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Abstract 

To build coherent and veridical multisensory representations of the environment, human 

observers consider the causal structure of multisensory signals: If they infer a common 

source of the signals, observers integrate them weighted by their reliability. Otherwise, 

they segregate the signals. Generally, observers infer a common source if the signals 

correspond structurally and spatiotemporally. In six projects, the current PhD thesis 

investigated this causal inference model with the help of audiovisual spatial signals 

presented to human observers in a ventriloquist paradigm. 

 A first psychophysical study showed that sensory reliability determines causal 

inference via two mechanisms: Sensory reliability modulates how observers infer the 

causal structure from spatial signal disparity. Further, sensory reliability determines the 

weight of audiovisual signals if observers integrate the signals under assumption of a 

common source. Using multivariate decoding of fMRI signals, three PhD projects revealed 

that auditory and visual cortical hierarchies jointly implement causal inference. Specific 

regions of the hierarchies represented constituent spatial estimates of the causal inference 

model. In line with this model, anterior regions of intraparietal sulcus (IPS) represent 

audiovisual signals dependent on visual reliability, task-relevance, and spatial disparity of 

the signals. However, even in case of small signal discrepancies suggesting a common 

source, reliability-weighting in IPS was suboptimal as compared to a Maximum Estimation 

Likelihood model. By temporally manipulating visual reliability, the fifth PhD project 

demonstrated that human observers learn sensory reliability from current and past signals 

in order to weight audiovisual signals, consistent with a Bayesian learner. Finally, the sixth 

project showed that if visual flashes were rendered unaware by continuous flash 

suppression, the visual bias of the perceived auditory location was strongly reduced but 

still significant. The reduced ventriloquist effect was presumably mediated by the drop of 

visual reliability accompanying perceptual unawareness.  

 In conclusion, the PhD thesis suggests that human observers integrate multisensory 

signals according to their causal structure and temporal regularity: They integrate the 

signals if a common source is likely by weighting them proportional to the reliability which 

they learnt from the signals’ history. Crucially, specific regions of cortical hierarchies jointly 

implement these multisensory processes. 
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1 Synopsis 

1.1 Multisensory perception of a multisensory world 

Humans perceive their environment as a multisensory whole because their brain 

effortlessly integrates distinct sensory signals — at a crowded party, we see the other 

guests’ faces, hear their voices and feel the touch of a hand shake while smelling the food of 

the buffet. Subjectively, we compose this complex multisensory representation of the 

environment with great ease, but on closer inspection the brain accomplishes an incredibly 

difficult feat: just having noisy signals impinging on the sensors, the brain must first of all 

determine the signals’ causal structure (Shams and Beierholm, 2010). Only if the signals 

stem from a common object, the brain should integrate them to create a multisensory 

representation of that object, for example a speaker’s voice, face and hand shake. Signals 

from a separate object should be segregated, for example the voice of a different speaker. 

Integration entails further difficulties: Sensory noise (Faisal et al., 2008) creates stochastic 

discrepancies between sensory estimates of a common physical property. For example, 

when a speaker’s voice location is slightly offset from his face position due to sensory noise, 

the brain has to resolve the discrepancy and figure out a unique speaker location. Further 

difficulties arise from the fact that multisensory signals have different representational 

formats (Pouget et al., 2002), for example different frames of references and neural codes, 

and unique qualities, such as a voice’s timbre. By mastering these difficulties, the brain 

produces qualitatively richer representations because it combines unique sensory 

information and, at the same time, produces more robust representations than their 

unimodal counterparts (Ernst and Bulthoff, 2004). Thus, a multisensory model of the 

environment is the basis for successfully perceiving and acting on the world. 

Behaviorally, integrating multisensory signals leads to perceptual illusions if 

(slightly) discrepant signals are integrated into a single coherent percept. Illusionary 

percepts arise from a variety of multisensory signals and can be experimentally 

demonstrated by introducing a discrepancy between the signals: For example, observers 

integrate audiovisual spatial signals such that the perceived sound shifts towards a 

discrepant visual signal as demonstrated by ventriloquists (i.e., the ventriloquist effect) 

(Thomas, 1941; Jackson, 1953; Jack and Thurlow, 1973; Radeau and Bertelson, 1977). 

Observers integrate a spoken syllable (“ba”) with a video of a mouth speaking a slightly 

different syllable (“ga”) and, thus, perceive an intermediate syllable (“da”) (i.e., the McGurk 

effect) (McGurk and MacDonald, 1976). If accompanied by multiple beeps, a single visual 

flash is perceived as multiple flashes (i.e., the double flash illusion) (Shams et al., 2000). 

When rubbing their own hands, observers perceive their skin like a parchment paper if this 

tactile sensation is experimentally combined with a rough rubbing sound (i.e., the 
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parchment skin effect) (Jousmaki and Hari, 1998). Observers even adopt a rubber hand to 

their own body scheme (Botvinick and Cohen, 1998) or feel their own body located 

towards an avatar’s position (Lenggenhager et al., 2007) if the visually presented rubber 

hand or the avatar are stroked in synchrony with the observers. 

These diverse multisensory illusions emerge as an epiphenomenon of integrating 

discrepant signals: If the signals are unified into a coherent percept, the percept appears 

biased as compared to the unisensory signals. Beyond coherent perception, the integration 

offers a benefit over the unimodal signals because it enhances the robustness of the signal 

estimate. Thus, multisensory signals are more quickly (Hershenson, 1962; Miller, 1982; 

Diederich and Colonius, 2004) and accurately (McDonald et al., 2000) processed than 

unisensory signals. 

However, such multisensory benefits only hold if the integrated information indeed 

arose from the same cause. If signals are misattributed to the wrong object (e.g., a voice to 

the wrong speaker), the object’s representation is not veridical (Roach et al., 2006). Hence, 

which principles do human observers apply to determine whether multisensory signals 

should be integrated or treated independently? How do observers integrate signals if they 

indeed arose from the same cause? And how do neurons process multisensory signals and 

which brain regions are recruited by these processes?  

 

1.2 Principles of multisensory integration 

The principles of multisensory integration were first determined in psychophysical studies 

using perceptual illusions. To create the illusions, observers were presented with slightly 

discrepant signals of multiple modalities. Thus, researcher used the shift of the illusionary 

percept as compared to the unimodal signals, referred to as intersensory bias, to measure 

the signals’ weighting during integration. 

 

The modality appropriateness hypotheses 

One striking observation across different illusions was that the different modalities were 

dominating the illusions in specific domains. For example, vision dominated audition and 

proprioception in spatial judgments because the perceived auditory and proprioceptive 

location was strongly biased towards the visual signal location (Jackson, 1953; Pick et al., 

1969; Warren and Cleaves, 1971). Similarly, the seen object size dominated over the felt 

object size (Rock and Victor, 1964). Thus, this ‘visual capture’ showed that vision 

dominated the integration of spatial information. By contrast, ‘auditory capture’ was found 

in the temporal domain: Multiple auditory beeps perceptually multiplied a single visual 

flash (Shams et al., 2000), auditory beeps temporally pulled apart two visual flashes 

(Morein-Zamir et al., 2003) and audition dominated temporal rate perception of 
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audiovisual oscillatory signals (Shipley, 1964; Welch et al., 1986). Hence, visual and 

auditory capture showed that these modalities dominated in the spatial and temporal 

domain, respectively. Welch and Warren (1980) explained this pattern by the ‘modality 

appropriateness hypothesis’: The modalities process signals of a certain domain with high 

precision and, therefore, dominate tasks involving these signals. The modality-specific 

precision arises from the ‘hard-wired’ modality-specific formats of neural coding. For 

example, the visual modality favors spatial processing by using a retinotopic code (Wandell 

et al., 2007) while the auditory modality favors temporal processing by using a spectral 

tonotopic code (Recanzone and Sutter, 2008).  

However, the ‘modality appropriateness hypothesis’ could not account for the fact 

that the precision of a signal does not only depend on the neural representational format: 

Further, signal precision depends on sensory noise (Faisal et al., 2008) and physical noise 

which are dynamically changing. For example, in a foggy environment visual signals might 

provide less precise spatial information than auditory spatial signals. Similarly, background 

noise degrades the temporal precision of auditory signals. Indeed, earlier studies noted 

that audiovisual intersensory bias depends on trial-wise relative signal strength (Radeau, 

1985).  However, only the advent of the Bayesian perspective on perception (Yuille and 

Buelthoff, 1996; Knill and Pouget, 2004; Yuille and Kersten, 2006) acknowledged that in 

perception observers estimate physical properties from noisy, uncertain signals: Thus, the 

weighting of multisensory signals should optimally depend on the dynamically changing 

uncertainty (or its inverse, reliability) of the signals’ estimates, not the precision of the 

modality per se. 

 

The MLE model 

From the Bayesian perspective on perception, the brain optimally infers environmental 

properties by combining their noisy signals and prior knowledge. If multisensory signals 

arose from a common source, the perspective entails that the optimal strategy is to weight 

the multisensory signals and their prior proportional to their relative reliability (i.e., the 

inverse of their sensory variance) (Ernst and Banks, 2002). For example, an observer 

usually estimates the location of an audiovisual object from the visual signal under normal 

viewing conditions, but in foggy conditions an observer rather relies on auditory spatial 

information. This weighting strategy is optimal because it exploits the signals’ redundancy 

to enhance sensory reliability: The integrated signal estimate is more reliable than each of 

the unimodal estimates. If the prior is uninformative, the reliability-weighted average of 

the multisensory signals is the maximum likelihood estimator (MLE) of the environmental 

property and also known as a Kalman filter in optimal control theory (Kalman, 1960). 
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 By manipulating sensory reliability in a trial-by-trial fashion, it has been elegantly 

shown that current reliability determines weight of multisensory (Ernst and Banks, 2002; 

Battaglia et al., 2003; Alais and Burr, 2004), but also unisensory (Jacobs, 1999; Knill and 

Saunders, 2003; Hillis et al., 2004) and even sensorimotor signals (Kording and Wolpert, 

2004). For example the visual dominance in judgments of visual-haptic object size gives 

way to haptic dominance if the reliability of the visual signals is reduced (Ernst and Banks, 

2002; Gepshtein and Banks, 2003). Thus, the combined estimate of object size yields 

integration benefits close to the MLE-predicted optimum. Likewise, the strong visual bias 

on perceived audiovisual signal location reverses into an auditory bias if the visual signals 

are degraded (Battaglia et al., 2003; Alais and Burr, 2004). Overall, the MLE model explains 

a host of multisensory illusions by reliability-weighted signal integration. Thereby, the 

model exceeds the notion that signal weights are fixed for a given combination of 

multisensory signals which was proposed by the modality appropriateness hypothesis.  

To accomplish the trial-by-trial weighing of signals, the MLE model assumes that the 

brain does not only represent the signals’ estimate per se, but also represents ‘online’ 

sensory reliability. This could be achieved by measuring the neural response to a signal 

across time in a sampling-based representation (Fiser et al., 2010) or a by a probabilistic 

population code (PPC) (Ma et al., 2006): While the peak location of a neuronal population’s 

response profile represents a signal’s estimate, the gain of the response profile represents 

the momentary signal’s reliability. Downstream multisensory populations then accomplish 

reliability-weighted integration by summing over multiple unisensory PPCs. In line with 

the theory, neurophysiological studies in monkeys showed that neuronal populations 

dynamically implement reliability-weighted integration of visual-vestibular heading signals 

(Fetsch et al., 2012; Fetsch et al., 2013).  

However, it is currently unclear whether sensory reliability is indeed estimated 

instantaneously from a single signal as predicted by PPC theory, or whether information on 

sensory reliability is integrated over time. If the brain uses a sampling-based 

representation in which the neurons’ activity encodes samples of a signal (Fiser et al., 

2010), then reliability would be computed by the variability of neural responses over time. 

Thus, reliability would be naturally learned over its recent history. A sampling-based 

representation is consistent with a Bayesian learner who updates prior knowledge of 

reliability obtained from past signals with reliability information obtained from incoming 

signals. Thus, one PhD project (“Bayesian learning of sensory reliability in multisensory 

perception”; chapter 6) investigated whether humans estimate sensory reliability purely 

from current signals, as suggested by PPC theory, or, moreover, estimate it from past 

signals, as suggested by a sampling-based representation and a Bayesian learner of 

reliability. 
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 Further, the MLE theory crucially assumes that signals which are to be integrated 

arose from a common source. Otherwise, a ‘forced fusion’ despite independent signal 

sources misattributes information which is obviously sub-optimal (Roach et al., 2006). 

Indeed, if larger spatiotemporal signal discrepancies suggest independent signal sources, 

optimal reliability-weighted integration gives way to a partial segregation of multisensory 

signals (Gepshtein et al., 2005; Parise et al., 2012). From a Bayesian perspective, ‘forced’ 

reliability-weighted integration is only optimal under assumption of a common source, or 

in other words, a unitary event emanating the signals. Of course, in natural conditions in 

which multisensory signals from multiple events impinge on an observer, an unconditioned 

‘forced fusion’ assumption is not ecologically valid.  

 

The assumption of unity 

It has long been known that the assumption of unitary events giving rise to multisensory 

signals determines the strength of multisensory integration (Welch and Warren, 1980). 

The assumption of unity bases on structural factors like the spatiotemporal 

correspondence between multisensory signals, but also depends on cognitive factors 

(Radeau and Bertelson, 1977). For example, if observers explicitly judge the unity of 

audiovisual spatial signals, the unity judgments decline with larger temporal and spatial 

discrepancies between the signals (Bertelson and Radeau, 1981; Lewald and Guski, 2003; 

Wallace et al., 2004). At the same time, spatiotemporal signal discrepancies reduce the 

intersensory bias indicating diminished multisensory integration (Warren and Cleaves, 

1971; Jack and Thurlow, 1973; Bertelson and Radeau, 1981; Wallace et al., 2004). The 

assumption of unity and the intersensory bias rest upon the same signal percepts because 

the bias is much stronger in trials in which observers perceive unity as compared to non-

unity trials (Bertelson and Radeau, 1981; Wallace et al., 2004). Moreover, cognitive factors 

modulate the intersensory bias, for example the knowledge of a plausible signal source: A 

seen puff of steam from a kettle biases localization of a whistling sound more strongly than 

a light bulb biases localization of a ringing bell (Jackson, 1953).  

Thus, the assumption of unity determines whether multisensory signals are 

integrated or not bound together while MLE theory describes how multisensory signals are 

integrated. How could both principles of multisensory integration be rejoined?  

 

Models of causal inference  

Reliability-weighted integration breaks down if the unity of the signal is uncertain 

(Gepshtein et al., 2005; Parise et al., 2012). The breakdown can be modeled by joint prior 

distributions of multisensory signals which mediate between signal integration and 

segregation. These priors can have different forms, for example a prior composed of a 
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Gaussian modeling correlated and a uniform distribution modeling independent signals 

(Roach et al., 2006; Sato et al., 2007) or a Gaussian ridge along signal discrepancy 

(Bresciani et al., 2006; Wozny et al., 2008). In a very similar fashion, these priors model the 

finding that integration is likely in case of small and segregation is likely in case of large 

signal discrepancies (Shams and Beierholm, 2010). However, these priors were not 

motivated in a principled fashion, but they were rather a post-hoc choice to account for 

partial signal segregation found in the data. By contrast, Kording et al. (2007) treated the 

problems of signal integration versus segregation and, in parallel, the assumption of unity 

as a probabilistic inference on the uncertain causal structure of multisensory signals (cf. 

Fig. 1B): If a common cause of the signals (i.e., a unitary event) is likely due to small signal 

discrepancies, the signals are integrated weighted by their reliability. If separate causes are 

likely due to large discrepancies, the signals are treated independently and, hence, 

segregated. Thus, the probability of a common cause, which is inferred from the signals’ 

discrepancy, adjudicates upon signal integration versus segregation to yield a final estimate 

of the signal. Thereby, this hierarchical Bayesian causal inference (CI) model provides a 

rational strategy to elegantly reconcile the question of whether (superordinate question: 

integration vs. segregation) and how (subordinate: reliability-weighted integration) to 

integrate multisensory signals.  

 Mathematically, the CI model combines the reliability-weighted multisensory estimate 

with the task-relevant unisensory estimate proportional to the probabilities of a common 

or separate causes, respectively (i.e., ‘causal model averaging’; cf. chapter 2.3). If the 

probability of a common cause is one, the CI model converges to the MLE model. If the 

probability of a common cause is below one (i.e., the probability of separate causes is above 

zero), the model can explain two important findings: First, spatiotemporal signal 

discrepancies reduce the intersensory bias (Warren and Cleaves, 1971; Jack and Thurlow, 

1973; Bertelson and Radeau, 1981; Wallace et al., 2004) and lead to violations of MLE 

predictions (Gepshtein et al., 2005; Parise et al., 2012) because the discrepancies reduce 

the probability of a common cause, and, thereby, the influence of the reliability-weighted 

multisensory estimate. Second, if observes selectively focus on one modality, the task-

relevant of the multisensory signals has a stronger influence on the intersensory bias 

compared to the task-irrelevant signal (Warren, 1979; Bertelson and Radeau, 1981). If the 

probability of separate causes is larger than zero, averaging the causal models naturally 

biases the final signal estimate in direction of the task-relevant signal. Thus, distinct signal 

estimates emerge if observers shift their focus between the modalities. 

However, two important open questions remain on the CI model: First, it is still 

controversial which decision strategies observers use to combine the two signal estimates 

under the two potential causal structures. Kording et al. (2007) proposed that observers 
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average the estimates weighted by the probability of their causal structures (‘causal model 

averaging’). By contrast, Wozny et al. (2010) found that their participants stochastically 

selected the estimates according to this probability (‘probability matching’). Similarly, it is 

unclear how observers use the probability of a common cause to explicitly judge the 

signals’ causal structure: They could either optimally give a common-cause response if the 

probability is larger than 0.5 or they could sample the causal judgments stochastically as 

found for the signal estimates (i.e., ‘probability matching’). Second, the CI model comprises 

reliability-weighted integration (i.e., the MLE model) as a special case if a common cause 

has been inferred with certainty. Yet, it has not been shown that reliability-weighted 

integration is indeed specific for trials in which participants indicate a common cause. 

Thus, one PhD project (‘Sensory reliability shapes causal inference via two mechanisms’, 

chapter 2) investigated the decision strategies for implicit causal inference involved in 

signal estimation and for explicit causal inference involved in explicit causal judgments. 

Further, we tested the specificity of reliability-weighted integration if signal sources are 

judged as common.  

 

1.3 Multisensory integration and attention 

In every instance of time, our sensory systems are bombarded with vast amounts of 

information from the outside multisensory world. On the other hand, we are only able to 

consciously process and act on a tiny fraction of this information. Thus, attentional filter 

mechanism must reduce the flood of multisensory information to select a meaningful and 

manageable fraction of it (Itti and Koch, 2001). 

 Currently, it is controversial whether such attentional filters and perceptual 

awareness of signals influence multisensory integration or whether multisensory 

integration is automatic and immune to such factors (Talsma et al., 2010). After 

multisensory signals have been integrated, attentional selection operates on multisensory 

representations (Driver, 1996; Van der Burg et al., 2008), but it is unclear at which level 

attentional bottom-up and top-down processes encroach on the multisensory perceptual 

processes per se. Evidence for automatic integration comes from psychophysical studies 

showing that multisensory perception is independent from spatial (Bertelson et al., 2000a; 

Vroomen et al., 2001) and modality-specific (Helbig and Ernst, 2008) attention. Neurons of 

anaesthetized animals integrate multisensory signals without awareness (Kayser et al., 

2007). Similarly, neglect patient localize auditory signals biased towards visual signals 

even though they are not aware of the visual signals (Bertelson et al., 2000b). On the other 

hand, multisensory phenomena like the McGurk effect require attentional resources (Alsius 

et al., 2005; Alsius et al., 2007). EEG and fMRI studies revealed that neural measures of 

multisensory integration are enhanced by attention (Fairhall and Macaluso, 2009; Donohue 
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et al., 2011). In conclusion, the relation of attentional and multisensory processes remains 

controversial, and two PhD projects aimed at investigating this interface. 

 Implicitly, the CI model assumes an influence of modality-specific attention. In the 

model, the signal estimates are biases towards the task-relevant modality if the probability 

that the signals came from separate sources is larger than zero. In one PhD project (“To 

integrate, or not to integrate: Causal inference in primary sensory and association cortices 

during multisensory perception”, chapter 4), we tested this prediction of the CI model by 

manipulating the task-relevance of the signals.  

 In a further PhD project (‘The invisible ventriloquist’, chapter 7), we tested whether 

multisensory integration necessarily requires that observers become aware of the signals. 

Using continuous flash suppression (Tsuchiya and Koch, 2005), we investigated whether 

suppressed visual signals which were not consciously perceived biased the localization of 

auditory signals. 

 

1.4 The neural basis of multisensory integration 

Research on how the brain integrates multisensory signals mainly focused on how single 

neurons process such signals and which brain regions are recruited by these processes. 

 

Multisensory integration in single cells and cortical hierarchies 

Early work on multisensory integration in single neurons focused on the superior colliculus 

(SC) residing in the midbrain. SC controls the change of orientation (e.g., by saccadic eye or 

head movements) and, therefore, needs access to information from multiple modalities 

(Stein and Stanford, 2008). Animals’ SC neurons integrate multisensory information 

because they respond to combined visual, auditory and tactile stimuli with response 

depression or enhancement as compared to the most effective individual stimulus 

(Meredith and Stein, 1983). Such multisensory interactions in SC neurons are governed by 

three principles (Stein and Meredith, 1993): According to the spatial principle (Meredith 

and Stein, 1986b), multisensory enhancement occurs if the multisensory signals emerge 

within the crossmodally registered receptive fields of the neuron. Multisensory depression 

or independence occurs if one of the multisensory stimuli emerges from outside of the 

receptive field. According to the temporal principle, temporal discrepancies between 

multisensory signals decrease multisensory interactions (Meredith et al., 1987). According 

to the principle of inversive effectiveness, multisensory enhancement is especially 

pronounced for combined multisensory signals whose individual unimodal responses are 

weak (Meredith and Stein, 1986a). Thus, research in single neurons revealed similar 

principles of multisensory integration as psychophysical studies: Multisensory integration 
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is especially strong if the signals’ spatiotemporal correspondence makes a common cause 

likely and the multisensory benefit is strongest if several weak signals are combined. 

 At the cortical level, neurophysiological and neuroimaging studies revealed 

multisensory integration in higher association cortex such as the posterior parietal cortex 

(Duhamel et al., 1998; Bremmer et al., 2001; Sadaghiani et al., 2009) and superior temporal 

sulcus (Bruce et al., 1981; Beauchamp et al., 2004; Werner and Noppeney, 2010). At the 

same time, multisensory integration is not confined to the highest regions in cortical 

processing hierarchies, but emerges already at lower processing levels in putatively 

unisensory cortex (Foxe et al., 2000; Lewis and Noppeney, 2010). For example, visual 

signals modulate neuronal processing in auditory cortex (Kayser et al., 2007) and auditory 

signals modulate processing in visual cortex (Molholm et al., 2002). These low-level 

multisensory interactions could arise from direct connections between unisensory regions 

(Falchier et al., 2002), top-down feedback from higher-order multisensory regions 

(Macaluso and Driver, 2005) or via crossmodal thalamic input (Lakatos et al., 2007; Cappe 

et al., 2009). Given that multisensory integration was found in many cortical regions, it 

appeared as if, provocatively stated, the whole cortex might be multisensory (Ghazanfar 

and Schroeder, 2006). However, multisensory integration generally increases upstream the 

cortical hierarchies. In low-level regions, only a small percentage of neurons responds to 

multisensory signals (Bizley et al., 2007) while in high-level regions the majority of 

neurons demonstrates multisensory responses (Dahl et al., 2009). 

 

Bridging the levels of analysis 

The finding of ubiquitous multisensory integration in the cortex illustrates that the 

questions of how and where the brain implements multisensory processes must be posed 

jointly: Because large parts of the cortical hierarchy are ultimately driven or modulated by 

multisensory information, the crucial question is how hierarchical levels jointly implement 

specific multisensory processes (Driver and Noesselt, 2008).  

At this point, it is important to note that multisensory processes were often 

differently constrained in psychophysical studies compared to neurophysiological and 

neuroimaging studies. The former studies derived principles from computational 

considerations to investigate multisensory integration, for example how an ideal observer 

would solve the signal estimation problem given by noisy multisensory signals (Ernst and 

Banks, 2002). The latter studies used neural properties to constrain models of 

multisensory integration, for example the problem of different reference frames in 

different sensory systems (Avillac et al., 2005) or enhancement versus depression of 

multisensory neural responses (Meredith and Stein, 1983). These approaches partially 

converged on similar principles, for example the finding that multisensory integration in 



1 Synopsis 

10 
 

behavior and neurons crucially depends on spatiotemporal and semantic congruence of 

multisensory signals. However, principles as formulated in the MLE and CI models were 

largely unexplored in studies with a focus on the brain until recently (Morgan et al., 2008; 

Fetsch et al., 2012; Helbig et al., 2012). Thus, it is important to close the gap between 

psychophysical and neural models of multisensory integration to get a comprehensive 

understanding of multisensory processes at all levels of analysis (Fetsch et al., 2013). 

Further, applying psychophysical models to neural data could well constrain which specific 

multisensory processes are implemented in different levels of cortical hierarchies. 

Bridging the levels of analysis has proven difficult because often the methods 

applied in both fields do not directly map onto each other (e.g., multisensory response 

enhancement/depression as measured by firing rates, fMRI activation and event-related 

EEG potentials vs. intersensory bias, parameters of psychometric functions and reaction 

times). Thus, models of multisensory integration were partially also constrained by 

methodological aspects. The advent of multivariate decoding methods applied to fMRI 

activation patterns (Haxby et al., 2001; Kay and Gallant, 2009; Serences and Saproo, 2012) 

can bridge the gap between the levels of analysis. The methods allows to apply 

psychophysical theories of multisensory integration to fMRI activation measured along 

entire cortical hierarchies (chapters 3-5): Psychophysical studies investigate the mapping 

from a physical space of signals to the perceptual space according to well-defined models 

(e.g., the perceptual transformation of a two-dimensional space spanned by independent 

visual and auditory spatial signals according to the MLE model; cf. Fig. 1A). In a similar way, 

the decoding methods reconstruct a ‘neural’ space from fMRI activation patterns of specific 

cortical regions which can be analyzed using the same models as applied to perceptual 

spaces and can be compared to these.  

 By decoding audiovisual spatial signals from fMRI activation patterns, chapters 3-5 

investigated how principles of the MLE and the CI models are implemented by visual 

(Mishkin et al., 1983) and auditory (Tian et al., 2001) spatial processing hierarchies. The 

second project (“Cortical hierarchies jointly perform Bayesian causal inference for 

multisensory perception”, chapter 3) investigated how different levels of these cortical 

hierarchies represent the constituent spatial estimates of the CI model. Chapter 4 

compared the profile of neural audiovisual weighting along cortical hierarchies against the 

predictions of the CI model if sensory reliability, task-relevance and spatial disparity of the 

signals were manipulated. Finally, the fourth project (“Suboptimal reliability-weighted 

integration of audiovisual spatial signals in parietal cortex”, chapter 5) tested the 

quantitative predictions of the MLE model on reliability-weighted integration by fitting 

‘neurometric’ functions to the fMRI-decoded multisensory signals. 
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1.5 Thesis overview 

The overarching question of this PhD thesis was how human observers integrate 

multisensory signals given their uncertain causal structure and dynamically changing 

sensory reliabilities. Further, the question was how cortical hierarchies implement these 

processes. The MLE (Ernst and Banks, 2002) and the CI model (Kording et al., 2007) 

established a common framework to investigate these questions.  

Methodologically, we consistently used variants of a spatial ventriloquist paradigm 

(Radeau and Bertelson, 1977). In the paradigm, participants were presented with 

audiovisual spatial signals sampled from 3-5 spatial locations on the azimuth. The auditory 

signal was white noise or pure tones, either convolved with head-related transfer functions 

and then presented via headphone or presented directly via speakers from different 

locations. The visual signal was a cloud of dots presented on a screen. We manipulated the 

signals’ spatial discrepancy as well as the visual reliability by changing the variance of the 

cloud of dots. In chapter 7, we rendered the visual signals partially unaware by using 

continuous flash suppression (Tsuchiya and Koch, 2005) which requires stereoscopic 

presentation of the visual signals. Participants localized the auditory or the visual signals 

(i.e., a manipulation of the signals’ task-relevance), judged whether the signals arose from 

common or separate sources (chapter 2) and judged whether they had perceived the visual 

signal (chapter 7). 

 

Chapter 2: Sensory reliability shapes causal inference via two mechanisms 

In chapter 2, we investigated two aspects of the CI model (Kording et al., 2007): First, it is 

unclear which decision strategies observers employ to balance the sensory estimates under 

the two potential causal structures of the multisensory signals (i.e., an implicit inference of 

common vs. separate sources when estimating signals’ physical value). Further, it is unclear 

which decision strategies observers use to explicitly estimate the causal structure from the 

posterior probability of a common source. Second, it has not been empirically tested 

whether reliability-weighted integration is indeed limited to signals for which observers 

infer a common source as predicted by the hierarchy of the CI model. To this end, 

participants were presented with audiovisual spatial signals of varying visual reliability. In 

each trial, participants localized the auditory signal and judged the causal structure of the 

signals. 

 For implicit causal inference involved in auditory localization responses, a model 

comparison revealed that participants balanced the potential causal structures by 

weighting the auditory spatial estimates under the two causal structures by their 

probabilities (‘model averaging’). Participants optimally reported a common source when 

the posterior probability of a common source exceeded 0.5. Visual reliability shaped the 
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participants’ causal inferences via two mechanisms: First, visual reliability sharpened the 

audiovisual integration window which common-source judgments formed based on signal 

disparity. Second, especially when participants perceived a common source, the shift of the 

perceived auditory location in direction of the visual signal (i.e., the ventriloquist effect) 

increased with higher visual reliability while localization variability decreased.  

 In conclusion, the study revealed that observers employ optimal decision strategies 

to consider the uncertainty of the signals’ causal structure when they are probed in implicit 

as well as explicit causal inference. Further, the study revealed that the hierarchical CI 

model correctly predicts that reliability-weighted integration is subordinate to causal 

inferences which jointly depend on sensory reliability and signal disparity. Thereby, the 

study showed that the CI model explains multisensory phenomena beyond the MLE model 

by considering it as a special case. 

Because the study demonstrated that the CI model accurately explains whether (i.e., 

causal inference) and how (i.e., reliability-weighted integration) multisensory signals are 

integrated at the behavioral level, the question arose how the brain represents the 

constituent spatial estimates of the model. The next project targeted this question. 

 

Chapter 3: Cortical hierarchies jointly perform Bayesian causal inference for multisensory 

perception 

To date, it is unclear how the brain represents the constituent spatial estimates of the CI 

model: the reliability-weighted average under assumption of a common source, the 

unisensory visual or auditory—task-relevant—estimates under assumption of independent 

sources, and the combination of both weighted by the probability of a common or 

independent sources, respectively. To evaluate this question, participants were presented 

with audiovisual spatial signals at two levels of visual reliability whilst fMRI data was 

collected from regions along visual (Mishkin et al., 1983) and auditory (Tian et al., 2001) 

spatial processing hierarchies. Participants localized either the auditory or the visual 

signal. 

 The CI model fitted the behavioral data accurately and predicted the values of its 

components in all experiment conditions. Using a multivariate approach to decode these CI 

model components from fMRI activation patterns of regions in the hierarchies, we found 

that unisensory areas represent their preferred component (i.e., low-level visual regions 

represent the unimodal visual estimate and vice versa for low-level auditory regions). 

Posterior regions of the intraparietal sulcus (IPS) represented the reliability-weighted 

average of the signals under a common-source assumption. Anterior regions of IPS 

represented the combination of the reliability-weighted average and the task-relevant 

unisensory estimate weighted by the probability of a common versus independent sources. 
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 In conclusion, the study suggests that cortical hierarchies jointly implement causal 

inference in multisensory integration. A crucial future question is which regions compute 

the probability of a common source involved in the multisensory computations of anterior 

IPS.  

 

Chapter 4: To integrate, or not to integrate: Causal inference in primary sensory and 

association cortices during multisensory perception 

For the study in chapter 3, we chose a strictly model-based approach to investigate causal 

inference. The neural representations of the audiovisual signals were analyzed with regard 

to CI model variables constrained by the behavioral localization responses. Thus, it was 

unclear whether the profile of integration along visual and auditory hierarchies matched 

the specific predictions of the CI model if we manipulated sensory reliability, spatial 

discrepancy and task-relevance of the audiovisual signals. To evaluate the profile of 

integration, we analyzed the data from chapter 3 and used a ‘model-free’ index of relative 

weighting of the audiovisual spatial signals encoded in fMRI voxel response patterns. 

 Consistent with the results from chapter 3 and the predictions of the CI model, we 

found that specifically IPS weighted audiovisual signals proportional to sensory reliability 

and task-relevance. Critically, in anterior IPS the effect of task-relevance was more 

pronounced for large spatial discrepancy indicating a stronger segregation of the signals 

when independent signal sources are more likely. Low-level visual and auditory regions 

predominantly represented their preferred signals. However, these regions also slightly 

integrated the non-preferred signal especially if the spatial discrepancy was small. Further, 

we found that the weighting of the signals in behavioral localization responses was highly 

correlated with the neural weighting in anterior IPS. This indicated the behavioral 

relevance of the region’s spatial estimates. 

