS solution. Secondly, our results eqs.(30,33) are consistent with those of

[34, 35]. We have shown above that our results agree with the field theoretical results eqs.(6,7) when
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the extrinsic curvature vanishes[34]. As for the case of non-zero extrinsic curvature, let us compare

our results with [35]. In [35], Safdi obtain the universal terms of EE for 6d CFTs with B3 =
B2−

B1
2

3 in

flat space as eq.(8). For simplicity Safdi takes vanishing extrinsic curvature in the time-like direction.

In our notation, we have Kzij = Kz̄ij =
1
2kij . Since now we do not know F3, we set B3 = 0, B1 = 2B2

for simplicity (We leave the derivation of F3 to the next subsection). Note also that we have Cijkl = 0

in flat space. Take all the above simplifications into account, we derive

SΣ|log = log(ℓ/δ)

∫

Σ

2AE4 + 9πB2[(trk̄
2)2 − 2trk̄4] (34)

which exactly agrees with the results of [35]. Thirdly, our
√
h0F1 and

√
h0F2 are obviously conformal

invariant. That is because, similar to Cijkl , k̄aij are conformal tensors. In other words, we have

gij → e2σgij , C
i
jkl → Ci

jkl and k̄aij → eσk̄aij under conformal transformations. To end this section,

we rewrite F1 and F2 in covariant expressions

F1 = 3(Cjmnk C il
m n ε̃ij ε̃kl −

1

4
Ciklm Cj

klm g̃⊥ij +
1

20
Cijkl Cijkl)

+3k̄aij k̄amnC
imjn − 3

2
k̄bij k̄bmn(k̄

in
a k̄ajm − k̄ija k̄amn)

+3ε̃abk̄ailk̄
l

bjε
cdC ij

cd +̃3ε̃abk̄ailk̄
l

bj ε̃
cdk̄ i

c kk̄
kj

d

−k̄amnk̄
mn

a Cijkl ε̃ij ε̃kl +
3

4
(k̄aij k̄

ij
a )2 (35)

F2 = 3(Cklmn C ij
mn ε̃ij ε̃kl − Ciklm Cj

klm g̃⊥ij +
1

5
Cijkl Cijkl)

−12k̄
a (i
l k̄ j)l

a Cminj g̃
⊥mn − 6k̄

a (i
l k̄ j)l

a k̄bjk k̄
k

bi . (36)

3.1.2 F3

In this subsection, we derive the universal terms of EE for 6d CFTs dual to Einstein gravity. Using

the results together with F1 and F2, we can derive F3.

Recall that the HEE of Eintein gravity is

SHEE = 4π

∫

dρd4y
√
h (37)

Applying the approach of [46], we have

hρρ =
1

4ρ2
+

1

ρ

(1)

Xj
(1)

X i (0)

gij + (
(1)

X i
(1)

Xj (1)

gij +
(1)

X i
(1)

Xj
(1)

Xk∂k
(0)

gij + 4
(2)

X i
(1)

Xj (0)

gij)

=
1

4ρ2
[1 +

1

16
ρkiki + ρ2(

1

16
kikj

(1)

gij + 2
(2)

X ikj
(0)

gij)]. (38)

Here we have used
(1)

X i = 1
8k

i eq.(85) and the following ansatz of
(0)

gij

(0)

gijdx
idxj = dzdz̄ + T (z̄dz − zdz̄)2 + 2iVî(z̄dz − zdz̄)dyî

+(gîĵ +Qîĵ)dy
îdyĵ , (39)

11



where T, V,Q are given by

T =

∞
∑

n=0

Ta1...an
xa1 ...xan , Vî =

∞
∑

n=0

Va1...anî
xa1 ...xan = Uî + ...,

Qîĵ =

∞
∑

n=1

Qa1...anijx
a1 ...xan = −2xakaîĵ + xaxbQab̂iĵ + ... (40)

Here xa denote z, z̄ and yî are coordinates on the four-dimensional entangling surface. Using eq.(39),

we have
(1)

X i
(1)

Xj
(1)

Xk∂k
(0)

gij ∼ O(xa) and thus can be ignored on the entangling surface. It should be

mentioned that, by choosing suitable coordinates, we can alway write the metric in the form of

eq.(39) [32]. Note also that the extrinsic curvature in this subsection (Schwimmer-Theisen notation

[46]) is different from the one of other sections (Dong’s notation[32]) by a minus sign.

Similarly for hîĵ , we have

hîĵ =
1

ρ
[
(0)

h îĵ + ρ(
(1)

g îĵ −
1

4
kakaîĵ) + ρ2

(2)

h îĵ ], (41)

with
(2)

h îĵ given by

(2)

h îĵ = ∂î

(1)

Xm∂ĵ

(1)

Xn (0)

gmn + ∂î

(2)

Xm∂ĵ

(0)

Xn (0)

gmn + ∂î

(0)

Xm∂ĵ

(2)

Xn (0)

gmn

+(∂î

(1)

Xm∂ĵ

(0)

Xn + ∂î

(0)

Xm∂ĵ

(1)

Xn)(
(1)

gmn +
(1)

Xk∂k
(0)

gmn)

+∂î

(0)

Xm∂ĵ

(0)

Xn(
(2)

gmn +
(1)

