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Abstract. A major link between climate and humans in tropical northern Africa, and the Sahel in particular, is

land use and associated land cover change, mainly where subsistence farming prevails. Here we assess possible

feedbacks between the type of land use and harvest intensity and climate by analysing a series of idealized

GCM experiments using the Max Planck Institute Earth System Model (MPI-ESM). The baseline for these

experiments is a simulation forced by the RCP8.5 (radiation concentration pathway) scenario, which includes

strong greenhouse gas emissions and anthropogenic land cover changes. The anthropogenic land cover changes

in the RCP8.5 scenario include a mixture of pasture and agriculture. In subsequent simulations, we replace

the entire area affected by anthropogenic land cover change in the region between the Sahara in the north and

the Guinean Coast in the south (4 to 20◦ N) with either pasture or agriculture. In a second set-up we vary

the amount of harvest in the case of agriculture. The RCP8.5 baseline simulation reveals strong changes in

the area mean agriculture and monsoon rainfall. In comparison with these changes, any variation of the type

of land use in the study area leads to very small, mostly insignificantly small, additional differences in mean

temperature and annual precipitation change in this region. These findings are only based on the specific set-up

of our experiments, which only focuses on variations in the kind of land use, and not the increase in land use,

over the 21st century, nor whether land use is considered at all. Within the uncertainty of the representation of

land use in current ESMs, our study suggests marginal feedback between land use changes and climate changes

triggered by strong greenhouse gas emissions. Hence as a good approximation, climate can be considered as

an external forcing: models investigating land-use–conflict dynamics can run offline by prescribing seasonal or

mean values of climate as a boundary condition for climate.

1 Introduction

Northern Africa, and the Sahel in particular, are known to

be highly vulnerable to climate change (Low, 2005; Boko

et al., 2007) with regional hotspots of high national to sub-

national differences in vulnerability (Busby et al., 2014).

Food production is sensitive to changes in climate across

tropical northern Africa, where economies strongly depend

on agriculture or livestock. When reduced precipitation and

droughts affect water security and crop yield (Busby et al.,

2014), human security for a growing population is at stake

(Scheffran et al., 2012). In turn, climate in this region is af-

fected by changes in land surface conditions (e.g. Xue and

Shukla, 1993; Claussen, 1997; Zeng et al., 1999; Taylor et al.,

2002; Koster et al., 2004; Vamborg et al., 2011; Patricola and

Cook, 2010). Therefore, it is conceivable that changes in the

type and intensity of anthropogenic land use and land cover

change, perhaps caused by local or national conflict, will af-

fect regional climate.

When modelling the interaction between climate change,

land use, and conflict, the question of feedbacks between cli-

mate change and changes in land use and conflict arises. If

Published by Copernicus Publications on behalf of the European Geosciences Union.



770 T. Brücher et al.: Implications of land use change in tropical northern Africa under global warming

climate change triggered any conflict and if this conflict led

to major changes in land use and land cover, how strong

would be the feedback of these land cover changes on cli-

mate change? If the feedback is strong, then any model that

attempts to describe the nexus between climate change, land

use, and conflict would have to couple climate dynamics, the

dynamics of land cover change and the dynamics of conflict.

If the feedback is weak, then climate change can be consid-

ered as an external driver, or external boundary condition, of

land cover and conflict dynamics.

Usually climate parameters such as growing season means

or monthly means of minimum and maximum temperature

are used as input for statistical or offline driven impact mod-

els like crop models (e.g. Veron et al., 2015; Scheffran and

BenDor, 2009; Lobell et al., 2007, 2006). Therefore we focus

here on climatological values as well, by considering annual

means of temperature and precipitation.

To study possible feedback of conflict-induced land cover

changes on climate without knowing the effect of cli-

mate change on conflict or the effect of conflict on land

cover change, we consider a simplified set-up of numeri-

cal climate simulations. We start with climate simulations

of greenhouse-gas-induced global warming and consistently

derived anthropogenic land cover change as defined in the

RCP (radiation concentration pathway) scenarios (see be-

low). In these scenarios, anthropogenic land cover change

includes a mixture of agriculture and pasture. Assuming that

conflict in the semi-arid regions of tropical northern Africa

often arises between farmers and herders (Scheffran et al.,

2012), we consider extreme scenarios by replacing the entire

area allocated to land cover change in these regions either by

agriculture or by pasture. Furthermore, we vary the degree of

harvest generally by a constant factor without changing the

type of land use. Please note that for comparison reasons in

all experiments the temporal course in the fraction of land

allocated to land use stays the same.

