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Understanding how people form and revise their perception of risk
is central to designing efficient risk communication methods,
eliciting risk awareness, and avoiding unnecessary anxiety among
the public. However, public responses to hazardous events such as
climate change, contagious outbreaks, and terrorist threats are
complex and difficult-to-anticipate phenomena. Although many
psychological factors influencing risk perception have been identi-
fied in the past, it remains unclear how perceptions of risk change
when propagated from one person to another and what impact the
repeated social transmission of perceived risk has at the population
scale. Here, we study the social dynamics of risk perception by
analyzing how messages detailing the benefits and harms of a
controversial antibacterial agent undergo change when passed from
one person to the next in 10-subject experimental diffusion chains.
Our analyses show thatwhenmessages are propagated through the
diffusion chains, they tend to become shorter, gradually inaccurate,
and increasingly dissimilar between chains. In contrast, the percep-
tion of risk is propagated with higher fidelity due to participants
manipulating messages to fit their preconceptions, thereby influ-
encing the judgments of subsequent participants. Computer simu-
lations implementing this simple influence mechanism show that
small judgment biases tend to become more extreme, even when
the injected message contradicts preconceived risk judgments. Our
results provide quantitative insights into the social amplification of
risk perception, and can help policy makers better anticipate and
manage the public response to emerging threats.
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Public perception of risk is often polarized, difficult to antic-
ipate, and at odds with scientific evidence (1, 2). The risks as-

sociated with nuclear energy, genetically modified food, and
nanotechnologies continue to elicit strong public reaction in con-
trast to the assessments of many experts, and policy makers often
fail to influence the public perception of the risks associated with
poor nutrition, a sedentary lifestyle, and overexposure to the sun (2).
The ability to communicate risks to the public, but also the ability to
anticipate the public response to these risks, has a substantial impact
on society and is key to alleviating unnecessary public anxiety (3).
Although research into the psychological factors that influence

the formation of risk perceptions (4–7) and the communication of
risks (8, 9) is relatively well developed, the study of risk perception is
largely focused on the individual. However, risk judgments are
formed in a social context: People frequently discuss the everyday
risks they face with their friends, relatives, coworkers, and unknown
people over the web. They observe and imitate the risky and self-
protective behavior of their peers (10), and exchange opinions,
sources of information, and behavioral recommendations through
social media and online communication platforms. For example,
during the H1N1 influenza outbreak in 2009, nearly half a million
messages mentioning H1N1 vaccination were exchanged on Twit-
ter, 20% of which explicitly expressed a positive or negative attitude
toward vaccination (11). Indeed, a growing body of evidence sug-
gests that people’s perception of risk is mediated by social in-
teraction. Large-scale social network analysis has shown that social
interactions influence the spread of behaviors such as smoking,

food choice, and adherence to various health programs (12–14). In
addition, it has been found that social proximity between individuals
influences both their perception of risk (15, 16) and their emotional
state (17).
These findings suggest that social interaction may lead to

nonlinear amplification dynamics at the scale of the population.
As illustrated by a number of studies of social contagion in relation
to opinion dynamics (18), collective attention (19), cultural markets
(20), and crowd behavior (21), local social influence can lead to
chain reactions and amplification that yield population-scale col-
lective patterns (22). Similarly, the dynamics of public risk percep-
tion bear the hallmarks of self-organized systems, such as opinion
clustering (i.e., connected individuals share a similar judgment) and
opinion polarization (i.e., opposing opinions coexist in the same
population) (23). Therefore, a major challenge is to understand
what role the social transmission of risk information between in-
dividuals plays in the formation of population-level dynamics. In
particular, to what extent is risk perception contagious, and what
behavioral patterns might this contagion yield at the macro level?
Few theorists have attempted to analyze and model these

phenomena (24). Among those theorists who have, a common
starting point is the social amplification of risk (SAR) frame-
work, which attempts to combine the cultural, structural, and
psychological factors that drive the formation of risk perception
at the scale of the society (25, 26). The SAR framework suggests
that individuals may play the role of “amplification stations” by
transmitting a small and often biased subset of the available in-
formation. Although the overarching perspective of the SAR
framework is widely assumed in risk research, it has undergone
limited empirical analysis.
In this article, we study the social transmission of risk infor-