Xk∂k
(1)

gmn +

(1)

Xk
(1)

X l

2
∂k∂l

(0)

gmn +
(2)

Xk∂k
(0)

gmn)

= (
1

64
∂îk

m∂ĵk
n + ∂î

(2)

Xm∂ĵ

(0)

Xn + ∂î

(0)

Xm∂ĵ

(2)

Xn)
(0)

gmn

+
1

8
(∂îk

m(1)

g mĵ + ∂ĵk
m(1)

g mî) +
1

32
ǫmn(∂îk

mknUĵ + ∂îk
mknUî)

+
(2)

g îĵ +
1

8
ka∂a

(1)

g îĵ +
1

64
kakbQab̂iĵ +

(2)

Xk∂k
(0)

gmn (42)

Let us try to simplify the above formula. Focus on the
(2)

Xm terms which are relevant to the logarithmic

terms of EE, we have

S(2)

X
= 4π log(ℓ/δ)

∫

Σ

d4y
√

h0[
(2)

X ikj
(0)

gij +

(0)

hîĵ∂î

(0)

Xm∂ĵ

(2)

Xn (0)

gmn +
1

2

(2)

Xk∂k
(0)

gmn]

= 4π log(ℓ/δ)

∫

Σ

d4y
√

h0

[

(2)

X i (0)

gij

(0)

hm̂n̂(kjm̂n̂ − ∂m̂∂n̂

(0)

Xj +

(0)

γ l̂
m̂n̂∂l̂

(0)

Xj −
(0)

Γj
kl∂m̂

(0)

Xk∂n̂

(0)

X l
]

+4π log(ℓ/δ)

∫

Σ

d4y∂ĵ(
√

h0

(0)

hîĵ∂î

(0)

Xm
(2)

Xn (0)

gmn)

= 4π log(ℓ/δ)

∫

Σ

d4y
√

h0Dî

(2)

X î (43)

where γ l̂
m̂n̂ and Dî are the Levi-Civita connection and covariant derivatives on the entangling surface

Σ, respectively. In the above derivations, we have used the definition of the extrinsic curvature

kjm̂n̂ = ∂m̂∂n̂

(0)

Xj −
(0)

γ l̂
m̂n̂∂l̂

(0)

Xj +
(0)

Γj
kl∂m̂

(0)

Xk∂n̂

(0)

X l. (44)

12



Now it is clear that we can drop
(2)

X safely on closed entangling surfaces. Thus eq.(42) can be simplified

as

(2)

h îĵ =
1

64
∂îk

m∂ĵk
n (0)

gmn +
1

8
(∂îk

m(1)

g mĵ + ∂ĵk
m(1)

g mî) +
1

32
ǫmn(∂îk

mknUĵ + ∂îk
mknUî)

+
(2)

g îĵ +
1

8
ka∂a

(1)

g îĵ +
1

64
kakbQab̂iĵ

=
1

64
(∇îk

m∇ĵk
n (0)

gmn − kmknRmînĵ) +
1

8
(∇îk

m(1)

g mĵ +∇ĵk
m(1)

g mî + km∇m
(1)

g îĵ) +
(2)

g îĵ ,

(45)

where ∇i are the covariant derivatives with respect to
(0)

gmn. From eqs.(38,45), we can derive the

logarithm term of EE for Einstein gravity as

SE = π log(ℓ/δ)

∫

Σ

d4y
√

h0[2

(2)

hî
î −

(1)

g îĵ

(1)

g
îĵ

+
1

2
(

(1)

gî î)
2 +

1

2
kakaîĵ

(1)

g
îĵ

− 3

16
kaka

(1)

gî î

+
1

8
kakb

(1)

gab −
1

16
kakaîĵkbk

b̂iĵ +
7

512
(kaka)

2]. (46)

The definitions of
(1)

g ,
(2)

g can be found in the Appendix.A with k1 = k2 = 0. After some complicated

calculations, we find that eq.(46) is conformal invariant up to some total derivatives. This can be

regarded as a check of eq.(46). Please refer to Appendix B for the proof of the conformal invariance

of eq.(46). Using eq.(46) together with F1 and F2 of sect. 2.2.1, we can derive F3.

F3 = −192π2E4 + 12F1 + 3F2

+

(2)

hî
î −

1

2

(1)

g îĵ

(1)

g
îĵ

+
1

4
(

(1)

gî î)
2 +

1

4
kakaîĵ

(1)

g
îĵ

− 3

32
kaka

(1)

gî î

+
1

16
kakb

(1)

gab −
1

32
kakaîĵkbk

b̂iĵ +
7

1024
(kaka)

2 (47)

This is one of our main results. Now let us consider some special cases below.

Case I: kaij = 0,

SE = π log(ℓ/δ)

∫

Σ

d4y
√

h0[2

(2)

gî î −
(1)

g îĵ

(1)

g
îĵ

+
1

2
(

(1)

gî î)
2]

= log(ℓ/δ)

∫

Σ

d4y
√

h0[2π
3

∑

n=1

BnFWn
+ 2AE4 +B3∆S]

(48)

where FWn
= ∂In

∂Rij
kl
ε̃ij ε̃kl denote the Wald entropy eqs.(6,7,8). Bn and A are the central charges of

CFTs dual to Einstein gravity, which can be found in eq.(27) with λ = 0. ∆S is the famous HMS

mismatch [34], which was firstly found by Hung, Myers and Smolkin that the holographic universal

terms of EE does not match the CFT ones even for entangling surface with zero extrinsic curvature.