Our area of interest (in the following referred to as AOI) is

located in the transition zone between the Sahara in the north

and the humid Guinean Coast of west Africa in the south (4

to 20◦ N; 17◦ W to 40◦ E; in the following marked by grey

boxes, e.g. as shown in Fig. 2).

2 Model and method

2.1 Model description

We use the Max Planck Institute Earth System Model (MPI-

ESM; Giorgetta et al., 2013), which consists of the coupled

general circulation models ECHAM6 (Stevens et al., 2013)

and MPIOM (Jungclaus et al., 2013) for the atmosphere and

the ocean, respectively. Marine biogeochemistry is described

by HAMOCC5 (Ilyina et al., 2013), and land surface pro-

cesses by JSBACH (Reick et al., 2013; Schneck et al., 2013).

JSBACH includes dynamic vegetation (Brovkin et al., 2009;

Reick et al., 2013) and land use transitions (Reick et al.,

2013) according to Hurtt et al. (2011).

Within JSBACH, grid boxes over land are divided in

a non-vegetated part (e.g. desert) and a vegetated one; the

latter one is seperated into managed land (shrubs and pas-

ture) and natural vegetation (woody types plus grasses). This

partitioning is not given for the underlying hydrological, as

this version includes a single-bucket approach. Therefore, all

plant function types (PFTs) in one grid box can access the

same soil water bucket at the same time, even though these

tiles are physically located apart in the real world. The size

of the desert area is determined by the dynamic vegetation

model of JSBACH based on a function of the annual max-

imum filling of the green carbon pools, which are finally

driven by atmospheric CO2, temperature, and precipitation.

The desert fraction increases unless the green pools are filled

to maximum level at least once a year.

As the parametrization of managed land for crops and pas-

ture are different, changes in prescribed anthropogenic land

cover change (ALCC) will effect the modelled land surface

in JSBACH. Generally, managed land such as pasture and

crops is protected against fire, while natural grasses (and for-

est) are not. Pasture and crops use different photosynthetic

pathways (Raddatz et al., 2007), and crops have a higher

productivity, as they are parameterized by a higher carboxy-

lation rate per leaf area (Kattge et al., 2009). Grazing is 2

times higher for pasture than for crops, which is parameter-

ized by a higher herbivory and a higher leaf shedding over

pasture land. Leaf regrowth is limited by NPP (net primary

productivity) for grass and pasture, while it is assumed that

crops have a constant leaf regrowth after sowing. The param-

eters for the specific carbon content per leaf are identical. Al-

though visible and near-infrared albedo of the plants are the

same for crops and pasture, the annual cycle in the albedo

(combination of plant albedo and surface reflectivity) will be

different for crops and pasture, because (i) the two differ in

their phenology, (ii) the maximum leaf area index (LAI) is

higher over crops, and (iii) a higher clumpiness factor for

crops is simulated to mimic e.g. access roads.

2.2 Experimental set-up

2.2.1 Baseline scenario and transition rules for changes

in land use and land cover

Within the framework of the Coupled Model Intercompari-

son Project Phase 5 (CMIP5) three starting dates out of a con-

trol simulation for pre-industrial climate by MPI-ESM have

been chosen as starting points for an ensemble simulation

(three members) of historic climate until 2005, called HIST.

Atmospheric CO2 concentration and ALCC were prescribed

as an external forcing for MPI-ESM. For the simulation of

future climate these three ensemble members are continued

(at least until 2100) based on three different RCP scenarios

each (RCP8.5, RCP4.5, RCP2.6). In this study, we consider
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Table 1. List of experiments and their basic set-up with respect to prescribed anthropogenic land cover change (ALCC), harvest rate, and

prescribed greenhouse gas forcing.