mation from an interdisciplinary perspective by combining in-
sights from the social and cognitive sciences with the study of
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complex systems and nonlinear dynamics. In particular, we study
how messages describing risk change in response to repeated
social transmission by analyzing the relative fidelity with which
two distinct aspects of a message—the message content and the
message signal—propagate through human diffusion chains.
What effect does the process of social transmission have on these
message components, and what collective patterns of risk per-
ception might this process generate?
To examine these questions, we analyze how information

detailing the benefits and harms of the widely used but contro-
versial antibacterial agent triclosan (27) is communicated from
one individual to another in experimental diffusion chains. In a
diffusion chain, a series of individuals propagate information
sequentially and in turn from one individual to the next. Specifi-
cally, the information provided by the first individual is commu-
nicated to the second individual, who, in turn, communicates this
information to a third individual, and so on. In our experiments,
participants in the chain were instructed to communicate the risks
surrounding triclosan in open, unstructured conversations. In each
diffusion chain, the first participant was “seeded” with information
presented in media articles detailing the benefits and harms of
triclosan. In total, we examine 15 such diffusion chains, each
composed of up to 10 participants. Both before and after par-
ticipation in the experiment, we also assessed the subject’s risk
perception of triclosan. This experimental paradigm was
pioneered by Frederic Bartlett over 80 y ago (28) and has since
been used to study how a range of cultural entities undergo
change, or cumulatively evolve, in response to repeated cultural
transmission by humans and other animals (29–33). Here, we
make use of the same experimental paradigm to study, for the
first time to our knowledge, how risk information and, conse-
quently, the risk perception of people change when socially
transmitted. We found that subjects bias the signal of the mes-
sage according to their subjective perception of risk, which in-
fluences the judgment of the receivers. Crucially, although risk
perception “biases” propagate well and are typically amplified,
the message content is transmitted with low fidelity and tends to
become shorter, gradually inaccurate, and increasingly dissimilar
between chains. We use computer simulations of this process to
understand further the social implications of risk amplification.
Put simply, although the content of messages describing risks
degenerates in response to repeated social transmission, the
signal of the message propagates with high fidelity, with social
transmission playing the role of an amplifying process.

Results
Message Content. We define the content of the message com-
municated from one participant to the next as the set of units of
information that were communicated during a conversation be-
tween these participants. We identified 61 possible units of in-
formation by analyzing all conversations that occurred in the 15
diffusion chains. Each unit of information was classified in a
three-level coding scheme (the detailed procedure is explained in
Materials and Methods, with examples provided in Fig. 1) and
tracked from one chain position to the next. This procedure al-
lows us to study the propagation of information down each chain.
In addition, a unit of information is labeled as “distorted” if it
changes when transmitted from one chain position to the next.
To illustrate, Fig. 1 depicts the propagation of risk information
down a typical chain. At the first chain position, a total of 30
units of information were mentioned, 13 of which were propa-
gated to the second chain position and only three of which were
propagated to the final chain position. The three successfully
transmitted units were, however, distorted (as illustrated by the
color coding in Fig. 1). In addition, seven new units of in-
formation were generated as the chain unfolded (represented by
squares in Fig. 1), two of which were propagated to the end of
the chain. Propagation maps for all 15 chains are shown in Fig.
S1. As shown in Fig. 2A, most units of information disappear
as the chain unfolds, whereas those units that are propagated
are done so with low fidelity and tend to become increasingly

distorted. In addition, we measured the probability of a specific
unit of information disappearing (pDeath) from one position to
the next, as estimated from all 15 diffusion chains. As shown in
Fig. 2B, pDeath has high values at the first two chain positions
and reaches a relatively stable level of 0.2 afterward. Similarly,
we estimated the probability that a specific unit of information is
created (pBirth) or gets distorted (pDistortion) from one chain
position to the next. As shown in Fig. 2B, these probabilities
remain largely constant as a function of chain position. In ad-
dition, we found no significant differences when comparing these
probabilities within each of the categories used in our coding
scheme, which suggests that units of information (at least those
units of information that we encounter here) can appear, dis-
appear, or undergo content distortion with ostensibly constant
probabilities, regardless of the kind of information communi-
cated (Fig. S2). Next, we analyzed how the messages develop
among the 15 chains. Do all of the chains eventually converge to
a similar set of information units, or, conversely, do these sets
diverge from each other? To examine these questions, we mea-
sured the message differentiation coefficient Dp

ij, which defines
the proportion of information units present in chain i at position
p that are not present in the message of chain j at the same
position p. Formally, the differentiation is defined as

