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Abstract. We present the design and development status of the opto-mechanical sub-systems 

that will be used in an experimental demonstration of imaging systems for eLISA. An optical 

bench test bed design incorporates a Zerodur® baseplate with lenses, photodetectors, and other 

opto-mechanics that must be both adjustable - with an accuracy of a few micrometers - and 

stable over a 0 to 40°C temperature range. The alignment of a multi-lens imaging system and 

the characterisation of the system in multiple degrees of freedom is particularly challenging. 

We describe the mechanical design of the precision mechanisms, including thermally stable 

flexure-based optical mounts and complex multi-lens, multi-axis adjuster mechanisms, and 

update on the integration of the mechanisms on the optical bench.  

1.  Introduction 

eLISA optical metrology involves interfering static optical beams with optical beams that are changing 

direction over time. This can lead to an unwanted coupling of beam movement to apparent 

longitudinal signal, so called tilt-to-piston coupling. This coupling is one of the largest sources of error 

in the metrology error budget for eLISA. The method proposed for minimising the effect of tilt-to-

piston coupling in the eLISA baseline design is the use of imaging systems placed directly in front of 

the detectors.  

 

Figure 1. CAD representation of the Ø580 mm 

‘minimal’ optical bench (OB) test bed with both classical 

(a) and non-classical optical imaging system (b) opto-

mechanics integrated.  

Amongst the various mirrors and beamsplitters on the 

OB, several other optical and opto-mechanical 

assemblies that make up the interferometer can be seen: 

fibre injector optical sub-assembly (c), out-of-plane 

telescope mirror (d), power monitor and alignment 

photodiodes (e, f), beam dumps (g).  
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To experimentally verify the performance of different optical imaging systems in a representative way 

a test bed has been designed and is under construction. On the test bed, the performance of the 

imaging systems will be tested by measuring the tilt-to-piston coupling coefficients and by 

investigating the alignment sensitivity of the overall imaging systems and of its sub-units. Two 

candidate optical designs have been developed, both of which are to be tested as part of the study. To 

enable the two phases of testing and investigation, precision opto-mechanical mounts for these two 

candidate optical designs are required. These adjustable multi-lens mechanisms must be designed to 

interface with the polished Ø580 x 80 mm thick Zerodur® optical bench (OB) test bed yet they must 

be fully removable such that the candidate designs may be interchanged.  

This paper reviews the design of the opto-mechanical mechanisms and their use on the OB test bed, 

a representation of which can be seen in Figure 1.  

2.  Imaging system optical design 

The motivations behind the two optical design approaches are described in [1] although the exact 

optical designs have been altered in line with a re-scoping of the original study. The primary 

performance requirement for the imaging system is to reduce the tilt-to-piston coupling to less than 

25µm/rad over the entire field of view. One of the designs to be tested is a four lens optical design 

based upon a classical pupil relay system. This design can be seen in Figure 2. All four lenses are 

custom manufactured from fused silica.  

 

Figure 2. Four lens classical optics approach. The component in the centre of the schematic is a field 

stop. The component at the right hand side is a quadrant photodetector (QPD). 

For the second optical design, the approach was to use Gaussian beam properties as opposed to 

classical ray tracing methods and to incorporate commercially available fused silica optics. This more 

compact design, shown in Figure 3, will also be tested as part of the investigations. 

 

Figure 3. Two lens non-classical optics approach. The component at the right hand side is a QPD. 

3.  Mechanical design requirements 

In each imaging system the lenses must be aligned to one another to accurately form an image on the 

photodetector. To do so, each lens must be able to be manipulated in five degrees of freedom (5DoF). 

It must also be possible to align the imaging systems, as a whole, to the photo detector on the OB. The 

assembled unit must then remain static and be thermally stable throughout the interferometric imaging 

performance testing. The alignment specifications can be seen in Table 1.  

Table 1. Typical alignment adjustment specifications for each lens or lens pair. 

 Specification  Tolerance 

Alignment 

specifications 

De-centre X, Y +/- 20 µm 

Distance tolerance to next lens Z +/- 50 µm 

Lens centring  +/- 3’ (or ~1 mrad) 

Lens tilt pitch/yaw +/- 3’ (or ~1 mrad) 

 140mm 

 84mm 
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Thereafter, for the characterisation activity, the mounting hardware for each system must include a 

wider range of adjustment to investigate the effect of systematic offsets on individual mounts, lens 

pairs and the whole imaging system. Table 2 summarises these characterisation requirements and the 

resolution required by the adjustment mechanisms. 

Table 2. Typical alignment characterisation specifications for each lens or lens pair. 

 Specification  Tolerance 

Adjustment 

specifications for 

imaging system  

characterisation 

De-centre   X, Y +/- 60 µm 

Distance tolerance to next lens Z +/- 200 µm 

Lens tilt  pitch/yaw +/- 10’ (or ~3 mrad) 

Resolution of 

adjustment  

Linear X, Y, Z micrometer 

Angular pitch/yaw <arc-minute (~100s of µrad) 

4.  Mechanical design detail  

Both imaging system mechanical designs are made up of three equivalent modules: the super-

baseplate, carrying all lens mounts; the lens pair assemblies and the QPD mount. The larger and more-

complex, four-lens design, shown in Figure 4, has two of the lens pair assemblies and an additional 

field stop mount. 

 

Figure 4. Four lens 

imaging system design. 

The super-baseplate is 

151 x 112 mm. The red 

beam represents the laser 

light.  