Experiment Start End Number of Greenhouse gas ALCC in tropical Harvest rate in tropical

realizations forcing West Africa West Africa

HIST 1850 2005 3 HIST Hhist Hhist

RCP8.5 2006 2100 3 RCP8.5 H8.5 H8.5

RCP4.5 2006 2100 3 RCP4.5 H4.5 H4.5

RCP2.6 2006 2100 3 RCP2.6 H2.6 H2.6

LUC 2006 2100 1 RCP8.5 crops only H8.5

LUP 2006 2100 1 RCP8.5 pasture only H8.5

LUCnoPR 2006 2100 1 RCP8.5 crops only, no pasture rule H8.5

H0.5 2006 2100 1 RCP8.5 H8.5 H8.5 × 0.5

H2 2006 2100 1 RCP8.5 H8.5 H8.5 × 2

H3 2006 2100 1 RCP8.5 H8.5 H8.5 × 3

H5 2006 2100 1 RCP8.5 H8.5 H8.5 × 5

Hx·y means forcing used after Hurtt et al. (2011) according to RCPx·y .

the simulation based on the strongest greenhouse gas forc-

ing (RCP8.5, ca. 927 ppm CO2 at year 2100) as a baseline

scenario and put it into context with the other RCP scenar-

ios. The RCP8.5 scenario also includes the strongest ALCC

forcing (see also Fig. 4c–e).

The change of land cover is prescribed as transitions from

natural to managed land or from one type of land use to an-

other type of land use, which are taken from the harmonized

land use protocol for CMIP5 (Hurtt et al., 2011), which pro-

poses different future pathways for each RCP. By enabling

land use, the so-called “pasture rule” is implemented in JS-

BACH that determines which part of the natural land (grass

or woody type) is taken to introduce new managed land (c.f.

Reick et al., 2013; for more details see also Appendix A1).

Annual mean harvest data are also taken from the harmo-

nized land use protocol (Hurtt et al., 2011). These data pre-

scribe the above-ground carbon that is taken from the above-

ground biomass (for more details see also Appendix A2).

2.2.2 Set-up of sensitivity studies

All experiments (Table 1) are performed with the identi-

cal CMIP5 version of the MPI-ESM spanning the historic

time period (1850–2005, HIST) or the next century (2006 to

2100). Only within AOI (4 to 20◦ N; 17◦ W to 40◦ E; see e.g.

boxes in Fig. 1) do we modify the land cover change scenar-

ios by prescribing different anthropogenic land use and land

cover change story lines.

Within the historic simulation, land use is considered in

terms of crops and pasture. As we are interested in the impact

of different types of land use (crops vs. pasture) on climate,

we transform all managed land within the first model year

(year 2006) to crops (experiment LUC, land use crops only)

or pasture (experiment LUP, land use pasture only), so the to-

Fig. 4: Spatial distribution of strong anthropogenic land use transitions in pasture (left 
column) and crops (right column) within the first year (2006) of the land use 
experiments LUP (top row) and LUC (bottom row).
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Figure 1. Spatial distribution of pasture (a) and crop (d) land use

at the end of the historic simulation. The panel also shows the pre-

scribed transitions from crops to pasture (scenario LUP; first row)

and vice versa (scenario LUC, LUCnoPR; bottom row) for the first

model year (2006) in the extreme land use experiments LUP, LUC,

and LUCnoPR.

tal area of managed land is identical. In the following years

(2007–2100) of these sensitivity studies, the transitions of

natural land to managed land prescribed by the RCP8.5 sce-

nario (Hurtt et al., 2011) to crops or pasture are summed up

and natural land is only converted to crops (LUC) or pasture

(LUP). Following this conversion scheme, we ensure in all

experiments the same proportion of managed to natural land,

which allows us to compare the results of the experiments to

investigate the impact of land use. The third scenario, LUC-
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Figure 2. Ensemble mean of the cover fraction([m2 m−2) of managed land (top), natural vegetation (middle), and desert fraction (bottom) at

the end of the historical simulation (year 2005) simulated by MPI-ESM. The managed land is shown for (a) pasture, (b) crops, and (c) total

fraction. The natural vegetation is shown for (d) woody vegetation, (e) grass land, and (f) total separately.

noPR (land use crops only, no pasture rule), helps to separate

the effect of land use and an artificial effect on the dynamical

vegetation by the pasture rule (see Sect. 3.2). In experiment

LUCnoPR the LUC scenario is repeated, but we bypass the

pasture rule. Technically, the transitions are identical to our

reference simulation RCP8.5, but we implement on all pas-

ture areas the phenology of crops. Doing this, we ensure that

the size of managed land and the partitioning of the natural

land remain identical to the reference simulation RCP8.5.