Dp
ij =

���mp
i ∉mp

j

���
��mp

i

�� ,

wheremp
i is the set of information units contained in the message

of chain i at position p and
��mp

i

�� is the size of that set. Therefore,
Dp

ij = 0 when the information units in chain i are also present in
chain j at the same position (no differentiation), whereas Dp

ij = 1
indicates that none of the information units were found in chain
j at this position (maximum differentiation). Fig. 2C shows the
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Fig. 1. Topological map of information propagation in an experimental
diffusion chain. Among all units of information available at chain position
1 (blue dots), only three have survived to the end of the chain, although they
were strongly distorted. The text on the right-hand side describes the cat-
egories of these units of information. Seven units of information were in-
troduced by the chain (squares), two of which survived to the end of the
chain. The color coding indicates the cumulated content distortion of the
information. Information identifications (y axis) are arbitrary.
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distribution of Dp
ij for all possible pairs of messages {i,j} taken at

positions p = 1, p = 3, and p = 10. The distributions tend to shift
toward high differentiation values as p increases. Although the
messages communicated at the first position have an average
differentiation of 0.53, this value increases to 0.87 at the 10th
position (Fig. 2C, Inset). In short, the content of the messages
tends to become increasingly dissimilar among the chains as they
propagate down each chain.

Message Signal. To understand further the impact of social in-
formation transmission, we analyzed the signal of the message,
that is, whether the message carries a positive or negative as-
sessment of triclosan. To quantify the signal of the message, we
analyzed the transcripts of all conversations and marked each
sentence as “negative,” “positive,” or “neutral” (Materials and
Methods). Sentences are labeled negative when they express a
negative assessment of triclosan (e.g., negative side effects) and
are labeled positive when they express a positive assessment
(e.g., that triclosan is safe). Sentences that express neither a pos-
itive nor negative assessment are neutral. This coding scheme is
independent of the coding scheme used to quantify the message
content. We use n+p and n−p to denote the number of positive and

negative statements found at chain position p and np as the total
number of statements at position p. As shown in Fig. 3A, the three
quantities decrease as a function of chain position but n+p decays
faster than n−p , suggesting that negative statements propagate
down the chain more freely than positive statements. Conse-
quently, the relative proportion of negative statements
ω−
p = n−p =ðn+p + n−p Þ tends to increase gradually, at the expense of

the relative proportion of positive statements ω+
p = n+p =ðn+p + n−p Þ

(Fig. 3A, Inset).
How are these aggregate trends related to the behavior of

individual participants? We introduce the individual filtering
coefficients k+p and k−p expressing the degree to which the par-
ticipant at chain position p modified the message (either posi-
tively or negatively) that he or she received from the participant
at position p−1. The filtering coefficients are formally defined
as k+p = n+p =n

+
p−1 and k−p = n−p =n

−
p−1. Thus, k

+
p < 1 holds for partici-

pants who attenuate the positive aspect of the message, whereas
k+p > 1 holds when a participant has amplified the positive aspect
of the message (for negative statements, we have k−p , respectively).
The distribution of k+p and k−p , across all participants, is shown in
Fig. 3B. In line with our previous finding, k−p is, on average, higher
than k+p (P < 0.001), which further underscores that our participants
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have an overall tendency to amplify negative statements and
attenuate positive ones. However, significant individual differ-
ences were found (Fig. 3C): Although the majority of subjects
tend to amplify the harmful aspects of triclosan (k−p > k+p ), other
participants have the opposite profile (k+p > k−p ) or act neutrally
on the message (k+p ≈ k−p ). Interestingly, the individual differences
can be partly explained by the risk perception α that subjects
reported in questionnaires conducted after the experiment
[α correlates positively with k−p − k+p ; correlation (c) = 0.25,
P = 0.019]. In short, the direction of the “mutation” of the
message corresponds to the opinion of the speaker: Individuals
with higher risk perception tend to filter out positive statements
and amplify the dangerous aspects of triclosan, whereas those in-
dividuals with lower risk perception tend to have an opposite effect
on the signal of the message.
Finally, we measured what impact a message has on the risk

perception of the receiver. Overall, participants changed their risk
perception by an absolute average value of jΔαj=

