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Abstract— Object recognition is a fundamental topic for
the development of robotic systems able to interact with the
environment. Most existing methods are based on vision systems
and assume a broad point of view over the objects, which
are observed in their entirety. This assumption is sometimes
difficult to fulfill in practice, and in particular in swarm
systems, constituted by a multitude of small robots with limited
sensing and computational capabilities. We have developed a
method for object recognition with a heterogeneous swarm
of low-informative spatially-distributed sensors employing a
distributed version of the naive Bayes classifier. Simulation
results show the effectiveness of this approach highlighting some
nice properties of the developed algorithm.

I. INTRODUCTION

The current miniaturization trend of electronic components,
sensors and actuators will eventually bring to the effective
employment of multi- and many-robot systems in everyday
life. A multitude of small cheap and simple robots can be
used to perform high level tasks as exploration, patrolling,
cooperative transportation. The analysis and control of a
swarm of this kind still pose a range of research challenges
that must be addressed for robust real world applications.
Among others, object recognition is fundamental in order to
interact with the environment (e.g.: for the identification of
the object of a common action). However it is mostly seen as
a computer vision topic and several peculiarities of robotic
swarms that can bring advantages and disadvantages in the
recognition are ignored.

First, the typical dimension of the objects in the environ-
ment (cars, trees, buildings) is usually one or more orders
of magnitude greater than the physical dimension of the
platforms considered in swarm robotics. In addition, the
exteroceptive sensor equipment of the robots is limited due
to constraints on payload, power consumption and compu-
tational power. Hence, each robot is usually able to observe
only some details (e.g.: one or two edges) or some specific
characteristic (e.g.: color or material) of the sensed objects.
On the other end, each small robot will have a different point
of view, test a different characteristic, or even try to interact
with the object to infer useful information.

Most of the state-of-the-art algorithms for object recogni-
tion (e.g.: [1], [2], [3]) involves highly-informative sensors
as cameras or 3D range finders, assume a broad point of
view over the observed objects (hence one single sensor
is enough for the recognition), perform the computations
in a centralized fashion and are computationally expensive
and real-time-unfeasible on limited platforms. The usage of
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objects’ local features in the recognition process has been
thoroughly studied in literature [2], [3], [4], [5], but it has
mostly been exploited by mean of a centralized entity and
considering only visual features. Even more important, most
methods selects informative local features of the observed
objects and use their spatial relationship, thanks to their
broad point of view, whereas each small agent of a swarm
can only rely on its limited, non-selected point of view.

A generalization of the classical approach studies the
problem of understanding the environment given the im-
ages collected from different points of view. State-of-the-
art algorithms (e.g.: [6]) usually take advantage of common
features from the different views. In [7] the authors selects an
optimal number of images from different viewpoints. In [8]
the authors reconstruct the cluttered parts of the environment
and discern the subject from the background. Many authors
[9] [10] [11] investigate the distribution of the computation
among several camera stations, encoding the features used
for the recognition before the transmission to a base station.
In [12], the authors propose a recognition method to classify
the object observed by a network of smart cameras. Again,
each camera has a broad point of view over the object, and
the methods benefit from overlapping in the measurements.

For the best of our knowledge, our work is the first to
focus explicitly on object recognition in swarm systems.
Our goal is the development and analysis of ad-hoc dis-
tributed algorithms to overcome and exploit the peculiarities
of swarm systems. Hence, we aim at turning the intrinsic
structure of the swarm as a multitude of local limited sources
of information into an opportunity, exploiting the intrinsic
similarities of objects of the same type, as for example
similar colors, physical properties, patterns and textures and
the same constituent materials. In fact, one of our objective
is to develop a system able to recognize all the objects of
certain type, and not only the single objects whose models
are already known by the system. For this reason, in the
simulations we will test the system with different objects (but
of the same type) w.r.t. the ones used to build the models.

Finally, we want to overcome the idea that object recogni-
tion is strictly a computer vision topic, presenting a robotic
system that only partially employs cameras and proposing a
method for the fusion of information coming from several
different types of sensors.

II. SYSTEM OVERVIEW

We consider a heterogeneous swarm system A of n agents
A = {A1,A2, . . . ,An} living in a generic environment
and surrounding an object ω in such environment. Each
Ai is equipped with an exteroceptive sensor and gathers a
measurement zi of ω. In general, different robots can be
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Fig. 1: An outline of the object recognition system. Three robots Ai, Ah, Ak are equipped respectively with a 8×6 RGB camera, a
810 nm relative reflectance sensor and a laser scanner. The details of the object recognition system are depicted for robot Ai.

equipped with different sensors. Possible types of sensors
include cameras, laser range finders, sonar and IR arrays,
material detectors, temperature and stiffness sensors among
others. In this work, as a mean of example and for simulation
purpose we have considered three types of sensors.