Recently, the authors of [37] find that HMS have ignored the anomaly of entropy of I3. Taking

into account such contributions, the holographic and CFT results indeed match. After some tedious

calculations, we derive ∆S as

∆S = −4π( Cmn
rsCmnkl g̃⊥sl g̃

⊥
rk − Cmnr

sCmnrlg̃⊥sl
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+ 2Cm
n
r
sCmkrlg̃⊥nsg̃

⊥
kl − 2Cm

n
r
sCmkrlg̃⊥nlg̃

⊥
ks

+
4

3
g̃⊥ij g̃

⊥
klg̃

⊥
mng̃

⊥
rsC

ikmrCjlns − 4

3
g̃⊥ij g̃

⊥
klg̃

⊥
mnC

ikm
sC

jlns) (49)

Note that the first two lines of eq.(49) was derived by HMS [34] under the conditions kaij = 0 and

Rabci = 3ǫabVci = 0. If we drop the second condition, we get some new terms in the last line of eq.(49).

Actually, these new terms are proportional to RabciR
abci.

Case II: flat
(0)

gij and zero
(1)

gij =
(2)

gij = 0. Note that this means the bulk spacetime is pure AdS.

SE =
π

512
log(ℓ/δ)

∫

Σ

d4y
√

h0[16∂îk
m∂ îkn

(0)

gmn + 7(kaka)
2 − 16kakaîĵkbk

b̂iĵ ] (50)

In the above derivations, we have used the flat condition Raibj = 0. For simplicity, we set Ui = 0.

This is also the case studied in [35]. Compare eq.(50) with

SΣ|log = log(ℓ/δ)

∫

Σ

d4x
√

h0

[

2AE4 + 2π

3
∑

n=1

BnFn

]

, (51)

we can derive F3 as

F3 =
3

16
(16∂îk

m∂ îkn
(0)

gmn + 7(kaka)
2 − 16kakaîĵkbk

b̂iĵ)− 192π2E4 + 12F1 + 3F2 (52)

with E4 and Fn given by

E4 =
1

128π2
δi1i2i3i4j1j2j3j4

Rj1j2
Σ i1i2R

j3j4
Σ i3i4 =

1

32π2
δi1i2i3i4j1j2j3j4

kaj1i1k
j2
a i2k

bj3
i3
kj4b i4

F1 = −3

2
k̄bij k̄

b
mn(k̄

in
a k̄ajm − k̄ija k̄amn) + 3ǫabk̄ailk̄

l
bjǫ

cdk̄ i
ck k̄

jk
d +

3

4
(k̄aij k̄

aij)2

F2 = −6k̄ i
al k̄

alj k̄bjk k̄
b k
i (53)

To derive E4 in the above equation, we have used the ‘flat-space condition’ R
‖
ijkl = RΣijkl−(kaikk

a
jl−

kailk
a
jk) = 0. F1 and F2 are obtained from eqs.(35,36) with Cijkl = 0. Eqs.(52,53) apply to the case

with flat space-time on the boundary. This is also the case studied in [35]. Recall that the author of

[35] makes two further assumptions [35]. The first one is B3 =
B2−

B1
2

3 . And the second assumption is

zero extrinsic curvature in the time-like direction. So we can drop the indices (a, b, c, d) in eqs.(52,53).

We get

SΣ|log = log(ℓ/δ)

∫

Σ

d4x
√

h0

[

2AE4 + 3πB1(
3

2
T1 − T2)− 12πB2(T2) + 6πB3(T3 + 9T1 − 12T2)

]

(54)

where the definitions of Tn can be found in eq.(9). Note that eq.(54) reduces to the result of [35]

eq.(8) when B3 =
B2−

B1
2

3 . This is a non-trivial check of our results.

3.2 Logarithmic terms of EE from a general action

In this subsection, we investigate the universal terms of EE by using the general higher derivative

gravity. We prove that it yields the same results as the above section. Our main method is the

background-field approach developed in [33]. For simplicity, we focus on the action without the

derivatives of the curvature S(gµν , Rµνσρ). We assume this action has an asymptotically AdS solution.
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We firstly expand the action around a referenced curvature R̄µνρσ = −(ĜµρĜνσ − ĜµσĜνρ). Ac-

cording to [33], only the first few terms are relevant to the holographic Weyl anomaly and the loga-

rithmic term of EE. We have

S(gµν , Rµνσρ) =

∫

d7x

√

−Ĝ[

3
∑

n=0

mn
∑

i=1

cni K̃
n
i +O(ρ4) ]

=

∫

d7x

√

−Ĝ[− c11
12

(R̂+ 30) + c21R̃µνρσR̃
µνρσ + c33R̃R̃µνρσR̃

µνρσ + c36R̃µνR̃
µ
ρσβR̃

νρσβ

+c37M2 + c38M1 +O(ρ4) ]

(55)

where cni are constants determined by the action and mn is the number of independent scalars con-

structed from appropriate contractions of n curvature tensors. For example, m1 = 1,m2 = 3,m3 = 8.