��α− α0
��= 0.19

(SD = 0.17), where α0 is the risk perception of the individual
before the experiment and α is the risk perception of the same
subject after the experiment. The degree of change Δα should be
interpreted relative to the signal σp of the message that this par-
ticipant received, defined as σp =ω−

p . When the message signal
confirms the prior assessment of the participant (i.e., σp ≈ α0), no
change of opinion is expected (i.e., Δα ≈ 0), whereas Δα should
vary in the same direction as σp − α0. As shown in Fig. 4, Δα and
σp − α0 correlate well (c = 0.55, P < 0.001), confirming that par-
ticipants are influenced by the signal of the message they receive.

Collective Patterns. These findings provide quantitative insights
into the role of social transmission as an amplifying process.
Specifically, the signal of the incoming message influences the
receiver’s risk perception, which, in turn, shapes the signal of the
outgoing message. In many social systems, similar feedback loops
are typically associated with nonlinear dynamics and emerging
collective patterns (22). In our experiment, the social amplifi-
cation of the risk signal is clearly visible (Fig. 3A). However,
considerable behavioral fluctuations are observed within and
between chains, making it difficult to conduct a systematically
controlled analysis of the amplification process. We analyzed a
simple simulation model derived from our observations to study
this amplification process more precisely.
In the model, each individual i in a chain is has an initial risk

perception α0i . Individuals sequentially, and in turn, receive and

transmit a message made of n+ and n− positive and negative
statements, respectively. The signal σ of the message is defined as
above, by the equation σ = n−=ðn+ + n−Þ. When an individual i
receives the message, the risk level of that individual changes as
follows:

αi = α0i + s 
�
σ − α0i

�
, [1]

where s is an influence factor with a value between 0 (no in-
fluence) and 1 (full adoption). Previous empirical estimates of
influence factors lie between 0.3 and 0.5 (34, 35), which is con-
sistent with our experimental estimate (s = 0.45; Fig. 4). In our
simulation, when a message is transmitted from one person to
another, it undergoes a random biased mutation dependent on
the risk perception αi of the emitter i. For the sake of simplicity,
we implement the message mutation such that n+ is increased by
1 with a probability p+i = αi, and is decreased by 1 with a proba-
bility p−i = 1− αi. Similarly, n− is increased by 1 with a probability
p−i , and is decreased by 1 with a probability p+i . Based on this
simple model, we implemented a series of computer simulations.
Each simulation models a diffusion chain of N agents, where the
ith agent receives a risk message from the (i − 1)th agent and
transmits a message to the (i + 1)th agent. Each agent i has an
initial risk level of α0i . The first agent, at chain position i = 1,
receives a seeded message composed of n+ positive statements
and n− negative statements. Iteratively, and for each agent in
turn, three operations are applied: (i) agent i updates his or
her risk perception in response to the received message, as de-
fined by Eq. 1, (ii) agent i modifies the message using probabil-
ities p+i and p−i , and (iii) agent i transmits the modified message
to agent i + 1. Three example simulations illustrating the impli-
cations of different parameter values are detailed in Fig. S3.
Whereas the impact of the message on the first agent in the