 To sum up, the specific profile of audiovisual integration along the cortical 

hierarchies confirmed that higher association cortices such as anterior IPS implement 

causal inference. At the same time, low-level sensory regions implement multisensory 

processes which are governed by different principles (e.g., the spatial principle (Stein and 

Meredith, 1993)). 

 

Chapter 5: Suboptimal reliability-weighted integration of audiovisual spatial signals in 

parietal cortex 

In chapter 5, we investigated whether audiovisual spatial signals in IPS were weighted by 

their relative sensory reliability as quantified by the MLE model: Sensory variances 

measured in unimodal conditions predicted the relative weighting of the signals and the 

reduction of variances in bimodal conditions. To test these predictions, we presented 
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participants with unimodal and slightly discrepant (≤ 6°) bimodal auditory and visual 

spatial signals at two levels of visual reliability whilst fMRI scanning.  

We derived estimates of uni- and bimodal sensory variances and relative signal 

weights from parameters of ‘neurometric’ functions which we fitted to signal locations 

decoded from fMRI voxel response patterns. In parallel to the psychophysical results, we 

found that audiovisual signals were weighted proportionally to reliability in IPS, but the 

weighting was not optimal compared to the MLE predictions. The main reason for 

suboptimal weighting was that IPS weighted the signals depending on their task-relevance. 

This finding was surprising because the small signal discrepancy suggested a mandatory, 

task-independent fusion of the signals. 

Thus, the study showed that the MLE model’s assumption of mandatory fusion is too 

strict, on the psychophysical as well as the neural level. In line with the chapters 2-4, the 

study showed that partial signal segregation and effects of task-relevance can be better 

explained by the CI model. 

 

Chapter 6: Bayesian learning of sensory reliability in multisensory perception 

According to the Bayesian perspective on perception (Yuille and Buelthoff, 1996; Ernst and 

Banks, 2002; Knill and Pouget, 2004), observers weight prior assumptions and 

multisensory signals proportional to their reliability. However, it is unclear how the brain 

represents reliability (or its inverse, uncertainty). The theory of probabilistic population  

codes (Ma et al., 2006) suggests that the brain immediately represents reliability via the 

gain of a neuronal population’s response to a signal, without the need for learning of 

reliability. However, if sensory reliability changes systematically as often found in natural 

environments, a Bayesian learner would estimate reliability by combining prior with 

current reliability information. 

 To investigate whether human observers infer visual reliability only from current, 

or, moreover, past visual signals, we manipulated visual reliability according to a sinusoidal 

or two different random-walk sequences in a ventriloquist paradigm.  The results showed 

that the participants indeed estimated posterior visual reliability from current as well as 

prior visual signals consistent with a Bayesian learner: They weighted the audiovisual 

signals proportionally to the posterior reliability estimate when localizing the auditory 

signals. 

 Therefore, the study showed that human observers employ Bayesian inference in 

sensory learning when estimating posterior visual reliability as well as in perception when 

they localize audiovisual signals proportional to this reliability estimate.  
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Chapter 7: The invisible ventriloquist 

Currently, it is controversial whether multisensory processes are immune to attentional 

processes and do not require perceptual awareness (Talsma et al., 2010).  Hence, we tested 

whether a visual signal still attracts the perceived sound location (i.e., the ventriloquist 

effect) when it is rendered perceptually unaware by continuous flash suppression (CFS) 

(Tsuchiya and Koch, 2005).  

The participants reported that CFS rendered the visual signal unaware in most 

trials, but sometimes observers still perceived the signal. Thus, the visual biases could be 

investigated in trials in which participants where either aware or unaware of the visual 

signal, given the same physical input.  We found that perceptual awareness of the visual 

signal strongly modulated the ventriloquist effect. If participants reported to be unaware of 

the visual signal, the ventriloquist effect was strongly reduced as compared to trials in 

which participants reported awareness. However, the visual bias was still significant in 

case of unaware visual signals. 

 We concluded that perceptual awareness might modulate the ventriloquist effect via 

two mechanisms, a cortical and a subcortical pathway: Via a cortical pathway, CFS might 

strongly decrease the reliability of the visual signals in most trials. Thus, the visual signals 

were rendered unaware and, according to the MLE model, only induced a weak 

ventriloquist effect. In trials in which CFS was not successful, the visual signals were more 

reliable and, therefore, became aware as well as strongly biased the perceived sound 

location. Alternatively, according to the CI model, invisible flashes might concomitantly 

lead the participants to infer a low probability of a common cause of the signals. Thereby, 

the segregation of the visual signal reduces the ventriloquist effect. Because both 

alternatives rely on cortical pathways, presumably the audiovisual spatial processing 

hierarchies into IPS, CFS modulates audiovisual integration on a cortical route. On the other 

hand, the cortical pathway could be entirely blocked if CFS was successful. Thus, only 

subcortical pathways, for example thalamo-cortical multisensory pathways (Cappe et al., 

2009) which cannot be blocked by CFS, mediate a weak visual bias in those trials.  

 

1.6 General discussion and outlook 

The results from the PhD projects confirmed many predictions of the CI model, but also call 

for an extension of the model, and for the first time linked the model to neural processes. 

  

An extended model of causal inference in multisensory perception, linked to the brain 

The PhD thesis investigated how human observers perceive and how their cortical 

hierarchies process multisensory signals (Fig. 1A). In other words, we investigated how 
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physical signals, such as audiovisual spatial signals, map into distinct neuronal 

representations at different levels of cortical hierarchies. The neuronal multisensory 

representations in high-level regions like IPS eventually define the subjective perceptual 

space and, therefore, give rise to perceptual illusion like the ventriloquist effect.  

 

Figure 1. General framework 

of audiovisual spatial 

integration and extended 

causal inference model. (A) 

Audiovisual spatial signals are 

mapped to visual (V) and 

auditory (A) spatial processing 

hierachies projecting to 

intraparietal sulcus (IPS). Along 

the hierarchy, crossmodal 

influences are mediated by 

feedforward cortico-cortical 

and thalamo-cortical 

connections as well as 

multisensory (MS) feedback 

from higher-level regions. 

Perceptually, neural processing 

gives rise to the ventriloquist 

illusion. V1-3, V3AB = low-level 

and intermediate visual 

regions, A1 = primary auditory 

cortex, hA = higher auditory 

cortex comprising the planum 

temporale, Th = thalamus. (B) 

The causal inference model 

(Kording et al., 2007) computes 

the posterior auditory and 

visual spatial estimates (ŜA, ŜV) 

by weighting the reliability-

weighted average (ŜAV,C=1) and 

the task-relevant unisensory 

spatial estimates (ŜA,C=2, ŜV,C=2) 

proportional to the probability 

of a common (p(C = 1|xA, xV)) and separate sources (1 − p(C = 1|xA, xV)). Regions possibly encoding these 

spatial estimates are color coded in (A) (cf. ch. 3). Further, posterior sensory reliability (�̂�, t) is learned by 

updating prior reliablity (λt − 1) with current reliablity information (cf. ch. 6). 

 

 Crucially, we employed the Bayesian causal inference model to characterize the 

signals’ mapping from physical to neural to perceptual spaces (Fig. 1B). We found that 
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human observers estimate the signals’ causal structure (Ĉ) from signal discrepancies, 

modulated by sensory reliability (chapter 2). The signals’ posterior spatial estimates (ŜA, 

ŜV) are computed by combining the reliability-weighted estimate (ŜAV, C = 1) with the 

task-relevant unisensory estimate (ŜA, C = 2 or ŜV, C = 2) according to the probability of 

common and separate sources, respectively. Thus, if observes explicitly infer a common 

source, the ventriloquist effect and the variance of the estimate depend on relative sensory 

reliability, otherwise the signals are mostly segregated (ch. 2).  

Importantly, human observers do not exclusively estimate sensory reliability (�̂�t) 

from present signals to weight multisensory signals proportionally: They learn sensory 

reliability over a time window of several seconds by updating prior estimates of reliability 

(λt-1) with new sensory information on reliability (ch. 6).  

In the brain, low-level sensory regions (V1-3, A1) mostly represent their preferred 

unisensory signal estimates, even though we detected crossmodal information from non-

preferred sensory channels (ch. 4, 5). The low-level crossmodal information might arise 

from top-down feedback from IPS, direct connectivity between the sensory regions or even 

crossmodal thalamo-cortical connections (Fig. 1A). Regions at intermediate stages of the 

cortical hierarchy (IPS0-2) represent the reliability-weighted estimate (ch. 3). Finally, 

regions at the top of the hierarchies (IPS3-4) represent the final signal estimates (ŜA, ŜV). 

Therefore, these regions consider the signals’ causal structure (ch. 3) and responds to 

visual reliability as well as task-relevance especially if signal disparity is large (ch. 4-5). 

Observers base their behavioral localization responses on the spatial estimates of these 

regions (ch. 5).  

Finally, continuous flash suppression (CFS) disturbs cortical feedforward processing 

from visual to IPS regions (ch. 7). Thus, the ventriloquist effect is strongly reduced if visual 

signals are rendered unaware by CFS, presumably due to a concomitant drop of visual 

reliability or the probability of a common source.  A residual, much weaker ventriloquist 

effect may also be mediated by thalamo-cortical connections. 

Naturally, many open questions remain at all levels of analysis. The questions 

pertain to the causal inference model and its neural basis, but also touch on the relation 

between multisensory integration and attention, the generalizability and applicability of 

the findings and methodological issues. 

 

Open questions 

 The CI model 
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Even though the CI model explains many multisensory phenomena, several details of the 

model and the incorporation of further multisensory phenomena remain unclear. Further, 

the implementation of the CI model in the brain awaits elaboration. 

First, it is controversial which decision strategies observers use to balance the signal 

estimates of the two causal structures by their probability (chapter 2 vs. Wozny et al. 

(2010)). Various optimal decision strategies exist under assumption of different cost 

functions (e.g., model averaging minimizes the error of the signal estimate; model selection 

minimizes the error of the signal and causal estimates). Even the usage of non-optimal 

decision strategies has been reported (i.e., probability matching) (Wozny et al., 2010). 

Thus, the use of a specific decision strategy might depend on further cognitive factors like 

the choice of a cost function. It would be interesting to explore how participants implicitly 

choose decision strategies and whether the choice can be manipulated by specific 

instructions. Unfortunately, the predictions of the different decision strategies are highly 

correlated. Thus, their investigation first needs experimental ideas on how to orthogonalize 

the decision functions, for example by creating experimental conditions which evoke a 

common-cause prior of around 0.5.  

Second, the current CI model can well model causal inferences based on the signals’ 

spatial discrepancy and reliability (chapter 2). However, observers infer the causal 

structure of multisensory signals from further structural and cognitive factors like the 

signals’ temporal synchronicity or semantic congruence (Radeau and Bertelson, 1977; 

Welch and Warren, 1980; Wallace et al., 2004). Hence, it would be interesting to test 

whether the CI model can jointly account for multiple cues to causal structure which 

requires extensions of the model. For example, the likelihoods of the sensory estimates (XA 

and XV in Fig. 1B) could be modeled by bivariate Gaussians describing that the signals are 

differently distributed in space and time under the assumption of common and separate 

causes (similar to Sato et al. (2007)). Cognitive factors like semantic congruence might be 

more difficult to model because they are discrete variables (e.g., require a mixture model of 

Gaussians for the likelihoods). 

Third, chapters 3-5 determined where the brain represents the spatial components 

of the CI model, but it remains unknown which brain regions compute the causal 

structure’s posterior probability (p(C = 1|xA, xV)) as well as its prior probability. These 

quantities are crucial to determine the final posterior signal estimates and explicit causal 

judgments. Frequently, perceptual decisions (e.g., visual motion discrimination) recruit 

frontal regions which compute decision variables by integrating information from sensory 

neurons representing the competing alternatives (Heekeren et al., 2008). Thus, it seems 

plausible that frontal regions are involved in deciding on a causal structure. At any rate, 

because the prior as well as the posterior probability of the causal structures are inherently 
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correlated with the spatial estimates, special care has to be taken to dissociate these 

components of the CI model (e.g., by post-hoc trial resampling such that fMRI signals from 

trials of common and separate-cause judgments are compared based on the same 

distributions of physical input). 

  Fourth, the specific mechanism of causal inferences at the level of single neurons 

and populations of neurons are largely unexplored. According to the theory of probabilistic 

population codes (PPCs) (Ma et al., 2006), summation over unisensory PPCs implements 

reliability-weighted integration for the case of common sources. Chapters 3-5 suggest that 

further downstream regions (e.g., anterior IPS) combine such a population response profile 

with the task-relevant unisensory profile biased by information on the causal structure. 

Thus, future computational and neurophysiological studies could investigate how causal 

inference is computationally feasible and actually implemented in neural populations.  

 

 Neural representations of reliability 

 Chapter 6 revealed that the brain estimates sensory reliability not only from current 

signals as assumed by the MLE (Ernst and Banks, 2002) and PPC (Ma et al., 2006) theories. 

By contrast, human observers consider the recent history of sensory reliability as a 

Bayesian prior. Therefore, it is unclear how this prior reliability is encoded by the brain and 

integrated with current estimates of reliability. PPC theory could be extended by assuming 

that prior reliability modulates the populations’ response gain representing current 

reliability. Alternatively, the brain could use a sampling-based representation in which the 

neurons’ activity encodes samples of a signal (Fiser et al., 2010). Thus, reliability is 

computed via the variability of neural responses over time and, therefore, naturally 

history-dependent. In any case, chapter 6 provided new empirical constraints to models of 

neuronal population implementing Bayesian inference. 

An important question for future studies is which brain regions encode prior, 

current and posterior reliability. In an fMRI study, these reliability estimates could be 

derived from fitting the Bayesian learner of chapter 6 to behavioral data. To determine 

brain regions encoding reliability estimates, these estimates could be regressed against 

(i.e., mass-univariate analysis) or decoded from BOLD responses (i.e., multivariate 

analysis). Crucially, this approach would have to take the collinearity of the reliability 

estimates into account.  

 

The relation of multisensory integration and attention 

Currently, it is controversial whether top-down factors like attention and task relevance 

influence multisensory integration or whether multisensory integration is immune to such 

factors (Talsma et al., 2010). Chapters 3-5 support the notion of an interplay between 
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multisensory integration and attention because they demonstrate that the task-relevance 

of a signal strongly influences integration at the perceptual level and in higher association 

cortex. The CI model implicitly also assumes an interplay because it is the task-relevant 

unisensory signal estimate which is combined with the reliability-weighted estimate when 

integrating over the potential causal structures. Moreover, chapter 4 also demonstrated 

that the spatial estimates in anterior IPS are behaviorally relevant (i.e., used for overt 

localization responses). Thus, the chapter suggested that IPS builds a multisensory priority 

map in which a relevant location in space is jointly defined across modalities by bottom-up 

(i.e., sensory reliability) and top-down (i.e., task-relevance) factors. This notion extends the 

model of unisensory visual priority maps (Itti and Koch, 2001; Bisley and Goldberg, 2010; 

Ptak, 2012) which determine relevant locations in visual space by integrating multiple 

visual ‘feature maps’ (e.g., for color or edge orientation) biased by top-down goals (e.g., 

intentionally focusing on a certain color). 

However, chapter 4 only showed that IPS represents the location which is relevant 

for overt localization responses, but the studies did not investigate whether these locations 

are indeed selected by covert attention. Therefore, it might be unclear whether 

multisensory priority maps represent the location only for motor intentions (Andersen et 

al., 1997) and/or attentional selection (Colby and Goldberg, 1999). An experiment using 

the orthogonal spatial cueing paradigm (Spence and Driver, 1994) could investigate 

whether multisensory cues create specific cueing effects (i.e., smaller reaction times to 

classify a spatial target after a valid vs. invalid spatial cue). If observers build a 

multisensory representation of the cues according to the CI model, the cueing effects 

should depend on the reliability and task-relevance (for a secondary spatial localization 

task) of the cues. In fact, the CI model could describe the multisensory cue representation. 

Moreover, an extension of the model could describe the attentional selection of the target 

which depends on the distance of the multisensory cue representation to the target. 

 

Using multivariate decoding approaches to determine the neural basis of the 

ventriloquist after-effect.   

The PhD projects exclusively investigated the ‘online’ integration of multisensory signals 

which are processed by ‘accurate’ sensors (i.e., sensors which represent a physical quantity 

unbiased on average). However, if for example sensory organs grow or are damaged, the 

senses may lose their accuracy and provide biased information. In this case, another 

modality can restore the accuracy of the biased percept by recalibrating it. Recalibration 

leads to ‘offline’ aftereffects: For example, after audiovisual spatial signals have been 

presented with a constant discrepancy for an extended time, unisensory auditory signals 

are perceived shifted in direction of the previously presented visual signals (Radeau and 
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Bertelson, 1974). This ‘ventriloquism aftereffect’ reveals that the auditory percepts were 

recalibrated by the visual signals. However, the neural basis of the ventriloquist aftereffect 

remains unknown. 

Multivariate fMRI decoding approaches using regression models (cf. chapter 3-4) 

are well suited for such an investigation. For example, using fMRI activation patterns from 

a pre-training unimodal auditory session, one could train a regression model to learn the 

mapping from the patterns to the presented auditory signal locations. Using patterns from 

a post-training auditory session, the trained regression model might decode auditory 

locations which are shifted in direction of the visual signals previously presented during 

training. Thus, the approach could pinpoint at which level of the auditory processing 

hierarchy the ventriloquist aftereffect emerges.  

More generally, multivariate fMRI decoding approaches as used in chapter 3-5 are a 

powerful tool to investigate the mapping between physical, neuronal and perceptual spaces 

for many kinds of signals (cf. Fig. 1A). This is because the approaches map a high-

dimensional space of fMRI activation patterns to a unidimensional variable encoding the 

neurally processed physical signal within a region. Thus, this ‘neural’ variable can be 

analyzed as a function of the experimental conditions in the same way as the perceptual 

variable (e.g., a perceived location), and related to it. Crucially, this approach tracks how 

neural spaces at different levels of processing hierarchies transform the physical input. By 

comparing these neural spaces with the perceptual space, one can pinpoint which regions 

likely host a close correlate of the subjective perception. For example, this approach could 

be applied to compare psychometric and ‘neurometric’ functions in unisensory signal 

integration (Ban et al., 2012), perceptual adaptation (Tootell et al., 1995) or representation 

of ‘face space’ (Loffler et al., 2005). 

 

Generalizability of the findings 

All projects were conducted using highly artificial audiovisual spatial signals. It is 

speculative to infer that similar results would be obtained with other combinations of 

multisensory signals and with more natural multisensory stimuli. However, it is 

remarkable that the MLE as well as the CI model were successfully applied to many 

domains of signal combination. In the multisensory and unisensory domains, the models 

were for example applied to visual-haptic integration (Ernst and Banks, 2002; Hospedales 

and Vijayakumar, 2009) and estimation of visual depth from visual disparity and texture 

(Knill and Saunders, 2003; Knill, 2007). The models were even applied in sensorimotor 

control (Kording and Wolpert, 2004; Wei and Kording, 2009). Therefore, the results of the 

current studies likely generalize to diverse psychophysical functions and neural processes 
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which deal with noisy sensory signals, but this claim obviously awaits future empirical 

support. 

  The question of generalizability to natural multisensory stimuli is more difficult 

because model-based studies tend to choose well-controlled artificial stimuli which can be 

easily linked to model parameters. It is striking that older studies on multisensory 

integration which used comparably ‘model-free’ analyses often employed more ecologically 

valid stimuli (e.g., a whistling sound and a steaming kettle to investigate audiovisual spatial 

integration (Jackson, 1953)). Thus, the ecological validity of the CI model should be 

definitely explored in more natural conditions, for example when multiple visual and 

auditory signals complicate causal inference even further. 

 

Applicability of the CI model 

The results of the PhD projects as well as the CI model in general could be applicable to 

technical problems as well as for diagnosis and treatment of psychiatric and neurological 

disorders. As an example of a technical problem, the tracking of objects in a multisensory 

scene (e.g., several persons at a telephone conference) has been tackled by inferring the 

causal structure of such multisensory data (Hospedales and Vijayakumar, 2008). Further, 

clinical studies found altered multisensory integration in psychiatric disorders like 

schizophrenia (de Gelder et al., 2003) or autism (Foss-Feig et al., 2010; Brandwein et al., 

2013) and in neurological disorders like hemianopia (Leo et al., 2008). These studies 

mostly used simple multisensory paradigms and for example compared the intersensory 

bias or multisensory redundancy effects between patients and healthy controls. By 

contrast, the CI model gives a detailed description of multisensory processes. The model 

allows more fine-grained analyses of impaired multisensory processes in disorders, for 

example by comparing CI model parameters between patients and controls. Because the 

current PhD projects also pinpoint these processes to brain regions, future clinical studies 

could also test whether patients show altered multisensory neural processing in these 

regions. Thus, models of disorders could be extended to include multisensory ‘symptoms’ 

which could be helpful to define further diagnostic criteria and targets for interventions.  

 

1.7 Conclusions 

Humans effortlessly build complex multisensory representation of their environment. The 

results of the PhD thesis demonstrate that such multisensory representations arise from 

cortical hierarchies which employ Bayesian principles like causal inference and reliability-

weighted integration to combine or to segregate multisensory signals according to their 

causal structure. From a Bayesian perspective (Yuille and Buelthoff, 1996; Knill and Pouget, 

2004; Yuille and Kersten, 2006), the results demonstrate that the brain infers physical 
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quantities from their noisy, uncertain signals to build an ‘optimal’, best-informed 

multisensory representation of the environment. Thus, the PhD thesis adds to the growing 

body of evidence demonstrating Bayesian principles in perception and the brain 

(notwithstanding current critical arguments against ‘Bayesianism’ (Jones and Love, 2011; 

Bowers and Davis, 2012)). 

For neural theories of multisensory integration (Ghazanfar and Schroeder, 2006; 

Driver and Noesselt, 2008), the most important finding is that not a single multisensory 

region, but cortical hierarchies jointly implement multisensory causal inference processes. 

Thus, the PhD thesis suggests that multisensory integration in the brain can only be fully 

understood if specific multisensory processes are investigated simultaneously in cortical 

hierarchies or even larger networks comprising subcortical structures. 

Hence, the most urgent open question might be how unisensory and multisensory 

populations of neurons implement the causal inference model. To tackle this question, it 

requires new computational theories of neural mechanisms of causal inference and 

neurophysiological data simultaneously recorded from remote populations of neurons.  
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2 Sensory reliability shapes causal inference via two 

mechanisms 

2.1 Abstract 

To obtain a coherent percept of the environment, the brain should integrate sensory 

signals from common and segregate those from independent sources. Recent research has 

demonstrated that humans integrate audiovisual information during spatial localization 

consistent with Bayesian causal inference. However, the decision strategies that human 

observers employ for implicit and explicit causal inference remain unclear. Further, despite 

the key role of sensory reliability in multisensory integration, Bayesian causal inference 

has never been evaluated across a wide range of sensory reliabilities. This psychophysics 

study presented participants with spatially congruent and discrepant audiovisual signals at 

four levels of visual reliability. Participants localized the auditory signals (implicit causal 

inference) and judged whether auditory and visual signals come from common or 

independents sources (explicit causal inference). Our results demonstrate that humans 

employ model averaging as a decision strategy for implicit causal inference; they report an 

auditory spatial estimate that averages the spatial estimates under the two causal 

structures weighted by their posterior probabilities. Likewise, they explicitly infer a 

common source during the common-source judgment when the posterior probability for a 

common source exceeds a fixed threshold of 0.5. Critically, sensory reliability shapes 

multisensory integration in Bayesian Casual inference via two distinct mechanisms: First, 

higher sensory reliability sensitizes humans to spatial disparity and thereby sharpens their 

multisensory integration window. Second, sensory reliability determines the relative signal 

weights in multisensory integration under the assumption of a common source. In 

conclusion, our results demonstrate that Bayesian causal inference is fundamental for 

integrating signals of variable reliabilities.  

 

2.2 Introduction 

Imagine you are engaged in a conversation at a busy party. You will understand your 

conversational partner more clearly when you integrate the acoustic speech with his facial 

articulatory movements. By contrast, speech comprehension will deteriorate if you 

erroneously integrate his facial movements with another person’s acoustic speech signal. 

Thus, audiovisual integration requires the brain to infer whether signals come from 

common or independent sources.  This challenge cannot be addressed by traditional 

forced-fusion models that forces signals to be integrated in a mandatory fashion (Ernst and 

Banks, 2002) but requires Bayesian causal inference that explicitly models the potential 
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causal structures that could have generated the sensory signals (Kording et al., 2007; 

Shams and Beierholm, 2010). In the case of a common source, the sensory signals are 

integrated weighted by their reliability into the most reliable unbiased estimate. In the case 

of separate sources, signals are processed independently. Importantly, the brain does not 

know the underlying causal structure, but needs to infer it from the sensory signals based 

on spatial, temporal and structural correspondences (Slutsky and Recanzone, 2001; Lewald 

and Guski, 2003; Wallace et al., 2004). A final estimate of a physical property is obtained by 

combining the estimates under the various causal structures using decisional strategies 

such as model averaging, model selection or probability matching (Wozny et al., 2010). 

Previous modelling efforts have demonstrated that humans integrate information 

for spatial localization consistent with Bayesian causal inference. For small spatial 

discrepancies the perceived location of an auditory event shifts towards the location of a 

temporally correlated but spatially displaced visual event and vice versa depending on the 

relative auditory and visual reliabilities (Alais and Burr, 2004). Yet, for large spatial 

discrepancies, when it is unlikely that audiovisual signals arise from a common source, 

these crossmodal biases are greatly attenuated (Wallace et al., 2004). Moreover, when 

participants indicated that the audiovisual signals come from independent sources, the 

perceived auditory location shifted less towards or even away from the true visual location 

(Wallace et al., 2004; Kording et al., 2007).  

However, so far Bayesian causal inference models have been applied to 

psychophysics data that included only one or two reliability levels (Beierholm et al., 2009). 

Given the key role of reliability in multisensory integration, it is critical to demonstrate that 

Bayesian causal inference predicts observers’ response profile when sensory signals vary 

in their reliability over a wide range. Furthermore, it is unclear how participants perform 

causal inference decisions implicitly during spatial localization and explicitly during 

common-source judgments. For audiovisual spatial localization, one recent study has 

suggested that humans do not perform model averaging as previously assumed, but 

employ a suboptimal strategy of probability matching (Wozny et al., 2010). In other words, 

they report the spatial estimate of one particular causal structure sampled in proportion to 

the posterior probability of this causal structure.  

Yet, it is unclear whether a similar decision strategy is employed, when causal 

inference decisions are invoked explicitly in common-source judgments. As implicit and 

explicit causal inference tasks serve different goals, they may be governed by different 

utility functions associated with different decision strategies. It is conceivable that implicit 

and explicit causal inference access the same posterior common-source probability, yet use 

it with different decision strategies.   
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To address these questions, we presented participants with spatially congruent and 

discrepant audiovisual signals at four visual reliability levels in a spatial ventriloquist 

paradigm. On each trial, participants located the auditory signal and judged whether the 

audiovisual signals emanated from a common source. We then fitted the Bayesian causal 

inference model commonly to spatial localization and common-source judgments under 

various decision strategies.  

 

 

Figure 2.1. Experimental design, Bayesian 

causal inference model and results of the 

model comparison. (A) Stimuli and time 

course of an experimental trial in the 

ventriloquist paradigm. After a variable 

fixation interval, participants were presented 

with synchronous, spatially congruent or 

discrepant visual and auditory signals along 

the horizontal meridian. Using five response 

buttons, participants localized the auditory 

signal and decided whether the visual and 

auditory signals were generated by common 

(‘same’) or independent (‘separate’) sources. 

(B) In the Bayesian causal inference model 

(adapted from Kording et al. (2007)), auditory 

(XA) and visual (XV) spatial signals are 

generated either by a common (C = 1, SAV) or 

independent (C = 2) auditory (SA) and visual 

(SV) sources. (C) The 3 x 2 factorial model 

space manipulated (i) the implicit causal 

inference strategy involved in auditory spatial 

localization: model averaging (MA), model 

selection (MS) or probability matching (PM) 

and (ii) the explicit causal inference strategy 

involved in the common-source judgment: a 

fixed threshold of 0.5 (CITh-0.5) or a sampling 

strategy (CISampling). The matrix shows the 

model evidences (i.e., Bayesian information 

criterions, BICs) of the 6 models relative to the 

worst model (larger = better). The bar plots 

show the family posterior probabilities of the 

three implicit causal inference model families 

(right) and the two explicit causal inference 

model families (top). 
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2.3 Materials and methods 

Subjects 

26 healthy subjects participated in the study after giving informed consent (16 female, 

mean age 25.8 years, range 23-37 years). All subjects had normal or corrected-to normal 

vision and reported normal hearing. The study was approved by the ethics committee of 

the University of Tübingen (protocol number 432 2007 BO1). 

 

Stimuli 

The visual stimulus was a cloud of 20 white dots (diameter: 0.43° visual angle; luminance 

91 cd/m2) sampled from a bivariate Gaussian presented on a dark grey background 

(luminance 62 cd/m2, i.e., 47% contrast). The vertical standard deviation of the Gaussian 

was set to 5.4°. To manipulate the spatial reliability of the visual signal, the horizontal 

standard deviation was set to four levels: 0.1°, 5.4°, 10.8° or 16.2°. To manipulate the 

spatial location of the visual stimulus, the mean of the Gaussian was sampled from five 

possible locations along the azimuth (i.e., -10°, -3.3°, 0°, 3.3° or 10°). The auditory spatial 

signal was a burst of white noise. To create a virtual auditory spatial signal, the noise was 

convolved with spatially specific head-related transfer functions (HRTFs). The HRTFs were 

pseudo-individualized by matching subjects’ head width, height and depth to the 

anthropometry of subjects in the CIPIC database (Algazi et al., 2001). HRTFs from the 

available locations in the database were interpolated to the desired locations of the 

auditory signal. 

 

Experimental design and procedure 

In a spatial ventriloquist paradigm (Fig. 2.1A), participants were presented with 

synchronous, yet spatially congruent or discrepant visual and auditory signals. On each 

trial, auditory and visual locations were independently sampled from five possible 

locations along the azimuth (i.e., -10°, -3.3°, 0°, 3.3° or 10°). In addition, we manipulated the 

reliability of the visual signal by setting the horizontal standard deviation of the Gaussian 

cloud to one of four possible levels (i.e., 0.1°, 5.4°, 10.8° or 16.2° STD). Hence, our 

experiment included 100 conditions arranged in a 5 (auditory location: SA) x 5 (visual 

location: SV) x 4 (visual reliability: 1/σV2) factorial design.  

On each trial, synchronous auditory and visual spatial signals were presented for 

32ms. Participants responded to two questions presented sequentially: First, participants 

localized the auditory spatial signal as accurately as possible by pushing one of five buttons 

that corresponded spatially to the stimulus locations (i.e., spatial localization). Second, 

participants decided whether the visual and auditory signals were generated by common 

or independent sources (i.e., common source judgment) and indicated their response via a 
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two-choice key press. The time limit for both responses was 3s. The next trial started with 

a variable interval of 1-2.5s after participants had given their second button response. 

Throughout the experiment, participants fixated a cross (1.5° diameter) presented in the 

center of the screen. 

The locations of the auditory and visual signals were randomized. The levels of 

visual reliability were presented either in blocks (55-85 trials per level of visual reliability) 

or varied according to a Markov chain (with a transition probability of 90% to stay on the 

same level of visual reliability and a 10% probability to change to an adjacent level). As the 

type of sequence did not influence the effects reported in this manuscript, we pooled over 

the two sequences and analyzed them together. 

12 subjects participated in a longer version of the experiment including an 

additional level of visual reliability (21.6° STD). Data from this condition were excluded in 

the current analyses to have equivalent data sets from all 26 participants.  

Overall, each participant completed 390-720 experimental trials. Prior to the main 

experiment, participants practiced the auditory localization task on 25 unisensory auditory 

trials, 25 audiovisual congruent trials with a single dot as the visual spatial signal and 15 

trials with stimuli as in the main experiment. 

 

Experimental setup 

Audiovisual stimuli were presented using Psychtoolbox 3.09 (Brainard, 1997; Kleiner et al., 

2007) (www.psychtoolbox.org) running under Matlab R2010b (MathWorks) on a Windows 

machine (Microsoft XP 2002 SP2). Auditory stimuli were presented at ~75 dB SPL using 

headphones (Sennheiser HD 555). Because visual stimuli required a large field of view, 

they were presented on a 30” LCD display (Dell UltraSharp 3007WFP). Participants were 

seated at a table in front of the screen in a darkened booth, resting their head on an 

adjustable chin rest. The viewing distance was 27cm resulting in a visual field of approx. 

100°. Subjects indicated their responses using a standard keyboard. Subjects used the 

buttons {1,2,3,4,r} for spatial localization responses with their left hand and {9,0} for 

common-source judgments with their right hand. 

 

Causal inference model 

We employed a Bayesian causal inference (CI) model of audiovisual perception (Kording et 

al., 2007). On each trial, participants performed two tasks, an auditory localization and a 

common-source judgment. For each of the two tasks, we augmented the CI model with 

several decision strategies. For the implicit causal inference involved in the auditory 

localization task, we employed (i) model averaging, (ii) model selection and (iii) probability 

matching as previously described in Wozny et al. (2010). For the explicit causal inference 
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involved in the common-source judgment, we used two decision functions that are 

described in detail below. By manipulating the decision functions for the spatial 

localization and the common-source judgment in a factorial fashion, we generated a 3 x 2 

model space. 

Details of the Bayesian generative model can be found in Kording et al. (2007). 