K̃n
i = Kn

i |[R̂→(R̂−R̄)] with Kn
i the independent scalars constructed from n curvature tensors. For

example, we have

K1
1 = R̂,

K2
i = (R̂µνρσR̂

µνρσ, R̂µνR̂
µν , R̂2),

K3
i = (R̂3, R̂R̂µνR̂

µν , R̂R̂µνρσR̂
µνρσ, R̂ν

µR̂
ρ
νR̂

µ
ρ , R̂

µνR̂ρσR̂µρσν , R̂µνR̂
µρσλR̂ν

ρσλ,

R̂µνρσR̂
µνλχR̂ρσ

λχ, R̂ννρσR̂
νλχσR̂ν ρ

λχ ),

... (56)

For simplicity, we focus on the case with c21 = 0 in this paper. Without loss of generality, we set

c11 = −12, c33 = λ3, c
3
6 = λ4, c

3
7 = λ2, c

3
8 = λ1. Then the general action becomes

S =

∫

d7x

√

−Ĝ[R̂+ 30 + λ1M1 + λ2M2 + λ3R̃R̃µνρσR̃
µνρσ + λ4R̃µνR̃

µ
ρσβR̃

νρσβ + O(ρ4)] (57)

Please refer to eq.(24) and eq.(25) for the defination of Mn and R̃, respectively. According to [33], the

Weyl anomaly of dual CFTs is 〈T i
i 〉 =

∑3
n=1 Bn In + 2AE6 with central charges given by eq.(27)

A = π3,

B1 = − 1

16
+ λ1,

B2 = − 1

64
+ λ2,

B3 =
1

192
. (58)

Remarkably, the CFTs dual to actions eq.(23) and eq.(57) have the same central charges. This means

that they must have the same universal terms of entanglement entropy too. Thus R̃R̃µνρσR̃
µνρσ and

R̃µνR̃
µ
ρσβR̃

νρσβ can not contribute to universal terms of EE in order to be consistent with the results

of the above section.

Following the approach of sect. 2.2, we find that the Wald entropy of R̃R̃µνρσR̃
µνρσ and R̃µνR̃

µ
ρσβR̃

νρσβ

is indeed irrelevant to the universal terms of EE. However, mismatches may come from the anomaly of
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entropy if we choose Q0zz̄ij and T0 freely. Focus on the relevant terms, we get the anomaly of entropy

as

SAnomaly = −
∫

dρd4y
√
h
[

λ3KzijK
ij

z̄ (3KamnK
amn −KaKa − 2Qa

0a
m
m + 24T0)

+ λ4KzijK
ij

z̄ (KzmnK
mn

z̄ −Q m
0 zz̄m + 6T0) +

λ4

2
KzilK

l
z̄ j(2K

aimK j
am −KaK

aij −Qaij
a )

]

+ ...

= 0 + ... (59)

where ‘...’ denotes terms irrelevant to the logarithmic terms of EE. In the above derivations, we have

used eq.(17) and the fact that only the trK4 and (trK2)2 terms contribute to the universal term of

EE for 6d CFTs. Now it is clear that R̃R̃µνρσR̃
µνρσ and R̃µνR̃

µ
ρσβR̃

νρσβ indeed do not contribute to

the logarithmic terms. So the higher derivative gravity with c21 = 0 gives the same results as those

of sect. 2.1. While for the case with c21 non-zero, the calculation is a little complicated. But there is

no reason this case would gives a different result. We leave it as an exercise for the readers. Finally,

it should be mentioned that we can regard eq.(59) as another derivation of eq.(17). That is because

different higher derivative gravity must give the same formula of universal terms of EE. Thus eq.(59)

must be zero.

4 Field theoretical method

In this section, we compute the universal terms of EE by using the field theoretical method and then

compare with the holographic results. Similar to the bulk case, we meet the splitting problem. Since

now we do not know how to fix the splitting problem on the boundary, we assume the most general

expressions. We find that there indeed exists suitable splittings which could make the holographic

and the field theoretical results match.

4.1 F1 and F2

Let us firstly study the case of F1 and F2. We find that the field theoretical results exactly match

the holographic ones for the C2 and Ck2 terms. As for the k4 terms, one meet with the splitting

problem for q0zz̄ij and t0. Since now we do not know how to fix the splitting for t, q on the boundary,

we assume the following general expressions

t0 = z1kamnk
amn + z2kak

a

q0 zz̄ij = (x1kzimk m
z̄ j + x2 gijkzmnk

mn
z̄ + y1kzkz̄ij + y2 gijkzkz̄) + c.c. (60)

Recall that, in sect.3.1, we have already proved that the field theoretical results match the holographic

ones for Wald entropy (C2 terms), so we focus on the anomaly of entropy below.

For I1 we get the anomaly of entropy as

S1 = 24πk̄zij k̄z̄mnC
imjn − 12πk̄zij k̄z̄mnC

imjn
0

−96πk̄mzi k̄z̄mjC
ij
zz̄ + 48πk̄mzi k̄z̄mjC

ij
0 zz̄
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96πk̄zmnk̄
mn

z̄ Czz̄zz̄ − 48πk̄zmnk̄
mn

z̄ C0 zz̄zz̄ (61)

where k̄aij is the traceless part of the extrinsic curvature and C0 is defined in the Appendix. C.