To investigate the effect of low and high harvest intensity

on climate, we repeat the reference simulation RCP8.5 in-

cluding crops and pasture, but we change the harvest rate for

crops by multiplying the RCP8.5 harvest rate by a factor of

0.5 (H0.5), 2 (H2), 3 (H3), and 5 (H5).

By interpreting the results of all these experiments, it has

to be distinguished between the fractional and the absolute

size of an area (e.g. the amount of grass or woody vege-

tation). JSBACH separates the vegetated part and the area

without soil in a grid cell. In all scenarios described above,

the prescribed fractional transitions are based on the vege-

tated area in the grid cell. The dynamical vegetation scheme

has the ability to shrink or increase the vegetated area as a re-

sponse to the climate; therefore the size in terms of square

metres may vary among the simulations, although the frac-

tional partitioning within the vegetated area stays constant.

3 Results

The size of AOI covers some 10.48 × 106 km2 (see boxes

in e.g. Fig. 2). At the end of the historic simulation, i.e. in

the year 2005, this area is fragmented into desert area (31 %;

3.25 × 106 km2), natural land (30 %; 3.15 × 106 km2), and

managed land (39 %; 4.08 × 106 km2). The managed land is

made up of 71 % pasture (2.90 × 106 km2) and 29 % C3 plus

C4 crops (1.18 × 106 km2). Woody type vegetation domi-

nates the natural land by more than 86 % (2.71 × 106 km2),

while the grass fraction is low (14 %; 0.43 × 106 km2). The

spatial distribution of natural and managed land for different

plant functional types is shown in Fig. 2.

3.1 Baseline scenario RCP8.5 (2006–2100)

The increase of atmospheric CO2 leads to an annual mean

warming of up to 3.0 K to more than 5.5 K over Africa

(Fig. 3d), which leads to annual mean temperatures in trop-

ical northern Africa of up to 37 ◦C. In general coastal area’s

Earth Syst. Dynam., 6, 769–780, 2015 www.earth-syst-dynam.net/6/769/2015/



T. Brücher et al.: Implications of land use change in tropical northern Africa under global warming 773

Figure 3. (a, c) Ensemble mean annual precipitation sum (mm) and

temperature (◦ C) for the first 30 years of RCP8.5 scenario (2006 to

2035) (left column) and (b, d) the difference (right column) with re-

spect to the last 30 years of this century (2071 to 2100 minus 2006 to

2035). Only significant differences (t test, 95 % significance level)

are show. Both small changes in precipitation and non-significant

changes are in white (b).

temperature increase is lower than the one further inland.

From the Guinean coast north to the desert, temperatures in-

crease by up to 5 K.

Annual precipitation decreases near the west coast, while

a surplus of 100 mm is simulated at the Guinean coast

(Fig. 3a and b). Compared to the total annual precipitation

of up to 2500 mm the increase is rather small. Only in few

grid cells are changes in precipitation significant at a 95 %

level (t test).

Regarding AOI, a decline in desert area (Fig. 4a) is cal-

culated for all CMIP5 scenarios, which is highest for the

RCP8.5 scenario (ensemble mean values: RCP2.6: −5%/ −

0.16×106 km2; RCP4.5: −11%/−0.34×106 km2; RCP8.5:

−22%/ − 0.70 × 106 km2). While higher temperatures and

almost no change in precipitation put additional stress on

the vegetation, these negative effects are compensated for by

rising atmospheric CO2 in the MPI-ESM (Bathiany et al.,

2014). Taking the ensemble mean of RCP8.5, the natural land

shrinks by −27 % (−0.83 × 106 km2), as it is taken for an

enlargement of land use area (37%/ 1.5 × 106 km2; Fig. 4c)

following the Hurtt protocol. While grazing area increases

by 25 % (0.73×106 km2), cropland is assumed to increase by

67 % (0.81×106 km2) between 2006 and 2100 in the area we

consider here (Fig. 4d and e). The annual amount of carbon

being taken from the above-ground biomass for harvest is

about 0.07 GtCyr−1 in the year 2005, which is almost 10 %

of the global harvest. The total area of land use enlarges by

more than 37 % over the next 95 years. Harvest is assumed

to double (by 0.16 GtCyr−1) due to a widening of land use

area and changes in the land use practices according to Hurtt

et al. (2011).