Briefly, we assume that a common (C = 1) or independent (C = 2) source is determined by 

sampling from a binomial distribution with the common-source prior P(C = 1) = pcommon 

(Fig. 2.1B). For a common source, the ‘true’ location SAV is drawn from the spatial prior 

distribution N(μP, σP). For two independent sources, the ‘true’ auditory (SA) and visual (SV) 

locations are drawn independently from this spatial prior distribution. For the spatial prior 

distribution, we assumed a central bias (i.e., μP = 0°). We introduced sensory noise by 

independently drawing XA and XV from normal distributions centered on the true auditory 

(resp. visual) locations with parameters σA2 (resp. σV2). Thus, the generative model 

included the following free parameters: the common-source prior pcommon, the spatial prior 

variance σP2, the auditory variance σA2 and the four visual variances σV2 corresponding to 

the four visual reliability levels. 

The probability of the underlying causal structure can be inferred by combining the 

common-source prior with the sensory evidence according to Bayes rule: 

(1)                                                p(C = 1|xA, xV) =
p(xA, xV|C=1)pcommon

p(xA, xV)
 

In the case of a common source (C = 1; Fig. 2.1B left), the maximum a posteriori probability 

estimate of the auditory location is a reliability-weighted average of the auditory and visual 

estimates and the prior.  

(2)                                                 ŜA,C=1 =

xA

σA2 +
xV

σV2 +
μP

σP2

1
σA2 +

1
σV2 +

1
σP2

 

In the case of a separate-source inference (C = 2; Fig. 2.1B right), the estimate of the 

auditory signal location is independent from the visual spatial signal. 

(3)                                                 ŜA,C=2 =

xA

σA2 +
μP

σP2

1
σA2 +

1
σP2

 

To provide a final estimate of the auditory location, the brain can combine the estimates 

under the two causal structures using various decision functions. In this study, we consider 

three decision functions for the implicit causal inference involved in the spatial localization 

task (for details see Wozny et al. (2010)):  According to the ‘model averaging’ strategy, the 

brain combines the two auditory location estimates weighted in proportion to the posterior 

probability of their underlying causal structure. 
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(4)                                   ŜA = p(C=1|xA, xV) ŜA,C=1 + (1 - p(C=1|xA, xV) )ŜA,C=2   

According to the ‘model selection’ strategy, the brain reports the spatial estimate 

selectively from the more likely causal structure. 

(5)                                   ŜA = {
ŜA,C=1  if p(C=1|xA, xV) >  0.5

ŜA,C=2  if p(C=1|xA, xV) ≤  0.5
   

According to ‘probability matching’, the brain reports the spatial estimate of one causal 

structure stochastically selected in proportion to its posterior probability. 

(6)                                   ŜA = {
ŜA,C=1  if p(C=1|xA, xV) >  α, α~ U(0,1)

ŜA,C=2  if p(C=1|xA, xV) ≤  α, α~ U(0,1)
   

Even though probability matching is sub-optimal, humans are known to use this strategy in 

a variety of cognitive tasks (e.g., Gaissmaier and Schooler (2008)). Further, a recent study 

suggested that human observers use probability matching in audiovisual spatial 

localization (Wozny et al., 2010).  

We also considered two decision strategies for the explicit causal inference that is 

involved when generating a binary response (common source vs. independent sources) for 

the common-source judgment. First, we considered that subjects reported ‘common source’ 

when the posterior probability of a common source is greater than the threshold of 0.5 

(‘CITh-0.5’).  

(7)                                   Ĉ =  {
1 if p(C=1|xA, xV) > 0.5
2 if p(C=1|xA, xV) ≤ 0.5

  

Second, similar to the probability matching strategy described above for the spatial 

localization task, we considered that participants report ‘common source’ stochastically in 

proportion to the posterior probability of a common source (‘CISampling’).  

(8)                                   Ĉ = {
1  if p(C=1|xA, xV) >  α, α~ U(0,1)

2  if p(C=1|xA, xV) ≤  α, α~ U(0,1)
   

Factorially manipulating the decision functions for the spatial localization task and the 

common-source judgment, we generated a 3 x 2 space of six Bayesian CI models. We then 

fitted each of the six CI models jointly to the response data from the spatial localization and 

the common-source judgment tasks in a subject-specific fashion. 

 

Fitting parameters of the six causal inference models 

The predicted distributions of the auditory spatial estimates (i.e., p(ŜA|SA,SV,1/σV2)) and the 

causal structure estimates (i.e., p(Ĉ|SA,SV, 1/σV2)) were obtained by marginalizing over the 

internal variables XA and XV. These distributions were generated by simulating XA and XV 

1000 times for each of the 100 conditions and inferring ŜA and Ĉ from equations (1)-(8). To 

link p(ŜA|SA,SV,1/σV2) to participants’ auditory localization responses as discrete button 

responses, we assumed that participants selected the button that is closed to ŜA and binned 
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the data accordingly. Based on these predicted distributions, we computed the log 

likelihood of participants’ auditory localization and causal judgment responses. Assuming 

independence of conditions and task responses, we summed the log likelihoods across 

conditions and across auditory localization and common-source judgment responses.  

To obtain maximum likelihood estimates for the parameters of the models (pcommon, 

σP, σA, σV1 - σV4 for each of the four levels of visual reliability), we used a non-linear simplex 

optimization algorithm as implemented in Matlab’s fminsearch function (Matlab R2010b). 

This optimization algorithm was initialized with 200 different parameter settings that were 

defined based on a prior grid search. We report the results (across subjects’ mean and 

standard error) from the parameter setting with the highest log likelihood across the 200 

initializations (Tab. 2.1). This fitting procedure was applied individually to each 

participant’s data set for each of the six CI models. 

The model fit was assessed by the coefficient of determination (Nagelkerke, 1991). 

To identify the optimal model for explaining subjects’ data, we compared the CI models 

using the Bayesian Information Criterion (BIC) as an approximation to the model evidence 

(Raftery, 1995). The BIC depends on both model complexity and model fit.  

In addition, we investigated which decision strategy is most likely given the data 

separately for implicit causal inference during spatial localization and for explicit causal 

inference during common-source judgments. For this, we partitioned the model space into 

three (implicit causal inference) or two (explicit causal inference) model families according 

to the 3 x 2 factorial structure of our model space. Thus, we compared the three model 

families of model selection, model averaging and probability matching during the spatial 

localization task. Likewise, we compared the model families of fixed threshold at 0.5 and 

sampling procedure for the common-source judgment. The posterior probability of a model 

family is simply the sum of the posterior probabilities of each model within this family 

(Penny et al., 2010) (for implementational details see SPM8, www.fil.ion.ucl.ac.uk/spm, 

Friston et al. (1994)).  

 

Comparing human responses to model predictions: Response indices 

To inspect whether the most likely CI model can account qualitatively for participant’s 

response profile, we show participants’ responses and the predicted responses of the most 

likely CI model (Fig. 2.2-2.4). To enable a direct comparison, we processed and formed 

indices (e.g., the ventriloquist effect) of the model’s predicted responses (1000 trials were 

simulated per condition) exactly as for the participants’ responses (see below). For 

visualization and didactic purposes, we also present the predicted responses of a 

traditional forced-fusion model (Ernst and Banks, 2002; Alais and Burr, 2004) that is fitted 

selectively to the auditory localization data (Fig. 2.2B-D). Yet, the forced-fusion model 
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cannot formally be compared to any of the CI models because it cannot be fitted to the 

common-source judgment data. 

Specifically, we computed and presented the following response indices:   

For the common-source judgment, we show the percentage of common-source judgments 

(Fig. 2.2A). For the spatial localization task, we present the absolute visual bias on the 

perceived auditory location, which is computed as the deviation of the responded auditory 

location from the true auditory location (i.e., AResp – ALoc, Fig. 2.2B). Moreover, we show the 

ventriloquist effect (i.e., the relative visual bias on the perceived auditory location) 

computed as VE = (AResp – ALoc) / (VLoc – ALoc) with AResp = mean auditory localization 

response for a given condition, ALoc = auditory signal location and VLoc = visual signal 

location (Fig. 2.2C, 3A-B). However, both the absolute and relative visual biases will be 

greater than zero, even when the visual signal has no influence on the auditory signal and 

vice versa. This is because participants predominantly make ‘erroneous localization 

responses’ towards more central positions in particular for extreme positions where they 

do not have the choice to respond to more eccentric positions. To account for these spatial 

response biases, we adjusted ALoc and VLoc with a linear regression approach across all 

congruent trials irrespective of the level of visual reliability in a subject-specific fashion. In 

other words, we replaced the true ALoc and VLoc in the crossmodal bias equations with the 

ALoc and VLoc predicted based on participants’ responses during the congruent conditions. 

Based on simulation results, this adjustment procedure ensures that the crossmodal bias 

approximately measures the true underlying bias. Hence, the adjusted crossmodal bias 

reliably reflects the influence of a visual signal on auditory localization responses.  

Finally, we evaluated the localization variability of the auditory localization 

responses as quantified by their variance (Fig. 2.2D, 2.3C-D): 

(9)                                            s2 =
1

n − 1
∑(AResp, i − A̅Resp)2

n

i=1

 

Each of these response indices was computed for each of the 100 conditions in our 5 

(auditory locations) x 5 (visual locations) x 4 (visual reliability levels) factorial design. We 

then reorganized these 100 conditions according to audiovisual spatial disparity and visual 

reliability (Fig. 2.2A-D). For this, we averaged the indices across all combinations of 

audiovisual locations at a particular level of spatial disparity and visual reliability (n.b. this 

averaging procedure is valid under the assumption that the visual bias is similar across 

different positions along the azimuth).  

In addition, we analyzed the ventriloquist effect and localization variability as a 

function of common-source judgment by categorizing subjects’ spatial localization 

responses according to whether participants responded common or separate source on 

those trials. If we treated the subjects’ common-source judgment as an ‘independent’ 
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factor, the factor induced an unbalanced distribution of trials across conditions, such that 

only few subjects had trials for all combinations of the factors spatial disparity, visual 

reliability and common-source judgment. Thus, for computing the ventriloquist effect, this 

analysis would have been limited to 13 subjects. Moreover, for computing the localization 

variability the analysis would have been limited even to only one single subject, as the 

computation of localization variability requires at least two trials per condition. When 

separating for common- vs. independent-source judgments, we therefore analyzed and 

presented the indices pooled either over the factor audiovisual disparity (Fig. 2.3A, C) or 

visual reliability (Fig. 2.3B, D). To ensure that the effects in the reliability x common-source 

design could be evaluated unconfounded by differences in disparity, we included only 

disparity levels that were present in all conditions for the remaining 4 (reliability) x 2 

(common source) design in a particular subject. Likewise, when evaluating the effects in 

the disparity x common-source design, we included only those reliability levels that were 

present in all conditions for this design. This procedure enabled us to include full data sets 

from at least 25 subjects for the ventriloquist effect and the localization variability in both 

designs. 

 

Model-free analysis of the causal judgments, ventriloquist effect and localization variability 

The common-source judgments were characterized in terms of the percentage ‘perceived 

common source’ as a function of reliability and audiovisual spatial disparity. We then fitted 

Gaussian functions (i.e., a height, width and mean parameter) to the percentage ‘perceived 

common source’ as a function of the signed audiovisual disparity separately for each level 

of reliability (Fig. 2.2A). The effects of visual reliability on the height and width parameters 

were each assessed in a one-way repeated measures ANOVA. 

The spatial localization responses were analyzed in terms of the relative audiovisual 

bias (i.e., ventriloquist effect) and the localization variability (i.e., variance). Both the 

ventriloquist effect and the localization variability were analyzed in separate visual 

reliability (4 levels) x spatial disparity repeated measures ANOVA. The factor spatial 

disparity had 5 levels for the localization variability, but only 4 levels for the ventriloquist 

effect as the computation of the ventriloquist effect requires a disparity greater zero. 

We report Greenhouse-Geisser corrected p values and degrees of freedom. Effect 

sizes were reported as η2. 

 

2.4 Results 

Comparison of the causal inference models 

All six causal inference (CI) models were fitted jointly to participants’ auditory localization 

and causal judgment responses and explained > 64% of the variance (R2 > 64%; cf. Tab. 
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2.1). The smaller coefficient of determination results from the fact that the CI models in the 

current study only included 7 parameters to explain the variance across 100 conditions 

(compared to 4 parameters explaining 35 conditions in Kording et al. (2007) and Wozny et 

al. (2010)).  

 

Table 2.1. Model parameters (mean ± SEM) and fit indices of the computational models. 

Model pC σP σA σV1 σV2 σV3 σV4 R2 relBIC 

MA & CITh-0.5 0.50±0.01 13.2±1.7 14.3±1.7 1.2±0.2 2.8±0.7 8.7±1.1 18.0±2.2 0.67±0.02 378.1 

MS & CITh-0.5 0.51±0.01 10.2±1.4 12.2±1.1 3.2±0.2 7.2±1.3 9.0±1.0 14.3±1.9 0.64±0.03 0 

PM & CITh-0.5 0.51±0.01 11.0±1.5 12.2±1.2 2.6±0.3 5.1±0.8 9.4±1.3 16.7±2.1 0.66±0.02 248.7 

MA & CISampling 0.62±0.02 13.6±2.1 12.7±1.8 1.6±0.3 2.7±0.3 7.8±1.0 16.9±2.1 0.67±0.02 316.4 

MS & CISampling 0.64±0.02 10.7±1.8 11.3±1.3 3.4±0.3 5.7±0.8 9.1±1.0 16.8±1.3 0.66±0.02 256.5 

PM & CISampling 0.63±0.02 11.1±1.9 10.0±0.9 2.7±0.2 4.0±0.3 6.9±0.5 17.1±2.2 0.66±0.02 243.5 

Note: Models of the implicit causal inference strategy involved in auditory spatial localization: model 
averaging (MA), model selection (MS) or probability matching (PM). Models of the explicit causal inference 
strategy involved in the common-source judgment: a fixed threshold of 0.5 (CITh-0.5) or a sampling strategy 
(CISampling). pC = probability of the common-cause prior. σP = variance of the cue location prior (in °). σA = 
variance of the auditory percept (in °). σV = variance of the visual percept at different levels of visual 
reliability (1 = highest, 4 = lowest) (in °). R2 = coefficient of determination (mean ± SEM). relBIC = Bayesian 
information criterion (BIC = LL - 0.5 M ln(N), LL = log likelihood, M  =  number of parameters, N = number of 
data points; BICs summed across sample) of a model relative to the worst model (larger = better).  

 

Next, we identified the CI model that maximally accounts for participants’ responses 

jointly during the auditory localization and the common-source judgment tasks by 

comparing the relative model evidence (BIC) of the CI models in our 3x2 model space (Fig. 

2.1C). In the winning model, participants used the following decision strategies: For 

implicit causal inference in the auditory localization task, participants used model 

averaging as a decision strategy. Hence, they combined the spatial estimates under the two 

causal structures weighted by the posterior probabilities of each causal structure. For 

explicit causal inference during common-source judgments, participants reported ‘common 

source’ if the posterior probability was larger than an optimal threshold of 0.5 (‘CITh-0.5’). 

The BIC difference between this model and the second best model was 61.7 which is 

generally considered as very strong evidence for the winning model (Raftery, 1995). 

Likewise, family inference (Penny et al., 2010) demonstrated the highest posterior 

probability for the model averaging strategy for the auditory localization task and  the 

threshold (‘CITh-0.5’) decision strategy for the common-source judgment task (cf. Fig. 2.1C). 

In short, for both implicit and explicit causal inference, we did not observe evidence for a 

sampling strategy as was previously reported (Wozny et al., 2010). 
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Interestingly, the parameters for the visual variance of the winning CI model 

approximately matched the variance of the Gaussian cloud across the four visual reliability 

levels (Tab. 2.1). The auditory variance was comparable to the lowest visual variance. The 

common-source prior was approximately 0.5 indicating that participants a priori assumed 

that signals were equally likely to come from common or independent sources. 

 

 
Figure 2.2. Behavioral responses and the models’ predictions (pooled over common-source 
decisions). The figure panels show the behavioral data (mean ± SEM, solid lines) and the predictions of the 
winning causal inference model (CI, dotted lines) and the forced-fusion model (FF, dashed lines) as a function 
of visual reliability (color coded) and audiovisual disparity (shown along the x-axis). (A) Percentage of 
common-source judgments. (B) Absolute spatial visual bias, AResp – ALoc. (C) Relative spatial visual bias (i.e., 
the ventriloquist effect VE = (AResp – ALoc) / (VLoc – ALoc)). In panels (B) and (C), the absolute and relative 
spatial visual bias are also shown for the case of pure visual or pure auditory influence for reference. (D) 
Localization variability of the behavioral and models’ predicted responses (n.b. indicated on separate y-axes). 
  

To further investigate whether the winning CI model qualitatively replicated 

participants’ response profile, we compared participants’ common-source judgments and 

auditory localization responses with the response predictions by the model. More 

specifically, we show the common-source judgments, the absolute and relative visual bias 

(i.e., ventriloquist effect) and the variability (i.e., variance) during the auditory localization 

task computed from participants’ responses and the model’s predicted responses. 
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Analysis of common-source judgments 

The common-source judgments peaked at zero and decayed as a function of audiovisual 

disparity according to a Gaussian bell shaped function (R2 > 86%, explained variance 

averaged across the levels of visual reliability; Fig. 2.2A). A higher visual reliability 

significantly increased the height (effect of visual reliability on height parameter, F2.5, 61.9 = 

32.995, p < 0.001, η2 = 0.569) and marginally changed the width of the Gaussian (effect of 

visual reliability on width parameter, F2.2, 54.2 = 2.606, p = 0.079, η2 = 0.094). The width of 

the Gaussian can be interpreted as an index for the width of the audiovisual integration 

window when it is judged explicitly in common-source judgments by participants. Our 

results demonstrate that participants were generally more likely to infer a common source 

at high relative to low visual reliability. Moreover, the slopes of the Gaussian functions 

were greater at high visual reliability indicating that high visual reliability rendered spatial 

disparity a more informative cue for discriminating between common source and 

independent sources.  

Critically, the CI model qualitatively replicated, though slightly underestimated, the 

effect of visual reliability (cf. Fig. 2.2A). Thus, the model predicted fewer common-source 

judgments for high visual reliability and more frequent common-source judgments for low 

visual reliability.  

 

Analysis of the visual bias and localization variability  

- irrespective of common-source judgments 

The visual influence on perceived auditory location was evaluated using the absolute visual 

bias (i.e., AResp – ALoc, Fig. 2.2B) and the relative visual bias also referred to as ventriloquist 

effect (i.e., VE = (AResp – ALoc)  / (VLoc – ALoc), Fig. 2.2C). Both indices are qualitatively in line 

with the predictions of Bayesian causal inference. Thus, the absolute visual bias increased 

non-linearly. This indicated that audiovisual integration breaks down when large spatial 

discrepancies render a common source unlikely. Likewise, for the relative visual bias (i.e., 

ventriloquist effect, Fig. 2.2C), we observed not only a main effect of visual reliability (F1.6, 

38.7 = 46.147, p < 0.001, η2 = 0.649) as predicted by forced-fusion models (Ernst and Banks, 

2002; Alais and Burr, 2004), but also a main effect of absolute disparity (F1.5, 37.8 = 21.339, p 

< 0.001, η2 = 0.460). Again as predicted by Bayesian causal inference, the ventriloquist 

effect is reduced for large spatial discrepancies when it is unlikely that the two signals 

come from a common source.  

Critically, we also observed a significant interaction between visual reliability and 

spatial disparity (Fig. 2.2C; interaction effect of visual reliability and absolute disparity, F5.5, 

138.1 = 3.511, p = 0.004, η2 = 0.123). This interaction emerged because visual reliability 

changes the width and height of the audiovisual integration window. In other words, the 



2 Sensory reliability shapes causal inference 

46 
 

shape of the Gaussian functions characterizing the common-source judgments (cf. Fig. 

2.2A) indicates that less spatial disparity is needed for the brain to infer that audiovisual 

signals should be segregated at high visual reliabilities. These sharper audiovisual 

integration windows also make the ventriloquist effect decrease faster with spatial 

disparity when the visual signals are reliable. 

The central benefit of multisensory integration is that it produces audiovisual 

estimates that are more reliable (i.e., less variable) (Ernst and Banks, 2002). Indeed, for 

small spatial disparities we observed that the auditory localization variability decreased 

with higher visual reliability (Fig. 2.2D). However, as predicted by Bayesian causal 

inference this reduction in localization variability was no longer observed for large spatial 

discrepancies indicating a breakdown of audiovisual integration (i.e., interaction effect of 

visual reliability and absolute disparity, F4.6, 115.0 = 3.229, p = 0.011, η2 = 0.114; and a main 

effect of absolute disparity, F1.8, 45.6 = 20.491, p  < 0.001, η2 = 0.450). Note, however, that the 

CI model slightly overestimated the localization variability. For illustrational purposes, we 

therefore show the variance for participants’ responses and for the model predictions 

using different axes to focus on their qualitative similarities. 

 

Analysis of the visual bias, i.e. ventriloquist effect, and localization variability  

- dependent on common-source judgments 

Next, we investigated participants’ auditory localization responses and the predictions of 

the CI model separately for trials on which participants inferred common or independent 

sources (Fig. 2.3). To illustrate how some of these effects on bias and localization variability 

emerge from splitting the localization response distributions according to the posterior 

common-source probability, we have also added figure 2.4 that shows the predicted 

distributions of the localization responses (along the y-axis) and posterior common-source 

probability (gray-tone coded) as a function of visual reliability (Fig. 2.4A) and spatial 

disparity (Fig. 2.4B). 

As expected under Bayesian causal inference, we observed an overall larger 

ventriloquist effect that progressively increased with higher visual reliability when a 

common source was inferred (Fig. 2.3A). By contrast, when no common source was 

inferred, the ventriloquist effect was only negligibly influenced by visual reliability. 

Likewise, once the outcome of explicit causal inference was taken into account, the effect of 

spatial disparity (cf. Fig. 2.2C) was nearly abolished and the ventriloquist effect differed 

approximately by a constant when common and independent sources were inferred (Fig. 

2.3B). 
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Figure 2.3. Behavioral responses and the model’s predictions (separated according to common-source 
decisions). The figure panels show the behavioral data (mean ± SEM, solid lines) and the predictions of the 
winning causal inference model (CI, dotted lines) as a function of visual reliability (left, A,C) and audiovisual 
disparity (right, B, D). The ventriloquist effect (A, B) and localization variability (C, D, n.b. indicated in 
separate ordinate axes) are shown separately for trials where common or independent sources were 
inferred. Localization variability for unimodal auditory trials is shown as a solid line for reference. 

 

While this is approximately in line with Bayesian causal inference, one would have 

predicted a repulsion effect for trials when separated sources were inferred. While a 

repulsion effect had indeed previously been shown for human localization responses, our 

study did not replicate this effect (Wallace et al., 2004; Kording et al., 2007). The reasons 

for these different behavioral response profiles are not clear. Potentially, a repulsion effect 

in our experiment was not observed because the visual stimulus was a cloud of dots rather 

than an LED flash or the sounds were delivered via headphones. Further, the previous 

study did not vary visual reliability across trials. Collectively, these experimental factors 

may have changed the consistency with which participants employ a decision threshold 

during the explicit common-source judgment resulting in a different separation of the 

spatial localization responses according to the common-source judgments.  
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Not surprisingly, the profile of auditory localization variability also depended on the 

outcome of participants’ common-source judgment. As expected under the CI model, 

auditory localization variability was only negligibly influenced by visual reliability when 

participants inferred independent sources and segregated information. By contrast, the 

auditory localization variability was smaller than during unisensory conditions at least for 

high visual reliability when participants inferred a common source (Fig. 2.3C) and 

benefitted from audiovisual integration.  

 

 
Figure 2.4. Distributions of auditory localization responses predicted by the Bayesian causal 

inference model. Distributions of auditory responses (ŜA,, along the y-axis) simulated by the winning 

Bayesian causal inference model (CI) as a function of visual reliability (left, A) and audiovisual disparity 

(right, B). The gray tone of each dot encodes the posterior common-source probability. For each level of 

reliability or disparity the dots are assigned to one of two clouds depending on whether the posterior 

probability of a common source (p(C=1|xA, xV) is smaller than 0.5 (i.e., left cloud) or larger than 0.5 (i.e., right 

cloud). Further, the mean and the standard deviation of the predicted responses (dotted lines) and the 

observed behavioral responses (solid lines) are plotted. In (A), the visual and auditory signal locations are 

fixed at 5° and -5°, respectively (i.e., a constant spatial disparity of 10°). In (B), the visual reliability is fixed at 

5.4° and the auditory signal location is fixed at 0°. For reference, the auditory responses in case of pure visual 

or pure auditory influence are shown as solid lines. 

 

Likewise, the effect of spatial disparity on localization variability depended on the 

outcome of participants’ common-source judgments (Fig. 2.3D). Interestingly, for both 

participants’ and model’s responses, the localization variability was decreased for small 

spatial disparities when a common source was inferred. Yet, it increased for spatial 

disparities when independent sources were inferred. This effect can be explained by the 

fact that participants infer independent sources predominantly when the observed visual 

signal is located far away from the auditory signal, either to its left or right. Thus, when no 

common source is inferred for small spatial discrepancies, the auditory localization 
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responses come from a bimodal distribution leading to an increase in localization 

variability (see fig. 2.4B).  

In conclusion, the behavioral response profile observed in the current study 

suggests that participants’ explicit common-source judgment partially separates the spatial 

localization responses into two classes: When a common source is inferred, auditory 

localization responses conform approximately to predictions of the forced-fusion model. In 

other words, participants weight the sensory signals according to their reliability (Fig. 

2.4A) in a linear fashion (Fig. 2.4B). By contrast, when no common source is inferred, 

participants responded predominantly based on the auditory signal approximately as 

predicted by a segregation model where signals are processed independently. Yet, while 

the explicit common-source judgment in our study provided only the binary response 

options ‘common vs. separate’ sources, the model averaging strategy weights the spatial 

estimates of the two causal structures by their continuous posterior probability. To relate 

explicit and implicit common-source judgments even more closely, a future study may 

therefore provide participants with a continuous response option (e.g., a rating scale) for 

the common-source judgment (Lewald and Guski, 2003). 

 

2.5 Discussion 

The current study investigated the decision strategies that observers use for inferring the 

causal structure of audiovisual spatial signals when probed implicitly in an auditory 

localization or explicitly in a causal judgment task. Given the critical role of sensory 

reliability in integration within (Jacobs, 1999; Knill and Saunders, 2003; Oruc et al., 2003) 

and across the senses (Yuille and Buelthoff, 1996; Ernst and Banks, 2002; Battaglia et al., 

2003; Alais and Burr, 2004), we evaluated the causal inference model on psychophysics 

data that included multiple levels of visual reliability. 

 It is well established that sensory signals should only be integrated when they are 

close in time, space and structure (Welch and Warren, 1980; Slutsky and Recanzone, 2001; 

Lewald and Guski, 2003; Wallace et al., 2004; Roach et al., 2006). Recently, this problem has 

been framed within probabilistic Bayesian causal inference (Knill, 2007; Kording et al., 

2007; Sato et al., 2007; Shams and Beierholm, 2010), where a response during implicit (i.e., 

in spatial localization) and explicit (i.e., common-source judgments) causal inference tasks 

can be formed based on several decision strategies (Wozny et al., 2010).  

Our results show that human observers employ model averaging as a decision 

strategy for implicit causal inference in auditory localization. In other words, they obtain an 

auditory localization estimate by combining the spatial estimates under the two causal 

structures weighted by their posterior probabilities. The model averaging strategy 

minimizes the squared error of signal localizations and simultaneously accounts for the 
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uncertainty of the underlying causal structure. By contrast, in a previous study the majority 

of participants used non-optimal probability matching for auditory localization (Wozny et 

al., 2010). These inconsistencies may arise from differences in the visual spatial signals (i.e., 

Gaussian cloud vs. LED) or the number of visual reliability levels (i.e., four vs. one) across 

the two experiments. Further, complex dual task effects (Stanovich and West, 2000; 

Stocker and Simoncelli, 2007) may explain the differences as the current design combined 

auditory localization and common-source judgment, while the previous study included 

auditory and visual localization tasks. 

 For explicit causal inference probed in the common-source judgment task, we 

observed that participants reported a common source if the common-source posterior 

probability was larger than 0.5. Thus, neither for implicit causal inference during spatial 

localization nor for explicit causal inference during common-source judgments did 

participants in our study employ sub-optimal sampling strategies where they selected each 

causal structure stochastically in proportion to its posterior probability.  

Moving beyond previous modelling efforts (Kording et al., 2007; Sato et al., 2007; 

Beierholm et al., 2009; Wozny et al., 2010), we validated Bayesian causal inference models 

on a psychophysics data set that included several levels of visual reliabilities. This is 

critical, because according to the Bayesian causal inference model, sensory reliability 

influences multisensory integration via two distinct mechanisms: causal inference and 

reliability-weighted integration.  Indeed, as expected under Bayesian causal inference, 

visual reliability sharpened the audiovisual integration window (Fig. 2.2A). Participants 

were better at discriminating whether sensory signals came from a common or two 

independent sources when the visual signals were highly reliable. As predicted by both 

forced fusion (Ernst and Banks, 2002; Alais and Burr, 2004) and causal inference models 

(Kording et al., 2007), high visual reliability also increased the influence of the visual signal 

on the perceived auditory location leading to a larger ventriloquist effect (Fig. 2.2C). Yet, in 

contradiction to the forced-fusion model, spatial ventriloquism broke down for greater 

spatial disparity when it is unlikely that audiovisual signals come from a common source. 

Moreover, we observed a significant interaction between reliability and spatial disparity. In 

other words, high visual reliability amplified the decay in ventriloquism with greater 

spatial disparity by sharpening the integration window. Likewise, the localization 

variability depended on both spatial disparity and visual reliability in an interactive fashion 

(Fig. 2.2D). In summary, visual reliability influenced the ventriloquist effect and localization 

variability via two interacting mechanisms: (i) sharpening of the integration window via 

causal inference and (ii) reliability-weighted integration in the case of a common source. 

These two hierarchically organized mechanisms can be partially dissociated by 

separating localization responses depending on whether or not participants perceived a 
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common source. Indeed, accounting for causal inference by separating trials according to 

participants’ common-source judgments largely abolished the effect of spatial disparity on 

the ventriloquist effect and localization variability both for human responses and the 

predictions of the causal inference model (cf. Fig. 2.2C, D vs. Fig. 2.3B, D and 4B). Likewise, 

the effect of reliability on spatial ventriloquism and localization variability emerged 

predominantly when a common source was inferred (Fig. 2.3A, C and Fig. 2.4A). 

Collectively, these results suggest that reliability-weighted integration as a special case of 

multisensory integration is predicated on causal inferences. Yet, when separating 

localization responses according to the outcome of the common-source judgments, we still 

observed small effects of spatial discrepancy on spatial bias and localization variability. In 

particular, the localization variability increased for small spatial discrepancies when 

independent sources were inferred. As shown in figure 2.4, this surprising effect emerges 

because independent sources are inferred if the auditory percept is distant from the visual 

signal, either to the left or to the right, leading to a bimodal response distribution (Fig. 

2.4B).  

Research into the neural basis of multisensory integration has so far focused only on 

the special case of reliability-weighted integration under forced-fusion assumptions 

(Beauchamp et al., 2010; Helbig et al., 2012; Fetsch et al., 2013). For instance, very elegant 

neurophysiology work in macaque has demonstrated that single neurons integrate sensory 

inputs linearly weighted by their reliability (Morgan et al., 2008) in line with theories of 

probabilistic population coding (Ma et al., 2006). Furthermore, in a visuo-vestibular 

heading task decoding of neuronal activity in a dorsal medial superior temporal area 

(MSTd) mostly accounted for the sensory weights that the non-human primates employed 

at the behavioral level (Fetsch et al., 2012). It is currently unknown how the brain 

implements Bayesian causal inference during multisensory integration. Does it explicitly 

represent spatial estimates under forced-fusion and full-segregation assumptions as basic 

components of the causal inference model? Future fMRI in humans or neurophysiology 

studies in macaque are needed to address these questions. 

 In conclusion, the current study demonstrates that Bayesian causal inference is 

fundamental for multisensory integration in our natural uncertain environment. Sensory 

reliability critically shapes multisensory integration via two distinct mechanisms. First, it 

determines causal inference by sharpening the integration window. Second, it determines 

the relative weights of the sensory inputs in the integration process under the assumption 

of a common source.  
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3 Cortical hierarchies jointly perform Bayesian causal 

inference for multisensory perception 

3.1 Abstract 

When faced with multisensory signals, the brain should only integrate the signals if they 

were caused by a common source to obtain a veridical percept of the environment. 

However, it is unknown whether and how cortical hierarchies take the signals’ causal 

structure into account. Using Bayesian modelling and fMRI, we show that regions along 

auditory and visual spatial hierarchies jointly integrate audiovisual spatial signals 

according to their causal structure.  