chain is given by Eq. 1, the dynamics at subsequent chain posi-
tions are complex and result from repeated mutations of the
message, combined with related changes in the judgment of the
individuals. First, we conducted simulations under conditions
matching the conditions of our experiment, where there exists a
substantial diversity of initial risk perceptions (i.e., where α0i is
drawn from a normal distribution with a mean of 0.65 and SD of
0.22). At chain position p = 10, the aggregate distributions of risk
signals and risk perceptions correspond to the risk signals and
risk perceptions we observed experimentally (Kolmogorov–
Smirnov test: P = 0.57 and P = 0.08). As we observed previously,
the model predicts a gradual amplification of the risk signal,
whereas individuals’ final risk perception exhibits a considerable
variability due to the diversity of initial judgments (simulation
examples in Fig. S3). Under homogeneous initial conditions,
where all individuals have the same initial risk perception (i.e.,
α0i = α0 for all individuals i), the amplification process is itself
amplified and easier to study. For example, our simulations show
that a neutral message (i.e., n+ = n−) injected in a population of
concerned individuals (i.e., α0 = 1 for all individuals in the chain)
tends to mutate rapidly as it propagates from one agent to an-
other, culminating in a steady state representing the population’s
initial view, with no impact on the individuals’ opinions in the
long run (Fig. S3B). What social dynamics emerge when the
initial risk perception α0 of the group, the signal σ of the injected
message, and the social influence factor s are varied? Fig. 5 and
Fig. S4 examine such an exploration of the model’s parameter
space. In short, the social amplification of the risk signal is visible
after 10 transmissions and continues to increase as the message
propagates further (Fig. 5A). After 50 transmissions, the signal of
the message is either strongly positive (dark blue, Fig. 5A) or
strongly negative (dark red, Fig. 5A). The impact on individuals’
risk perception follows a similar trend (Fig. 5B). In most cases,
the message has a polarizing effect on the population, where the
biased initial judgments of the agents tend to become more ex-
treme at the end of the chain, even when the injected message is
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completely neutral. Along the transition zone depicted in green
(Fig. 5), the mean values of the signal and the risk perception
are both 0.5, but these means have very high SDs, indicating a
U-shaped distribution where the outcome can be either high or
low (Fig. S5). Thus, even a neutral message injected into a neutral
population can possibly have a polarizing effect on the judgment
of the individuals due to the amplification of random mutations of
the message (as illustrated in Fig. S3C).

Discussion
Among the factors influencing public risk perception, the impact
of social transmission is arguably the least studied, despite being
an everyday occurrence in an increasingly connected society.
This study is the first, to our knowledge, to examine experi-
mentally how the social transmission of risk information among
human subjects influences the propagation of risky information,
and how these risk perceptions become amplified as a result of
this propagation. Ambiguity surrounds the risks associated with
triclosan, such that each message not only carries factual in-
formation about the potential benefits and harms but also carries
a signal representing the subjective judgment of the communi-
cator. Consequently, we have distinguished between “content”
propagation and “signal” propagation. First, we found that the
information content of a message degrades (contains fewer units
information) and becomes less accurate (undergoes content
distortion) in response to being transmitted. As a consequence,
different communication chains led to a focus on different issues
related to triclosan, including Greenpeace protests (chain 13),
breastfeeding (chain 10), and environmental damage (chain 3).
Participants nevertheless influence each other: Changes in risk
perception are a function of the signal of the received message
(whether the message is positive or negative). Thus, changes in
risk perception occur less as a result of the message content and
more as a result of its overarching, subjective signal. In agree-
ment with Bartlett’s experiments (28), we observed that the in-
formation passed along the chain is shaped by the preconceptions
of its members. In Bartlett’s experiment (28), a Native American
story was gradually modified to fit the cultural perceptions of the
British participants. In our experiment, a similar mechanism drives
the propagation of, and modifications to, “stories” detailing the

risks associated with triclosan. One explanation for this behavior is
that when faced with conflicting information, participants are in
a state of cognitive dissonance and, consistent with Festinger’s
theory (36), reduce the discrepancy between their prior judgment
and the received message. Thus, cognitive dissonance theory may
partly explain why participants alter the strength of the risk signal.
At the aggregate level, the process of social transmission tends

to amplify or attenuate the message signal. As a message prop-
agates down the chain, it becomes distorted to fit the view
of those individuals transmitting it, with the original message
eventually having a negligible impact on the judgment of the
participants. Ultimately, the message can have a counterintuitive
polarizing effect on the population: After being transmitted
several times, the message can strengthen the existing bias of the
group, even though it initially supported the opposite view. As
our simulations show, this social phenomenon is itself amplified
in chains of like-minded individuals. According to recent theo-
retical and empirical studies (15, 23, 37), social interactions and
information exchange frequently take place within clusters of
like-minded people, suggesting that “natural” social structures
may create favorable conditions for strong amplification dy-
namics. Investigating the development of risk patterns in natu-
rally occurring social networks, which includes the impact of
complex topologies with highly connected individuals (38) and a
possibly stronger social influence (Fig. S4), therefore remains an
important direction for future work. Similarly, factors influenc-
ing the frequency with which people communicate risks may also
regulate their amplification. For example, new incidents typically
lead to a burst of social exchange followed by a long-tailed decay
of collective attention (19, 39).
More generally, our experiments demonstrate how the field of