3.2 Crop and pasture scenarios (2006–2100)

Within AOI we switch to one type of land use. In the ex-

periment LUC all pasture is converted to crops, and in LUP

all crops are changed to pasture (Fig. 1). This transition is

prescribed within the first model year of the scenarios (year

2006). As land use increases within RCP8.5, the extended

area is added as crops (LUC) or pasture (LUP) only, accord-

ingly.

Within the experiment LUC the desert area shrinks fur-

ther (compared to RCP8.5), while the desert area within LUP

stays close to the results of our baseline scenario RCP8.5, al-

though all simulations are forced with the same greenhouse

gas scenario (Fig. 4a). These differences can be attributed to

differences in the available soil water (Fig. 5). As crops are

harvested, less water is used and therefore the natural veg-

etation will use the available soil water. This is due to the

implementation of a shared water bucket for all tiles within

one grid box in JSBACH. Pure pastoral land use (LUP) does

not influence the available soil water, and therefore the desert

area in the experiment LUP is close to the one in RCP8.5

(Fig. 4a). The area consumed for pastoral land use is almost

3 times higher than the one for crops at the end of the histori-

cal simulation (Fig. 4d and e). Therefore the scenario LUP is

closer to the reference scenario RCP8.5 than LUC, because

within LUP less area is converted over the first model year.

Additionally, the partitioning in natural vegetation is

shifting significantly for two reasons. First, we implement

a strong transition over the first model year to achieve one

type of land use within LUC and LUP scenarios. Secondly,

as the pasture rule is incorporated into our model, these ex-

treme changes lead to an unbalanced partitioning in the natu-

ral vegetation that has to be compensated for by large shifts in

the compounds of the natural vegetation (for more details see

Appendix A1). To circumvent this artificial effect, the experi-

ment LUCnoPR was designed, in which no artificial changes

in grass or woody fraction (see Fig. 6) occur. However, the

desert fraction decreases in the same manner as the LUC ex-

periment due to the soil water differences (Fig. 4a) as man-

aged land only consists of crops with its biophysical proper-

ties and the nature to be harvested. In comparison to LUC,

LUP has opposite and smaller shifts in grass and woody veg-

etation, but again the pasture rule is causing these effects. As

grassland is used to implement pastoral land, and pasture has

almost the same water usage over time as grass, the desert

fraction of LUP is not significantly different to RCP8.5.

Differences in the simulated temperature and precipita-

tion values between LUC, LUCnoPR, LUP and RCP8.5 are

mostly insignificant and small (Fig. 7). The maximum differ-

ence between RCP8.5 and LUC or LUP annual mean values

is up to 0.5 K for temperature or 100 mmyr−1 for precipita-
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Figure 4. Top row: temporal course of the simulated desert area (a), natural land (b), and managed (c) land within three different CMIP5

scenarios and two land use scenarios (LUC, LUP) within the next century (2006 to 2100). Bottom row: changes of anthropogenic land use

within the next century is given for crops (d) and pasture (e) separately. Values are given in millions of square kilometres. The different

harvest rates within the CMIP5 scenarios are shown in (f). Shown are integrated values only for our area of interest, where the strong land

use experiments take place. The dashed and dotted black lines represent the three ensemble members of the RCP8.5 scenario, while the

dashed one marks the ensemble member based on the same restart (year 2005) as the land use experiments for this study.

Figure 5. Change in the available soil water towards the end of

the century (2071–2100) simulated within RCP8.5 (a) and the am-

plification within LUC compared to RCP8.5 (b) at the end of the

simulations. Non-significant differences areas are marked grey.

tion, which is about 5 % of the annual precipitation sum in

AOI (Fig. 7).

3.3 Harvest intensity (2006–2100)

In the experiments with changed harvest rates (prescribed)

the fractional distribution of grass and woody type vegeta-

tion is not directly influenced, and the partitioning of crop

and pastoral land use is not changed. By increasing the rate

of harvest, the annual harvest rates from RCP8.5 are taken as

a reference. Still, in the course of intensified harvest experi-

ments, the desert area is on average higher than in RCP8.5.