 

3.2 Introduction 

To form a reliable percept of the multisensory environment, the brain integrates signals 

across the senses. However, it should integrate signals only when caused by a common 

source, but segregate those from different sources (Shams and Beierholm, 2010). Bayesian 

causal inference provides a rational strategy to arbitrate between information integration 

and segregation: In the case of a common source, signals should be integrated weighted by 

their sensory reliability (Ernst and Banks, 2002; Alais and Burr, 2004). In case of separate 

sources, they should be processed independently. Yet, in everyday life, the brain does not 

know the underlying causal structure, but needs to infer its probabilities from the sensory 

signals (Kording et al., 2007). A posterior signal estimate can then be obtained by averaging 

the estimates under the two causal structures weighted by the posterior probability of each 

causal structure (i.e., model averaging). Indeed, recent psychophysics research has 

demonstrated that human observers locate audiovisual signal sources according to 

Bayesian causal inference by combining the spatial estimates under the assumptions of 

common and separate sources weighted by their probabilities (Kording et al., 2007). Yet, 

despite recent evidence for a neural basis of reliability-weighted integration under a 

‘forced’ assumption of a common source (Ma et al., 2006; Fetsch et al., 2012; Fetsch et al., 

2013), the neural basis of Bayesian causal inference remains unknown. Thus, we combined 

Bayesian modeling and multivariate fMRI decoding to characterize how Bayesian causal 

inference is performed by the auditory (Tian et al., 2001) and visual (Mishkin et al., 1983) 

spatial cortical hierarchies. 
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3.3 Materials and methods 

Participants 

After giving written informed consent, six healthy volunteers without a history of 

neurological or psychiatric disorders (all university students or graduates; 2 female; mean 

age 28.8 years, range 22-36 years) participated in the fMRI study. All participants had 

normal or corrected-to normal vision and reported normal hearing. One participant was 

excluded because of excessive head motion (4.21 / 3.52 STD above the mean of the 

translational / rotational volume-wise head motion based on the included 5 participants). 

Note that the data from these 5 participants were also analyzed in chapter 4 and 5. The 

study was approved by the human research review committee of the University of 

Tuebingen.  

 

Stimuli 

The visual stimulus was a cloud of 20 white dots (diameter: 0.43° visual angle) sampled 

from a bivariate Gaussian with a vertical standard deviation of 2.5° and a horizontal 

standard deviation of  2° or 14° presented on a black background (i.e., 100% contrast). The 

auditory stimulus was a burst of white noise with a 5 ms on/off ramp. To create a virtual 

auditory spatial signal, the noise was convolved with spatially specific head-related 

transfer functions (HRTFs) thereby providing binaural (interaural time and amplitude 

differences) and monoaural spatial filtering signals. The HRTFs were pseudo-individualized 

by matching participants’ head width, heights, depth and circumference to the 

anthropometry of participants in the CIPIC database (Algazi et al., 2001). HRTFs from the 

available locations in the database were interpolated to the desired location of the auditory 

signal.  

 

Experimental design 

In a spatial ventriloquist paradigm, participants were presented with synchronous, yet 

spatially congruent or discrepant visual and auditory signals (Fig. 3.1A). On each trial, 

visual and auditory locations were independently sampled from four possible locations 

along the azimuth (i.e., -10°, -3.3°, 3.3° or 10°) leading to four levels of spatial discrepancy 

(i.e., 0°, 6.6°, 13.3° or 20°).  In addition, we manipulated the reliability of the visual signal by 

setting the horizontal standard deviation of the Gaussian cloud to 2° (high reliability) or 

14° (low reliability) visual angle. In an inter-sensory selective-attention paradigm, 

participants either reported their auditory or visual perceived signal location and ignored 

signals of the other modality. Hence,  the 4 x  4 x 2 x 2 factorial design manipulated (1) the 

location of the visual stimulus ({-10°, -3.3°, 3.3°, 10°}, i.e., the mean of the Gaussian) (2) the 

location of the auditory stimulus ({-10°, -3.3°, 3.3°, 10°}) (3) the reliability of the visual 
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signal ({2°,14°}, STD of the Gaussian) and (4) task-relevance (auditory- / visual-selective 

report) (Fig. 3.1B). The design yielded 64 conditions. 

On each trial, synchronous audiovisual spatial signals were presented for 50 ms 

followed by a variable inter-stimulus fixation interval from 1.75-2.75 s. Participants 

localized the signal in the task-relevant sensory modality as accurately as possible by 

pushing one of four spatially corresponding buttons. Throughout the experiment, they 

fixated a central cross (1.6° diameter).  

To maximize design efficiency, stimuli and conditions were presented in a 

pseudorandomized fashion. Only the factor task-relevance was held constant within a 

session and counterbalanced across sessions. In each session, each of the 32 audiovisual 

spatial stimuli was presented exactly 11 times. 5.9% null-events were interspersed in the 

sequence of 352 stimuli per session. Each participant completed 20 sessions (10 auditory 

and 10 visual localization task; apart from one participant that performed 9 auditory and 

11 visual localization sessions). Before the fMRI study, the participants completed one 

practice session outside the scanner. 

 

Experimental setup 

Audiovisual stimuli were presented using Psychtoolbox 3.09 (www.psychtoolbox.org) 

(Brainard, 1997) running under MATLAB R2010a (MathWorks). Auditory stimuli were 

presented at ~75 dB SPL using MR-compatible headphones (MR Confon). Visual stimuli 

were back-projected onto a Plexiglas screen using an LCoS projector (JVC DLA-SX21). 

Participants viewed the screen through an extra-wide mirror mounted on the MR head coil 

resulting in a horizontal visual field of approx. 76° at a viewing distance of 26 cm. 

Participants performed the localization task using an MR-compatible custom-built button 

device. Participants’ eye movements and fixation were monitored by recording the 

participants’ pupil location using an MR-compatible custom-build infrared camera 

(sampling rate 50 Hz) mounted in front of the participants’ right eye and iView software 

2.2.4 (SensoMotoric Instruments). Analyses of this data showed that participants did not 

commit to condition-related eye movements (cf. last paragraph of results in chapter 4.4 and 

supplemental tab. S4.1). 

 

Bayesian causal inference model 

To test the Bayesian causal inference model of audiovisual perception, we employed 

a generative model whose details can be found in Kording et al. (2007). The generative 

model (Fig. 3.1B) assumes that a common (C = 1) or independent (C=2) sources are 

determined by sampling from a binomial distribution with the common source prior 

P(C=1) = pcommon. For a common source, the ‘true’ location SAV is drawn from a spatial prior 
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distribution N(μAV, σP). For two independent causes, the ‘true’ auditory (SA) and visual (SV) 

locations are drawn independently from this spatial prior distribution. For the spatial prior 

distribution, we assumed a central bias (i.e., μ = 0). We introduced sensory noise by 

independently drawing XA and XV from normal distributions centered on the true auditory 

(resp. visual) locations with parameters σA2 (resp. σV2). Thus, the generative model 

included the following free parameters: the common source prior pcommon, the spatial prior 

variance σP2, the auditory variance σA2 and the two visual variances σV2 corresponding to 

the two visual reliability levels.  

The probability of the underlying causal structure can be inferred by combining the 

common-source prior with the sensory evidence according to Bayes rule:   

(1)                                                p(C = 1|xA, xV) =
p(xA, xV|C=1)pcommon

p(xA, xV)
 

In the case of a common source (C = 1; Fig. 3.1B left), the optimal estimate of the 

audiovisual location is a reliability-weighted average of the auditory and visual percepts 

and the prior.  

(2)                                                ŜAV,C=1 =

xA

σA2 +
xV

σV2 +
μP

σP2

1
σA2 +

1
σV2 +

1
σP2

 

In the case of independent sources (C = 2; Fig. 3.1B right), the optimal estimates of the 

auditory and visual signal locations (for the auditory and visual location report, 

respectively) are independent from signals of the ignored modality. 

(3)                                                ŜA,C=2 =

xA

σA2 +
μP

σP2

1
σA2 +

1
σP2

,     ŜV,C=2 =

xV

σV2 +
μP

σP2

1
σV2 +

1
σP2

 

To provide a final estimate of the auditory and visual locations, the brain can combine the 

estimates under the two causal structures using various decision functions such as ‘model 

averaging’, ‘model selection’ and ‘probability matching’ (Wozny et al., 2010). Because the 

decision functions give highly correlated predictions and, therefore, are difficult to 

disentangle, we only present results using model averaging. According to the ‘model 

averaging’ strategy, the brain combines the integrated spatial estimate with the 

independent, task-relevant auditory or visual spatial estimates weighted in proportion to 

the posterior probability of their underlying causal structure. 

(4)                                               ŜA = p(C=1|xA, xV) ŜAV,C=1 + (1 - p(C=1|xA, xV) )ŜA,C=2   

(5)                                               ŜV = p(C=1|xA, xV) ŜAV,C=1 + (1 - p(C=1|xA, xV) )ŜV,C=2   

Thus, full causal inference requires the brain to represent three spatial estimates (ŜAV,C=1, 

ŜA,C=2,  ŜV,C=2) which are combined into a posterior estimate (ŜA / ŜV, in dependence on which 

signal is task-relevant) by the posterior probability of the causal structure. However, a 
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priori it is unknown whether an observer performs full causal inference (equation (4) and 

(5)) or only uses the component spatial estimates for signal localization: The observer 

could also fuse the audiovisual signals weighted by reliability in a forced fashion (equation 

(2)) or simply report the auditory (equation (3), left) or visual (equation (3), right) signals 

by segregating the signal which is irrelevant for the given localization task. Therefore, we 

compared the causal inference model against a forced fusion and a segregation model (Tab. 

3.1). 

To fit the causal inference, the forced fusion and the segregation models to 

participants’ auditory and visual localization responses, we obtained the predicted 

distributions of the auditory spatial estimates (i.e., p(ŜA|SA,SV,1/σV2)) and the visual spatial 

estimates (i.e., p(ŜV|SA,SV,1/σV2)) by marginalizing over the internal variables XA and XV. 

These distributions were generated by simulating XA and XV 1000 times for each of the 64 

conditions and inferring ŜA and ŜV from equations (1)-(5). To link p(ŜA|SA,SV,1/σV2) and 

p(ŜV|SA,SV,1/σV2) to participants’ auditory or visual discrete localization responses, we 

assumed that participants selected the button that is closed to ŜA or ŜV and binned the data 

accordingly. Based on these predicted distributions, we computed the log likelihood of 

participants’ auditory and visual localization responses. Assuming independence of 

conditions, we summed the log likelihoods across conditions.  

To obtain maximum likelihood estimates for the parameters of the models (pcommon, 

σP, σA, σV1 - σV2 for the two levels of visual reliability; the forced fusion and segregation 

models assumes pcommon = 1 or = 0, respectively), we used a non-linear simplex 

optimization algorithm as implemented in Matlab’s fminsearch function (Matlab R2010b). 

This optimization algorithm was initialized with 200 different parameter settings that were 

defined based on a prior grid search. We report the results (across participants’ mean and 

standard error) from the parameter setting with the highest log likelihood across the 200 

initializations (Tab. 3.1). This fitting procedure was applied individually to each 

participant’s data set for each of the causal inference, the forced fusion und the unimodal 

segregation models. 

The model fit was assessed by the coefficient of determination (Nagelkerke, 1991). 

To identify the optimal model for explaining participants’ data, we compared the candidate 

models using the Bayesian Information Criterion (BIC) as an approximation for the model 

evidence (Raftery, 1995). The BIC depends on both model complexity and model fit. We 

performed Bayesian model selection (Stephan et al., 2009) as implemented in SPM8 

(Friston et al., 1994) to obtain the exceedance probability for the candidate models (i.e., the 

probability that a given model is more likely than any other model given the data). 
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MRI data acquisition 

A 3T Siemens Magnetom Trio MR scanner was used to acquire both T1-weighted 

anatomical images and T2*-weighted axial echoplanar images (EPI) with BOLD contrast 

(gradient echo, parallel imaging using GRAPPA with an acceleration factor of 2, TR = 2480 

ms, TE = 40 ms, flip angle = 90°, FOV = 192×192 mm2, image matrix 78×78, 42 transversal 

slices acquired interleaved in ascending direction, voxel size = 2.5×2.5×2.5 mm3 + 0.25 mm 

interslice gap).  

In total, 353 volumes times 20 sessions were acquired for the ventriloquist 

paradigm, 161 volumes times 2-4  sessions for the auditory localizer and 159 volumes 

times 10-16 sessions for the visual retinotopic localizer resulting in approximately 18 

hours of scanning in total per participant assigned over 7-11 days. The first three volumes 

of each session were discarded to allow for T1 equilibration effects. 

 

fMRI data analysis 

Ventriloquist paradigm 

The fMRI data were analyzed with SPM8 (www.fil.ion.ucl.ac.uk/spm) (Friston et al., 1994). 

Scans from each participant were corrected for slice timing, were realigned and unwarped 

to correct for head motion and spatially smoothed with a Gaussian kernel of 3 mm FWHM. 

The time series in each voxel was high-pass filtered to 1/128 Hz. All data were analyzed in 

native participant space. The fMRI experiment was modelled in an event-related fashion 

with regressors entering into the design matrix after convolving each event-related unit 

impulse with a canonical hemodynamic response function and its first temporal derivative. 

In addition to modelling the 32 conditions in our 4 (auditory locations) x 4 (visual 

locations) x 2 (visual reliability) factorial design, the general linear model included the 

realignment parameters as nuisance covariates to account for residual motion artefacts. 

The factor task-relevance (visual vs. auditory report) was modelled across sessions. The 

parameter estimates pertaining to the canonical hemodynamic response function defined 

the magnitude of the BOLD response to the audiovisual stimuli in each voxel. For the 

multivariate decoding analysis, we extracted the parameter estimates of the canonical 

hemodynamic response function for each condition and session from voxels of the regions 

of interest (= fMRI activation patterns) defined in separate auditory and retinotopic 

localizer experiments (see below). Each fMRI activation pattern for the 64 conditions in our 

4x4x2x2 factorial design was based on 11 trials within a particular session. To avoid the 

effects of image-wide activity changes, each fMRI activation pattern was normalized to 

have mean zero and standard deviation one. 
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Decoding of spatial estimates 

To investigate whether and how regions along the auditory and visual spatial hierarchy 

(defined below; cf. Fig. 3.1C) represent spatial estimates of the causal inference model, we 

used a multivariate approach to decode the estimates’ values (ŜAV,C=1, ŜA,C=2, , ŜV,C=2, ŜA / ŜV 

combined across conditions of auditory and visual localization) from these regions. After 

fitting the causal inference model individually to behavioral localization responses (see 

above), the fitted model predicted the spatial estimates’ values for each of the 64 

conditions. For decoding, we used a linear support-vector regression model (SVR, as 

implemented in LIBSVM 3.14 (Chang and Lin, 2011). For each spatial estimate, we trained 

the SVR model to learn the mapping from the 64 fMRI activation patterns to the 64 spatial 

estimates’ values from data of all but one session. The model then used this learnt mapping 

to decode the spatial estimates’ values from the fMRI activation pattern from the remaining 

session. In a leave-one-out cross-validation scheme, the training-test procedure was 

repeated for all sessions. 

 To determine which spatial estimate of the causal inference model was most likely 

represented in a region, we compared the accuracies of decoding the four spatial estimates. 

For each estimate, the decoding accuracy was computed by predicting the decoded from 

the true spatial estimates using a linear regression. Decoded and true components were z 

standardized beforehand such that the parameter estimate represented the decoding 

accuracy as a correlation coefficient. Because spatial components are inherently highly 

correlated (up to r = 0.96 (mean across subjects) between ŜAV,C=1 and ŜV,C=2), it is difficult to 

select the component which a regions represents uniquely (i.e., a model selection problem). 

Therefore, we used a bootstrapping approach to evaluate whether a spatial estimate was 

more likely represented than any other estimate (i.e., the exceedance probability of a 

decoded spatial estimate) within a region (Burnham and Anderson, 2002). First, we 

bootstrapped decoding accuracies by resampling (N = 1000 times) with replacement the 

regression’s residuals (Efron and Tibshirani, 1994) in each subject. We then determined for 

each bootstrap which spatial estimate had the highest average decoding accuracy (i.e., the 

mean of individual bootstrapped decoding accuracies after Fisher z transformation). The 

fraction of bootstraps in which a decoded spatial estimate had the highest decoding 

accuracy was the estimate’s exceedance probability (Fig. 3.1D). 

 

Auditory and visual retinotopic localizer 

Auditory and visual retinotopic localizers were used to define regions of interest along the 

auditory and visual processing hierarchies in a participant-specific fashion. In the auditory 

localizer, participants were presented with brief bursts of white noise at -10° or 10° visual 
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angle (duration 500 ms, stimulus onset asynchrony 2 s). In a one-back task, participants 

indicated via a key press when the spatial location of the current trial was different from 

the previous trial. 20 s blocks of auditory conditions (i.e., 20 trials) alternated with 13 s 

fixation periods. The auditory locations were presented in a pseudorandomized fashion to 

optimize design efficiency. Similar to the main experiment, the auditory localizer sessions 

were modelled in an event-related fashion with the onset vectors of left and right auditory 

stimuli being entered into the design matrix after convolution with the hemodynamic 

response function and its first temporal derivative. Auditory responsive regions were 

defined as voxels in superior temporal and Heschl’s gyrus showing significant activations 

for auditory stimulation relative to fixation (p < 0.05, family-wise error corrected). Within 

these regions, we defined primary auditory cortex (A1) based on cytoarchitectonic 

probability maps (Eickhoff et al., 2005) and referred to the remainder (i.e., planum 

temporale and posterior superior temporal gyrus) as higher order auditory cortex (hA, see 

Fig. 3.1C). 

Standard phase-encoded retinotopic mapping (Sereno et al., 1995) was used to 

define visual regions of interest. Participants viewed a checkerboard background flickering 

at 7.5 Hz through a rotating wedge aperture of 70° width (polar angle mapping) or an 

expanding/contracting ring (eccentricity mapping). The periodicity of the apertures was 42 

s. Visual responses were modelled by entering a sine and cosine convolved with the 

hemodynamic response function as regressors in a general linear model. The preferred 

polar angle was determined as the phase lag for each voxel which is the angle between the 

parameter estimates for the sine and the cosine. The preferred phase lags for each voxel 

were projected on the reconstructed, inflated cortical surface using Freesurfer 5.1.0 (Dale 

et al., 1999). Visual regions V1-V3, V3AB and IPS0-IPS4 were defined as phase reversal in 

angular retinotopic maps. IPS0-4 were defined as contiguous, approximately rectangular 

regions based on phase reversals along the anatomical IPS (Swisher et al., 2007). For the 

decoding analyses, the auditory and visual regions were combined from the left and right 

hemispheres. 

 

3.4 Results 

To investigate how auditory and visual spatial cortical hierarchies perform causal 

inference, we presented 5 participants with synchronous auditory (white noise) and visual 

(cloud of dots) spatial signals independently sampled from 4 possible locations along the 

azimuth (i.e., -10°, -3.3°, 3.3° or 10°) whilst fMRI scanning (Fig. 3.1A). We manipulated the 

reliability of the cloud of dots (2° or 14° STD). Participants either selectively reported the 

visual or the auditory signal location. Thus, the four-factorial design (4 auditory locations x 
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4 visual locations x 2 levels of visual reliability x visual/auditory report) yielded 64 

conditions. 

 When reporting the signals’ location, it was a priori unclear whether participants 

performed causal inference by weighting the spatial estimates by the probability of the two 

potential causal structures (Fig. 3.1B, top). Alternatively, they integrated the audiovisual 

signal weighted by reliability under a forced assumption of a common source (Fig. 3.1B, C = 

1, left), or they simply reported the auditory and visual signal locations by fully segregating 

the task-irrelevant signal under the assumption of separate sources (Fig. 3.1B, C = 2, right). 

After fitting the causal inference, forced fusion and segregation models to the participants’ 

localization responses, we clearly found that the causal inference model provided a 

superior fit of the location reports (82.7% variance explained, exceedance probability of 

0.953; Tab. 3.1). 

 

Table 3.1. Model parameters (mean ± SEM) and fit indices of the three computational models. 

Model pC σP σA σV1 σV2 R2 relBIC EP 

Causal inference 0.39+0.09 14.1+3.3 21.2+8.4 3.8+0.6 9.1+1.5 82.7+4.0 -7163.1+1044.0 0.9524 

Forced fusion - 14.4+1.6 14.3+2.0 6.5+0.5 10.7+0.7 60.7+3.4 -4293.4+388.0 0.0147 

Segregation - 13.1+2.7 24.1+9.9 4.1+0.7 7.5+0.9 79.1+4.3 -6707.4+1085.9 0.0329 

Note: pC = probability of the common-cause prior. σP = variance of the cue location prior (in °). σA = variance 
of the auditory percept (in °). σV = variance of the visual percept at different levels of visual reliability (1 = 
high, 2 = low) (in °). R2 = coefficient of determination. relBIC = Bayesian information criterion (BIC = LL - 0.5 
M ln(N), LL = log likelihood, M  =  number of parameters, N = number of data points; BICs summed across 
sample) of a model relative to the null model (larger = better). EP = exceedance probability, i.e. probability 
that a model is more likely than any other model. 

 

 Next, we investigated how regions along auditory and visual spatial cortical 

hierarchies (Fig. 3.1C) represent the spatial estimates of the causal inference model. First, 

we obtained four spatial estimates predicted by the individually fitted causal inference 

model for each of the 64 conditions (Fig. 3.1B, bottom): the reliability-weighted average 

under the assumption of a common source (ŜAV, C = 1), the segregated unimodal estimates 

under the assumption of separate sources (ŜA, C = 2 , ŜV, C = 2) and the final combined 

spatial estimate after averaging the reliability-weighted and the task-relevant unimodal 

estimate by the probability of common versus separate causes (ŜA/ ŜV, pooled over 

conditions of auditory and visual report). Using cross-validation, we trained a support 

vector regression model to decode these four spatial estimates from fMRI voxel response 

patterns in regions along the cortical hierarchies. We evaluated the decoding accuracy for 

each spatial estimate in terms of the correlation coefficient between the spatial estimate 

decoded from fMRI and predicted from the causal inference model.  To determine the 
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spatial estimate that is primarily encoded in a region, we next computed the exceedance 

probability that a correlation coefficient of one spatial estimate was greater than any of the 

other spatial estimates (Fig. 3.1D). 

  

 

 
Figure 3.1. Stimuli, Bayesian causal inference model, cortical hierarchies and fMRI decoding results. 
(A) Participants were presented with audiovisual spatial signals from four possible locations at two levels of 
visual reliability. They either selectively localized the visual or the auditory signals (i.e., 64 experimental 
conditions in total) (B) The Bayesian causal inference model (Kording et al., 2007) was fit to participants’ 
localization responses and then used to obtain spatial estimates: the unisensory auditory (ŜA, C = 2 

) and 
visual (ŜV, C = 2) estimates for separate signal sources (C = 2), the reliability-weighted average (ŜAV, C = 1) 

for a common source (C = 1), and the final spatial estimate (ŜA, ŜV) that averages the task-relevant 
unisensory and the reliability-weighted common-source estimate weighted by the probability of their 
respective causal structures (p(C = 1|xA, xV) or (1 − p(C = 1|xA, xV))), i.e. model averaging. (C) fMRI voxel 
response patterns were obtained from regions along the visual hierarchies, including lower visual regions 
(V1-3, V3AB) and intraparietal sulcus (IPS0-4), and auditory hierarchies, including primary (A1) and higher 
(hA) auditory cortex. (D) Exceedance probabilities index the belief that a given spatial estimate is more likely 
represented than any other spatial estimate within a region of interest. Exceedance probabilities were 
derived by comparing the decoding accuracies (i.e., quantified by correlation coefficient) of the spatial 
estimates from the voxel response patterns. 
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Thus, we found that Bayesian causal inference emerged along the auditory and 

visual hierarchies: Lower-level visual and auditory areas encoded auditory and visual 

estimates under the assumption of separate sources (i.e., information segregation). 

Posterior intraparietal sulcus (IPS1-2) represented the reliability-weighted average of the 

signals under a common-source assumption. Finally, anterior IPS (IPS3-4) represented the 

spatial estimates completing the causal inference: The region represented the average of 

the reliability-weighted and the task-relevant unimodal estimate weighted by the 

probability of common and separate causes, respectively. 

 

3.5 Discussion 

To our knowledge, this is the first demonstration that the computational operations 

underlying Bayesian causal inference are performed by the human brain in a hierarchical 

fashion. Critically, the brain explicitly encodes not only the spatial estimates under the 

assumption of full segregation (primary visual and auditory areas), but also under forced 

fusion (IPS1-2). These spatial estimates under causal structures of separate and common 

sources are then averaged into task-relevant auditory or visual estimate according to 

model averaging (IPS3-4).  

Previous neurophysiological studies have shown that single neurons (Morgan et al., 

2008) and population of neurons (Fetsch et al., 2012; Fetsch et al., 2013) implement 

forced-fusion reliability-weighted integration, presumably using a probabilistic population 

code (Ma et al., 2006). However, using the wide spatial coverage of the brain provided by 

fMRI, our results demonstrate that cortical hierarchies represent multiple multisensory 

spatial estimates which are jointly essential to integrate multisensory signals according to 

their causal structure. Future studies should investigate which brain regions explicitly 

compute the probability of common and separate sources which is the crucial quantity for 

balancing the signal estimates given their probabilistic causal structures. Further, it 

remains unknown which neural codes the brain uses to compute this causal-structure 

probability. Because this probability modulates reliability-weighted integration, our 

findings further call for an extension of the theory of probabilistic population codes (Ma et 

al., 2006) implementing reliability-weighted integration as well as signal segregation in 

dependence on the signals’ causal structure. 

Numerous studies demonstrated that large parts of neocortex have access to 

multisensory information (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008). 

Even low-level sensory regions are influenced by crossmodal information from non-

preferred modalities (Foxe et al., 2000; Molholm et al., 2002; Lewis and Noppeney, 2010). 

Such multisensory interactions arise via direct connections between unisensory regions 

(Falchier et al., 2002), top-down feedback from higher-order multisensory regions 
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(Macaluso and Driver, 2005) or via crossmodal thalamic input (Lakatos et al., 2007; Cappe 

et al., 2009). Importantly, we found that low-level visual and auditory regions represent 

their preferred spatial estimates, but this does not exclude the possibility of early 

crossmodal interactions (cf. results in chapter 4.4 and 5.4): Those interactions might rather 

adhere to the ‘spatial principle’ describing that multisensory interaction in neurons of 

superior colliculus are most pronounced if the multisensory signals jointly fall into the 

neuron’s crossmodally registered receptive fields (Stein and Meredith, 1993). By contrast, 

our finding only suggests that the crossmodal interactions in low-level sensory regions are 

not in line with reliability-weighted averaging or full causal inference as found for IPS. 

 

In conclusion, our study demonstrates that models of multisensory processes such 

as causal inference are essential to pinpoint specific multisensory processes along cortical 

hierarchies. Hence, our study provides a novel hierarchical perspective on multisensory 

integration in human neocortex.  
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4 To integrate, or not to integrate: Causal inference in primary 

sensory and association cortices during multisensory 

perception 

4.1 Abstract 

To form a reliable percept of the multisensory environment, the brain needs to integrate 

signals caused by a common source, but segregate those from different sources. Bayesian 

causal inference provides a rational strategy to arbitrate between information integration 

and segregation. Yet, its neural basis is unknown. In this functional magnetic resonance 

imaging (fMRI) study, participants localized audiovisual signals that varied in spatial 

discrepancy and visual reliability. While multivariate fMRI decoding revealed crossmodal 

influences already in primary sensory areas, only higher-order intraparietal sulci (IPS) 

integrated audiovisual signals weighted by their bottom-up sensory reliability and top-

down task-relevance. Critically, audiovisual integration was attenuated for large spatial 

discrepancies when it is unlikely that audiovisual signals originate from a common source. 

In line with the principles of Bayesian causal inference our results demonstrate that IPS 

integrates audiovisual signals into spatial priority maps by taking into account the 

probabilities of the environmental causal structures. 

 

4.2 Introduction 

Information integration and segregation is a fundamental task facing the brain in numerous 

perceptual and cognitive contexts (Shams and Beierholm, 2010). Most prominently, in our 

natural environment our senses are constantly bombarded with many different signals that 

provide uncertain information about the world. To form a reliable representation of the 

environment, the brain is challenged to integrate noisy signals originating from a common 

source and segregate those from different sources (Kording et al., 2007; Shams and 

Beierholm, 2010).  

Behaviorally, humans typically integrate sensory signals weighted by their relative 

reliability when they are close in time (Parise et al., 2012), space (Alais and Burr, 2004) and 

structure (Ernst and Banks, 2002). Recent elegant neurophysiological studies in macaque 

(Fetsch et al., 2013) have characterized how this reliability-weighted integration is 

implemented by single neurons and neuronal populations during a visual-vestibular 

heading task (Morgan et al., 2008; Fetsch et al., 2012). Consistent with theories of 

probabilistic population codes (Ma et al., 2006), they demonstrated that the dorsal medial 

superior temporal area combines visual and vestibular inputs linearly in proportion to 

their reliability.  
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Reliability-weighted integration is statistically optimal for signals coming from a 

common source. Yet, it fails to capture more natural situations where the brain is 

confronted with many signals that may or may not arise from a common source (Shams 

and Beierholm, 2010). Indeed, it is well-established that information integration breaks 

down for conflicting sensory signals (Welch and Warren, 1980; Stein and Meredith, 1993) 

that are unlikely to emanate from a common source. Most prominently, the ventriloquist 

illusion which illustrates how sensory signals are integrated into spatial representations is 

strongly modulated by the spatial discrepancy between the sensory signals (Wallace et al., 

2004). For small spatial discrepancies, the perceived auditory location shifts towards the 

visual location and vice versa depending on the relative sensory reliabilities (Alais and 

Burr, 2004); for large spatial discrepancies, these audiovisual biases and integration 

processes are greatly attenuated (Bertelson and Radeau, 1981).  

Recent behavioral studies have demonstrated that Bayesian causal inference can 

well account for this behavioral profile by explicitly modelling the potential causal 

structures of the sensory inputs (Kording et al., 2007). Under the assumption of a common 

source auditory and visual spatial estimates are combined weighted according to their 

reliabilities; under the hypothesis of different sources, they are treated independently. 

Critically, on a particular instance the brain does not know the underlying causal 

structures. It needs to infer their probabilities from the sensory inputs based on 

audiovisual correspondences such as spatial discrepancy. The brain is then thought to 

compute a final estimate of the auditory (or visual) signal location by combining the spatial 

estimates under the two causal assumptions (i.e., common vs. independent sources) 

weighted by their probability (Kording et al., 2007; Wozny et al., 2010). Causal inference 

thus provides the brain with a rational strategy to arbitrate between information 

integration and segregation by taking into account the probabilities of the underlying 

causal structures. 

Using multivariate pattern decoding this fMRI study investigated how the human 

brain integrates audiovisual signals into spatial representations depending on the causal 

structure of the world. In a spatial ventriloquist paradigm, we presented participants with 

audiovisual signals while manipulating bottom-up sensory reliability, top-down task-

relevance (i.e., visual vs. auditory report) and spatial discrepancy of the audiovisual signals. 

Our results demonstrate that the intraparietal sulcus (IPS) integrates audiovisual signals 

into spatial priority maps in line with the principles of Bayesian causal inference. 
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4.3 Materials and methods 

Participants 

After giving written informed consent, six healthy volunteers without a history of 

neurological or psychiatric disorders (all university students or graduates; 2 female; mean 

age 28.8 years, range 22-36 years) participated in the fMRI study. All participants had 

normal or corrected-to normal vision and reported normal hearing. One participant was 

excluded because of excessive head motion (4.206 / 3.518 STD above the mean of the 

translational / rotational volume-wise head motion based on the included 5 participants). 

Note that the data from these 5 participants were also analyzed in chapter 3 and 5. The 

study was approved by the human research review committee of the University of 

Tuebingen.  

 

Stimuli 

The visual stimulus was a cloud of 20 white dots (diameter: 0.43° visual angle) sampled 

from a bivariate Gaussian with a vertical standard deviation of 2.5° and a horizontal 

standard deviation of  2° or 14° presented on a black background (i.e., 100% contrast). The 

auditory stimulus was a burst of white noise with a 5 ms on/off ramp. To create a virtual 

auditory spatial signal, the noise was convolved with spatially specific head-related 

transfer functions (HRTFs) thereby providing binaural (interaural time and amplitude 

differences) and monoaural spatial filtering signals. The HRTFs were pseudo-individualized 

by matching participants’ head width, heights, depth and circumference to the 

anthropometry of participants in the CIPIC database (Algazi et al., 2001). HRTFs from the 

available locations in the database were interpolated to the desired location of the auditory 

signal.  

 

Experimental design 

In a spatial ventriloquist paradigm, participants were presented with synchronous, yet 

spatially congruent or discrepant visual and auditory signals (Fig. 4.1A). On each trial, 

visual and auditory locations were independently sampled from four possible locations 

along the azimuth (i.e., -10°, -3.3°, 3.3° or 10°) leading to four levels of spatial discrepancy 

(i.e., 0°, 6.6°, 13.3° or 20°).  In addition, we manipulated the reliability of the visual signal by 

setting the horizontal standard deviation of the Gaussian cloud to 2° (high reliability) or 

14° (low reliability) visual angle. In an inter-sensory selective-attention paradigm, 

participants either reported their auditory or visual perceived stimulus location. Hence,  

the 4 x  4 x 2 x 2 factorial design manipulated (1) the location of the visual stimulus ({-10°, -

3.3°, 3.3°, 10°}, i.e., the mean of the Gaussian) (2) the location of the auditory stimulus ({-
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10°, -3.3°, 3.3°, 10°}) (3) the reliability of the visual signal ({2°,14°}, STD of the Gaussian) 

and (4) task-relevance (auditory- / visual-selective report) (Fig. 4.1B).  

On each trial, synchronous audiovisual spatial signals were presented for 50 ms 

followed by a variable inter-stimulus fixation interval from 1.75-2.75 s. Participants 

localized the signal in the task-relevant sensory modality as accurately as possible by 

pushing one of four spatially corresponding buttons. Throughout the experiment, they 

fixated a central cross (1.6° diameter).  