Techniques of ultra-precision mechanism design [2] are widely adopted throughout the imaging 

system design including kinematic mounting techniques for stable positioning and flexures for fine 

adjustment and positional control. Ultra-fine threaded screws with a thread pitch of 0.25 mm are used 

to provide precision adjustment of the lenses and QPD, and when employed in combination with 

flexures they provide the required levels of precision adjustment and clamping. The imaging system 

assembly and its sub-assemblies are made stable by the use of kinematic mounts: three hemispherical 

features on the underside of the assemblies bear against a flat surface in the interfacing part. 

4.1.  The super-baseplate 

The super-baseplate is a precision machined titanium plate kinematically mounted to the Zerodur® 

baseplate by way of three underside-mounted ball-bearings. Three lever-arm clamps that attach to one 

of three custom titanium nuts epoxied to the Zerodur® provide the clamping. At either side of the lens 

mounts on the super-baseplate there are M3 mounting holes to allow the flexible attachment and 

removal of lateral and transverse adjusters for the twin lens and field stop assemblies.  
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Front twin lens 
adjuster 
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4.2.  Lens pair assembly 

The lens pair assembly, see Figure 5, consists of two individual lens holders and their 5DoF adjuster 

mechanisms. These assemblies are attached to a titanium baseplate which is in turn mounted to the 

super-baseplate via three hemispherical points on the underside. The symmetrically designed lens pair 

assembly is locked in place on the super-baseplate at a single point through the centre of the assembly. 

 

 
 

Figure 5. Isometric view 

of a lens pair assembly 

from the non-classical 

imaging system design. 

4.3.  Individual Lens Holders 

The individual lens holders are constructed from an aluminium and titanium architecture. Lenses with 

diameters ranging from 6mm to 13mm are held in a tailored aluminium mounts that attach to a 

monolithic aluminium flexure mechanism which, as can be seen in Figure 6, are then mounted to a 

titanium frame. Thermal stability of the lens holder, and also of the overall assembly comes through 

careful design of the aluminium mount and the titanium frame such that they expand in opposite 

directions from one another results in a stable lens centre. 

4.3.1.  Vertical and pitch adjustment 

The aluminium flexure mechanism in combination with an ultra-fine threaded screws allow for 

vertical adjustment of the lens in the mount. For pitch adjustment of the lens another precision 

adjustment screw, bearing against the aluminium lens mount but affixed to the titanium frame, utilizes 

a flexure hinge in the titanium frame to provide a pitch mechanism in the mount. These mechanisms 

can be seen in Figure 6 and Figure 7. 

 

 

 

Figure 6. Exploded view of individual lens holder. Figure 7. Cross-section view of individual lens 

holder showing vertical and pitch mechanism. 
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4.3.2.  Lateral adjustment 

The individual lens holder may be adjusted laterally using a titanium flexure mechanism, Figure 8 and 

Figure 9, that sits beneath each lens holder and is driven by fine pitch screws. The frame of the lens 

holder interfaces with this lateral adjuster through a 2mm pin at the base of the mount. 

4.3.3.  Longitudinal and yaw adjustment  

Longitudinal and yaw adjustment is made using three fine pitch screws with customised screw tips as 

shown in Figure 10. The central screw performs the longitudinal movement but, thanks to its bevelled 

end, can permit rotation via the two side pusher screws.  

 

 

 
Figure 8. Top view of individual lens holder 

lateral adjustment mechanism with adjuster 

screws and locking screws attached. 

 Figure 9. The individual lens holder lateral 

adjustment mechanism in its deformed state 

using ANSYS Finite Element Modeller.  

4.4.  QPD mount 

The QPD mount, Figure 11, differs from to the aforementioned individual lens mount design in that 

the aluminium flexure mechanism is mounted in a rigid titanium frame with no pitch adjustment. 

Further, in addition to a vertical flexure mechanism, the QPD mount also incorporates a lateral flexure 

mechanism within the aluminium part. The QPD itself is glued to a MACOR interface collar, for 

electrical and thermal isolation, and this is attached to the rear of the aluminium flexure mechanism. 

The base of the QPD mount is titanium which, like the super-baseplates, sits on three hemispherical 

points and is lever-clamped to the Zerodur® OB.  

5.  Conclusions 

The design of high precision opto-mechanics to be used in the investigations of imaging systems and 

photodetectors for eLISA are detailed in this paper. By using an array of fine adjustment mechanisms 

incorporating monolithic flexures, ultra-fine precision screws and kinematic mounting techniques, the 

required alignment, adjustment precision, and interchangeability has been achieved in the design. 

These imaging system designs are currently under manufacture and shall be integrated on to an optical 

bench test bed for investigation. Rather than the previously planned elegant breadboard, the re-scoped 

study will see the construction of a ‘minimal’ optical bench with features necessary to the testing the 

 

 

  
Figure 10. Longitudinal and yaw adjustment 

mechanisms of the individual lens holder. 

 Figure 11. Rear isometric view of the 

QPD mount. 

Titanium 
frame 

Aluminium  
 flexure  

mechanism 

MACOR 
collar 

QPD 

Lever 
clamp 

Titanium 
baseplate 

10th International LISA Symposium (LISAX) IOP Publishing
Journal of Physics: Conference Series 610 (2015) 012032 doi:10.1088/1742-6596/610/1/012032

5



 

 

 

 

 

 

imaging systems as a science interferometer. As part of the same re-scoped study, a telescope 

simulator is being developed that will generate a representative Rx beam and local oscillator beam, 

and include a reference interferometer to combine these beams for use on the OB.  
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