Comparing eq.(61) with eq.(33), we find that the Ck2 terms match exactly. If we require that the k4

terms also match, we get a unique solution to eq.(60)

x1 = 1, x2 =
1

4
− 6z1, y1 = 0, y2 = − 1

16
− 6z2 (62)

It is interesting to check if the field theoretical and holographic results for F2 also match under this

condition (62). This is can be regarded as a self-consistent testing. As we shall show below, this is

indeed the case.

Let us go on to compute the anomaly of entropy for I2

S2 = −384πk̄(iz mk̄
j)m

z̄ Cziz̄j + 192πk̄(iz mk̄
j)m

z̄ C0 ziz̄j , (63)

where C0 is given by eqs.(98). Similarly to the case of I1, the Ck2 terms of eq.(33) and eq.(63) match

exactly. The k4 terms also match if we impose the condition eq.(62). So our results have passed the

self-consistent testing. Note that comparing the holographic results and the field theoretical results

for F1 and F2 does not fix z1, z2.

To end this section, we show some details of the derivation of eq.(62). For simplicity, we focus on

the case of vanishing extrinsic curvature in the time-like direction (the general case gives the same

results). Then we can replace kaij by 1
2kij . From eqs.(61,63,102), we can derive the k4 terms as

B1S1 +B2S2

= 3π[B1(x1 − 2)− 4B2x1]trk
4 − 3π

2
[B1(x1 − 2y1 − 3)− 4B2(1 + x1 − 2y2)]ktrk

3

+
3

20
π[B1(21 + 2x1 + 28x2 + 168z1) + 4B2(1 + 2x1 − 12x2 − 72z1)](trk

2)2

+
3

160
π[B1(19 + 6y1 − 56y2 − 336z2) + 4B2(9− 14y1 + 24y2 + 144z2)]k

4

+
3

80
π[B1(−79 + 3x1 − 28x2 − 32y1 + 112y2 − 168z1 + 672z2)

−4B2(29 + 7x1 − 12x2 − 48y1 + 48y2 − 72z1 + 288z2)]k
2trk2 (64)

For 6d CFTs with B3 = 0, the holographic k4 terms eq.(54) becomes

SΣ|log = log(ℓ/δ)

∫

Σ

d4x
√

h0

[

3πB1(
3

2
T1 − T2)− 12πB2(T2)

]

= log(ℓ/δ)

∫

Σ

3π
[

− (B1 + 4B2)trk
4 + (B1 + 4B2)ktrk

3 +
3

2
B1(trk

2)2 − 3

8
(3B1 + 4B2)k

2trk2

+
3

64
(3B1 + 4B2)k

4
]

. (65)

Compare eq.(64) with eq.(65), we find a unique solution

x1 = 1, x2 =
1

4
− 6z1, y1 = 0, y2 = − 1

16
− 6z2 (66)

Note that B1 and B2 are independent central charges, so there are ten equations (64) for six unkown

parameters. Thus it is really non-trivial that we have consistent solutions.
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4.2 F3

Now let us go on to study the F3 term. In sect. 3.1.2, we have discussed the holographic F3 for two

interesting cases. In this first case we set kaij = 0 and derive the C2 terms of F3 eq.(48). While in the

second case, we focus on the flat boundary spacetime and obtain the k4 terms of F3 eqs.(48,54). In

this section, we calculate the corresponding field theoretical results and compare with the holographic

ones. We find that the C2 terms of F3 indeed match. This can be regarded as a resolution of the

HMS puzzle [34, 37]. While for the k4 terms, we have to deal with the splitting problem. We assume

eqs.(60,62) and check if this assumption of splitting could pass the F3 test or not.

Case I: kaij = 0

Let us firstly investigate the case with zero extrinsic curvature. It is found by HMS [34] that

there are mismatches between the holographic and the field theoretical universal terms of EE even

for the entangling surfaces with zero extrinsic curvature. Recently, the authors of [?] find that HMS

have ignored the anomaly of entropy from the Weyl anomaly I3. After taking into account this

contribution, the holographic and CFT universal terms of EE indeed match [37]. For simplicity

[34, 37] both focus on the cases with kaij = 0 and Rabci = 3ǫabVci = 0. Here we drop the second

constraint Rabci = 3ǫabVci = 0 and check if the holographic and the field theoretical results still

match. We only need to compare ∆S eq.(49) with the anomaly of entropy from I3. That is because

the anomaly of entropy of I1 and I2 vanishes for kaij = 0. Note further that the anomaly of entropy

of I3 only comes form Cijkl�Cijkl ∼= −∇mCijkl∇mCijkl for the case of zero extrinsic curvature.