To maximize design efficiency, stimuli and conditions were presented in a 

pseudorandomized fashion. Only the factor task-relevance was held constant within a 

session and counterbalanced across sessions. In each session, each of the 32 audiovisual 

spatial stimuli was presented exactly 11 times. 5.9% null-events were interspersed in the 

sequence of 352 stimuli per session. Each participant completed 20 sessions (10 auditory 

and 10 visual localization task; apart from one participant that performed 9 auditory and 

11 visual localization sessions). Before the fMRI study, the participants completed one 

practice session outside the scanner. 

The number of sessions of the main experiment (i.e., 10 sessions x 2 task-contexts = 

20 sessions) was determined based on a prior independent pilot study with one single 

subject that participated in 33 sessions in total including 17 scanning sessions for the 

auditory localization task. Computing the decoding performance for an increasing number 

of sessions demonstrated that reliable decoding performance was obtained approximately 

for  10 sessions (Supplemental fig. S4.2 and figure legend). Moreover, as the effect of 

visual reliability on audiovisual reweighting (cf. Fig. 4.3) was large (Cohen’s d = 0.829 in 

IPS0 in the pilot participant), we decided to scan a small sample of six participants 

extensively in 20 sessions.   

 

Experimental setup 

Audiovisual stimuli were presented using Psychtoolbox 3.09 (www.psychtoolbox.org) 

(Brainard, 1997) running under MATLAB R2010a (MathWorks). Auditory stimuli were 

presented at ~75 dB SPL using MR-compatible headphones (MR Confon). Visual stimuli 

were back-projected onto a Plexiglas screen using an LCoS projector (JVC DLA-SX21). 

Participants viewed the screen through an extra-wide mirror mounted on the MR head coil 

resulting in a horizontal visual field of approx. 76° at a viewing distance of 26 cm. 

Participants performed the localization task using an MR-compatible custom-built button 

device. Participants’ eye movements and fixation were monitored by recording the 

participants’ pupil location using an MR-compatible custom-build infrared camera 

(sampling rate 50 Hz) mounted in front of the participants’ right eye and iView software 

2.2.4 (SensoMotoric Instruments). 
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Behavioral data 

We quantified the relative influence of the visual and the auditory signal on the reported 

location as crossmodal bias CMB = (Lresponse – LAuditory) / (LVisual – LAuditory) for the 

incongruent trials. Lresponse denotes the reported location and LVisual (or LAuditory) the location 

of the visual (or auditory) signal. To accommodate the participant-specific central response 

bias, we adjusted LVisual and LAuditory using a linear regression based on the congruent trials 

alone. In these regression models, the reported visual (or auditory) locations were 

predicted by the true position of the visual (or auditory) locations including all congruent 

visual (or auditory) report trials irrespective of sensory reliability.  The predicted visual (or 

auditory) locations were entered as the LVisual (or LAuditory) in the formula to compute the 

crossmodal bias. 

The CMB was analyzed using a two (task-relevance: auditory vs. visual report) x two 

(visual reliability: high vs. low) x two (spatial discrepancy:  small (≤ 6.6°) vs. large (> 6.6°)) 

repeated measure ANOVA. To obtain more efficient and balanced estimates, we pooled 

over two levels of discrepancy. CMBs were normally distributed across participants (p ≥ 

0.797 in Kolmogorov-Smirnov tests in each of the 2 x 2 x 2 conditions). 

 

MRI data acquisition 

A 3T Siemens Magnetom Trio MR scanner was used to acquire both T1-weighted 

anatomical images and T2*-weighted axial echoplanar images (EPI) with BOLD contrast 

(gradient echo, parallel imaging using GRAPPA with an acceleration factor of 2, TR = 2480 

ms, TE = 40 ms, flip angle = 90°, FOV = 192×192 mm2, image matrix 78×78, 42 transversal 

slices acquired interleaved in ascending direction, voxel size = 2.5×2.5×2.5 mm3 + 0.25 mm 

interslice gap).  

In total, 353 volumes times 20 sessions were acquired for the ventriloquist paradigm, 161 

volumes times 2-4  sessions for the auditory localizer and 159 volumes times 10-16 

sessions for the visual retinotopic localizer resulting in approximately 18 hours of scanning 

in total per participant assigned over 7-11 days. The first three volumes of each session 

were discarded to allow for T1 equilibration effects. 

 

fMRI data analysis 

Ventriloquist paradigm 

The fMRI data were analyzed with SPM8 (www.fil.ion.ucl.ac.uk/spm) (Friston et al., 1994). 

Scans from each participant were corrected for slice timing, were realigned and unwarped 

to correct for head motion and spatially smoothed with a Gaussian kernel of 3 mm FWHM. 

The time series in each voxel was high-pass filtered to 1/128 Hz. All data were analyzed in 

native participant space. The fMRI experiment was modelled in an event-related fashion 
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with regressors entering into the design matrix after convolving each event-related unit 

impulse with a canonical hemodynamic response function and its first temporal derivative. 

In addition to modelling the 32 conditions in our 4 (auditory locations) x 4 (visual 

locations) x 2 (visual reliability) factorial design, the general linear model included the 

realignment parameters as nuisance covariates to account for residual motion artefacts. 

The factor task-relevance (visual vs. auditory report) was modelled across sessions. The 

parameter estimates pertaining to the canonical hemodynamic response function defined 

the magnitude of the BOLD response to the audiovisual stimuli in each voxel. For the 

multivariate decoding analysis, we extracted the parameter estimates of the canonical 

hemodynamic response function for each condition and session from voxels of the regions 

of interest (= fMRI activation vectors) defined in separate auditory and retinotopic localizer 

experiments (see below). Each fMRI activation vector for the 64 conditions in our 4x4x2x2 

factorial design was based on 11 trials within a particular session. To avoid the effects of 

image-wide activity changes, each fMRI activation vector was normalized to have mean 

zero and standard deviation one. 

For the multivariate decoding analysis, we used a linear support-vector regression 

model (SVR, as implemented in LIBSVM 3.14 (Chang and Lin, 2011) to determine how 

regions of interest in the visual and auditory processing hierarchies integrate auditory and 

visual signals into spatial representations. We trained the SVR model to learn the mapping 

from the fMRI activation vectors to the external spatial locations based on the audiovisually 

congruent conditions (including conditions of auditory and visual report) from all but one 

session. This learnt mapping from activation pattern to external spatial location was then 

used to decode the spatial location from the fMRI activation vectors of the spatially 

congruent and incongruent audiovisual conditions of the remaining session (see fig. 4.2A). 

In a leave-one-out cross-validation scheme, the training-test procedure was repeated for all 

sessions. 

By this procedure, the decoded spatial locations of the spatially incongruent 

conditions provide information about how a brain region combines visual and auditory 

spatial signals into spatial representations. To quantify the influence of the auditory and 

visual signals on the decoded spatial location, we used a linear regression approach (Fig. 

4.2B) where we predicted the decoded spatial location by the true auditory and true visual 

signal locations. Based on the principles of Bayesian causal inference, we expected that the 

influence of the true auditory and true visual location on the decoded spatial position 

would depend on three factors: (i) signal reliability, (ii) task relevance and (iii) audiovisual 

spatial discrepancy. Hence, we entered the true auditory and visual locations separately as 

explanatory variables into this regression model for each condition in a two (visual 

reliability: high vs. low) x two (task-relevance: auditory vs. visual report) x two (spatial 
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discrepancy: ≤ 6.6° vs. > 6.6°) factorial design (i.e., 8 (conditions) x 2 (true auditory or 

visual spatial locations) = 16 regressors in total). The auditory (ßA) and visual (ßV) 

parameter estimates quantified the influence of auditory and visual signals on the decoded 

spatial location for a particular condition.  To increase the efficiency of the parameter 

estimates in higher order association areas, we pooled the decoded spatial locations in 

IPS0-2 and IPS3-4 in the regression model (see (Liu et al., 2011) for a similar approach). 

For each condition in the two (visual reliability: high vs. low) x two (task-relevance: 

auditory vs. visual report) x two (spatial discrepancy: ≤ 6.6° vs. > 6.6°) factorial design, we 

computed the relative audiovisual weight as the angle wAV between the auditory and visual 

parameter estimates of the linear regression (wAV = atan(ßV / ßA)). Thus, wAV varied 

between pure visual (90°) and pure auditory (0°) influence (Fig. 4.4A-D). Confidence 

intervals of the mean wAV were computed using a double bootstrap (Martin, 1990) (to 

account for the small number of participants) for circular measures. To refrain from 

making any parametric assumptions, we evaluated the main effects of visual reliability, 

task-relevance, spatial discrepancy and their interactions in the factorial design using 

permutation testing of a likelihood ratio test statistic (Anderson and Wu, 1995) for circular 

measures (Tab. 4.1). To account for the within-subject design, permutations were 

constrained to occur within each participant. For the main effects of visual reliability, task-

relevance and discrepancy, wAV values were permuted within the levels of the non-tested 

factors (5000 random permutations). For tests of the interactions, values were freely 

permuted across all conditions (Gonzalez and Manly, 1998) (5000 random permutations).  

Further, we identified multisensory influences in primary sensory areas (i.e., 

auditory influence on V1 and visual influence on A1) for small spatial discrepancies by 

testing whether wAV was smaller than 90° (in V1) or larger than 0° (in A1) using a one-

sided permutation test. Specifically for small spatial discrepancies (≤ 6.6°) (Stein and 

Meredith, 1993), we randomly assigned (5000 times) the sign of the circular distance from 

the critical value in each participant (pooling over visual reliability x task-relevance). 

Unless otherwise stated, results are reported at p < 0.05.  

To correlate the neural and behavioral audiovisual weight indices, we first 

computed the behavioral audiovisual weight index using an equivalent regression model as 

for the neural weight index but with participants’ behavioral responses (instead of the 

decoded spatial location) being the dependent variable. Using a circular-circular 

correlation, we computed the correlation coefficient between neural and behavioral weight 

indices for each participant and condition in the two (visual reliability: high vs. low) x two 

(task-relevance: auditory vs. visual report) x two (spatial discrepancy: ≤ 6.6° vs. > 6.6°) 

factorial design (Fig. 4.4C). The correlation coefficients were averaged across participants 

after Fisher’s z transformation. 
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Auditory and visual retinotopic localizer 

Auditory and visual retinotopic localizers were used to define regions of interest along the 

auditory and visual processing hierarchies in a participant-specific fashion. In the auditory 

localizer, participants were presented with brief bursts of white noise at -10° or 10° visual 

angle (duration 500 ms, stimulus onset asynchrony 2 s). In a one-back task, participants 

indicated via a key press when the spatial location of the current trial was different from 

the previous trial. 20 s blocks of auditory conditions (i.e., 20 trials) alternated with 13 s 

fixation periods. The auditory locations were presented in a pseudorandomized fashion to 

optimize design efficiency. Similar to the main experiment, the auditory localizer sessions 

were modelled in an event-related fashion with the onset vectors of left and right auditory 

stimuli being entered into the design matrix after convolution with the hemodynamic 

response function and its first temporal derivative. Auditory responsive regions were 

defined as voxels in superior temporal and Heschl’s gyrus showing significant activations 

for auditory stimulation relative to fixation (p < 0.05, family-wise error corrected). Within 

these regions, we defined primary auditory cortex (A1) based on cytoarchitectonic 

probability maps (Eickhoff et al., 2005) and referred to the remainder (i.e., planum 

temporale and posterior superior temporal gyrus) as higher order auditory cortex (hA, see 

fig. 4.3). 

Standard phase-encoded retinotopic mapping (Sereno et al., 1995) was used to 

define visual regions of interest. Participants viewed a checkerboard background flickering 

at 7.5 Hz through a rotating wedge aperture of 70° width (polar angle mapping) or an 

expanding/contracting ring (eccentricity mapping). The periodicity of the apertures was 42 

s. Visual responses were modelled by entering a sine and cosine convolved with the 

hemodynamic response function as regressors in a general linear model. The preferred 

polar angle was determined as the phase lag for each voxel which is the angle between the 

parameter estimates for the sine and the cosine. The preferred phase lags for each voxel 

were projected on the reconstructed, inflated cortical surface using Freesurfer 5.1.0 (Dale 

et al., 1999). Visual regions V1-V3, V3AB and IPS0-IPS4 were defined as phase reversal in 

angular retinotopic maps. IPS0-4 were defined as contiguous, approximately rectangular 

regions based on phase reversals along the anatomical IPS (Swisher et al., 2007). For the 

decoding analyses, the auditory and visual regions were combined from the left and right 

hemispheres. 

 

Control analyses to account for eye movements as potential confounds 

Eye recordings were calibrated with standard eccentricities between ±3° and ±10° to 

determine the deviation from the fixation cross. Fixation position was post-hoc offset 

corrected. Eye position data were automatically corrected for blinks and converted to 
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radial velocity. For each trial, the post-stimulus mean horizontal eye position  and the 

number of saccades (defined by a radial eye-velocity threshold of 15° s-1 for a minimum of 

60 ms duration and radial amplitude larger than 1°) were quantified (0-875 ms after 

stimulus onset). We analyzed the eye movement indices including percent saccades, 

percent eye blinks and the post-stimulus mean horizontal eye position in three separate 

four (visual location) x four (auditory location) x two (visual reliability) x two (task-

relevance) repeated measure ANOVAs. As only the analysis of mean horizontal eye position 

revealed a trend of task relevance (Supplemental tab. S4.1), we performed an additional 

control analysis where we included the post-stimulus mean horizontal eye position as a 

nuisance covariate into the regression model in addition to the true auditory and visual 

locations to predict the fMRI decoded locations (Supplemental fig. S4.1 and tab. S4.2).  

 

4.4 Results 

In a spatial ventriloquist paradigm, we scanned five participants with fMRI whilst they 

were presented with synchronous, yet spatially congruent or discrepant visual and 

auditory signals (Fig. 4.1A). Visual and auditory locations were independently sampled 

from four spatial locations along the azimuth (i.e., -10°, -3.3°, 3.3° or 10°) resulting in four 

possible levels of spatial discrepancy (0°, 6.6°, 13.3°, 20°). In addition, we manipulated the 

reliability of the visual signal (high vs. low). On each trial, participants either reported their 

auditory or visual perceived location. Thus, the ventriloquist paradigm factorially 

manipulated auditory location, visual location, visual reliability and task-relevance (Fig. 

4.1B).  Yet, to investigate information integration from the perspective of causal inference, 

we reorganized these conditions into a two (visual reliability: high vs. low) x two (task-

relevance: auditory vs. visual report) x two (spatial discrepancy: ≤ 6.6° vs. > 6.6°) factorial 

design for the statistical analysis of the behavioral and fMRI data. 

 

Behavioral results 

The crossmodal bias [CMB = (Lresponse – LAuditory) / (LVisual – LAuditory)] quantifies the relative 

influence of the visual and auditory signals on the reported auditory and visual locations 

(Fig. 4.1C). We evaluated the crossmodal bias in a two (visual reliability: high vs. low) x two 

(task-relevance: auditory vs. visual report) x two (spatial discrepancy: ≤ 6.6° vs. > 6.6°) 

repeated measure ANOVA.  
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Figure 4.1. Example trial, experimental design and behavioral data. (A) In a ventriloquist paradigm, 
participants were presented with synchronous audiovisual (AV) signals originating from four possible 
locations along the azimuth. The visual signal was a cloud of white dots. The auditory signal was a brief burst 
of white noise. Participants localized either the auditory or the visual signal (n.b. for illustrational purposes 
the visual angles of the cloud have been scaled in a non-uniform fashion in this scheme). (B) The four-
factorial experimental design manipulated (1) the location of the visual (V) signal (-10°, -3.3°, 3.3°, 10°) (2) 
the location of the auditory (A) signal (-10°, -3.3°, 3.3°, 10°), (3) the reliability of the visual signal (high (VR+) 
versus low (VR-) spread of the visual cloud) (4) task-relevance (auditory vs. visual report). Using fMRI, we 
measured activation patterns to audiovisual signals of all experimental conditions from voxels of regions 
along the auditory and visual spatial processing hierarchies. (C) Crossmodal bias (CMB; across participants 
mean ± SEM, N = 5) as a function of visual reliability, task-relevance and spatial discrepancy (small (≤ 6.6°) 
vs. large (> 6.6°)). CMB quantifies the relative influence of the auditory and the visual signal on the reported 
locations. If CMB equals one, the reported location is influenced purely by the visual signal. If CMB equals 
zero, the reported location is influenced purely by the auditory signal.  
 

In line with the principle of reliability-weighted integration, the relative visual 

influence on the reported auditory and visual locations increased for high relative to low 

visual reliability as indicated by a significant main effect of visual reliability (F1,4 = 27.329, p 

= 0.006). Yet, even though the perceived (and reported) auditory location shifted towards 

the concurrent visual signal and vice versa (for small spatial discrepancies), the perceived 

auditory and visual locations differed for identical audiovisual stimulus combinations as 

indicated by a significant main effect of task-relevance on the crossmodal bias (F1,4 = 

41.372, p = 0.003). This response profile suggests that audiovisual signals were not fused 

into one unified percept.  

Critically, in line with Bayesian causal inference, this difference between crossmodal 

biases for auditory and visual report was significantly increased for large (> 6.6°) spatial 

discrepancies, when it is more likely that auditory and visual signals are caused by 

independent sources (i.e., a significant interaction between task-relevance and spatial 

discrepancy: F1,4 = 40.232, p = 0.003). Conversely, the modulatory effect of reliability on the 

crossmodal bias significantly decreased for large relative to small spatial discrepancies (i.e., 

interaction between reliability and spatial discrepancy: F1, 4 = 9.508, p = 0.037).  



4 Causal inference in primary and association cortices 

79 
 

Collectively, our behavioral results suggest that humans integrate audiovisual 

signals into spatial representations in line with the principles of Bayesian causal inference. 

For small spatial discrepancy, audiovisual signals are predominantly integrated weighted 

by the relative sensory reliabilities. For large spatial discrepancy, audiovisual integration is 

attenuated and the reported locations depend more strongly on the reported sensory 

modality.  

 

Functional Imaging analysis: fMRI decoding strategy  

To characterize how auditory and visual signals are integrated into spatial representations 

along the dorsal visual (Mishkin et al., 1983) and the auditory (Tian et al., 2001) spatial 

processing hierarchies, we combined functional magnetic resonance imaging (fMRI) with a 

multivariate pattern decoding approach. First, we defined the mapping between fMRI 

activation pattern and the spatial locations in the external world by training a support 

vector regression model selectively on the 16 types of trials that present auditory and 

visual signals at congruent locations along the azimuth (Fig. 4.2A). This trained support 

vector regression model was then used to decode the spatial locations from independent 

activation patterns of spatially congruent and discrepant trials (cf. fig. 4.1B). 

Second, we quantified the influence of auditory and visual signals on the spatial locations 

decoded from fMRI activation patterns separately for each region of interest using a linear 

regression model (Fig. 4.2B). In this regression model, the fMRI decoded locations were 

predicted by 16 regressors modelling the true spatial locations separately for auditory and 

visual signals for each condition in our two (auditory vs. visual report) x two (high vs. low 

visual reliability) x two (large vs. small spatial discrepancy) factorial design. The parameter 

estimates quantified the influence of the true auditory and visual locations on the decoded 

spatial representations. For instance, a high visual (ßV) and low auditory (ßA) parameter 

estimate suggests that a region integrates auditory and visual signals with a stronger 

weight assigned to the visual signal. In a region integrating audiovisual signals in line with 

Bayesian causal inference, we would expect that the auditory and visual regression 

coefficients depend on visual reliability and task-relevance (i.e., auditory vs. visual report; 

Fig. 4.2C).  
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Third, we obtained a summary index for the relative audiovisual weights by 

computing wAV  as the inverse tangent of the visual and auditory parameter estimates from 

the regression model (= atan(ßV / ßA)). This relative weight index ranges from pure visual 

(90°) to pure auditory (0°) influence (Fig. 4.4A-D). We performed the statistics on the 

audiovisual neural weight index using a two (auditory vs. visual report) x two (high vs. low 

visual reliability) x two (large vs. small spatial discrepancy) factorial design (see tab. 4.1 for 

results of the three-way analysis based on circular statistics (Anderson and Wu, 1995)). As 

the three-way interaction was not significant, we present the parameter estimates from the 

regression model and the relative audiovisual weights separately as a function of visual 

reliability, task-relevance and spatial discrepancy (Fig. 4.3 and 4.4A-C) and as a function of 

both task-relevance and spatial discrepancy (Fig. 4.4D).  

Figure 4.2. Multivariate pattern 

analysis to decode spatial 

representations from fMRI activation 

patterns. (A) Based on audiovisual 

congruent conditions alone, a linear 

support vector regression (SVR) model 

learnt the mapping from activation 

patterns to signal locations. This trained 

SVR model was used to decode the spatial 

representations from independent test 

activation patterns of both audiovisual 

incongruent and congruent trials. For 

instance, the activation pattern for 

audiovisual (A = -3° / V = 3°) incongruent 

trials should map approximately to 3° in a 

purely visual (V) region and to -3° in a 

purely auditory (A) region. In an 

audiovisual integration region, however, 

it maps to an intermediate value between 

-3° and 3° depending on the relative 

influences of auditory and visual signals on the activation patterns. (B) The auditory and visual influences 

were quantified in a linear regression that used the true auditory and visual locations (separately for the 

conditions of visual reliability x task-relevance x spatial discrepancy) to predict the fMRI decoded signal 

locations. The auditory (ßA) and visual (ßV) regression coefficients index the influence of auditory and/or 

visual spatial signals on a region’s spatial representation. (C) In a region that only partially integrates 

audiovisual signals weighted by reliability, we predicted that a decrease in visual reliability (high (VR+) vs. 

small (VR-)) reduces the visual (i.e., ßV) and concurrently increases the auditory influence (i.e., ßA) on its 

spatial representations (pooling over spatial discrepancy). Further, we predicted that auditory report 

increases auditory influence, while visual report increases visual influence. 
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Table 4.1. Statistical significance of main and interaction effects of the factors visual reliability (VR), task- 
relevance (TR) and discrepancy (Discr) for the audiovisual weight index wAV. 

 VR 
 

p 

TR 
 

p 

Discr 
 

p 

VR X TR 
 

p 

VR 
X Discr 

p 

TR X 
Discr 

p 

VR X TR X 
Discr 

p 

V1 0.96 0.18 <0.001 0.49 0.07 0.88 0.65 

V2 0.02 0.62 0.008 0.47 0.29 0.25 0.23 

V3 0.64 0.20 0.24 0.34 0.29 0.67 0.66 

V3AB 0.47 0.06 0.07 0.61 0.01 0.96 0.54 

IPS0-2 0.009 0.003 0.79 0.08 0.13 0.94 0.94 

IPS3-4 <0.001 <0.001 0.50 0.49 0.57 0.05 0.61 

hA 0.41 0.001 0.55 0.44 0.89 0.44 0.75 

A1 0.09 0.09 0.10 0.57 0.96 0.80 0.28 

Note: p values were derived from permutation tests using a circular log likelihood ratio statistic. N = 5. P 
values in bold indicate significant values. 

 

Audiovisual influences in primary sensory areas 

As accumulating evidence suggests that multisensory integration may start already at the 

primary, putatively unisensory level (Foxe et al., 2000; Bonath et al., 2007; Kayser et al., 

2007; Lakatos et al., 2007; Noesselt et al., 2007; Lewis and Noppeney, 2010; Werner and 

Noppeney, 2010), we first investigated whether audiovisual influences can be identified in 

primary auditory and visual areas. For small audiovisual spatial discrepancies (≤ 6.6°), we 

expected that the spatial location decoded from primary auditory areas shifts towards the 

true visual location and that the location decoded from primary visual areas shifts towards 

the true auditory location. Indeed, in primary visual area (V1) the relative audiovisual 

weight index was significantly smaller than 90° (p = 0.022, one-sided permutation test) 

indicating that the decoded spatial locations were biased towards the true auditory 

location. Conversely, in primary auditory cortex (A1) the audiovisual weight index was 

larger than 0° (p = 0.008, one-sided permutation test) indicating a significant bias towards 

the true visual location. While these results demonstrate that signals from the non-

preferred sensory modality influence neural representations at the primary cortical level, 

the crossmodal influences were relatively small. Thus, in primary sensory areas, the 

decoded location was predominantly determined by the true location of the preferred 

sensory signal (Fig. 4.4B). 
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Figure 4.3. The influence of auditory and visual signals on the spatial representations decoded from 
regions along the auditory and visual spatial processing hierarchies. The influence – as indexed by the 
auditory (ßA) and visual (ßV) regression coefficients (across participants mean ± SEM; N = 5) - are shown as a 
function of visual reliability (high (VR+) vs. small (VR-)) and task-relevance (auditory (A) vs. visual (V) 
report) (pooled over spatial discrepancy). In the center of the figure, activations for all audiovisual stimuli > 
baseline for a representative participant is overlaid on the participant’s inflated cortical surface (thresholded 
at p < 0.001, uncorrected for illustrational purposes). The functionally defined regions of interest are 
demarcated in white.  
 

Effect of sensory reliability on audiovisual integration  

Behaviorally, humans integrate signals that are close in space, time and structure weighted 

by their relative reliabilities (Ernst and Banks, 2002; Alais and Burr, 2004). Yet, low-level 

visual areas encompassing V1, V2, V3 and V3A/B showed an effect of visual reliability 

predominantly on the visual parameter estimate (see fig. 4.3, bottom). By contrast, only 

higher parietal cortices (IPS0 - IPS4) were governed by the classical reliability-driven 

reweighting where a decrease in visual reliability induced a concurrent reduction in visual 

and an increase in auditory weight (see figure 4.3, top left). Indeed, these impressions were 

confirmed in the circular statistics of the relative audiovisual weight index that identified 

significant effects of reliability primarily in IPS0-2 and IPS3-4. An additional effect of 

reliability was observed in V2.  
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Figure 4.4. Audiovisual weight index 
as a function of visual reliability, 
task-relevance and discrepancy and 
its correlation with the 
corresponding behavioral weight 
index in the regions of interest. 
Audiovisual weight index wAV (across 
participants circular mean and double-
bootstrapped 68% confidence interval, 
N = 5) was computed as the angle 
between the auditory and visual 
regression coefficients (atan(ßV/ßA)). 
For a purely visual region, wAV is 90°. 
For a purely auditory region, it is 0°. 
Asterisks indicate the statistical 
significance of effects on wAV derived 
from a circular log likelihood ratio 
statistic. (A) Audiovisual weight index 
wAV as a function of visual reliability 
(high (VR+) vs. small (VR-)). (B) 
Audiovisual weight index wAV as a 
function of task-relevance (auditory (A) 
vs. visual (V) report). (C) Audiovisual 
weight index wAV as a function of 
audiovisual spatial discrepancy (small 
(≤ 6.6°; D-) vs. large (> 6.6°; D+)). (D) 
Audiovisual weight index wAV in IPS3-4 
as a function of task-relevance and 
discrepancy. (E) Circular-circular 
correlation (across participants mean 
after Fisher z transformation ± SEM, N 
= 5) between the neural weight index 
wAV and the equivalent behavioral 
weight index in the regions of interest. 

 

Effect of task-relevance on audiovisual integration and its interaction with spatial 

discrepancy 

Next, we asked where auditory and visual signals are integrated into spatial 

representations depending on whether the visual or the auditory signals were task-

relevant and needed to be reported as observed in human behavior. While we found a 

significant main effect of task-relevance (i.e., visual vs. auditory report) on the audiovisual 

weight index already in higher-order auditory areas (hA) encompassing the belt and the 

planum temporale, the effect emerged predominantly in higher-order association areas 

such as IPS0-4 (cf. tab. 4.1). In all these areas, the visual signal exerted a stronger influence 

on the decoded location during visual report and the auditory signal on the decoded 

location during auditory report (Fig. 4.3 top left; Fig. 4.4B).  
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The difference in spatial representations for auditory and visual report already 

suggests that the brain integrates audiovisual signals only partially. More formally, it 

combines a fused multisensory estimate with a unimodal visual (or auditory) estimate for 

visual (or auditory) report. From the perspective of causal inference, we expected the 

influence of the unisensory estimate on the spatial representations to be stronger for large 

spatial discrepancies, when it is more likely that auditory and visual signals are generated 

by independent sources. Indeed, IPS3-4 showed a significant interaction between task-

relevance and spatial discrepancy (cf. tab. 4.1). Thus, as expected under Bayesian causal 

inference, the spatial representations decoded from IPS3-4 showed a greater difference for 

visual versus auditory report for large (Fig. 4.4D, dashed lines) relative to small spatial 

discrepancies (Fig. 4.4D, solid lines). These results indicate that IPS3-4 integrates the 

audiovisual signals by taking into account the probabilities of the potential causal 

structures in the environment.  

 

Effect of spatial discrepancy on audiovisual integration   

In contrast to the interaction between task-relevance and spatial discrepancy that was 

found primarily in IPS areas, we observed a main effect of spatial discrepancy in V1 and V2 

(Fig. 4.4C). Small spatial discrepancies increased the auditory ‘attractive’ influence on the 

spatial representations decoded from visual areas (c.f. solid lines are below dotted lines in 

V1, V2 in Fig. 4.4C). Conversely, small spatial discrepancy increased the visual ‘attractive’ 

influence on spatial representations decoded from auditory areas (solid lines are above 

dotted lines in A1 in fig. 4.4C, p < 0.05 for unidirectional hypothesis). These results suggest 

that integration in low-level sensory areas depends on auditory and visual signals co-

occurring within a spatial window (Stein and Meredith, 1993). 

 

Relation of neural and behavioral weight indices of audiovisual spatial integration 

Finally, we asked how and where in the cortical hierarchies the neural weights were 

related with the behavioral weights. For this, we computed the behavioral weights based 

on participants’ behavioral localization reports using the same regression approach that 

we employed for the fMRI decoded spatial locations. Next, we computed the correlation 

between the neural and behavioral weight indices for each of the regions of interest. The 

correlation coefficient increased along the visual processing hierarchy culminating in IPS3-

4 (Fig. 4.4E). Likewise, in the auditory system, the correlation between neural and 

behavioral weights was enhanced in higher-order auditory areas relative to primary 

auditory cortex. Hence, IPS3-4 integrates auditory and visual signals into spatial 

representations that are critical to guide behavioral performance such as spatial orienting.  

 



4 Causal inference in primary and association cortices 

85 
 

Controlling for eye movements as potential confounds 

To address potential concerns that our decoding results may be confounded by eye 

movements, we performed a series of control analyses. First, we evaluated participants’ eye 

movements based on eye tracking data recorded concurrently during fMRI acquisition. 

Fixation was well maintained throughout the experiment with post-stimulus saccades 

detected in only 2.293 ± 1.043 % (mean ± SEM) of the trials. Moreover, 4 (visual location) x 

4 (auditory location) x 2 (visual reliability) x 2 (task-relevance) repeated measure ANOVAs 

performed separately for (i) % saccades or (ii) % eye blinks revealed no significant main 

effects or interactions. The repeated measure ANOVA on post-stimulus mean horizontal 

eye position (0-875 ms post-stimulus onset) revealed only trends for the main effect of 

task-relevance and visual local positions (Supplemental tab. S4.1).  

As a further control analysis, we therefore re-performed the linear regression 

analyses (with fMRI decoded spatial location as dependent variable) and included post-

stimulus mean horizontal eye position as a nuisance covariate in addition to the true 

auditory and visual locations to predict the fMRI decoded locations. This analysis basically 

replicated our initial results (Supplemental fig. S4.1 and tab. S4.2).  

 

4.5 Discussion 

This study combined psychophysics and fMRI to investigate how the human brain 

integrates and segregates sensory signals depending on the causal structure of the 

multisensory world.  

At the behavioral level, our results show that participants integrate signals into 

spatial representations in line with the principles of Bayesian causal inference: They 

integrate audiovisual signals weighted by their reliability, when signals are close in space. 

They mostly segregate information and report the location predominantly of the task-

relevant signal, when signals are spatially discrepant and hence unlikely to arise from a 

common source. 

Combining fMRI and multivariate pattern decoding we characterized how the brain 

forms audiovisual spatial representations along the visual (Mishkin et al., 1983) and 

auditory (Tian et al., 2001) spatial processing hierarchies. Accumulating evidence has 

demonstrated that multisensory integration is not limited to association cortices 

(Beauchamp et al., 2004; Hein et al., 2007; Sadaghiani et al., 2009; Lewis and Noppeney, 

2010; Werner and Noppeney, 2010), but emerges already at the primary, putatively 

unisensory, level (Foxe et al., 2000; Bonath et al., 2007; Kayser et al., 2007; Lakatos et al., 

2007; Noesselt et al., 2007; Lewis and Noppeney, 2010; Werner and Noppeney, 2010) via 

thalamocortical mechanisms (Lakatos et al., 2007), direct connectivity between sensory 

areas (Falchier et al., 2002) or top-down influences from higher-order association cortices 
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(Macaluso and Driver, 2005). Likewise, we observed bidirectional audiovisual influences 

already in primary sensory areas: The visual location influenced the spatial representations 

in primary auditory cortex and vice versa. In line with the well-established spatial principle 

of multisensory integration (Stein and Meredith, 1993), these audiovisual influences 

emerged primarily when auditory and visual signals were close in space. Yet, even in the 

case of small spatial discrepancy, the audiovisual influences in primary sensory areas were 

still relatively small when compared to parietal cortices. These findings dovetail nicely with 

previous neurophysiological studies showing about 15% ‘multisensory’ neurons in primary 

sensory areas (Bizley et al., 2007) but more than 50% in classical association areas such as 

intraparietal or superior temporal sulci (Dahl et al., 2009).  