To compensate for this desert rise, the dynamical vegeta-

tion model simulates a general lower woody area, while

the amount of grassland stays close to the baseline scenario

RCP8.5. These differences result out of the dynamical veg-

etation scheme within JSBACH, as these changes are com-

pletely climate-driven and not related to land use changes.

There is no clear ranking visible (Fig. 6) between rate of har-

vest intensification and woody or desert fraction; even the

low harvest experiment (H0.5) is within the range of RCP8.5

results. The decrease in desert area in the scenarios H5 and

H3 is a little bit smaller than the decrease in the RCP8.5 sim-

ulations after the year 2045. However, there is little differ-

ence in the change of desert area between H5 and H3. As the

available carbon for harvesting is limited, both scenarios H3

and H5 seem to be already on the edge of available carbon to

harvest, which could explain this similarity.

As H3 and H5 are close to each other, we show the dif-

ferences in climate change between the scenario H5 and the

baseline scenario RCP8.5 in Fig. 7c and f. A couple of grid

boxes point to drier conditions compared to RCP8.5. How-

ever, the differences, albeit significant, are an order of mag-

nitude smaller than the differences between the RCP8.5 sim-

ulations and the historic simulation. The differences in tem-
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Figure 6. Temporal evolution in the desert area (a, d) and the natural vegetation grouped for woody type (b, c) and grass type (d, e),

separately. In comparison to the results of the three ensemble members of the CMIP5 RCP8.5 scenario (black solid lines), the figures in the

top row show the extreme land use scenarios in coloured dashed lines, while the bottom row displays the results for different harvest rates

(H0.5 to H5).

Fig. 7: Difference between the climate signal of the RCP8.5 scenario (three 

ensemble member mean) and the land use experiments LUC (a+c), LUP (b+e), 

and harvest experiment H5 (c+f). Changes in mean annual precipitation sum [mm 

yr-1] (a,b,c) and temperature [K] (d,e,f) are given for the last 30 years of the 

scenarios (2071/2100). Non significant (5%) differences are left out.  
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Figure 7. Difference between the climate signal of the RCP8.5 scenario (mean of the three ensemble members) and the land use experiments

LUC (a, c) and LUP (b, e), and harvest experiment H5 (c, f). Changes in mean annual precipitation sum (mm yr−1) (a–c) and temperature

(K) (d–f) are given for the last 30 years of the scenarios (2071–2100). Non-significant (5 %) differences are left out.

perature changes are insignificantly small in the entire region

under consideration (not shown).

4 Discussion and conclusions

Our study suggests that for the region of tropical northern

Africa differences in annual mean temperature and annual
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precipitation between simulations of climate change forced

by an increase in greenhouse gas emissions and in anthro-

pogenic land cover change are to a first approximation inde-

pendent of the specific type of land cover change prescribed

in the simulations. Whether land cover change is assumed

to consist of changes from natural vegetation to agriculture

only or to pasture only or to a mixture of both the specific

choice of land cover change affects the climate change only

marginally in this region. Similar conclusions can be drawn

regarding the rate of harvest.

While the climate is only marginally influenced by the

type of land cover change, some small changes in the desert

fraction between simulations are found. Higher crop frac-

tion leads to less water usage; therefore, the natural vege-

tation is more productive, leading to a stronger reduction in

desert area than in the simulation with pasture only. Some

caveats have to be raised which potentially affect our general

conclusion. Simulations of climate and vegetation change in

Africa are model-dependent. Bathiany et al. (2014) found

some greening of tropical northern Africa in a greenhouse-

gas-induced global-warming scenario. However, the spatial

distribution and the time evolution of the desert retreat dif-

fer among models. Moreover, the greening in the different

models is triggered by different processes.

The results shown here are produced with only one earth

system model. So, the question arises of whether the key

message that there is presumably no impact of changes in the

kind of land use on climate can be generalized, or whether it

is model-specific. For example the results could be different

if the precipitation change in MPI-ESM were to be stronger

in tropical northern Africa.