opinion dynamics can be extended to include the study of risk
perception and how existing theoretical models of collective risk
perception can be furnished with empirical support (37, 40).
Perhaps most importantly, our findings illustrate the importance
of studying patterns of risk perception as, at least in part, the
outcome of a social process. From a public health perspective,
the social amplification of risk can have undesirable and costly
consequences, making it crucial to understand how policy makers
can communicate risks in such a way as to aid their transmission
through social networks. Promising lines of inquiry include
simple yet effective methods for helping people assess the risks
and benefits of technologies, chemicals, or medical drugs (8),
and simple tabular representations and visual displays used to
clarify public debates (41).

Materials and Methods
Experimental Design. The experiment took place in April 2013. We invited
12 participants to each of the 15 experimental sessions. Due to absences, some
sessions were conducted with less than 12 participants. In total, we collected
data from four chains of length 12, two chains of length 11, four chains of
length 10, three chains of length 9, one chain of length 8, and one chain of
length 7 (average chain size = 10.1). Our analyses considered only the first
10 participants of diffusion chains of length greater than 10. All participants
gave informed consent to the experimental procedure and received a flat
fee of V15. The participants entered a waiting room and were instructed not
to interact with each other. All participants completed an initial question-
naire Q1. The first participant p1 was then moved to the experimental room
and instructed to read a collection of six media articles displayed on a
computer screen. The articles presented alternative views on the use and
suspected side effects of the controversial antibacterial agent triclosan
(these articles are provided in SI Appendix). To present a representative se-
lection of articles, and one that reflects those articles likely to be encoun-
tered in an everyday setting, we selected each article from the first page of
results returned by Google with the search keyword “triclosan” (accessed
early in 2013). The articles were presented in a random order across groups,
and subject p1 had 3 min to read each of them. After the reading phase
(18 min in total), the computer was shut down and participant p2 was invited
to join participant p1 in the experimental room. Both participants were
instructed to discuss triclosan in an open, unstructured discussion. No time
limit was imposed. At the end of the discussion, the next participant p3 was
moved to the experimental room and a new discussion began between
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Fig. 5. Computer simulations. (A) Evolution of the risk signal at chain po-
sitions 1, 10, and 50 as a function of the initial risk perception of the in-
dividuals (x axes) and the signal of the injected message (y axes). The gradual
dominance of extreme values (in dark red and dark blue) demonstrates the
amplification of the risk signal. (B) Evolution of individuals’ risk perception
follows a similar trend. Individuals who initially expressed extreme risk
perception (x = 0 or x = 1) gradually move back to their initial view, regardless
of the message signal. The social influence parameter is set to s = 0.5. Simu-
lations varying the value of s are provided in Fig. S4. Results are averaged over
500 simulations.
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participants p2 and p3 under the same conditions. In the meantime, the first
participant p1 was instructed to complete the second questionnaire Q2 in
another room and was then free to leave. This procedure was repeated for
all participants in the chain. The discussions were recorded, and the audio
files were then transcribed and translated into English (from German).

Measures of Risk Perception. The risk perception of the participants toward
triclosan was measured before and after the discussion by means of two
questionnaires Q1 and Q2. Questionnaire Q1 evaluated the subject’s knowl-
edge about triclosan. Among all participants, only one had prior knowledge of
triclosan but failed to answer basic questions relating to triclosan. We there-
fore considered all subjects to be unfamiliar with triclosan. Questionnaires Q1
and Q2 also evaluated the risk perception of the participants toward triclosan.
The risk perception of the participants was self-reported by placing a tick on a
continuous line ranging from “Not dangerous at all” to “Extremely danger-
ous” (coded correspondingly with values between 0 and 1). Because partici-
pants were unfamiliar with triclosan before the experiment, it was impossible
to assess their level of risk perception directly. We therefore used an indirect
measurement by evaluating their perception of risk toward the more general
issue of chemical use in food safety and cosmetics.