Critically, however, our study showed that multisensory interactions not only 

increased progressively along the cortical hierarchy, but also changed their computational 

operations from primary visual to higher-order parietal areas. In primary visual areas, the 

visual reliability predominantly affected the visual influence on the decoded spatial 

locations leaving the auditory influence mostly unchanged. In other words, low level 

sensory areas did not yet combine sensory inputs according to reliability-driven 

reweighting (see fig. 4.3).  

By contrast, higher-order parietal areas (IPS0-4) integrated auditory and visual 

signals weighted by their reliability, such that a decrease in visual reliability reduced the 

influence of the visual signals and concurrently amplified the influence of the auditory 

signals on the decoded spatial location. Yet, even parietal areas did not integrate sensory 

signals into one unified or ‘amodal’ spatial representation as expected under traditional 

forced fusion models (Ernst and Banks, 2002; Alais and Burr, 2004). Instead, IPS0-4 

integrated auditory and visual spatial inputs only partially, so that the decoded spatial 

estimates differed for identical audiovisual signals depending on the reported sensory 

modality (cf. fig. 4.4B). These results suggest that higher-order parietal cortices integrate 

audiovisual signals weighted by both bottom-up sensory reliability and top-down task-

relevance (i.e., visual vs. auditory report) (Gottlieb et al., 1998).  

Critically, in line with Bayesian causal inference, spatial discrepancy increased the 

difference between the spatial estimates decoded from IPS3-4 for auditory and visual 

report: When auditory and visual signals were spatially proximate and likely to provide 

information about the same event, IPS3-4 integrated them weighted by their reliability into 

spatial estimates that converged for auditory and visual report. Yet, when audiovisual 

signals were spatially discrepant and hence likely to emanate from independent events, 

IPS3-4 processed sensory information in a predominantly segregated fashion. In sum, 

Bayesian causal inference provides IPS3-4 with a computational strategy to arbitrate 
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flexibly between information integration and segregation depending on the probabilities of 

the underlying causal structures.  

Collectively, our results reveal spatial discrepancy as a critical cue informing the 

brain whether or not sensory signals are generated by independent sources and should 

hence be segregated. Importantly, however, spatial discrepancy induces distinct types of 

information segregation at low and high levels of the cortical hierarchy. In primary sensory 

areas, spatial discrepancy controls the contribution of the non-preferred signals to the 

spatial representations irrespective of the task-context. For instance, large spatial 

discrepancies enable the primary visual cortex to form a visual spatial estimate largely 

unaffected (or even repulsed) by concurrent auditory input (and vice versa for auditory 

areas).  

By contrast, in IPS3-4 spatial discrepancy controls the contribution of signals from 

the task-irrelevant sensory modality to the neural spatial representations. Exploiting 

information from all sensory signals depending on whether they arise from common or 

independent sources allows IPS3-4 to compute the most precise spatial estimates of the 

task-relevant target position. Indeed, the behavioral relevance of the IPS3-4 spatial 

estimates is further indicated by the correlation between the neural and behavioral 

weights, which progressively increases along the auditory and visual processing 

hierarchies. It culminates in IPS3-4, which plays a key role in guiding behavioral responses 

for spatial tasks (Macaluso et al., 2003).  

Our results thus suggest that parietal cortices integrate sensory signals into 

multisensory spatial priority maps (Busse et al., 2005; Talsma et al., 2010) where the 

relevance of a spatial location is defined jointly by signals from multiple sensory modalities 

dependent on their relative sensory reliability, their importance for a particular task and 

the causal structure of the environment. Multisensory priority maps go functionally beyond 

traditional unisensory spatial priority maps (Gottlieb et al., 1998; Bisley and Goldberg, 

2010), as they enable spatial orienting and effective interactions with our complex 

multisensory environment (Macaluso et al., 2003). Via back-projections these IPS spatial 

priority maps may also mediate audiovisual influences on spatial representations in low-

level sensory areas (Macaluso and Driver, 2005; Driver and Noesselt, 2008) thereby 

making prioritized locations available to large parts of neocortex (Ghazanfar and 

Schroeder, 2006). 

In conclusion, our results demonstrate distinct computational operations in low-

level sensory and higher-order association areas. In low-level sensory areas, multisensory 

influences were small, not yet governed by reliability-driven reweighting and less 

susceptible to top-down influences. By contrast, IPS3-4 partially integrated sensory signals 

weighted by their bottom-up reliability and top-down task-relevance into spatial 
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representations that take into account the probabilities of the environmental causal 

structures. Thus, IPS3-4 integrates sensory signals into multisensory spatial priority maps 

in accordance with the principles of Bayesian causal inference.  
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4.8 Supplemental results 

 

Supplemental figure S4.1. 
Audiovisual weight index (after 
controlling for eye movements) in 
the regions of interest. Audiovisual 
weight index wAV (across participants 
circular mean and double-
bootstrapped 68% confidence 
interval, N = 5) was computed as the 
angle between the auditory and visual 
regression coefficients (atan(ßV/ßA)). 
In order to control for horizontal eye 
movements, we included the post-
stimulus mean horizontal eye 
position as a nuisance covariate in 
addition to the true auditory and 
visual locations to predict the fMRI 
decoded locations. For a purely visual 
region, wAV is 90°. For a purely 
auditory region, it is 0°. Asterisks 
indicate the statistical significance of 
effects on wAV derived from a circular 
log likelihood ratio statistic. (A) 
Audiovisual weight index wAV as a 
function of visual reliability (high 
(VR+) vs. small (VR-)). (B) 
Audiovisual weight index wAV as a 
function of task-relevance (auditory 
(A) vs. visual (V) report). (C) 

Audiovisual weight index wAV as a function of audiovisual spatial discrepancy (small (≤ 6.6°; D-) vs. large (> 
6.6°; D+)). (D) Audiovisual weight index wAV in IPS3-4 as a function of task-relevance and discrepancy. 
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Supplemental figure S4.2. Decoding performance 
of the linear support vector regression model as a 
function of the number of included scanning 
sessions for a single participant from a prior pilot 
study. In a spatial ventriloquist paradigm, the pilot 
participant completed 33 sessions including 17 
sessions for the auditory localization task. We 
computed the correlation coefficient between the 
true and decoded signal location in audiovisual 
congruent conditions as an index of decoding 
performance across an increasing number of sessions 
(i.e., from 2 sessions to 17 sessions). To obtain a 
more reliable estimate of the decoding performance, 
we computed the correlation coefficient by sampling 
n sessions without replacement up to 25 times for 

each number n of sessions. We computed and presented the correlation coefficient (after Fisher z 
transformation) averaged across these samples as a function of the number n of sessions. 
 

Supplemental table S4.1. Main and interaction effects of the factors visual signal location (LV), auditory signal 
location (LA), visual reliability (VR), and task- relevance (TR) on post-stimulus eye-movement indices in 
repeated measure ANOVAs. 

 
Percent saccades 

 
Horizontal eye position 

 
Percent blinks 

 
F df1 df2 p 

 
F df1 df2 p 

 
F df1 df2 p 

TR 3.82 1 4 0.12 
 

7.73 1 4 0.05 
 

0.04 1 4 0.86 

VR 0.10 1 4 0.77 
 

1.82 1 4 0.25 
 

0.46 1 4 0.53 

LV 1.86 1.1 4.4 0.24 
 

5.38 1.0 4.2 0.08 
 

1.56 1.5 6.1 0.28 

LA 1.06 1.2 4.6 0.37 
 

3.25 1.1 4.3 0.14 
 

0.88 1.5 6.1 0.43 

TR X VR 0.02 1 4 0.89 
 

1.38 1 4 0.31 
 

3.29 1 4 0.14 

TR X LV 1.70 1.0 4.2 0.26 
 

5.84 1.0 4.2 0.07 
 

0.79 1.9 7.4 0.48 

TR X LA 1.12 1.7 6.6 0.37 
 

1.69 1.0 4.2 0.26 
 

0.57 1.4 5.7 0.54 

VR X LV 1.02 2.0 7.8 0.40 
 

3.08 1.6 6.3 0.12 
 

3.26 2.0 7.9 0.09 

VR X LA 1.56 1.3 5.3 0.28 
 

1.10 1.1 4.3 0.36 
 

0.75 1.7 6.6 0.49 

LV X LA 0.79 2.3 9.1 0.50 
 

1.92 2.0 8.2 0.21 
 

1.79 2.5 10.0 0.22 

TR X VR X LV 0.37 1.6 6.3 0.66 
 

0.27 1.4 5.5 0.69 
 

0.11 2.3 9.4 0.92 

TR X VR X LA 0.13 1.7 6.6 0.84 
 

3.06 1.4 5.7 0.13 
 

1.01 1.5 5.9 0.39 

TR X LV X LA 0.97 2.3 9.3 0.43 
 

0.62 2.4 9.8 0.59 
 

1.63 2.6 10.3 0.24 

VR X LV x LA 1.08 2.2 8.6 0.39 
 

1.28 2.2 8.6 0.33 
 

1.17 2.2 8.7 0.36 

TR X VR X LV X LA 1.63 2.4 9.7 0.25 
 

0.82 2.1 8.2 0.48 
 

1.49 2.2 8.6 0.28 

Note:  p values are Greenhouse-Geisser corrected. N = 5. 
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Supplemental table S4.2. Statistical significance of main and interaction effects of the factors 
visual reliability (VR), task- relevance (TR) and discrepancy (Discr) for the audiovisual weight 
index wAV when effects of the post-stimulus mean horizontal position of the eyes were controlled. 

 VR 
 

p 

TR 
 

p 

Discr 
 

p 

VR X TR 
 

p 

VR 
X Discr 

p 

TR X 
Discr 

p 

VR X TR X 
Discr 

p 

V1 0.96 0.18 0.002 0.51 0.05 0.85 0.65 

V2 0.03 0.70 0.024 0.49 0.27 0.26 0.26 

V3 0.64 0.24 0.71 0.38 0.32 0.78 0.67 

V3AB 0.44 0.09 0.18 0.61 0.004 0.96 0.60 

IPS0-2 0.010 0.005 0.93 0.08 0.11 0.90 0.96 

IPS3-4 0.001 0.001 0.42 0.58 0.47 0.05 0.53 

hA 0.54 0.004 0.83 0.32 0.87 0.36 0.68 

A1 0.11 0.12 0.13 0.56 0.99 0.81 0.30 

Note: p values were derived from permutation tests using a circular log likelihood ratio statistic. N 
= 5. P values in bold indicate significant values. 
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5 Suboptimal reliability-weighted integration of audiovisual 

spatial signals in parietal cortex 

5.1 Abstract 

To estimate an uncertain physical quantity, for example an object’s location, the optimal 

strategy is to weight the quantity’s noisy signals proportional to their relative reliability. 

Even though psychophysical studies demonstrate that human observers apply this 

principle when integrating unisensory, multisensory and motor signals, evidence for how 

the brain accomplishes this feat remains scarce. Combining psychophysics and multivariate 

fMRI decoding in a spatial ventriloquist paradigm, we characterized the computational 

operations underlying reliability-weighted audiovisual integration at several cortical levels 

along the auditory and visual processing hierarchy. The neural sensory weights were 

estimated by fitting ‘neurometric’ functions to the spatial locations decoded from regional 

fMRI activation patterns and compared to ‘optimal’ predicted sensory weights. Our results 

demonstrate that selectively the intraparietal sulcus forms spatial representations by 

integrating auditory and visual signals weighted by their relative reliability in a suboptimal 

fashion. Additionally, visual signals attained larger weights if they were selectively focused 

compared to a focus on auditory signals. By contrast, low-level auditory and visual regions 

encoded mainly the spatial signal of their preferred sensory modality, with only a small 

influence of the non-preferred modality. Together, the results demonstrate that higher-

order multisensory regions perform probabilistic computations such as reliability-

weighting, even though the computations might involve more complex processes like 

causal inference. 

 

5.2 Introduction 

In our natural environment our brain is confronted with noisy signals that provide 

uncertain information about the world. To construct the most likely and accurate 

representation of the environment, the brain is challenged to integrate signals from 

different senses if they pertain to a common object or event. Numerous psychophysics 

studies have demonstrated that human observers combine signals within and across the 

senses weighted in proportion to their reliability (i.e., the inverse of the signals’ 

uncertainty)(Jacobs, 1999; Ernst and Banks, 2002; van Beers et al., 2002; Battaglia et al., 

2003; Knill and Saunders, 2003; Alais and Burr, 2004; Hillis et al., 2004; Saunders and Knill, 

2004; Rosas et al., 2005). In other words, greater weight is given to sensory signals that are 

more reliable. This reliability-weighted integration of sensory signals is statistically 

optimal in that it yields the most precise unbiased perceptual estimate (i.e., the maximum 
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likelihood estimate, MLE). Thus, reliability-weighted integration is a fundamental 

mechanism that enables the brain to generate a more reliable representation of the world. 

Thereby, the weighting scheme increases performance accuracy on many tasks such as 

perception of depth (Jacobs, 1999), shape discrimination (Ernst and Banks, 2002) and 

spatial localization (Alais and Burr, 2004) as indicated by the ventriloquist illusion. Thus, in 

spatial ventriloquism the perceived sound location is shifted towards the visual stimulus 

and vice versa dependent on the relative reliabilities (Alais and Burr, 2004).  

Despite the vast body of behavioral evidence showing near-optimal integration in 

humans, the neural basis of reliability-weighted integration has remained unexplored. Only 

recently, elegant neurophysiological studies have started to characterize the neural 

mechanisms of visual-vestibular integration during a heading discrimination task in awake 

macaque (Fetsch et al., 2013). These studies demonstrated that single neurons (Morgan et 

al., 2008) and populations of neurons (Fetsch et al., 2012) in the dorsal medial superior 

temporal area (dMST) integrated visual and vestibular information weighted by their 

reliability. However, the neural basis of reliability-weighted integration has yet to be 

identified in humans. Moreover, neurophysiological recordings focused selectively on 

dMST as one particular region of interest. Yet, over the past decade, evidence has 

accumulated showing that multisensory integration is not deferred until later processing 

stages in higher-order association cortices (Calvert et al., 2000; Beauchamp et al., 2004; 

Sadaghiani et al., 2009; Lewis and Noppeney, 2010; Werner and Noppeney, 2010), but 

starts already at the primary cortical level (Foxe et al., 2000; Ghazanfar and Schroeder, 

2006; Bonath et al., 2007; Kayser et al., 2007; Lakatos et al., 2007; Lewis and Noppeney, 

2010; Werner and Noppeney, 2010). These findings raise the question at which level of the 

cortical hierarchy sensory information is integrated weighted by their reliability in line 

with human behavior.  

Traditionally, it is assumed that sensory signals that are close in time, space and 

structure are fused in a mandatory and automatic fashion into one unified percept (Jacobs, 

1999; Ernst and Banks, 2002; van Beers et al., 2002; Battaglia et al., 2003; Knill and 

Saunders, 2003; Alais and Burr, 2004; Hillis et al., 2004; Saunders and Knill, 2004; Rosas et 

al., 2005; Fetsch et al., 2012). However, this classical forced fusion model has recently been 

challenged on two grounds. First, psychophysics studies have shown cases of only partial 

integration for signals that are spatiotemporally disparate (Wallace et al., 2004; Gepshtein 

et al., 2005; Parise et al., 2012). Moreover, recent EEG evidence (Donohue et al., 2011) 

indicated that multisensory integration depends on participant’s attentional context 

indicating that multisensory integration is determined by both bottom-up sensory signals 

and top-down cognitive context (e.g., selective attention) (Alsius et al., 2005; Busse et al., 

2005; Talsma et al., 2010). 
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This fMRI study combined psychophysics, multivariate decoding and quantitative 

predictions based on the MLE model (Ernst and Banks, 2002) to investigate the neural 

basis of bottom-up reliability-weighted integration and its interaction with top-down task-

relevance in humans. In a spatial ventriloquist paradigm, participants were presented with 

auditory, visual and audiovisual spatially congruent and slightly disparate signals. 

Participants selectively reported the location of the visual or the auditory signal. From 

psychometric and neurometric functions we obtained quantitative predictions for the 

behavioral and neural weights based on the MLE model. Critically, imaging the entire 

auditory (Tian et al., 2001) and visual (Mishkin et al., 1983) spatial processing hierarchy 

enabled us to characterize the computational operations in low level auditory, visual and 

higher-order parietal cortices.  

 

5.3 Materials and methods 

Participants 

After giving written informed consent, six healthy volunteers (2 female, mean age 28.8 

years, range 22-36 years) participated in the fMRI study. All participants had normal or 

corrected-to normal vision and reported normal hearing. One participant was excluded due 

to excessive head motion (4.206 / 3.518 STD above the mean of the translational / 

rotational volume-wise head motion based on the included 5 participants). Data from the 

participants were also analyzed in chapter 3 and 4, except that in the current study we 

moreover analyzed data from unimodal conditions (see below). The study was approved by 

the human research review committee of the University of Tuebingen.  

 

Stimuli 

The visual stimulus was a cloud of 20 white dots (diameter: 0.43° visual angle) sampled 

from a bivariate Gaussian with a vertical standard deviation of 2.5° and a horizontal 

standard deviation of  2° or 14° (high and low visual reliability). The visual stimulus was 

presented on a black background (i.e., 100% contrast). The auditory stimulus was a burst 

of white noise with a 5ms on/off ramp. To create a virtual auditory spatial signal, the noise 

was convolved with spatially specific head-related transfer functions (HRTFs). The HRTFs 

were pseudo-individualized by matching participants’ head width, heights, depth and 

circumference to the anthropometry of participants in the CIPIC database (Algazi et al., 

2001) and were interpolated to the desired location of the auditory signal.  

 

Experimental design and procedure 

In unimodal conditions of the spatial ventriloquist paradigm, participants were presented 

either with auditory or with visual signals of low or high reliability. The signals were 
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sampled from four possible locations along the azimuth (i.e., -10°, -3.3°, 3.3° or 10°). This 

yielded 4 (auditory locations) unimodal auditory and 4 (visual locations) x 2 (visual 

reliability: high vs. low) unimodal visual conditions. In bimodal conditions, participants 

were presented with synchronous auditory and visual signals of high and low visual 

reliability independently sampled from the four possible locations. This yielded 4 (auditory 

location) x 4 (visual location) x 2 (visual reliability) audiovisual conditions. For the current 

study, we only analyzed data from congruent (△AV = 0°; 4 (signal location) x 2 (visual 

reliability) conditions) and slightly disparate conditions (3 (signal location) x 2 (visual 

reliability) conditions for △AV = 6° and = -6°, respectively). 

On each trial, spatial signals were presented for 50ms followed by a variable inter-

stimulus fixation interval from 1.75-2.75s. Participants reported their auditory perceived 

location in the unisensory auditory and the audiovisual sessions with auditory report. They 

reported their visual perceived location in the visual and the audiovisual sessions with 

visual report. Participants indicated the perceived location by pushing one of four spatially 

corresponding buttons. Throughout the experiment, they fixated a central cross (1.6° 

diameter). 

The subjects participated in 3-4 unimodal auditory, 3-4 unimodal visual and 20 

bimodal sessions (10 auditory and 10 visual report; apart from one participant who 

performed 9 auditory and 11 visual report sessions). In each of the respective sessions we 

presented  the 4 unimodal auditory conditions 88 times, the 8 unimodal visual conditions 

44 times and the 32 audiovisual conditions 11 times. Further, 5.9% null-events were 

interspersed in the sequence of 352 stimuli per session. To maximize design efficiency, 

stimulus conditions were presented in a pseudorandomized fashion. We held the task 

(visual vs. auditory report) and bimodal versus unimodal conditions constant within a 

session and counterbalanced across sessions. 

 

Experimental setup 

Spatial stimuli were presented using Psychtoolbox 3.09 (www.psychtoolbox.org)(Brainard, 

1997) running under MATLAB R2010a (MathWorks). Auditory stimuli were presented at 

~75 dB SPL using MR-compatible headphones (MR Confon). Visual stimuli were back-

projected onto a Plexiglas screen using an LCoS projector (JVC DLA-SX21). Participants 

viewed the screen through an extra-wide mirror mounted on the MR head coil resulting in 

a horizontal visual field of approx. 76° at a viewing distance of 26 cm. Participants 

performed the localization task using an MR-compatible custom-built button device. 

Participants’ fixation was controlled by recording participants’ pupil location using an MR-

compatible custom-build infrared camera (sampling rate 50 Hz) mounted in front of the 

participants’ right eye and iView software 2.2.4 (SensoMotoric Instruments). Analyses of 
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this data showed that participants did not commit to condition-related eye movements (cf. 

last paragraph of results in chapter 4.4 and supplemental tab. S4.1). 

 

Behavioral data 

We discretized the four-level location reports to left versus right response. The fractions of 

right responses were plotted as a function of signal location for each stimulation x report 

condition (Fig. 5.1A-C). Because of the high number of trials in each participant, we 

individually fitted cumulative Gaussian functions to this data using maximum likelihood as 

implemented in Palamedes toolbox 1.5.0 (Prins and Kingdom, 2009). The Gaussians’ mean 

(i.e., points of subject equality, PSE) and variance (σ) were used to compute the predicted 

visual weight (wV in equation (1)), the predicted variance of the audiovisual percept (σAV in 

equation (2)), the empirical visual weight (wV,emp in equation (3); averaged for △AV = -6° 

and +6°) and the empirical unimodal and audiovisual variances (from congruent 

audiovisual conditions).  

We employed 2 x 2 repeated measures ANOVAs to test the effects of visual 

reliability (high vs. low) and task (visual vs. auditory report) on the empirical visual 

weights and audiovisual variances (i.e., random effects analysis). We used paired t tests to 

compare the empirical visual weights and audiovisual variances against the MLE 

predictions and unimodal auditory and unimodal visual variances (Tab. 5.1). In the current 

study, results were deemed significant if p < 0.05.  

 

MRI data acquisition 

A 3T Siemens Magnetom Trio MR scanner was used to acquire both T1-weighted 

anatomical images and T2*-weighted axial echoplanar images (EPI) with BOLD contrast 

(gradient echo, parallel imaging using GRAPPA with an acceleration factor of 2, TR = 

2480ms, TE = 40ms, flip angle=90°, FOV=192 mm×192 mm, image matrix 78×78, 42 

transversal slices acquired interleaved in ascending direction, voxel size=2.5×2.5×2.5 mm + 

0.25 mm interslice gap). In total, we acquired 353 volumes times 20 sessions for the 

bimodal conditions, 353 volumes times 6-8 sessions for the unimodal conditions, 161 

volumes times 2-4 sessions for the auditory localizer and 159 volumes times 10-16 

sessions for the visual retinotopic localizer (see below). This resulted in approximately 18 

hours of scanning per participant assigned over 7-11 days. The first three volumes of each 

session were discarded to allow for T1 equilibration effects. 
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fMRI data analysis 

Spatial ventriloquist paradigm 

The fMRI data were analyzed with SPM8 (www.fil.ion.ucl.ac.uk/spm) (Friston et al., 1994). 

Scans from each participant were corrected for slice timing, were realigned and unwarped 

to correct for head motion and spatially smoothed with a Gaussian kernel of 3 mm FWHM. 

The time series in each voxel was high-pass filtered to 1/128 Hz. All data were analyzed in 

native subject space. The fMRI experiment was modeled in an event-related fashion with 

regressors entering into the design matrix after convolving each event-related unit impulse 

with a canonical hemodynamic response function and its first temporal derivative. In 

addition to modeling the 4 unimodal auditory, the 8 unimodal visual or the 32 audiovisual 

conditions in each session, the general linear models included the realignment parameters 

as nuisance covariates to account for residual motion artefacts. The factor task (visual vs. 

auditory report) was modeled across sessions. The parameter estimates pertaining to the 

canonical hemodynamic response function (HRF) defined the magnitude of the BOLD 

response to the unimodal or audiovisual stimuli in each voxel. 

To apply MLE analysis to spatial representations at the neural level, we first 

extracted the parameter estimates of the HRF for each condition and session from voxels of 

regions defined in separate auditory and retinotopic localizer experiments (see below). 

This yielded activation patterns from the unimodal auditory and visual conditions and the 

bimodal congruent (△AV = 0°) and slightly disparate (△AV ± 6°) audiovisual conditions. 

Individual activation patterns were z normalized to avoid the effects of image-wide 

activation changes. We then trained a linear support vector classification model (SVC, as 

implemented in LIBSVM 3.14(Chang and Lin, 2011)) to learn the mapping from activation 

patterns to the side (left vs. right) of the audiovisual signal. Importantly, we selectively 

used activation patterns from audiovisual congruent conditions from all but one 

audiovisual session for SVC training (i.e., training was done across sessions of auditory and 

visual report). The trained SVC model then decoded the signal side from the activation 

patterns of the spatially congruent and disparate audiovisual conditions of the remaining 

audiovisual session. In a leave-one-out cross-validation scheme, the training-test procedure 

was repeated for all audiovisual sessions. Finally, the SVC model was trained on 

audiovisual congruent conditions from all audiovisual sessions and then decoded the signal 

side from activation patterns of unimodal auditory and visual sessions.  

Thus, the decoded signal sides represented auditory and visual spatial information 

at the neural level and were amenable to the same MLE analysis as the psychophysical 

localization responses (see above; Fig. 5.2). Due to the lower signal-to-noise ratio of fMRI 

compared to psychophysical data, we fitted neurometric functions to the proportion right 

decoded signals pooled across all participants (i.e., fixed effects analysis). Confidence 
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intervals for empirical and predicted weights and variances were computed by using 

Palamedes’ parametric bootstrap procedure (5000 bootstraps). We used two-tailed 

bootstrap tests (5000 bootstrap samples) (Efron and Tibshirani, 1994) to analyze the 

effects of visual reliability (high vs. low), task (visual vs. auditory report) and their 

interaction on the empirical visual weights and audiovisual variances and to compare those 

against the MLE predictions and unimodal auditory and visual variances (Tab. 5.1).  

 

Auditory and visual retinotopic localizer 

Regions of interest along the auditory and visual processing hierarchies were defined in a 

subject-specific fashion based on auditory and visual retinotopic localizers. In the auditory 

localizer, participants were presented with brief bursts of white noise at -10° or 10° angle 

(duration 500 ms, stimulus onset asynchrony 1 s). In a one-back task, participants 

indicated via a key press when the spatial location of the current trial was different from 

the previous trial. 20 s blocks of auditory stimulation (i.e., 20 trials) alternated with 13 s of 

fixation periods. The auditory locations were presented in a pseudorandomized fashion to 

optimize design efficiency. Similar to the main experiment, the auditory localizer sessions 

were modeled in an event-related fashion. Auditory responsive regions were defined as 

voxels in superior temporal and Heschl’s gyrus showing significant activations for auditory 

stimulation relative to fixation (p < 0.05, family-wise error corrected). Within these 

regions, we defined primary auditory cortex (A1) based on cytoarchitectonic probability 

maps (Eickhoff et al., 2005) and referred to the remainder (i.e., planum temporale and 

posterior superior temporal gyrus) as higher order auditory cortex (hA). 

Visual regions of interest were defined using standard phase-encoded retinotopic 

mapping (Sereno et al., 1995). Participants viewed a checkerboard background flickering at 

7.5 Hz through a rotating wedge aperture of 70° width (polar angle mapping) or an 

expanding/contracting ring (eccentricity mapping). The periodicity of the apertures was 

42s. Visual responses were modeled by entering a sine and cosine convolved with the 

hemodynamic response function as regressors into the design matrix of the general linear 

model. The preferred polar angle (or eccentricity, respectively) was determined as the 

phase lag for each voxel by computing the angle between the parameter estimates for the 

sine and the cosine. The phase lags for each voxel were projected on the reconstructed, 

inflated cortical surface using Freesurfer 5.1.0 (Dale et al., 1999). Visual regions V1-V3 and 

IPS0-IPS4 were defined as phase reversal in angular retinotopic maps. IPS0-4 were defined 

as phase reversal along the anatomical IPS resulting in contiguous, approximately 

rectangular regions (Swisher et al., 2007).  

For the decoding analyses, the auditory and visual regions were combined from the 

left and right hemisphere. SVC training was then applied separately to activation patters 
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from each region. To improve the signal-to-noise ratio when fitting neurometric functions 

(cf. Fig. 5.2), the decoded signal sides from low-level visual regions (V1-3), intraparietal 

sulcus (IPS0-4) and low-level auditory regions (A1, hA) regions were pooled. Additional 

analyses showed similar audiovisual spatial integration within these three regions. 

 

5.4 Results 

Spatial ventriloquist paradigm 

In the fMRI study, five participants were presented with auditory, visual and audiovisual 

signals sampled randomly from four possible spatial locations along the azimuth (i.e., -10°, 

-3.3°, 3.3° or 10°). Audiovisual signals were either spatially congruent (△AV = 0°) or 

slightly disparate (△AV = ±6°). The reliability of the visual signal could be high or low. 

Participants reported their auditory perceived location in the unisensory auditory and the 

audiovisual sessions with auditory report. They report their visual perceived location in 

the visual and the audiovisual sessions with visual report.  

 

 
Figure 5.1. MLE analysis of psychophysical data. (A) Psychometric functions were fitted to the proportion 
right reports plotted as a function of the signal location from unimodal auditory (A) and visual conditions of 
high (V, VR+) and low (V, VR-) visual reliability. (B, C) In bimodal conditions, psychometric functions were 
fitted to proportion right reports plotted as a function of the mean audiovisual (AV) signal location. Data was 
fitted separately for congruent (△AV = 0°; △AV = A - V) and disparate conditions (△AV = ±6°), conditions of 
high (B) versus low (C) visual reliability and auditory versus visual report. (D) Predicted (equation (1)) and 
empirical (equation (3)) visual weights (mean ± SEM across participants) for high versus low visual reliability 
and visual versus auditory report. For illustration, the average of the empirical weights across the latter two 
conditions is plotted. (E) Unimodal and audiovisual predicted (equation (2)) and empirical variances (mean ± 
SEM across participants) for the same combination of conditions as in (D). Variances were normalized by the 
auditory variance.  
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Key predictions of the MLE model 

Under the classical forced fusion assumption, the MLE model makes two key quantitative 

predictions for participants’ spatial estimates in audiovisual conditions: First, the most 

reliable unbiased estimate of the object’s location (�̂�𝐴𝑉) is obtained by combining the 

auditory (XA) and visual (XV) perceived locations in proportion to their relative reliability 

(rA, rV, i.e., the inverse of the variance, r = 1/σ2) as obtained from the unisensory conditions:  

(1)                      ŜAV = wAXA + wVXV    with =  wA =
rA

rA + rV
 and wV =

rV
rA + rV

 

Second, multisensory integration reduces the variance of the audiovisual estimate (σAV2) as 

compared to the unimodal variances (σA2, σV2): 

(2)                     σAV
2 =

σA2σV2

σA2 + σV2 

 

MLE analysis of psychophysics data 

Figure 5.1A-C shows the proportion ‘right’ responses as a function of true signal location 

and the corresponding fitted cumulative Gaussians for each stimulation x report condition 

(see above). For each cumulative Gaussian we obtained the variance and its mean (i.e., the 

point of subjective equality (PSE) that is the abscissa for 50% proportion ‘right’ responses).  

First, we investigated whether participants integrated audiovisual signals weighted 

by their reliability as predicted by MLE. The variances of the cumulative Gaussians for the 

unisensory visual and auditory conditions were used to determine the ‘optimal’ weights 

that participants should apply to the bimodal visual and auditory signals (equation 1). The 

empirical weights were computed from the PSE of the psychometric functions of the 

audiovisual conditions according to the following equation (Fetsch et al., 2012):  

(3)                     wV, emp =  
PSE △ AV = ±6° − PSE △ AV = 0° +

△ AV
2

△ AV
 

As shown by lateral shifts of the PSEs in Fig. 5.1B and C, during the cue conflict 

conditions the perceived auditory location shifted from the congruent audiovisual location 

towards the true visual location when visual reliability was high, but towards the true 

auditory location when visual reliability was low. By contrast, the perceived visual location 

was shifted towards the visual location for both high and low visual reliabilities. This 

pattern in perceptual bias was also reflected in the sensory weights (Fig. 5.1D): During 

auditory report conditions, the visual weight was greater than 0.5 for high visual reliability 

(wV, emp = 0.583), but smaller than 0.5 for low visual reliability (wV, emp = 0.233). By contrast, 

during visual report conditions, the visual weight was always close to 1 (wV, emp = 0.937) 

indicating that the auditory influence on the perceived visual location was statistically 
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significant (wA, emp = 1 - wV, emp = 0.063, p = 0.001, one-sample t test against 0), but very 

small. Thus, the visual weights violated the MLE predictions (Tab. 5.1). Only when averaged 

across auditory and visual report, the visual weights followed the MLE predictions in a 

qualitative fashion (Fig. 5.1D). However, a 2 (reliability: high vs. low) x 2 (task: auditory vs. 

visual report) repeated measures ANOVA identified a main effect of reliability (F1,4 = 

28.237, p = 0.006), task context (F1,4 = 36.496, p = 0.004), and their interaction (F1,4 = 9.174, 

p = 0.039) indicating that reliability-driven reweighting determined integration only in 

case of auditory report. 

 

Table 5.1. Statistical comparison of empirical variances (σAV,emp
2) and weights 

(wV,emp) from the four bimodal conditions against the predictions (σAV,pred
2, 

wV,pred) and unimodal variances (σuniV
2, σuniA

2). 