Additionally, different vegetation models with the same

complexity could yield different results. But as our MPI-

ESM results are within the mainstream of the outcome of all

participating CMIP5 models, we think that most of the mod-

els would turn out similar results, but to prove this proposi-

tion a multi-model, multi-ensemble with the same conditions

would be necessary.

Land cover change is described in the models in a very

simplified way. Many, presumably relevant, processes are not

captured. Land use, and especially intense land use, is known

to increase desertification, as soil erosion comes into play

and decreases soil quality. In our simulations, managed land

is protected, and whenever a transition within the land use

scheme is prescribed, we assume that the technical capabil-

ities as well as enough nutrients in that area are available.

Irrigation is not considered in our model. Therefore the pro-

ductivity of managed land depends on precipitation only.

A common practice in tropical northern Africa is to enable

land for agriculture by slash-and-burn farming to gain tem-

poral fertilized soil. Following these techniques, the woody

fraction would strongly decrease if agriculture expanded.

This is realized by JSBACH modelling an intense crop land

use scenario (LUC). But also the grass fraction increases dra-

matically, so a land use change changes the landscape, which

should not be the case.

Our simulations point to a greening due to intense harvest-

ing of crops, and there is a substantial decline of the desert

area. In principle, after the harvest of crops, natural vegeta-

tion (weeds) would again pop up at that harvested place after-

wards, as long as water is available. This would not change

the landscape. In general, the weeds can be interpreted as

natural vegetation, but in our simulations the desert area is

affected and shrinks substantially. This is due to the fact that

JSBACH is based on an equally distributed approach, mean-

ing that all vegetation is distributed homogeneously over the

entire grid box, instead of simulating partitions of natural and

managed land next to each other, as in the real world. Further-

more, we use a shared water bucket for all tiles implemented.

So, if one type of vegetation is harvested and water usage is

reduced, there is more water available for the natural vege-

tation, which will be more productive and leads to shrinkage

of the desert area.

To conclude, we can state that changes in land use type

and intensity do not change climate significantly, even if we

do not bypass the pasture rule and changes in the natural veg-

etation are prominent. In LUP and LUC we found that, due

to the combination of a strong ALCC in one model year and

the implemented pasture rule, we see artificial legacy effects

within the partitioning of the natural vegetation.

With respect to the nexus of climate, land use, and con-

flict we state that if climate has an impact on conflict, and

conflicts may change land use, there is no closed feedback

loop that links changes from land use to an impact on cli-

mate. In our study conflict implies changes in the type of

managed land, but we neglect possible scenarios including

uncontrolled settlement of refugees in one region or com-

plete abandonment in other regions. Our conclusion holds

true for regional conflicts in tropical west Africa, but in case

of a huge conflict (e.g. as big as the Mongol invasion, Black

Death, conquest of Americas, and the Ming Dynasty) it may

be expected that changes in the managed and natural vege-

tation (e.g. woody vegetation) would be stronger and could

have an impact on climate (Pongratz et al., 2011).
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Appendix A:

A1 Land use change in JSBACH and the pasture rule

To establish land use in a certain grid cell, natural vegetation

is partly converted to establish a pre-defined area of managed

land. As land use is an ALCC, the natural vegetation is forced

to be changed, even if the area is not suitable for crops or

pasture. For crops and pasture the conversion from natural

land to managed land is different. While pasture area is only

taken from grassland (pasture rule), crops are established at

the expense of both grass and woody type vegetation. To keep

the ratio between the natural types of vegetation before and

after the transition identical, crops replace grass and woody

area to equal fractional shares of the current grid box (e.g. if

the natural vegetation in a given grid cell is simulated as 70 %

woody and 30 % grass type, then 7 ha woody vegetation and

3 ha grassland is used to realize 10 ha of crops.). In case of

both transitions, if one component is area-limited to establish

land use, the missing part of natural land is taken from the

other type to ensure that managed land will be established.