Coding the Content of the Message. We first used the transcripts of the dis-
cussions to identify every unit of information that was discussed. We iden-
tified a list of 61 units of information. These units were classified into four
high-level categories: “Side effects,” “Personal anecdotes,” “Where is triclo-
san,” and “Others.” Each of these high-level categories was then subdivided
into subcategories and sub-subcategories. For example, the top category, Side
effects, contains the subcategory “In mice,” which was further divided into
seven classes, such as “Heart diseases” and “Cancer.” Finally, we analyzed
the transcripts and tracked each unit of information from one chain position
to the next until the end of each chain. In addition, each unit of information

was labeled distorted if factual differences or imprecisions were detected
from one chain position to the next. A content distortion was marked when
(i) a numerical value has changed or disappeared; (ii) a qualitative indication
of volume, frequency, or probability has changed or disappeared; (iii) a
change is detected in the generality of the description provided by a unit of
information; (iv) a previously nonexistent unit of information has been
added; and (v) a unit of information is factually incorrect.

Coding the Signal of the Message. We also used the transcripts to analyze the
signal of the conversation. Here, we reviewed all sentences uttered by the
informed speaker at each chain position and labeled each of them as positive,
negative, or neutral. Sentences that highlight the suspected dangers of tri-
closan or express a negative judgement about it received a negative label,
whereas sentences suggesting that the use of triclosan is safe or well-con-
trolled received a positive label. Sentences that were labeled neither negative
nor positive were considered neutral. This procedure was conducted by two
independent coders, who received the same instruction sheets (SI Materials
and Methods). We used the mean response of the two coders. The reliability
of the encoding was then assessed by comparing the number of positive and
negative statements found by each coder in the same transmission. In 56%
of the cases, the numbers reported by the two coders were equal. In 94% of
the cases, the difference was two or less.

ACKNOWLEDGMENTS. We thank Eleonora Spanudakis and Mareike
Trauernicht for helpful assistance during data collection and data analyses.
We are grateful to Christel Fraser for her help in transcribing and translating
the audio recordings. We thank Jeanne Gouëllo, Isaac Moussaïd, Michael Mäs,
Jan Lorenz, and Kenny Smith for insightful discussions. We also acknowledge
the members of the Center for Adaptive Rationality and the Center for Adap-
tive Behavior and Cognition at the Max Planck Institute for Human Develop-
ment for providing valuable feedback during the preparation of this work.

1. Slovic P (2000) The Perception of Risk (Earthscan Publications, London).
2. Slovic P (1987) Perception of risk. Science 236(4799):280–285.
3. Funk S, Gilad E, Watkins C, Jansen VA (2009) The spread of awareness and its impact

on epidemic outbreaks. Proc Natl Acad Sci USA 106(16):6872–6877.
4. Huang L, et al. (2013) Effect of the Fukushima nuclear accident on the risk perception

of residents near a nuclear power plant in China. Proc Natl Acad Sci USA 110(49):
19742–19747.

5. Loewenstein GF, Weber EU, Hsee CK, Welch N (2001) Risk as feelings. Psychol Bull
127(2):267–286.

6. Pachur T, Hertwig R, Steinmann F (2012) How do people judge risks: Availability
heuristic, affect heuristic, or both? J Exp Psychol Appl 18(3):314–330.

7. Slovic P, Peters E (2006) Risk perception and affect. Curr Dir Psychol Sci 15(6):322–325.
8. Fischhoff B, Brewer NT, Downs JT (2011) Communicating Risks and Benefits: An Evi-

dence-Based User’s Guide (US Food and Drug Administration, Silver Spring, MD).
9. Gigerenzer G, Gaissmaier W, Kurz-Milcke E, Schwartz L, Woloshin S (2007) Helping

doctors and patients make sense of health sStatistics. Psychol Sci Public Interest 8(2):
53–96.

10. Faria J, Krause S, Krause J (2010) Collective behavior in road crossing pedestrians: The
role of social information. Behav Ecol 21(6):1236–1242.

11. Salathé M, Vu D, Khandelwal S, Hunter D (2013) The dynamics of health behavior
sentiments on a large online social network. European Physical Journal Data Science 2:4.

12. Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over
32 years. N Engl J Med 357(4):370–379.

13. Christakis NA, Fowler JH (2008) The collective dynamics of smoking in a large social
network. N Engl J Med 358(21):2249–2258.

14. Centola D (2010) The spread of behavior in an online social network experiment.
Science 329(5996):1194–1197.

15. Scherer CW, Cho H (2003) A social network contagion theory of risk perception. Risk
Anal 23(2):261–267.

16. Binder AR, Scheufele DA, Brossard D, Gunther AC (2011) Interpersonal amplification
of risk? Citizen discussions and their impact on perceptions of risks and benefits of a
biological research facility. Risk Anal 31(2):324–334.