 
VR+, A report VR-, A report VR+, V report VR-, V report 

 
σAV,emp

2 - σAV,pred
2 

Psychophysics 0.023 0.031 0.361 0.036 

IPS0-4 0.015 0.408 0.304 0.154 

 
σAV,emp

2 - σuniV
2 

Psychophysics 0.031 0.530 0.599 0.526 

IPS0-4 0.006 0.973 0.120 0.271 

 
σAV,emp

2 - σuniA
2 

Psychophysics 0.098 0.249 0.037 0.725 

IPS0-4 0.004 0.051 0.005 0.394 

 
wV,emp – wV,pred 

Psychophysics 0.029 0.063 0.036 0.013 

IPS0-4 0.226 0.066 0.051 0.463 

Note: Numbers denote p values. Psychophysical parameters were compared 
using two-tailed paired t tests on individual parameters (random-effects 
analysis, df = 4). Parameters from IPS0-4 were compared using a two-tailed 
bootstrap test (5000 bootstraps) on parameters computed across the sample 
(fixed-effects analysis). A = auditory, V = visual, VR+/- = High / low visual 
reliability. 

 

Second, we investigated whether multisensory integration reduced the variance of 

the spatial estimate as predicted by MLE (equation 2). To maximize the effect of 

multisensory integration, we limited this analysis to the congruent trials only. As shown in 

Fig. 5.1E, even for congruent trials the variances of the audiovisual percepts were 

significantly greater than predicted by MLE in most stimulation and report conditions (Tab. 
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5.1). Specifically, the variance of the perceived visual location during audiovisual 

stimulation was comparable to the unisensory visual variance (p > 0.05). Likewise, the 

variance of the perceived auditory location during audiovisual stimulation was not smaller 

than unisensory visual variance, though it was smaller than the unisensory auditory 

variance if visual reliability was high (p = 0.049, one-tailed paired t test). Moreover, in a 2 

(reliability: high vs. low) x 2 (task: auditory vs. visual report) repeated measures ANOVA 

we observed a main effect of reliability (F1,4 = 28.5468, p = 0.006; effect of task and the 

interaction were not significant, p > 0.05).  

Collectively, our behavioral results suggested that auditory and visual signals were 

only partially integrated proportional to reliability dependent on the modality-specific 

report. Even spatiotemporally congruent auditory and visual signals were not fully fused 

into one unified percept as predicted by the MLE model. 

 

MLE analysis of fMRI data 

To investigate the neural processes underlying multisensory spatial integration at the 

psychophysical level, we decoded spatial information from fMRI activation patterns. The 

patterns were recorded from low-level visual regions (V1-V3), intraparietal sulcus (IPS0-4) 

and low-level auditory regions (primary auditory cortex and planum temporale, lA). Using 

the fMRI activation patters selectively from audiovisual congruent conditions (△AV = 0°), 

we trained a support-vector classification model to learn the mapping from activation 

patterns to the side of the signal (left vs. right). The trained model then decoded the signal 

side from activation pattern in disparate audiovisual conditions (i.e., △AV = ±6°) and 

unimodal auditory and visual conditions. Thus, the decoded signal sides represented 

auditory and visual spatial information at the neural level and were amenable to the same 

MLE analysis as the psychophysical location reports (cf. Fig. 5.2).  

Among the regions in the auditory (Tian et al., 2001) and visual (Mishkin et al., 

1983) spatial processing hierarchy, selectively IPS0-4 demonstrated significant reliability-

driven reweighting of audiovisual signals as observed at the psychophysical level (Fig. 

5.2D; wV, emp = 0.915 for high and wV, emp = 0.655 for low visual reliability; effect of visual 

reliability, p = 0.014, bootstrap test). Further, visual report (wV, emp = 1.019) increased the 

visual weight relative to an auditory report (wV, emp = 0.674; effect of task, p = 0.001; the 

interaction was not significant, p > 0.05). The empirical and the predicted weights were 

statistically indistinguishable (cf. Tab. 5.1). In parallel to the psychophysical results, 

however, the empirical weights were much closer to the predicted weights if we averaged 

over conditions of auditory and visual report (see Fig. 5.2D). 
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Figure 5.2. MLE analysis of fMRI data in intraparietal sulcus (IPS0-4). (A) In IPS0-4, neurometric 
functions were fitted to the proportion right decoded signals plotted as a function of signal location from 
unimodal auditory (A) and visual conditions of high (V, VR+) and low (V, VR-) visual reliability. (B, C) In 
bimodal conditions, neurometric functions were fitted to proportion right decoded signals plotted as function 
of the mean audiovisual (AV) signal location. Data was fitted separately for congruent (△AV = 0°) and 
disparate conditions (△AV = ±6°; △AV = A - V), high (B) versus low (C) visual reliability and auditory versus 
visual selective report. (D) Predicted (equation (1)) and empirical (equation (3)) visual weights (mean and 
68% bootstrapped confidence interval) for high versus low visual reliability and visual versus auditory-
selective report. For illustration, the average of the empirical weights across the latter two conditions is 
plotted. (E) Unimodal and audiovisual predicted (equation (2)) and empirical variances (mean and 68% 
bootstrapped confidence interval) for the same combination of conditions as in (D). Variances were 
normalized by the auditory variance. 

 

The variance of spatial representation of unimodal visual signals in IPS0-4 was 

much lower than for unimodal auditory signals even if visual reliability was low (Fig. 5.2E). 

Therefore, the MLE model did not predict a strong reduction of audiovisual variance 

beyond the unimodal visual variance (i.e., the predicted reduction is maximal in case of 

equal reliability). Accordingly, the empirical matched the predicted audiovisual variance 

(Tab. 5.1), even though the empirical audiovisual variance was not significantly smaller 

than the unimodal visual variance. However, highly reliable visual signals significantly 

reduced the audiovisual variance compared to unimodal auditory variance. Interestingly, 

the audiovisual variance was significantly smaller than the unimodal visual, auditory and 

even the predicted audiovisual variance if visual reliability was high and participants 

reported the auditory signals. As expected, visual signals of low reliability led to higher 

variance than highly reliable signals (effect of visual reliability, p = 0.027, bootstrap test; 

effect of task and the interaction were not significant, p > 0.05). 
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Figure 5.3. Predicted and empirical visual weights 
resulting from the MLE analysis of fMRI data in low-level 
visual (V1-3) and low-level auditory (lA) regions. (A) 
Visual Weights derived from fMRI data in V1-3. (B) Visual 
weights derived from fMRI data in lA. Note that the weights 
are pooled over visual versus auditory-selective report.  

 

In contrast to IPS0-4, low-level visual and auditory regions gave a large weight to 

the spatial information of their preferred modality (V1-3, wV, emp = 0.882; lA, wV, emp = 0.232; 

Fig. 5.3). Critically, the spatial representations in these regions were unaffected by visual 

reliability, the task and the interaction of both factors (p > 0.05, bootstrap test). However, 

consistent with reports of multisensory integration at low levels of the processing 

hierarchy (Foxe et al., 2000; Bonath et al., 2007; Kayser et al., 2007; Lakatos et al., 2007; 

Lewis and Noppeney, 2010; Werner and Noppeney, 2010), visual regions integrated 

auditory (p < 0.001, two-tailed bootstrap test on wV, emp against 1) and auditory regions 

integrated visual spatial information (p = 0.032, one-tailed bootstrap test on wV, emp against 

0).  

In summary, analyses of fMRI data revealed that specifically IPS weighted 

audiovisual signals by their reliability and prioritized signals of the reported modality. In 

parallel to the behavioral results, the MLE predictions were consistently violated because 

IPS did not fully fuse audiovisual signals into a unified spatial representation. 

 

5.5 Discussion 

Psychophysics studies have demonstrated that human observers combine signals within 

and across the senses weighted in proportion to their reliability as predicted by the MLE 

model (Jacobs, 1999; Ernst and Banks, 2002; van Beers et al., 2002; Battaglia et al., 2003; 

Knill and Saunders, 2003; Alais and Burr, 2004; Hillis et al., 2004; Saunders and Knill, 2004; 

Rosas et al., 2005). Combining classical MLE analysis with a multivariate fMRI-decoding 

approach, we show that selectively IPS computes reliability-weighted audiovisual spatial 

estimates, in parallel to psychophysical results. However, the visual weights violated the 

MLE predictions and were larger for visual than auditory report. Earlier regions of the 

auditory (Tian et al., 2001) and visual (Mishkin et al., 1983) spatial processing hierarchy 

represented spatial signals of their preferred and, slightly, non-preferred modality, but the 

representations did not depend on sensory reliability or the modality of report.  
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Reliability-weighted integration 

Referring to a maximum-likelihood criterion, reliability-weighted integration of noisy 

signals is the optimal strategy to estimate an uncertain physical quantity. Numerous 

psychophysical studies showed that humans integrate unisensory (Jacobs, 1999; Knill and 

Saunders, 2003; Hillis et al., 2004), multisensory (Ernst and Banks, 2002; Battaglia et al., 

2003; Alais and Burr, 2004; Rosas et al., 2005) and motor-related signals (van Beers et al., 

2002; Saunders and Knill, 2004) in this fashion. Yet, evidence that the brain applies 

reliability-driven integration has been rare except for recent evidence of visuo-vestibular 

integration in monkeys’ dMST region (Morgan et al., 2008; Fetsch et al., 2012; Fetsch et al., 

2013). This constitutes a serious empirical gap in Bayesian theories of mind and brain 

which rest on the assumption that the brain represents uncertainty (Knill and Pouget, 

2004). Here, by using neurometric functions and multivariate decoding, we demonstrate 

that human IPS weighs audiovisual signals proportional to relative sensory reliability (Fig. 

5.2D). Because we unpredictably manipulated visual reliability in each trial, the current 

finding shows that the brain represents a signals’ uncertainty (i.e., the inverse of reliability) 

automatically in parallel to the signals’ value per se. Thus, the brain estimates physical 

quantities in a probabilistic fashion (Knill and Pouget, 2004). Because our multivariate 

decoding approach rests on large-scale population responses, the current results are 

consistent with the notion that probabilistic population codes implement such probabilistic 

computations (Ma et al., 2006). However, reliability-weighted integration in IPS was 

suboptimal as compared to the MLE predictions. 

 

Task-dependent deviations from optimal weighting 

Audiovisual integration at the psychophysical level and in IPS depended on visual 

reliability as well as the modality of report (Fig. 5.1D, 5.2D): The signals of the task-relevant 

modality obtained larger weights. Thus, the weighting of the signals only approximated the 

optimal weighting suggested by the MLE model if we pooled across the conditions of 

auditory and visual report. The influence of the modality of report revealed that the 

participants did not integrate the signals into a unified, task-independent spatial 

representation as predicted by the MLE model.  

 In contrast to our study, classical studies on the MLE model (Jacobs, 1999; Ernst 

and Banks, 2002; van Beers et al., 2002; Battaglia et al., 2003; Knill and Saunders, 2003; 

Alais and Burr, 2004; Hillis et al., 2004; Saunders and Knill, 2004; Rosas et al., 2005; Fetsch 

et al., 2012) encourage observers to focus equally on signals of both modalities to 

emphasize a ‘forced’ fusion of the signals. The current results suggest that only such an 

integrative focus (or, in approximation, an ‘averaged’ focus) leads to MLE-consistent 

weighting. However, if observers do not commit to the integrative focus, for example if the 
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spatiotemporal conflict between the signals becomes too large (Gepshtein et al., 2005; 

Parise et al., 2012), the predictions of the MLE model are violated.  

In line with this observation, a recent Bayesian model of causal inference (Kording 

et al., 2007; Shams and Beierholm, 2010) suggests that the signals’ relative weights shift in 

direction of the task-relevant signal if large signal discrepancies lead to the inference that 

the signals were caused by independent sources. Accordingly, a larger weight for the task-

relevant signal in IPS demonstrated that the brain infers, despite the signals’ small spatial 

disparity in the current study (i.e., ± 6°), that the signals were not caused by the same 

source. Hence, IPS performs computations consistent with causal inference. 

 

Lack of integration benefits 

Consistent with the finding that participants did not integrate the signals into a unified, 

task-independent spatial representation, we did not find evidence that the variance of the 

spatial estimates benefits from signal integration as predicted by the MLE model. This 

finding arises from the non-optimal weighting of the signals, but it might also arise due to 

methodological reasons: In IPS, the unimodal visual variance was generally much lower 

than the auditory variance even in case of low visual reliability (Fig. 5.2E). Thus, the 

predicted integration benefit might be too small to be detectable (note that equation (2) 

predicts a maximum benefit if the unimodal variances are equal). However, at the 

psychophysical level a considerable integration benefit was predicted for low visual 

reliability (Fig. 5.1E). Because the participants gave the visual signals too much weight in 

case of visual and too little weight in case of auditory report compared to the MLE 

predictions (Fig. 5.1D), they did not benefit from the spatial information available in both 

modalities as predicted. In other terms, the participants segregated spatial information 

from the task-irrelevant modality, presumably because they did not infer a common source 

of the signals as presupposed by the MLE model. 

 

Multisensory integration along the spatial processing hierarchy 

By imaging the entire spatial processing hierarchy, we found distinct multisensory 

processes at different hierarchical levels: Consistent with previous evidence showing that 

multisensory integration starts already at the primary cortical level (Foxe et al., 2000; 

Ghazanfar and Schroeder, 2006; Bonath et al., 2007; Kayser et al., 2007; Lakatos et al., 

2007; Lewis and Noppeney, 2010; Werner and Noppeney, 2010), we found auditory 

influences on low-level visual and visual influences on low-level auditory regions. Critically, 

the multisensory processes of reliability-weighting and causal inference were restricted to 

higher multisensory association cortex. Thus, our results show that it is more crucial to 

characterize specific multisensory processes at different stages of the cortical hierarchies 
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than to investigate unspecific multisensory integration per se. Eventually, many regions of 

neocortex might have access to some form of multisensory information (Ghazanfar and 

Schroeder, 2006) via top-down influences from higher-order association regions (Macaluso 

et al., 2000; Macaluso and Driver, 2005), direct cortico-cortical connectivity (Falchier et al., 

2002) or feed-forward thalamic mechanisms (Lakatos et al., 2007).  

 

 In conclusion, the current study demonstrates for the first time that human 

multisensory association cortex implements probabilistic computations to model an 

uncertain multisensory environment. However, the probabilistic computations are more 

complex than ‘mandatory’ reliability-weighted integration of signals because they account 

for causal inferences on the signals’ origin. 
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6 Bayesian learning of sensory reliability in multisensory 

perception 

6.1 Abstract 

It is unknown how the brain represents sensory reliability which is crucial to perceive 

physical quantities in a Bayesian fashion. Here, we show that human observers weight 

audiovisual signals proportional to posterior visual reliability which they learned, 

consistent with Bayesian inference, by combining reliability from prior and present signals. 

The result suggests that the brain uses Bayesian inference to link perception and sensory 

learning. 

 

6.2 Introduction 

When we perceive our environment, such as locating a bouncing tennis ball, our brain has 

to infer physical properties from noisy, unreliable sensory signals (Faisal et al., 2008). To 

optimally estimate a physical quantity given the signals’ dynamically changing reliability, 

Bayesian theory suggests combining prior knowledge with new evidence provided by the 

signals (Yuille and Buelthoff, 1996; Knill and Pouget, 2004). For such a Bayesian inference, 

the prior‘s as well as the signals’ reliability have a key role: The prior and the signals are 

weighted proportional to their reliability to optimally reduce the error in the estimate. For 

example, when not clearly seeing or hearing a tennis ball, we could only a priori assume 

that it likely bounces within the playing field, but when seeing and hearing the ball, we 

would locate it giving the more reliable of both signals a stronger weight. In face of very 

unreliable signals, human observers indeed rely on their priors (Kording et al., 2004; 

Kording and Wolpert, 2004; Berniker et al., 2010), and if multiple signals are relatively 

certain, they rely on the more certain signal (Ernst and Banks, 2002; Battaglia et al., 2003; 

Knill and Saunders, 2003; Alais and Burr, 2004). Thus, Bayesian inference in perception 

crucially requires the brain to represent the prior’s as well as the signals’ reliability. 

However, while human observers learn the prior’s reliability by extensive training 

(Kording et al., 2004; Kording and Wolpert, 2004; Berniker et al., 2010), it is unknown 

whether the brain represents sensory reliability immediately from single signals or 

whether it learns sensory reliability also from past signals. A probabilistic population code 

could represent a signal’s reliability instantaneously via the gain of the neurons’ population 

response to the signal (Ma et al., 2006), without the need for learning reliability from past 

signals. However, in natural environments signal reliability changes systematically, for 

example when a tennis ball’s seen location becomes increasingly unreliable during sunset. 

In this case, a Bayesian learner would optimally learn this statistical regularity by updating 
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prior knowledge on sensory reliability obtained from past signals with new evidence from 

current signals. 

 

Figure 6.1. Spatial ventriloquist 
paradigm and generative Bayesian 
model for learning visual reliability. 
(A) Visual (V) signals (20 bright dots) 
were presented at 5 Hz (i.e., a stimulus 
onset asynchrony (SOA) of 200 ms). The 
clouds’ variance (i.e., inverse of visual 
reliability) was temporally manipulated 
between 2° and 18° STD according to a 
sinusoid or two random walks (cf. fig. 
6.2). The cloud’s location mean was 
independently resampled from five 
possible locations (-10°, -5°, 0°, 5°, 10°) 
at a SOA jittered between 1.4 and 2.8 s. 
In synchrony with the change in the 
cloud’s location, the dots changed their 
colour and a sound was presented (AV 
signal). Participants localized the sound 
using five response buttons. The location 
of the sound was sampled from the two 
possible locations adjacent to the visual 
cloud’s mean location (i.e., ± 5° AV 
spatial discrepancy). (B) The generative 
Bayesian model for the Bayesian learner 
assumes that an audiovisual source 

(SAV,t) creates visual (Vi,t) and auditory 
(At) spatial signals. Importantly, the 
reliability (i.e., 1/variance) of the visual 
signal at time t (λt) is estimated by 
updating prior information on reliability 
from previous visual signals (λt-1). 

 

6.3 Materials and methods 

Participants 

56 healthy volunteers participated in the study after giving written informed consent (28 

female, mean age 26.6 years, range 18-52 years). All participants were naïve to the purpose 

of the study. All participants had normal or corrected-to-normal vision and reported 

normal hearing. The study was approved by the human research review committee of the 

University of Tuebingen. 

 

Stimuli 

The visual spatial stimulus was a Gaussian cloud of twenty bright grey dots (0.56° 

diameter, vertical standard deviation 1.5°, luminance 106 cd/m2) presented on a dark grey 

background (luminance 62 cd/m2, i.e., 71% contrast). The location and the reliability of the 
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visual signal were manipulated by the mean and the horizontal standard deviation of the 

Gaussian cloud of dots (see below). The auditory spatial cue was a burst of white noise with 

a 5 ms on/off ramp. To create a virtual auditory spatial cue, the noise was convolved with 

spatially specific head-related transfer functions (HRTFs). The HRTFs were pseudo-

individualized by matching participants’ head width, heights, depth and circumference to 

the anthropometry of subjects in the CIPIC database (Algazi et al., 2001). HRTFs from the 

available locations in the database were interpolated to the desired locations of the 

auditory cue. 

 

Experimental design and procedure 

In a spatial ventriloquist paradigm, participants were presented with a sequence of 

Gaussian clouds of dots at a rate of 5 Hz (Fig. 6.1A). The cloud’s standard deviation changed 

according to a i. sinusoidal sequence, ii. random walk sequence 1 or iii. random walk 

sequence 2:  

i. Sinusoidal sequence (Sinus): A sinusoidal sequence was generated with a period of 30s 

(initially at the monitor’s refresh rate of 60Hz but then subsampled to 5Hz). Across 

participants, the starting phase of the sequence was randomized. During the ~65 min of 

the experiment, each participant completed ~ 130 cycles of the sinusoidal sequence. 

ii. Random walk sequence 1 (RW1): First, we generated a random walk sequence of 60 s 

duration using a Markov chain with 76 discrete states and transition probabilities of stay 

(1/3), change to lower (1/3) or upper (1/3) adjacent states. To ensure that the this 

sequence formed a continuous multi-minute sequence so that participants did not notice 

begin or end of each segment, this initial 60 s sequence was concatenated with its 

temporally reversed version resulting in an RW1 sequence of 120 s duration. Each 

participant was presented with the RW1 sequence ~32 times during the experiment. 

iii. Random walk sequence 2 (RW2): Likewise, we created a second random-walk sequence 

of 15 s duration using a Markov chain with only 38 possible states and transition 

probabilities similar to above. The 15 s sequence was concatenated with its temporally 

reversed version resulting in a 30 s sequence. The smoothness of this sequence segment 

was increased by filtering it (without phase shift) with a moving average of 250 ms. Each 

participant was presented with the RW2 sequence ~130 times. 

In all sequences, the standard deviation spanned a range from 2-18°. The cloud’s 

location mean was temporally independently resampled from five possible locations (-10°, 

-5°, 0°, 5°, 10°) at a stimulus onset asynchrony jittered between 1.4 and 2.8 s. In synchrony 

with the change in the cloud’s location, the dots changed their colour and a sound was 

presented. The location of the sound was sampled from the two possible locations adjacent 

to the visual cloud’s mean location. This ensured that the spatial discrepancy between the 
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sound and visual cloud location was held constant at 5° to induce a strong common-source 

prior (Kording et al., 2007). The change in the dot’s colour and the emission of sound 

occurred in synchrony to enhance audiovisual binding. The participants indicated the 

location of the sound by pressing one of 5 spatially corresponding buttons. 

29 of the 56 participants participated in a sessions with sinusoidal and a session 

with RW1 sequence on different days. Eight additional participants only participated in the 

RW1 sequence. 18 independent participants participated in a session presenting the RW2 

sequence. One participant completed all three sequences. Because the relative auditory 

weight (wA, see below) was not significantly modulated by visual reliability of the current 

trial, we excluded five participants completing the Sin and RW1 sequence (i.e., inclusion 

criterion p < 0.05 in a linear regression of current visual reliability on wA). Overall, we 

analyzed data from 25 participants for the sinusoidal, 33 participants for the RW1 and 19 

participants for the RW2 sequence. We presented the sequences in 1676 trials, except in 

four sessions in which only 1128, 1143 or 1295 trials were presented. Before the 

experimental trials, participants practiced the auditory localization task in 25 unimodal 

auditory trials, 25 audiovisual congruent trials with a single dot as visual spatial cue and 75 

trials with stimuli as in the main experiment. 

 

Experimental setup 

Audiovisual stimuli were presented using Psychtoolbox 3.09 (Brainard, 1997; Kleiner et al., 

2007) (www.psychtoolbox.org) running under Matlab R2010b (MathWorks) on a Windows 

machine (Microsoft XP 2002 SP2). Auditory stimuli were presented at ~75 dB SPL using 

headphones (Sennheiser HD 555). Because visual stimuli required a large field of view, 

they were presented on a 30” LCD display (Dell UltraSharp 3007WFP). Participants were 

seated at a table in front of the screen in a darkened booth, resting their head on an 

adjustable chin rest. The viewing distance was 27.5 cm. This setup resulted in a visual field 

of approx. 100°. Participants gave response via a standard QWERTY keyboard. Participants 

used the buttons {i, 9, 0, -, =} with their right hand for localization responses. 

 

Model free data analysis 

To evaluate whether the relative influence of the auditory and the visual signals on the 

localization responses depended on the sequences’ course of visual reliability, we first 

binned the localization responses into 20 bins according to each sequence (Fig. 6.2A-C). 

Using linear regression, we then predicted the localization responses by the auditory and 

visual signal location in each bin. We used the auditory (ßA) and visual (ßv) parameter 

estimates to compute the relative auditory influence as wA = ßA / (ßA + ßv).  
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 To determine whether the auditory weight wA was a function of current and past 

visual reliability, we used a linear regression to predict wA from the binned visual 

reliability and its temporal derivative in each participant. The temporal derivative captures 

influences of past reliability. To test the statistical significance of the influence of current 

and past visual reliability at the group level, we compared the parameters estimates of 

visual reliability and its temporal derivative against zero using one-sample t tests.      

 Further, we used the symmetry of the sequences (at period/2; cf. Fig. 6.2) to 

compare wA from the first half of each sequence with the flipped wA from the second half. 

This enabled us to estimate in each segment whether wA differed given the same current 

visual reliability (cf. supplemental figure S6.1A), but different past visual reliabilities (Fig. 

6.3A). To statistically evaluate the difference, we computed repeated measures ANOVAs on 

wA with the factors bin (9 bins) and part of the sequence (first vs. second (flipped) half). 

 

Computational models 

To model the localization responses from the perspective of a Bayesian learner, we 

assumed that the participants used an internal generative model of the audiovisual signal 

(Fig. 6.1B). The experimenter presented the participant with an auditory signal SA,t at time 

t, together with a visual cloud of dots SVi,t.  However, we assumed that the auditory signal 

that the brain has to process was corrupted by noise so that the internal auditory signal is 

At ~ N(SA,t,σA), while the single visual dot (presented at high visual contrast) was 

uncorrupted, Vi,t = SVi,t. Due to our assumption of a common source, the location of the 

optimal estimate based on the auditory and visual signals was a weighted average of each 

of the signals  

(1)                                               ŜAV, t =
λV, t Vt +  λA At

λt
 

with the auditory reliability (i.e., the inverse of variance) λA=1/σA2, visual reliability λV,t = 

1/σV2 and λt = λA + λV,t.  So far this was the standard reliability-weighted cue combination 

(Ernst and Banks, 2002). However, the reliability of the visual signal had to be estimated as 

well. Thus, we allow for the reliability of V, λV,t, to be fluctuating on a fixed timescale 

(similar to a random walk), and the optimal behavior is thus to combine prior and current 

knowledge to estimate the distribution of λV,t. We specify λV,t through a gamma distribution 

with parameters α and β, but where the parameters get updated in a Bayesian fashion after 

each new set of data points (visual dots) arrive: 

 (2)                                               αt, posterior = αt, prior +  
𝑛

2
  

  (3)                                               βt, posterior = βt, prior +
(∑ (𝑉𝑖− �̅�𝑡) 2𝑖 )+ 𝜆0 𝑛 (�̅�𝑡− 𝜇0)2

2(𝜆0+𝑛)
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n = 20 is the number of visual dots and to have a small effect of the prior for the mean 

estimate, we set λ0 = 0.01 and μ0 = 0. Based on this, the expected visual reliability was given 

as 

 (4)                                           λ̂V, t =
αt,posterior
ßt,posterior

  

To model the change of visual reliability as a random-walk process, we use an 

approximation and modify the parameters of the visual reliability in between trials by the 

free parameter ϕ: 

(5)                                            αt + 1, prior =  αt, posterior ϕ 

(6)                                            ßt + 1, prior =  ßt, posterior ϕ 

This has the effect of leaving the expectations of �̂�𝑉, 𝑡 intact while increasing the 

uncertainty of the estimate of the variable (given as αt/βt2).  

As the internal variable for the auditory stimulus was random and not directly 

under the control of the experimenters, we generated 10,000 samples from the auditory 

likelihood At ~ N(SA,t,σA), and for each value of At we calculated the optimal response (as 

above). These samples provided us with a histogram of possible responses according to the 

model, and thus the likelihood of the model given the participant responses. 

As alternatives for learning of visual reliability, we introduced 3 different models: 

Model A1 assumes that reliability changes completely on a trial-to-trial basis and, thus, that 

there is no point in learning it, �̂�𝑉, 𝑡 = 1/σVt
2. Model A2 assumes a simpler exponential 

discounting of the reliability so that 

(7)                                                λ̂V, t = 1/𝜎𝑉,𝑡
2  (1 −  γ) +  λV, t − 1 γ  

Model A3 assumes that the brain estimates the changes in physical variability of the visual 

cloud of dots (σVt
2-σVt-1

2) and extrapolates based on this, 

(8)           λ̂V, t = 1/𝜎𝑉,𝑡
2 + dλV,𝑡   where   dλV,𝑡 = dλV,𝑡−1+ θ (1/𝜎𝑉,𝑡

2 − 1/𝜎𝑉,𝑡−1
2 −dλV,𝑡−1) 

i.e. it updates a running estimate of the change in reliability. 

Parameters for each model (σA and ϕ, γ or θ) were fit by minimizing the likelihood 

of the parameter on an individual participant basis, using MATLAB’s fminsearch with 

multiple initial conditions to avoid local minima.  

As an absolute measure of model performance, we computed the coefficient of 

determination (Nagelkerke, 1991) for the five candidate models. To do relative model 

comparison, we compared the four candidate models using the Bayesian Information 

Criterion (BIC) as an approximation to the model evidence (Raftery, 1995). 

To compare the localization responses given by the participants and predicted by 

the Bayesian learner, we computed the auditory weight wA from the Bayesian learner’s 

predictions exactly as for the behavioral data. We then compared the model’s wA the from 



6 Bayesian learning of sensory reliability 

119 
 

the first half of the sequences to the flipped wA from the second half of the sequences (Fig. 

6.3B).  

From the Bayesian learner’s ϕ parameter we computed the half-life of the influence 

of past reliability. The ϕ parameter can be interpreted as the fraction of reliablity 

information which is kept from past signals. Thus, the half life Λ of past visual influence is Λ 

= log(0.5) / log(ϕ) / 5Hz. To test potential differences of Λ between the sequences, we 

computed a non-parametric permutations test (n = 5000 permutations) on the logit-

transformed ϕ (i.e., rendering it a normal variable). To construct the permutation test, we 

used the F value from a one-way ANOVA with the between-subject factor sequence 

(sinusoid vs. RW1 vs. RW2) as the test statistic.  

 

6.4 Results 

To test whether human observers estimate sensory reliability only from current or, 

moreover, learn it from past signals, we used a multisensory ventriloquist paradigm. In this 

paradigm, human observers integrate audiovisual spatial signals weighted proportional to 

their dynamically varying reliability (Battaglia et al., 2003; Alais and Burr, 2004). Thus, 

auditory signals attain a large relative weight in case of low and a small relative weight in 

case of high visual reliability. A small auditory weight shifts the perceived auditory location 

towards the visual location which is also perceived in the ventriloquist illusion (Radeau 

and Bertelson, 1977). Thus, the key question was whether the relative auditory weight 

depended on the reliability of the current or, moreover, past visual signals.  

In the ventriloquist paradigm, we presented human participants with audiovisual 

signals randomly sampled from five possible locations (Fig. 6.1A). The visual signals 

consisted of clouds of dots which were presented at a rate of 5 Hz. Crucially, the clouds’ 

variance (i.e., the inverse of their reliability) changed in periodic sequences according to a 

sinusoid (n = 25; period = 30 s), a random walk (RW1; n = 33; period = 120 s) or a 

smoothed random walk (RW2; n = 19; period = 30 s) (Fig. 6.2). In synchrony with the 

change in the cloud’s mean location, the dots changed their colour and a slightly offset 

spatial sound (± 5° discrepancy) was presented. The task of the participants was to localize 

the sounds. 

We used the participants’ sound localizations to determine a relative auditory 

weight wA for each of 20 segments of the variance sequences (Fig. 6.2). Using linear 

regression in each segment, we predicted the participants’ sound localizations by the 

auditory and visual signal locations and computed wA as the relative auditory parameters 

estimate (i.e., wA = ßA / (ßA + ßV)). Thus, wA varies between one, pure auditory influence, 

and zero, pure visual influence. As predicted by reliability-weighted integration, we found 

for all three sequences that the auditory weight increased linearly (i.e., the visual influence 
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decreased) if the current variance of the cloud of dots increased (p < 0.001 for all three 

sequences; one-sample t test against zero). Crucially, the auditory weight depended also on 

the change of variance between a segment and its precursor (p = 0.001 for sinusoid, p = 

0.014 for RW1 and p = 0.028 for RW2). This result revealed that the participants took the 

variance of the current and, moreover, of past visual signals into account while weighting 

the audiovisual signals.  

 

 
Figure 6.2. Time course of auditory weights in the three variance sequences.  Binned (n = 20 bins) 
relative auditory weight (mean across participants ± SEM, left ordinate) as a function of the time in the 
sequence manipulating the variance of the visual (V) signal (i.e., the inverse of visual reliability, right 
ordinate). The relative auditory weight varies between one (i.e., pure auditory influence on the localization 
responses) and zero (i.e., pure visual influence). Visual variance was manipulated by (A) a sinusoid (period 
30s, N = 25), (B) a random walk (RW1, period 120s, N = 33) and (C) a smoothed random walk (RW2, period 
30s, N = 19). The sequence of visual signals was presented at 5 Hz while audiovisual (AV) signals (black dots) 
were interspersed with a temporal jitter. For illustration, the cloud of dots in case of the lowest (i.e., V signal 
STD = 2°) and the highest (i.e., V signal STD = 18°) visual variance are shown in (A). 
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To confirm this impression, we used the symmetry of the variance sequences to 

compare wA from the first half with the flipped wA from the second half of the sequences 

(Fig. 6.3A). This enabled us to directly compare wA in each segment given the same current 

(cf. supplemental Fig. 6.1A), but different past variances of the cloud of dots. If participants 

reached a segment from a high level of visual variance, they gave the auditory signals a 

larger weight than reaching the same segment from a low level. Thus, we found a main 

effect of the factor sequence part (first vs. second half) in a repeated measures ANOVA for 

the sinusoid (F1, 24 = 12.162, p = 0.002, partial η2 = 0.336) and the RW1 sequence, (F1, 32 = 

14.129, p < 0.001). Further, we found an interaction effect of the factor sequence part and 

the segment for the RW2 sequence (F4.6, 82.9 = 3.385, p = 0.010) due to its non-monotonous 

course. Hence, the analysis again confirmed that participants used the history of visual 

variance to weight the audiovisual signals. However, the analyses could not reveal which 

specific strategy the participants used to estimate variance from its history. 