When the extrinsic curvature vanishes, the splitting problem disappears and the anomaly of entropy

for the gravitational action with one derivative of the curvature is given by [37]

SAnomaly = 2π

∫

ddy
√
g
[

64
( ∂2L

∂∇zRzizl∂∇z̄Rz̄kz̄l

)

α1

QzzijQz̄z̄kl

βα1

+ 96i
( ∂2L

∂∇zRzizl∂∇z̄Rz̄zz̄k

)

α1

QzzijVz̄k

βα1

+ c.c

+ 144
( ∂2L

∂∇zRzz̄zl∂∇z̄Rz̄zz̄k

)

α1

VzlVz̄k

βα1

]

, (67)

where Q, V are defined in the conical metric

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] + 2ie2AVi(z̄dz − zdz̄)dyi

+(gij +Qij)dy
idyj . (68)

Here A = − ǫ
2 lg(zz̄ + a2) is regularized warp factor and Vi, Qij are defined as

Vi = Ui + zVzi + z̄Vz̄i +O(z2),

Qij = z2Qzzij + z̄2Qz̄z̄ij + 2zz̄e2AQzz̄ij +O(z3) (69)

Applying the formula eq.(67), we derive the anomaly of entropy of Cijkl�Cijkl ∼= −∇mCijkl∇mCijkl

as

SA =

∫

d4y
√
h
[

128πQ̄zzijQ̄
ij

z̄z̄ + 432πVziV
i

z̄

]

. (70)
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It should be mentioned that the total entropy of �CijklC
ijkl vanishes by using the approach of [32, 37].

Substituting the conical metric eq.(68) with A = 0 into ∆S eq.(49), we get

∆S =
[

128πQ̄zzijQ̄
ij

z̄z̄ + 432πVziV
i

z̄

]

. (71)

which is exactly the same as eq.(70). Thus the holographic and the field theoretical results match for

the C2 terms of F3.

Case II: flat
(0)

gij

Now let us go on to study the second case with flat spacetime on the boundary. The holographic

F3 term is given by eq.(54)

SΣ|log = log(ℓ/δ)

∫

Σ

d4y
√

h0 [ 6πB3(T3 + 9T1 − 12T2) ] (72)

with

T1 = (trk̄2)2, T2 = trk̄4, T3 = (∇ak)
2 − 25

16
k4 + 11k2trk2 − 6(trk2)2 − 16ktrk3 + 12trk4. (73)

Applying the method developed in [32, 37], we can derive 2πF3 as the entropy of Weyl anomaly

I3. We list the results below.

I For ds2 = dzdz̄ + (1 + z+z̄
2 )2dy21 + dy22 + dy23 + dy24 , we obtain the entropy of I3 as

SI |log =
27π

8
(74)

which agrees with the holographic result eq.(72). Here and below we drop the factor from the integral

dy4.

II For ds2 = dzdz̄ + (1 + z+z̄
2 )2(dy21 + sin2 y1dy

2
2) + dy23 + dy24 , we derive the entropy of I3 as

SII |log = 30π, (75)

which matches the holographic result eq.(72).

III For ds2 = dzdz̄ + (1+ z+z̄
2 )2(dy21 + sin2 y1dy

2
2 + sin2 y1 sin

2 y2dy
2
3) + dy24 , we get the entropy of

I3 as

SIII |log =
459π

8
, (76)

which is consistent with the holographic result eq.(72).

IV For ds2 = dzdz̄ + (1 + z+z̄
2 )2(dy21 + sin2 y1dy

2
2 + sin2 y1 sin

2 y2dy
2
3 + sin2 y1 sin

2 y2 sin
2 y23dy

2
4),

we have the entropy of I3

SIV |log = 0, (77)

which also agrees with the holographic result eq.(72).

Now it is clear that the splittings eq.(60,62) have passed the F3 test. Remarkably, we cannot fix

the splittings completely by comparing the holographic and field theoretical universal terms of EE. It

seems that we have more than one way to split the conical metrics on the boundary and such freedom

does not affect the universal terms of EE.
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5 Conclusions

We have investigated the universal terms of EE for 6d CFTs by applying holographic and the field

theoretical methods, respectively. Our results agree with those of [34, 35]. We find the holographic

and the field theoretical results match for the C2 and Ck2 terms. While for the k4 terms, we meet

the splitting problem for the conical metrics. We fix the splitting problem in the bulk by using two

different methods. The first one is by using equations of motion and second one is requiring that all

the higher derivative theories of gravity yield the same logarithmic terms of EE. These two methods

give consistent results for the splitting in the bulk. As for the splitting on the boundary, we assume

the general forms and find there indeed exists suitable splitting which can make the holographic and

CFT k4 terms match. Since we have much more equations than the free parameters, this match is

non-trivial. Remarkably, we can not fix the splitting on the boundary completely by comparing the

holographic and field theoretical results. It seems that we have some freedom to split the conical

metrics on the boundary and such freedom does not affect the universal terms of EE for CFTs. That

is not surprising. That is because the terms (Weyl anmoly) we studied are quite special. Actually, for

Love-lock gravity, arbitrary splitting would not affect the entropy. How to fix the splitting problem on

the boundary is an interesting problem. For the cases with gravity duals, we could obtain the conical

metrics on the boundary from the one in the bulk. While for the general cases, now it is not clear

to us how to fix this problem. We hope to address this problem in future. Finally, we want to point

out how much our holographic results Fi eqs.(35,36,47) depend on the splittings. It is clear that the

combinations (F3 − 3F2 − 12F1) and (2F1 + F2) are independent of the splittings. That is because

they can be derived from the holographic entanglement entropy of Einstein gravity and Love-lock

gravity which are irrelevant to the splittings. Without loss of generality, we choose F2 as the third

independent combination of Fi. As mentioned above, the splitting problem does not affect the C2

and Ck2 terms. Thus, only the k4 terms of F2 are relevant to the splitting problem.
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A FG expansion and Schwimmer-Theisen approach