The first is a 8×6–pixel RGB camera, used as a color
sensor. As a full size image from a normal-resolution camera
contains too many data to be efficiently processed in case of
limited computational power, still visual data can provide
useful information for the recognition, for example the color
of a small portion of the observed object. The second sensor
is a laser range finder, and is used to measure a small portion
of the profile of the object. Finally, we also consider a 1-
pixel near-infrared (NIR) relative reflectance sensor, which
is able to measure the amount of electromagnetic radiation
at a given wavelength (810 nm in our case) reflected by a
small portion of the surface of the object, with respect to the
total electromagnetic radiation at that wavelength impacting
on that surface. In general, we will denote with zi the
measurement collected by the robot Ai, independently from
the type of Ai’s sensor.

We assume the robots to be able to move in the envi-
ronment as a swarm maintaining network connectivity. We
assume also that in the environment there is one and only
one object ω out of a set of m possible objects Ω =
{ω1, . . . , ωm}. Then, whenever the robots encounter ω on
their path, their task is to identify which type of object ω is.

As outlined in Fig. 1, each Ai collects a measurement
zi of the object, and uses it to feed the object recognition
system, whose details in Fig. 1 are specified only for Ai.
Using previously known models of the objects in Ω, each
Ai computes an estimate of the probabilities p(zi|ω =
ωj), j = 1, . . . ,m that the observed object ω is of type
ωj given its own measurement zi. This information is used
inside a naive Bayes classifier, along with the probabilities
p(zl|ω = ωj), j = 1, . . . ,m, l = 1, . . . , n, l 6= i obtained
through communication. Since the communication graph is
not complete, an appropriate gossip algorithm is enforced to
spread the knowledge of all p(zl|ω = ωj).

III. SIMULATIONS

We have tested the developed system on a database of
12 types of objects (leaf, banana, sunflower, apple, starfish,

butterfly, grape, hammer, pineapple, strawberry, wrench, scis-
sors). For each ωj , we have used four images to build the
models, hence the entire database is built using 48 images.
In a typical simulation, the image of an object is in the
scene, and multiple robots are randomly deployed over it
(image and reflectance measurements) or in its proximity
(laser scanner). The simulated collected measurements are
used to feed the system.

We have conducted extensive simulations on a set of
additional 60 images, 5 for each object, varying the total
number of robots and the type of sensors equipped. We
have tested the system with 6, 15 and 30 robots, and for
each of those simulations, we have tested the cases of all
robots equipped with cameras, laser scanners or reflectance
sensors, half of the robots equipped with cameras and half
with laser scanners, and finally one third of the robots
equipped with each type of sensor, for a total number of 15
different configurations. For each of them we have performed
20 simulations for each image in the testing set (then 100
simulations for each ωj , and 1200 simulations to test each
configuration of the swarm).

The results of the simulations, summarized in the con-
fusion matrix (Table I) and in the overall percentage of
correct recognitions (Table II) show the effectiveness of the
approach. Remarkably, the performances in general increase
with the number of robots, and whenever different types of
measurements are used together the results are better than
the results obtained with single sensors.

IV. CONCLUSIONS

In this work we have presented preliminary results of
object recognition simulations using robotic swarms. For
future works, one of the first task is to perform 3D simu-
lations and experiments with larger data-sets. Moreover, we
are interested in extending the number and types of sensors,
evaluating also the impact and feasibility of temperature and
stiffness sensors among others.

From a theoretical point of view, we plan to analyze the
characteristics of the algorithm to optimize the number of
sensors of each type and address the situation of multiple
objects in the environment applying clusterization of the
team members based on the object that they are observing.



Le Ba Su Ap St Bu Gr Ha Pi Sr Wr Sc
Le 77 0 0 0 0 0 1 0 0 0 0 0
Ba 20 100 0 0 1 0 0 0 0 0 0 0
Su 1 0 100 0 0 0 0 0 0 0 0 0
Ap 0 0 0 75 0 0 0 0 0 4 0 0
St 0 0 0 0 99 0 0 0 0 0 0 0
Bu 0 0 0 0 0 100 0 0 0 0 0 0
Gr 0 0 0 0 0 0 90 0 0 0 0 0
Ha 0 0 0 0 0 0 1 97 0 0 0 0
Pi 0 0 0 0 0 0 0 0 100 0 0 0
Sr 2 0 0 25 0 0 8 0 0 96 0 0
Wr 0 0 0 0 0 0 0 3 0 0 99 0
Sc 0 0 0 0 0 0 0 0 0 0 1 100

TABLE I: Confusion matrix for simulations with 30 robots, 10
equipped with cameras, 10 with laser scanners and 10 with re-
flectance sensors. Abbreviations: Le - Leaf; Ba - Banana; Su -
Sunflower; Ap - Apple; St - Starfish, Bu - Butterfly; Gr - Grape;
Ha - Hammer; Pi - Pineapple; Sr - Straweberry; Wr - Wrench; Sc
- Scissors.

C L R C+L C+L+R
6 robots 67.5 48.5 80.2 70.3 86.33
15 robots 69.7 56.9 86.3 78 93.6
30 robots 69.1 64.1 90.3 78 94.4

TABLE II: Percentage of correct associations for all 15 configura-
tions of the swarm. C is camera, L is laser scanner, R is reflectance,
C+L is camera and laser scanner, C+L+R is camera, laser scanner
and reflectance sensor.
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