 

 
Figure 6.3. Comparison between the relative auditory weights from the participants’ behavior and the 
Bayesian learner in the first and the second half of the variance sequences. (A) The relative auditory 
weights (mean across participants) are plotted as a function of the normalized time in the three sequences 
manipulating the variance of the visual cloud of dots. The first (lower abscissa) and the second—flipped—half 
(upper abscissa) of the auditory weights are plotted separately. (B) The relative auditory weights predicted 
by the Bayesian learner plotted in the same way as in (A). 

 

Therefore, we tested whether the participants estimated visual variance like a 

Bayesian learner who optimally estimates (posterior) variance by updating the prior 

estimate of visual variance obtained from past visual signals with the variance estimate 

from the current signal (i.e., the likelihood) (Fig. 6.1B). Further, we compared the Bayesian 

learner with a learner who computes variance by exponentially discounting past variance 

and a learner who combines current variance with the variance expected from a linear 



6 Bayesian learning of sensory reliability 

122 
 

extrapolation from past trials. The Bayesian learner’s localization responses were very 

similar to the participants’ localization responses (explained variance R2 = 66.8 ± 2.6 % 

(mean ± SEM) for the sinusoid, R2 = 66.5 ± 2.4 % for RW1 and R2 = 70.0 ± 2.8 % for RW2). 

Similar to the participants’ relative auditory weights, the Bayesian learner’s relative 

auditory weights depended on the visual variance of a given as well as the previous 

segment of a sequence (Fig. 6.3B; see supplemental Fig. S6.1B-C for the auditory weights of 

the remaining models). Moreover, the Bayesian learner outperformed the exponential 

discounting and extrapolation learners as well as a model which estimated reliability only 

from the current signal in nearly all participants (in 24 of the 25 participants for the 

sinusoid, 30/33 for RW1 and 19/19 for RW2; for model comparison details see tab. 6.1). 

Next, we inferred the half-life of the influence of past variance from a parameter of the 

Bayesian learner. We found that on average the participants included variance information 

from signals several seconds ago (2.4s for Sin, 5.6s for RW1 and 1.8s for RW2; no 

significant difference between sequences, p = 0.470 in permutation test).  

 

 Table 6.1. Model parameters and fit indices (mean ± SEM) for the four candidate models in 
the three sequences of visual variance. 

Sequence Model σA 
median 

𝛷,γ,θ 
R2 BIC pW PP EP 

Sin 

Bayesian learner 6.6 + 0.7 0.93 66.8 + 2.6 0 0.96 0.864 1 

Non-learner  4.0 + 0.2 - 51.1 + 7.1 440 + 79 0 0.034 0 

Exponential discounting 3.9 + 0.2 0.33 51.1 + 7.1 448 + 79 0 0.035 0 

Extrapolation 4.2 + 0.2 0.40 53.7 + 6.2 391 + 71 0.04 0.067 0 

RW1 

Bayesian learner 6.6 + 0.4 0.97 66.5 + 2.4 0 0.909 0.839 1 

Non-learner 4.4 + 0.1 - 57.0 + 4.6 48 + 299 0.091 0.106 0 

Exponential discounting 4.4 + 0.2 0.38 54.7 + 4.5 350 + 45 0 0.027 0 

Extrapolation  4.5 + 0.2 0.25 55.4 + 4.3 335 + 42 0 0.027 0 

RW2 

Bayesian learner 6.4 + 0.6 0.93 70.0 + 2.8 0 1 0.869 1 

Non-learner 4.1 + 0.2 - 56.7 + 6.9 71 + 398 0 0.045 0 

Exponential discounting 4.1 + 0.2 0.74 56.7 + 6.9 372 + 75 0 0.043 0 

Extrapolation  4.2 + 0.2 0.15 57.4 + 6.5 360 + 71 0 0.043 0 

 σA= auditory variance; 𝛷 = update parameter of the Bayesian learner; γ = discounting parameter of the 
exponential discounting model; θ = parameter of the extrapolation model; R2  = coefficient of 
determination; BIC = Bayesian information criterion relative to best model (smaller = better) ; pW = 
proportion of participants in which model was better than any other model according to BIC; PP = 
posterior probability of model; EP = exceedance probability; (PP and EP computed from random-
effects model comparison as implemented in SPM8, cf. Stephan 2009). 
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To sum up, the participants estimated sensory reliability by optimally combining 

current and prior reliability learned from past signals over several seconds. Thus, the 

participants estimated sensory reliability consistent with a Bayesian learner.  

 

6.5 Discussion 

From a Bayesian perspective, optimal percepts of physical quantities result from combining 

prior knowledge with new evidence provided by signals. Consistent with such a Bayesian 

strategy, we demonstrated that human observers learn posterior visual reliability by 

updating prior reliability from past with incoming reliability information from current 

signals. Perceptually, the observers estimated the location of audiovisual signals by 

weighting the signals proportional to the learned posterior visual reliability. Thus, the 

influence of past visual reliability on the perceived signal location dated back to visual 

signals several seconds ago. 

 Our results add an important aspect to the Bayesian perspective on perception 

(Yuille and Buelthoff, 1996; Knill and Pouget, 2004): To our knowledge, the current study is 

the first demonstration that human observers do not only learn the reliability of the prior 

(Kording et al., 2004; Kording and Wolpert, 2004; Berniker et al., 2010), but they also learn 

the evidence’s reliability using Bayesian inference. Thus, Bayesian inference might 

fundamentally link sensory learning and perception (Fiser et al., 2010): On the one hand, 

human observers use Bayesian inference to learn the posterior sensory reliability by 

combining prior and current reliability information. On the other hand, they use Bayesian 

inference to perceive the actual physical quantity (i.e., the signal location) by weighting the 

signals proportional to the estimated posterior reliability. Even though we have only 

shown Bayesian learning of sensory reliability in a multisensory ventriloquist paradigm, 

we expect that such a Bayesian process might be fundamental when observers combine 

different kinds of unisensory (Jacobs, 1999; Knill and Saunders, 2003), multisensory (Ernst 

and Banks, 2002; Battaglia et al., 2003; Alais and Burr, 2004) and sensorimotor (Kording et 

al., 2004; Kording and Wolpert, 2004) signals. 

 Further, our findings suggest an extension of the theory of probabilistic population 

codes (Ma et al., 2006). For the gain of the neurons’ population response parametrically 

represents a signal’s reliability, the gain might be modulated by prior reliability. 

Alternatively, in a sampling-based neuronal representation of reliability, the neurons’ 

activity encodes samples of a signal which are collected over time (Fiser et al., 2010). 

Sensory reliability is estimated from the samples’ variability and, therefore, naturally 

learned over successive signals. 

 In conclusion, our results reveal that perception and sensory learning are two 

inextricable mechanisms by which the brain models the environment’s current and past 
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statistical properties. Both are governed by the same underlying principle — Bayesian 

inference. 
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6.8 Supplemental results 

 
Supplemental figure S6.1. Binned visual-variance sequences and auditory weights predicted by the 
alternative non-Bayesian models in the first and second half of the sequences. (A) Comparison of visual 
(V) variance (i.e., STD of the cloud of dots) of the first and the second half of the sequences. Visual variance is 
binned into 20 segments just as the relative auditory weight wA in Fig. 6.3A. Binning does not create any 
history effects. (B, C, D) The relative auditory weights (mean across participants) predicted by the alternative 
models are plotted as a function of normalized time in the three sequences manipulating the variance of the 
visual signal. The first (lower abscissa) and the second—flipped—half (upper abscissa) of the auditory 
weights are plotted separately. (B) Non-learner (model A1). (C) Exponential discounting (model A2). (D) 
Extrapolation (model A3). 
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7 The invisible ventriloquist 

7.1 Abstract 

Information integration across the senses is fundamental for effective interactions with our 

environment. A controversial question is whether multisensory integration is automatic or 

depends on perceptual awareness.  Combining the spatial ventriloquist illusion and 

continuous flash suppression (dCFS), we investigated whether unconscious visual signals 

can influence conscious spatial perception of sounds. Importantly, dCFS obliterated visual 

awareness only in a fraction of trials allowing us to compare spatial ventriloquism for 

physically identical flashes that were visible or invisible. Our results show a stronger 

ventriloquist effect for visible than invisible flashes. Nevertheless, invisible flashes elicited 

a robust ventriloquist effect, even when participants were not better than chance on visual 

flash localization. These findings demonstrate that unconscious signals in one sensory 

modality can alter conscious perception in another sensory modality. They suggest that 

audiovisual signals can be integrated into spatial representations at least to some extent 

prior to perceptual awareness.  

 

7.2 Introduction 

Information integration is critical for effective interactions with our natural environment. 

To form a coherent and more reliable percept, the brain needs to integrate signals from 

multiple senses. It remains controversial, to what extent multisensory integration is 

automatic or dependent on higher cognitive processes such as attention or awareness 

(Talsma et al., 2010). 

Accumulating evidence suggests that audiovisual integration depends on attention 

and awareness. Most prominently, the McGurk illusion falters under high attentional 

demands (Alsius, Navarra, Campbell, & Soto-Faraco, 2005). Likewise, the McGurk illusion is 

abolished when the visual facial movements are obliterated from awareness in the context 

of flash suppression (Palmer and Ramsey, 2012) or bistable perception (Munhall, ten Hove, 

Brammer, & Pare, 2009). These findings converge with the idea that consciousness enables 

the convergence and integration of information and processes within a global work space 

(Tononi and Edelman, 1998; Dehaene and Naccache, 2001; Baars, 2005). Yet, all previous 

studies have focused on the McGurk illusion, which illustrates integration of higher order 

phonological information (i.e., visemes and phonemes) during speech processing. Thus, it 

remains unclear whether consciousness is a general prerequisite for multisensory 

integration. Given accumulating evidence that multisensory integration emerges already at 

the primary cortical level (Foxe et al., 2000; Molholm et al., 2002), a critical question is 
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whether low-level spatiotemporal information can be integrated automatically in the 

absence of attention or awareness. 

Evidence for ‘automatic’ integration of spatial information comes predominantly 

from the ventriloquist illusion that emerges when sensory signals are artificially brought 

into spatial conflict (Radeau and Bertelson, 1977; Bertelson and Radeau, 1981). In spatial 

ventriloquism the perceived location of one sensory input (e.g., auditory) is shifted towards 

the location of a temporally correlated but spatially displaced input of another sensory 

modality (e.g., visual) and vice versa depending on the relative sensory reliabilities (Alais 

and Burr, 2004). Critically, ventriloquism has been observed even when decisional biases 

and response strategies are carefully controlled (Vroomen and de Gelder, 2004). Moreover, 

it has been shown to be unaffected by endogenous or exogenous spatial attention 

(Bertelson et al., 2000a; Vroomen et al., 2001). In fact, ventriloquism is thought to facilitate 

and hence occur prior to spatial attentional selection (Driver, 1996). Likewise, 

ventriloquism was not influenced by modality-specific attention, i.e. whether participants 

focused on a particular sensory modality (Vroomen and de Gelder, 2004).  

Collectively, this body of research suggests that spatial ventriloquism emerges at the 

sensory processing level largely unaffected by attentional or decisional control. Therefore, 

one may ask whether it emerges even prior to or in the absence of participants’ awareness. 

Initial tentative evidence from patients with spatial hemineglect suggests that audiovisual 

spatial ventriloquism persists for visual signals that participants are not aware of 

(Bertelson et al., 2000b). Yet, these results need to be interpreted with caution because the 

ventriloquist effect was reported as significant only for visual signals in patients’ neglected, 

but not in their intact hemifield. Furthermore, this study characterized the ventriloquist 

effect only for unaware but not for aware visual signals in patients’ neglected hemifield. 

Therefore, it could not directly compare the effects of visible and invisible signals to 

formally quantify the contributions of awareness to audiovisual spatial integration. 

To investigate whether integration of auditory and visual signals into multisensory 

spatial representations relies on perceptual awareness, the present study combined spatial 

ventriloquism with dynamic continuous flash suppression (dCFS) (Tsuchiya and Koch, 

2005; Maruya et al., 2008). Dynamic CFS suppresses participants’ awareness of 

monocularly viewed events by simultaneously presenting rapidly changing motion grating 

masks to the other eye (Maruya et al., 2008). Using dCFS, we presented participants’ 

suppressed eye with a brief visual flash to their left or right hemifield. In synchrony with 

the flash, a brief beep was played in the centre, left or right hemifield. Critically, we selected 

the saliency of the visual flash, such that the dynamic continuous flash suppression 

obliterated visual awareness only in a fraction of trials. This allowed us to compare spatial 



7 The invisible ventriloquist 

129 
 

ventriloquism for physically identical flashes that do or do not enter participant’s 

awareness.  

 

7.3 Materials and methods 

Participants 

After giving informed consent, 32 healthy young adults (19 females, 30 right-handed, mean 

age: 23.5 years, standard deviation: 3.53, range: 18-38) with normal or corrected-to-

normal vision, participated in this study. One subject was excluded, because of non-

compliance; he provided random responses during the auditory localization task as 

indicated by an approximately zero correlation between true auditory stimulus locations 

and auditory localization responses. The study was approved by the local ethics review 

board of the University of Tübingen. 

 

Stimuli and apparatus 

Participants sat in a dimly lit room in front of a computer monitor at a viewing distance of 1 

m. They viewed one half of the monitor with each eye using a custom-built mirror 

stereoscope. Visual stimuli were composed of targets and masks that were presented on a 

grey, uniform background with a mean luminance of 15.5 cd/m2. One eye viewed the target 

stimuli, i.e. two grey discs (Ø 0.29°, mean luminance: 25.4 cd/m2), located 5.72° visual 

angle to the left and right of a grey fixation dot. On each trial, either the left or the right 

target’s colour changed to white (mean luminance: 224.2 cd/m2) for a duration of 100 ms. 

This change in brightness will be referred to as ‘flash’.  

To suppress the flash’s perceptual visibility, two dynamic Mondrians (Ø 2°) were 

shown to the other eye (Maruya et al., 2008). To match the target’s location, the Mondrians’ 

were also centred 5.72° to the left and right of the fixation dot. Each Mondrian consisted of 

sinusoidal gratings (Ø 0.57°) which changed their colour and position randomly at a 

frequency of 10 Hz. Each grating’s texture was shifted every 16.6 ms to generate apparent 

motion. Visual stimuli were presented foveally, contained a fixation spot and were framed 

by a grey, isoluminant square aperture of 8.58° x 13.69° in diameter to aid binocular fusion. 

Auditory stimuli were pure tones with a carrier frequency of 1 kHz and a duration of 

100 ms. They were presented via six external speakers, placed above and below the 

monitor. Upper and lower speakers were aligned vertically and located centrally, 2.3° to 

the left and 2.3° to the right of the monitor’s centre. Speakers’ location was chosen by 

trading off physical alignment of visual and auditory stimulus locations and sound 

localization performance. At a distance of 2.3°, mean sound localization accuracy amounted 

to ~70% (see below).  
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Psychophysical stimuli were generated and presented on a PC running Windows XP using 

the Psychtoolbox version 3 (Brainard, 1997; Kleiner et al., 2007) running on Matlab 7 

(Mathworks, Nantucket, Massachusetts). Visual stimuli were presented dichoptically using 

a gamma-corrected 30” LCD monitor with a resolution of 2560 x 1600 pixels at a frame rate 

of 60Hz (GeForce 8600GT graphics card). Auditory stimuli were digitized at a sampling rate 

of 44.8 kHz via a M-Audio Delta 1010LT sound card and presented at an maximal 

amplitude of 73 dB sound pressure level. Exact audiovisual onset timing was confirmed by 

recording visual and auditory signals concurrently with a photo-diode and a microphone.  

 

 
Figure 7.1. Experimental paradigm and procedure. (A) Experimental design: 2 x 3 x 3 factorial design 
with the factors: 1. Flash location (left, right) 2. Sound location (left, centre, right) 3. Visibility (Visible, 
Unsure, Invisible). (B) Example trial and procedure of dynamic flash suppression 
 

Experimental Design  

In a spatial ventriloquist paradigm, participants were presented with an auditory beep 

emanating from one of three potential locations: left, centre, right. In synchrony with the 

beep, one eye was presented with a brief flash either in participants’ left or right hemifield 

under dynamic continuous flash suppression (Maruya et al., 2008). Hence, the 2 x 3 x 3 

factorial design manipulated 1. ‘flash location’ (2 levels: left flash and right flash), 2. sound 

location (3 levels: left sound, central sound and right sound) and 3. flash visibility (3 levels: 

visible, unsure, invisible) (Figure 7.1).   

Each trial started with the presentation of the fixation dot for a duration of 1000 ms. 

Next, participants’ one eye was presented with two grey discs, located 5.72° visual angle to 

the left and right of a grey fixation dot. Participants’ awareness of these discs was 

suppressed by showing dynamic Mondrians to the other eye (i.e., dynamic continuous flash 

suppression). The Mondrian masks and the discs were presented on the screen until 

participants had responded to all questions. The assignment of eyes was changed after each 
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trial, to enhance suppression. After a random interval of 500-1000 ms either the left or the 

right disc ‘flashed’, i.e. changed its luminance for a duration of 100 ms. In synchrony with 

the flash, an auditory beep was played from one of three potential locations.  

On each trial, participants reported the location of the beep (left, centre, right) and rated 

the visibility of the flash (visible, unsure, invisible). This visibility judgment provided a 

‘subjective awareness criterion’. Critically, the flash was visible only in a fraction of trials 

allowing us to quantify the effect of awareness on multisensory integration by comparing 

spatial ventriloquism for physically identical flashes that were visible or invisible. The 

‘unsure’ response option was primarily included to encourage participants to categorize 

trials as invisible. Participants responded by pressing one of three buttons on a keyboard. 

The button assignment was counterbalanced across participants.  

In addition, on 22.2% of the trials, the so-called catch trials, participants were also 

asked to locate the flash (left vs. right discrimination; in addition to visibility judgment and 

sound localization). This allowed us to assess the spatial information that is available for 

visual spatial localization during visible, unsure and invisible trials and select participants 

that were not better than chance when locating flashes that they judged as invisible (i.e., 

the so-called chance performers). The latter allowed us to investigate the influence of 

flashes on sound localization, when they were invisible and unaware in an objective sense 

(i.e., objective awareness criterion). 

Prior to the main experiment, participants were familiarized with stimuli and task. 

First, they completed 2-3 sessions of sound localization (% correct day1: 69.9% (std.: 16.8); 

% correct day2: 74.7% (std.: 14.7), % correct both days: 72.3% (std.14.9)). Next, there 

were two short practice sessions of the ventriloquist paradigm. During the main 

experiment participants completed a total of 24 experimental sessions distributed over 

two successive days, resulting in a total of 1296 trials (i.e., 216 trials per condition).  

 

Analysis   

For data analysis, participants’ perceived auditory location was coded as -1 for left, 0 for 

centre and 1 for right across trials. For each participant, we estimated the crossmodal bias 

(Aresponded - Aloc)/(Vloc - Aloc)  as an index of the spatial ventriloquist effect with Aresponded =  

participant’s auditory location response, Vloc = the location of the visual signal and  Aloc = the 

location of the auditory signal. To account for subject-specific spatial response biases and 

limited response options, we adjusted Aloc and Vloc using a linear regression approach 

across all congruent non-catch trials irrespective of visibility level. Therefore, we linearly 

regressed participants’ localization responses against the true signal location in the 

congruent trials and inserting the predicted auditory and visual locations as Aloc and Vloc in 

the crossmodal bias equation. This adjustment recovered the ‘true’ ventriloquist effect 
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reliably in particular for small visual influence as in our current study (cf. simulations 

performed in supplemental fig. S7.1A). As an alternative measure of crossmodal bias, we 

regressed the auditory and visual locations against the auditory location responses and 

computed the crossmodal bias as the relative visual weight. This approach yielded very 

similar results (cf. supplemental fig. S7.1B). 

 

7.4 Results 

Spatial ventriloquism for visible, unsure and invisible trials  

First we computed the ventriloquist effect (i.e., crossmodal bias) separately for each 

visibility level. To maximize the power of the analysis, we included all subjects that had at 

least one incongruent trial for a particular visibility level (n.b. this analysis approach 

naturally results in different number of subjects being included for different visibility 

levels). As shown in figure 7.2A, the ventriloquist effect was much stronger for visible than 

unsure and invisible trials. Thus, a repeated measures ANOVA with the factor visibility 

(visible, unsure, invisible) revealed a significant main effect of visibility (F1.1,30.3 = 14.709; p 

< 0.001; η2 = 0.353; Greenhouse-Geisser-corrected).  

 

Figure 7.2. The ventriloquist effect (VE), 
flash localization performance and the 
correlation between the ventriloquist 
effect for visible versus invisible flashes. 
(A) Bar plots show the ventriloquist effect 
(= crossmodal bias; left ordinate) for trials 
where participants judged the visibility of 
the flash as ‘visible’, ‘unsure’ or ‘invisible’. 
We either included all participants that had 
trials at the respective visibility level (= All) 
or only those that performed at chance on 
flash localization on trials where they 
responded ‘invisible’ (= chance performers). 
The markers show the flash localization 
performance at the group level (across 
included subjects mean ± SEM; right 
ordinate). For invisible trials, participants 
were not better than chance at the group 
level when including all subjects or only the 
subjects that were at chance based on 
individual binomial testing. (B) Scatter plot 
depicting the correlation between the 
ventriloquist effect for visible and invisible 
flashes over subjects. 
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Nevertheless, a highly significant ventriloquist effect was observed when testing 

separately for visible trials (t27 = 4.466, p < 0.001), unsure trials (t29 = 4.039, p < 0.001) and 

invisible trials (t30 = 3.025, p = 0.005). Importantly, the ventriloquist effect for invisible 

trials emerged even though at the group level participants performed at chance on the flash 

localization task (Fig. 7.2A; flash localization accuracy for invisible trials (across-subjects 

mean ± SEM): 0.518 ± 0.022; t-test against 0.5 chance performance: t30 = 0.788, p = 0.437). 

 

Correlation between visible and invisible ventriloquist effects 

Next, we investigated whether the ventriloquist for visible and invisible trials were 

correlated over subjects. In other words, we determined whether participants that show a 

strong (resp. weak) ventriloquist effect for invisible trials also exhibit a strong (resp. weak) 

ventriloquist effect for visible trials. As shown in figure 7.2B, the ventriloquist effects for 

visible and invisible trials were significantly correlated over subjects (r = 0.444, p = 0.018, 

n = 28, i.e., including all subjects with visible and invisible trials). This correlation provides 

initial evidence that the neural mechanisms and circuitries underlying the ventriloquist 

effects in the presence and absence of awareness may be at least partly overlapping. 

 

Spatial ventriloquism for invisible trials restricted to chance performers on flash localization 

In the first analysis, we demonstrated a ventriloquist effect for invisible trials, when 

subjects were at chance at the group level when locating invisible flashes. Thus, we used a 

more stringent criterion of perceptual awareness by including only those subjects that 

were individually not better than chance when locating an ‘invisible’ flash during the catch 

trials using a binomial test (i.e., objective awareness criterion). The individual chance 

performance constraint reduced the number of subjects that could be included in the 

analysis (n = 28). Nevertheless, despite the reduced number of subjects, we still observed a 

significant ventriloquist effect for invisible trials (Fig. 7.2A; t27 = 2.630, p = 0.014). 

Moreover, as shown in figure 7.2A, the size of the ventriloquist effect is similar when 

including all subjects or only the chance performers. Importantly, the flash localization 

accuracy (i.e., across subjects mean) at the group level is again not significantly better than 

chance but nearly equal to 50% (flash localization accuracy: 0.498 ± 0.021 (across subjects 

mean ± SEM; t test against 0.5 chance performance: t27 = -0.118, p = 0.9080). 

 

Regression analysis: VE prediction by flash localization accuracy 

Next, we investigated whether the ventriloquist effect was predicted by participants’ 

accuracy to localize the flash (n.b. this analysis could be performed only on participants 

that had data in both catch and non-catch trials for the respective visibility levels). As 

shown in figure 7.3A, we observed a significantly positive regression slope for visible trials 
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(all participants: t23 = 2.623, p = 0.009; chance performers: t20 = 2.518, p = 0.010). This 

positive prediction of the ventriloquist effect for visible flashes by visual localization 

accuracy is consistent with models of Bayes-optimal integration where the sensory weight 

increases with the reliability of the signal (Ernst and Banks, 2002; Alais and Burr, 2004). If 

participants have access to highly reliable visual information as indicated by their flash 

localization accuracy, they show a strong ventriloquist effect.  

 

 
Figure 7.3. Relation of ventriloquist effect (VE), flash localization accuracy and number of trials with 
invisible flashes. (A) The scatter plots depict the regression of the ventriloquist effect against localization 
accuracy of the visual flash separately for visible (blue) and invisible (green) trials based on all subjects 
(solid) or only chance performers (dashed). The ordinate represents the ventriloquist effect and the abscissa 
represents visual localization accuracy (i.e., % correct). (B) The scatter plot depicts the regression of the 
ventriloquist effect for invisible flashes against the number of trials with invisible flashes.  
 

Critically, however, for invisible flashes, the ventriloquist effect did not significantly 

depend on the accuracy with which participants were able to locate the flash. This was true 

when all participants were included (t28 = 0.236, p = 0.408; one outlier subject with an 

accuracy of zero in a single invisible catch trial was excluded; yet, when this outlier subject 

was included, we observed even a negative regression slope) or when only the chance 

performers were included (t25 = -0.556, p = 0.291). These results indicate that visual 

representations may influence sound processing without being available for visual 

localization tasks or accessible to perceptual awareness. They also provide further support 

that the ventriloquist effect for invisible trials does not arise predominantly from 

participants with higher flash localization accuracies. 

 

Regression analysis: VE prediction by the number of invisible trials 

One may hypothesize that the ventriloquist effect arises predominantly in subjects that set 

a very high criterion for judging flashes as visible and may therefore still have visual 
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information available on trials that are judged as invisible. To address this potential 

concern, we investigated whether the ventriloquist effect was predicted by the number of 

invisible trials per subject. However, contrary to this conjecture, we observed a regression 

slope that was not significantly different from zero (p > 0.05; Fig. 7.3B). Thus, this 

regression analysis provides additional corroborative evidence that the ventriloquist effect 

for invisible trials is not driven predominantly by participants that set a high visibility 

criterion and hence may still have visual information available when they judge a flash as 

invisible. 

 

7.5 Discussion 

Using continuous flash suppression and spatial ventriloquism, we demonstrate that 

unconscious signals in the visual modality influence how humans construct their auditory 

perceptual world. In particular, we have shown that invisible flashes alter the perceived 

location of concurrent sounds. These results suggest that auditory and visual inputs are 

integrated into coherent spatial representations at least to some extent prior to perceptual 

awareness.  

Accumulating evidence has shown that audiovisual integration of speech signals is 

abolished when visual facial movements are rendered unconscious via multistable 

perception or flash suppression (Munhall et al., 2009; Palmer and Ramsey, 2012) 

highlighting the role of perceptual awareness in multisensory integration. This raises the 

question whether consciousness is a generic prerequisite for multisensory integration and 

is also required for low-level spatial integration as indexed by the ventriloquist effect.  

Our findings demonstrate that spatial ventriloquism is profoundly modulated by the 

visibility of the flash. While a strong ventriloquist effect was observed for visible trials, it 

was attenuated, when the visual flash was not consciously perceived. Nevertheless, a 

robust ventriloquist effect persisted for invisible trials, even when participants showed 

chance performance on flash localization. Moreover, in additional regression analyses we 

demonstrated that the ventriloquist effect for invisible trials was not significantly predicted 

by participant’s flash localization accuracy or the number of invisible flashes. These 

findings further corroborate that the ventriloquist effect for invisible trials is not driven by 

participants that can still access visual information despite judging the stimulus as 

invisible. Collectively, our results demonstrate that ‘invisible’ flashes that evade 

participants’ awareness influence where we perceive sounds that we are aware of. 

At least two distinct neural circuitries may mediate the influence of these ‘invisible’ 

flashes on sound localization during continuous flash suppression. First, an invisible flash 

may interact with auditory signals via subcortical mechanisms such as the colliculo-

pulvinar pathway (Wallace et al., 1993; Hackett et al., 2007; Cappe et al., 2009b; Cappe et 
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al., 2009a) that has previously been implicated in mediating activations along the dorsal 

stream into the intraparietal sulcus under CFS (Fang and He, 2005). Second, it may 

modulate sound processing via sparse direct connectivity between primary auditory and 

visual areas (Falchier et al., 2002; Cappe and Barone, 2005).  

The ventriloquist effect may be smaller for invisible than visible flashes, because ‘invisible’ 

flashes may evoke weaker activations than visible flashes already at the primary cortical 

level as a result of state-dependent effects or various sources of internal neural noise 

(Faisal et al., 2008). The level of neural activity then concurrently determines (i) whether 

the flash is able to enter perceptual awareness as well as (ii) the precision of the spatial 

representation and thereby strength of the ventriloquist effect (cf. Alais and Burr, 2004; Ma 

et al., 2006).  Thus, visible flashes would induce a ventriloquist effect via the same neural 

circuitries as invisible flashes and induce a greater ventriloquist effect, as they induce 

higher neural activity and thus more precise spatial representations in visual cortices. In 

support of this ‘shared neural mechanism’ account, the size of the ventriloquist effect 

correlated significantly for ‘visible’ and ‘invisible’ flashes over subjects.  

Alternatively, ‘visible’ flashes may induce a stronger ventriloquist effect by 

employing additional neural circuitries that are not engaged by weaker invisible flashes. 

This account dovetails nicely with current perspectives on the neural organization of 

multisensory integration. Specifically, auditory and visual information are thought to be 

integrated via multiple circuitries including subcortical mechanisms, direct connectivity 

between primary sensory areas and convergence in higher order association areas 

(Macaluso and Driver, 2005; Ghazanfar and Schroeder, 2006; Musacchia and Schroeder, 

2009; Kayser et al., 2012). Moreover, it is well established that multisensory integration 

progressively increases along the cortical hierarchy with only about 15 % neurons showing 

multisensory properties in primary sensory areas (Bizley et al., 2007) and more than 50 % 

in classical association areas such as intraparietal or superior temporal sulci (Dahl et al., 

2009). Thus, when a visual flash escapes the continuous flash suppression and enters 

participants’ awareness, a strong ventriloquist effect emerges most likely via integration in 

association areas such as intraparietal sulci (IPS) that contain exuberant multisensory 

neurons and may potentially amplify multisensory integration via feed-back loops with 

lower-level sensory areas. By contrast, when continuous flash suppression blocks neural 

activity at least to some extent from propagating into higher-order association areas, 

audiovisual integration is greatly attenuated or even abolished leading to a smaller 

ventriloquist effect mediated via an alternative neural circuit. Under this ‘multiple neural 

circuitries’ account, auditory and visual signals are integrated most likely at both pre- and 

post-aware processing stages potentially via partly distinct neural circuitries (e.g., direct 

connectivity vs. higher order association cortices). 



7 The invisible ventriloquist 

137 
 

In conclusion, to our knowledge our findings provide the first convincing 

demonstration that unconscious signals in one sensory modality can alter our conscious 

percept of signals in another sensory modality. These results suggest that low level sensory 

information can be integrated at least to some extent prior to perceptual awareness. 

Nevertheless, information integration as indexed by spatial ventriloquism was strongly 

amplified for conscious relative to unconscious visual signals. This raises the possibility 

that ‘aware’ visual signals may also engage multisensory integration mechanisms in higher-

order association areas or other neural circuitries that are not engaged in the absence of 

perceptual awareness. Future studies using EEG and fMRI are needed to identify the neural 

systems that enable audiovisual integration in the presence and absence of awareness. 
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7.8 Supplemental results 

 
Supplemental figure S7.1. Simulation results showing validity of the adjusted ventriloquist effect 
(VE) as a measure of crossmodal bias. (A) To show the validity of the VE adjusted by linear regression as 
reported in the main text, we first simulated ‘noisy auditory localization responses’ according to Aresponse = 
Aloc*ßA + Vloc*ßv + e with Aresponse participants’ auditory localization response, Aloc, Vloc the true auditory or 
visual locations and ßA, ßv the relative auditory and visual weights (i.e., ßv = (1 -  ßA)). The simulation used 
exactly the same parameters as our experiment (i.e., 2 visual and 3 auditory locations and three 3 response 
‘buttons’ for the auditory localization responses). The figure shows the ‘true/reference’ ßv, the naïve 
(unadjusted) VE, the VE adjusted by linear regression, and the relative visual weight (ßrelativeV, cf. (B)) 
(mean ± STD across 5000 simulations) as a function of ßv. Only the adjusted VE and relative visual weight 
are unbiased. (B) Alternatively, the unbiased ventriloquist effect can be measured based on the relative 
visual weight that is computed as ßrelativeV = ßv  / (ßv + ßA) using linear regression(i.e., Aresponse = Aloc* ßA + 
Vloc* ßv + e). While this ventriloquist index is less commonly used in the literature, it has the advantage that 
a permutation distribution under the null-hypothesis can be generated: Because the visual signal has no 
effect on auditory localization responses under the null hypothesis, the permutation distribution (mean ± 
STD across 5000 simulations) was generated by exchanging the left versus right label of the visual signal. 
As shown in (B), ßrelativeV approximates zero for the permutation distribution, i.e. is unbiased under the null 
hypothesis. However, ßrelativeV (mean ± SEM across subjects) is positive when computed for our original 
data from chance performers in trials of invisible flashes (cf. Fig. 7.2A). Here, ßrelativeV is significantly greater 
than zero based on this non-parametric permutation testing (p = 0.003). 
  

 

 

 