A.1 FG expansion

For asymptotically AdS space-time, we can expand the bulk metric in the Fefferman-Graham gauge

ds2 = Ĝµνdx
µdxν =

1

4ρ2
dρ2 +

1

ρ
gijdx

idxj , (78)
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where gij =
(0)

g ij + ρ
(1)

g ij + ...+ ρ
d
2 (

( d
2
)

g ij +
( d
2
)

h ij log ρ) + .... Interestingly,

(1)

g ij = − 1

d− 2
(
(0)

Rij −
(0)

R

2(d− 1)

(0)

g ij), (79)

can be determined completely by PBH transformation [44, 45] and thus is independent of equations

of motion. However, the higher order terms
(2)

g ij ,
(3)

g ij ... are indeed constrained by equations of motion.

We have

(2)

g ij = k1 CmnklC
mnkl

(0)

g ij + k2 CiklmC klm
j

+
1

d− 4

[

1

8(d− 1)
∇i∇jR− 1

4(d− 2)
�Rij +

1

8(d− 1)(d− 2)
�R

(0)

g ij

− 1

2(d− 2)
RklRikjl +

d− 4

2(d− 2)2
R k

i Rjk +
1

(d− 1)(d− 2)2
RRij

+
1

4(d− 2)2
RklRkl

(0)

g ij −
3d

16(d− 1)2(d− 2)2
R2

(0)

g ij

]

, (80)

For action eq.(23), we have

k1 =
3

80
(5λ1 + 14λ2), k2 =

3

4
(λ1 − 4λ2) (81)

The following formulas are useful [33]

R̃ ∼ o(ρ2), R̃ij ∼ o(ρ), R̃iρ ∼ o(ρ), R̃ρρ ∼ o(1)

R̃iρjρ ∼ o(
1

ρ
), R̃ρijk ∼ o(

1

ρ
)

R̃ijkl =
Cijkl

ρ
. (82)

A.2 Schwimmer-Theisen approach

Denote the transverse space of the squashed cone by m. The embedding of the 5-dimensional sub-

manifold m into 7-dimensional bulk is described by Xµ = Xµ(σα), where Xµ = {xi, ρ} are bulk

coordinates and σα = {ya, τ} are coordinates on m. We choose a gauge

τ = ρ, haτ = 0, (83)

where hαβ is the induced metric on m. Let us expand the embedding functions as

X i(τ, yi) =
(0)

X i(ya) +
(1)

X i(ya)τ +
(2)

X i(ya)τ2 + ... (84)

Diffeomorphism preserving the FG gauge (78) and above gauge (83) uniquely fixes a transformation

rule of the embedding functions Xµ(ya, τ) [46]. From this transformation rule, we can identity
(1)

X i(ya)

with 1
8k

i(ya)

(1)

X i(ya) =
1

8
ki(ya), (85)
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where ki is the trace of the extrinsic curvature of the entangling surface Σ in the boundary where

CFTs live. From eq.(84), we can derive the induced metric on m as

hττ =
1

4τ2

(

1 +
1

4
kikj

(0)

g ij τ + · · ·
)

, hab =
1

τ

((0)

h ab +
(1)

h ab τ + ...
)

, (86)

with

(0)

h ab = ∂a

(0)

X i∂b

(0)

Xj (0)

g ij ,
(1)

h ab =
(1)

g ab −
1

2
kikjab

(0)

g ij . (87)

Thus, we have

√
h =

√

(0)

h
1

2ρ3
+ .... (88)

Using eq.(84), we can also derive the extrinsic curvature K of m as

Ki
ab = (kiab −

ki

4

(0)

h ab) + ... (89)

Note that all the other components of Kµ
αβ are higher order terms which do not contribute to the

logarithmic terms.

In Dong’s notation, we list some useful formulas.

Kaij =
k̄aij√
ρ

+ ..., Ka ∼ ρ3/2, KaijK
aij = ρk̄aij k̄

aij + ... (90)

From eqs.(88,90), we notice that only the following terms could contribute to the universal term of

EE for 6d CFTs

√
htrK4,

√
h(trK2)2 (91)

B The conformal invariance of F3

In this section, we prove that the logarithmic terms of EE for Einstein gravity SE eq.(46) are conformal

invariant. Recall that F3 is a combination of SE and the conformal invariants F1, F2, E4. Thus,

equivalently, we shall prove F3 is conformal invariant. For simplicity, we focus on the infinitesimal

conformal transformations. According to [44], we have

δ
(0)

g ij = 2σ
(0)

g ij

δ
(1)

g ij = ∇i∇jσ

δ
(2)

g ij = −2σ
(2)

g ij +
1

2
∇kσ∇k

(1)

g ij −
1

2
∇mσ∇(i

(1)

g j)m +
1

2

(1)

g
k

(i ∇j)∇kσ.