Due to the pasture rule, the history of transitions mat-

ters (Reick et al., 2013), especially if the type of land use

changes. The so-called potential vegetation is a model inter-

nal partitioning of the natural vegetation, which is in accor-

dance with the given climate simulated by MPI-ESM. After

anthropogenic land use transitions, the potential vegetation

may differ from the actual partitioned natural vegetation, as

e.g. grass was transformed to pasture. These differences will

smooth out with time, as disturbances (e.g. fire) free land to

be converted to the comparatively under-represented part of

the potential vegetation. By extreme land use change transi-

tions, as we do apply in our LUC and LUP scenarios within

the first model year, the potential vegetation becomes unbal-

anced to the natural vegetation. Huge transitions within the

natural vegetation, which would reflect large changes in the

landscape within a short time, are not allowed in JSBACH to

counteract against large land use transitions and bring back

the partitioning of natural land into equilibrium with the po-

tential vegetation. Therefore the natural vegetation could be

out of balance for several decades. To illustrate these effects,

a simplified example is shown in Fig. A1, which demon-

strates the interplay of the dynamical vegetation, land use,

and climate. We start with a climate that favours an equally

shared natural vegetation of grass and woody type (poten-

tial vegetation). We assume that 50 % of the vegetated area

is used for pastoral land use. In accordance with the pas-

ture rule, pastoral land has to be established on grass type

vegetation only. If these two pieces of information are com-

bined and the potential vegetation plus the ALCC are instan-

taneously transformed to the current cover fractions of the

grid box, then 50 % of the grid box will be used for pastoral

land use. The natural vegetation will shrink by 50 %, and all

the grass is taken to establish pasture. So, there is only woody

vegetation left after these transitions. The so-called “instanta-

neous transformation” and the current “modelled vegetation”

are the same.

Now, by having an extreme transition from changing all

pasture to crops, all managed land will be converted within 1

year, as it is prescribed as an anthropogenic forcing. Assum-

ing that the climate is not significantly different to the one

of the year before, the potential vegetation stays the same.

Given that cropland covers 50 % of the grid box, and the

potential vegetation shares an equal amount of woody and

grass cover, the instantaneous transformation of the potential

vegetation and the prescribed land use differs from the cur-

rent partitioning of the natural vegetation, which is covered

by woody type only. As JSBACH changes natural vegetation

only in small steps, it will take some time to compensate for

this misfit. Changes in the natural vegetation due to climate

variability, disturbance (e.g. fire), or climate change will alter

the natural vegetation, and free land will be used to bring the

natural vegetation back to an equilibrium with the potential

vegetation (Fig. A1).

In LUC grass gets a strong increase and the woody vegeta-

tion shrinks with time to equal out the misfit between instan-

taneous transformation and “actual cover” (Fig. 6). Because

of the former land use, strong transition by converting all pas-

ture to crops leads to this legacy effect. It is the opposite way

in the LUP scenario, where woody vegetation is increasing,

as crops are changed to pasture and therefore only grass type

vegetation is used for land use area. So, woody vegetation,

which is sort of hidden in the crop land use, has to build up

after all crops are transformed to pasture.

A2 Land use change and harvest within the CMIP5

protocol

The change of land cover is prescribed as transitions from

natural to managed land or from one type of land use to an-

other type of land use. These are taken from the harmonized

land use protocol for CMIP5 (Hurtt et al., 2011), which pro-

poses different future pathways for each RCP.

Annual mean harvest data are also taken from the harmo-

nized land use protocol (Hurtt et al., 2011). These yearly val-

ues for harvest rates prescribe a certain amount of carbon

that has to be taken from the above-ground biomass, which

is represented in JSBACH by the sum of three different car-

bon pools (reserve, green, and woody pool). Weighted by

their pool size, the harvest is taken fractionally from these

three pools to harvest in total the prescribed value. If this

harvest rate is higher than the available biomass, the harvest

rate is reduced accordingly. By multiplying the harvest rate

with a given factor, we create artificial harvest time series to

mimic an intensification of land use (experiments H0.5, H2,

H3, H5).

Both the annual transitions and the annual harvest rates are

interpolated on a daily timescale and are used as a continuous

forcing for MPI-ESM. By doing this, large discontinuities are

avoided and harvest is taken continuously.
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Figure A1. Diagram to illustrate the legacy effect of long-term changes in natural vegetation (G: grass; W: woody type) after strong an-

thropogenic land use transitions (P: pasture; C: crops). Shown are the potential vegetation (model internal) which is in equilibrium with the

current climate; the prescribed transition; the instant transformation of the left two pieces of information into a grid cell; and the actual,

simulated cover (right column), which accounts for slow changes between two successive years within the natural vegetation.
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