17. Kramer AD, Guillory JE, Hancock JT (2014) Experimental evidence of massive-scale emo-
tional contagion through social networks. Proc Natl Acad Sci USA 111(24):8788–8790.

18. Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) How social influence can un-
dermine the wisdom of crowd effect. Proc Natl Acad Sci USA 108(22):9020–9025.

19. Wu F, Huberman BA (2007) Novelty and collective attention. Proc Natl Acad Sci USA
104(45):17599–17601.

20. Salganik MJ, Dodds PS, Watts DJ (2006) Experimental study of inequality and un-
predictability in an artificial cultural market. Science 311(5762):854–856.

21. Moussaïd M, Helbing D, Theraulaz G (2011) How simple rules determine pedestrian
behavior and crowd disasters. Proc Natl Acad Sci USA 108(17):6884–6888.

22. Helbing D, et al. (2014) Saving human lives: What complexity science and information
systems can contribute. J Stat Phys 158(3):735–781.

23. Salathé M, Khandelwal S (2011) Assessing vaccination sentiments with online social

media: Implications for infectious disease dynamics and control. PLOS Comput Biol

7(10):e1002199.
24. Moussaïd M (2013) Opinion formation and the collective dynamics of risk perception.

PLoS ONE 8(12):e84592.
25. Renn O, Burns W, Kasperson J, Kasperson R, Slovic P (1992) The social amplification of

risk: Theoretical foundations and empirical applications. J Soc Issues 48(4):137–160.
26. Kasperson R, et al. (1988) The social amplification of risk: A conceptual framework.

Risk Anal 8(2):177–187.
27. Yueh M-F, et al. (2014) The commonly used antimicrobial additive triclosan is a liver

tumor promoter. Proc Natl Acad Sci USA 111(48):17200–17205.
28. Bartlett F (1932) Remembering: A Study in Experimental and Social Psychology

(Cambridge Univ Press, Cambridge, UK).
29. Kempe M, Mesoudi A (2014) Experimental and theoretical models of human cultural

evolution. WIREs Cognitive Science 5(3):317–326.
30. Griffiths TL, Kalish ML, Lewandowsky S (2008) Review. Theoretical and empirical ev-

idence for the impact of inductive biases on cultural evolution. Philos Trans R Soc

Lond B Biol Sci 363(1509):3503–3514.
31. Horner V, Whiten A, Flynn E, de Waal FB (2006) Faithful replication of foraging

techniques along cultural transmission chains by chimpanzees and children. Proc Natl

Acad Sci USA 103(37):13878–13883.
32. Kirby S, Cornish H, Smith K (2008) Cumulative cultural evolution in the laboratory: An

experimental approach to the origins of structure in human language. Proc Natl Acad

Sci USA 105(31):10681–10686.
33. Mesoudi A, Whiten A, Laland KN (2006) Towards a unified science of cultural evo-

lution. Behav Brain Sci 29(4):329–347, discussion 347–383.
34. Soll JB, Larrick RP (2009) Strategies for revising judgment: How (and how well) people

use others’ opinions. J Exp Psychol Learn Mem Cogn 35(3):780–805.
35. Moussaïd M, Kämmer JE, Analytis PP, Neth H (2013) Social influence and the collective

dynamics of opinion formation. PLoS ONE 8(11):e78433.
36. Festinger L (1957) A Theory of Cognitive Dissonance (Stanford Univ Press, Stanford,

CA).
37. Lorenz J (2007) Continuous opinion dynamics under bounded confidence: A survey.

Int J Mod Phys 18(12):1819–1838.
38. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature

393(6684):440–442.
39. Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the re-

sponse function of a social system. Proc Natl Acad Sci USA 105(41):15649–15653.
40. Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev

Mod Phys 81(2):591–646.
41. Arkes HR, Gaissmaier W (2012) Psychological research and the prostate-cancer screening

controversy. Psychol Sci 23(6):547–553.

5636 | www.pnas.org/cgi/doi/10.1073/pnas.1421883112 Moussaïd et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421883112/-/DCSupplemental/pnas.201421883SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421883112/-/DCSupplemental/pnas.201421883SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1421883112