(92)

and

δkmij = −hij g̃
⊥mn∇nσ

δkm = −2σkm − 4g̃⊥mn∇nσ
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δΓm
ij = δmi ∇jσ + δmj ∇iσ − (0)

g ij∇mσ

δRijkl = 2σRijkl +
(0)

g il∇j∇kσ − (0)

g ik∇j∇lσ +
(0)

g jk∇i∇lσ − (0)

g jl∇i∇kσ (93)

Substituting eqs.(92,93) into eq.(46), we get

δσSE = π log(ℓ/δ)

∫

Σ

d4y
√

h0[
(1)

g
ij

hijk
m∇mσ +

1

4
hijkm∇m∇i∇jσ +

1

4
g̃⊥mnhijklRlimj∇nσ

−2
(1)

g
ij

kmij∇mσ + hij∇m(1)

g ij∇mσ − g̃⊥mnhij∇mσ∇n
(1)

g ij −
3

32
kmkmkn∇nσ

+
1

4
kmkn∇m∇nσ − (1)

g ijki∇jσ +
1

2
kmkmijk

nij∇nσ − (1)

g
i

mhmj∇i∇jσ +
(1)

g
ij

hijh
mn∇m∇nσ

−hij∇k∇i
(1)

g jk +
1

16
hijkm∇ikj∇mσ − 1

16
hijkm∇ikm∇jσ +

1

2
hij∇ik

m∇j∇mσ

− 5

32
kmkmhij∇i∇jσ +

1

2
kmkmij∇i∇jσ − 2

(1)

g
ij

hik∇kg̃⊥jl∇lσ − 1

4
hij∇ik

m∇j g̃
⊥
mn∇nσ

−1

4
g̃⊥ijhkl∇kki∇j∇lσ]. (94)

Let us try to simplify the above complicated results. The trick is to replace the covariant derivative

∇i with respect to
(0)

g ij by the intrinsic covariant derivative Di with respect to hij as much as possible.

Besides, we find the following formulas are useful:

hm
i hn

j∇mVn = Di(h
n
j Vn)− kmijVm

hm
i hn

j∇m∇nσ = DiDjσ − kmij∇mσ

hm
n ∇mhij = kinj + kjni

km∇nh
mn = kmkm

kmhp
i h

q
jh

l
kRmpql = km(∇jkmik −∇kkmij)

kmhikhjlRmijk∇lσ =
1

2
DiσD

i(kmkm)−DiσDj(kmkmij) +∇ikmkmij∇jσ

hijkm∇i∇m∇jσ = Di(hj
ik

m∇m∇jσ)− kmkn∇i∇jσ − hij∇ik
m∇m∇jσ (95)

Applying the above formulas, we can simplify δσSE as

δσSE = π log(ℓ/δ)

∫

Σ

d4y
√

h0D
i[
1

4
hj
ik

m∇m∇jσ +
(1)

gmnh
mnDiσ − hij

(1)

g
jm

∇mσ

−1

8
kmkmDiσ +

1

4
kmkmijD

jσ]. (96)

which are just total derivatives. Now it is clear that SE eq(46) and thus F3 eq.(47) are conformal

invariant up to some total derivatives.

C Weyl tensor

The Weyl tensor in D-dimensional spacetime is defined as

Cµνρσ = Rµνρσ − 2

D − 2
(gµ[ρRσ]ν − gν[ρRσ]µ) +

2

(D − 1)(D − 2)
R gµ[ρgσ]ν . (97)

Here we list some useful formulas.

Czz̄zz̄ = e4AC1 zz̄zz̄ + e2AC0 zz̄zz̄,
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C0 zz̄zz̄ = −3T0 +
1

D − 2

[

KzmnK
mn
z̄ −Q0 zz̄

m
m + 6T0

]

− 1

4(D − 1)(D − 2)
(3KcmnK

cmn −KcK
c − 2Q c m

0c m + 24T0) (98)

Cziz̄j = e2AC1 ziz̄j + C0 ziz̄j ,

C0 ziz̄j = KzjlK
l

z̄ i −Q0 zz̄ij

− 1

D − 2

[

KcjlK
cl
i −

1

2
KcKcij −

1

2
Q c

0 cij + gij(KzmnK
mn

z̄ −Q m
0 zz̄m + 6T0)

]

+
1

2(D − 1)(D − 2)
gij(3KcmnK

cmn −KcK
c − 2Q c m

0c m + 24T0) (99)

Cikjl = C1 ikjl + e−2AC0 ikjl,

C0 ikjl = KailK
a
jk −KaijK

a
kl

− 2

D − 2

[

gi[jR0 l]k − gk[jR0 l]i

]

+
2

(D − 1)(D − 2)
gi[jgl]k(3KcmnK

cmn −KcK
c − 2Q c m

0c m + 24T0) (100)

R0 ij = 2KaimKam
j −KaKaij −Qa

0aij (101)

Let us focus on the case of [35] with Kaij =
1
2kij , Q0 zz̄ij =

1
4qij and D = 6. We have

C0 zz̄zz̄ =
1

80
(2kmnk

mn + k2 − 3q)− 9

5
t0

C0 ziz̄j = −1

8
qij +

1

8
kkij +

1

80
gij(kmnk

mn − 2k2 + q)− 9

10
t0gij

C0 ikjl = (kilkjk − kijkkl)−
1

2
(gi[jr0 l]k − gk[jr0 l]i) +

1

10
gi[jgl]k(3kmnk

mn − k2 − 2q + 24t0)(102)

r0 ij = 2kimkmj − kkij − qij (103)
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