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Abstract

For an m dimensional Hm measurable set Σ we define, axiomatically, a class of
Menger like curvatures κ : Σm+2 → [0,∞) which imitate, in the limiting sense, the
classical curvature if Σ is of class C 2. With each κ we associate an averaged cur-
vature K

l,p
κ [Σ] : Σ → [0,∞] by integrating κp with respect to l − 1 parameters and

taking supremum with respect tom+ 2− l parameters. We prove that if Σ is a priori
(Hm,m) rectifiable (of class C 1) with Hm(Σ) <∞ and K

l,p
κ [Σ](a) <∞ for Hm almost

all a ∈ Σ, then Σ is in fact (Hm,m) rectifiable of class C 1,α, where α = 1−m(l−1)/p.
We also prove an analogous result for the tangent-point curvature and we show that
α is sharp.

1 Introduction

Whenever T = (p0, . . . ,pk) ∈ (Rn)k+1 is a (k + 1) tuple of points in Rn let 4T be the
convex hull of the set {p0, . . . ,pk} ⊆ Rn and let Hm denote the m dimensional Hausdorff
measure over Rn. Fix γ ∈ (0,∞) and define κγvol : (R

n)m+2 → [0,∞) by

κ
γ
vol(T) =

(
Hm+1(4T)

diam(4T)m+1

)γ 1
diam(4T)

whenever Hm+1(T) > 0

and κγvol(T) = 0 if Hm+1(T) = 0. In [Kol15] we have studied regularity properties of
compact m dimensional sets Σ ⊆ Rn which are AD regular, i.e.,

C−1rm 6 Hm(Σ ∩B(a, r)) < Crm for some C ∈ (1,∞) and all a ∈ Σ, r ∈ (0, diamΣ) ,

have finite curvature energy Mp, i.e.,

Mp(Σ) =

ˆ
Σm+2

κ1
vol(q0, . . . ,qm+1)

p dHm(q0) · · · dHm(qm+1) for some p > m(m+ 2) ,

and, roughly speaking, do not have “holes” which was expressed be kind of a local Reifen-
berg flatness condition. In this setting we obtained C 1,α regularity, where α = 1 −
m(m+2)/p, which can be seen as an analogue of the classical Morrey-Sobolev embedding
W2,p(Rm(m+2)) ⊆ C 1,α(Rm(m+2)). Concerning this result two questions arise.

(A) What kind of regularity can be deduced from finiteness of Mp(Σ) if one does not as-
sume neither AD regularity nor any structural condition modeling the lack of “holes”?
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(B) Assuming only thatΣ isHmmeasurable withHm(Σ) <∞, does the conditionMp(Σ) <∞ imply, for some p ∈ (0,∞), that Σ is (Hm,m) rectifiable, i.e.,Hm(Σ) <∞ and Σ can
be covered, up to a set of Hm measure zero, by a countably many Lipschitz graphs?

Question (B) has been answered very recently in the thesis of Meurer [Meu15], who
proved that if γ = 2/(m(m+ 1)), p = m(m+ 1), and

ˆ
Σm+2

κ
γ
vol(q0, . . . ,qm+1)

p dHm(q0) · · · dHm(qm+1) <∞ ,

then Σ is indeed (Hm,m) rectifiable. Actually he proved this result for a whole class of
discrete curvatures κ : (Rn)m+2 → [0,∞) which he calls proper integrands and which
includes κγvol when γ = 2/(m(m+ 1)).

Our main result involves answering question (A) assuming that Σ is (Hm,m) recti-
fiable with Hm(Σ) < ∞. To state the theorem we need to define the class of discrete
curvatures to which it applies. For k ∈ N ∼ {0} let

Dk =
{
T ∈ (Rn)k+1 : Hk(4T) > 0

}
be the set of tuples of vertexes of non-degenerate k dimensional simplices in Rn. We also
write span{v1, . . . , vk} for the linear span of the vectors v1, . . . , vk ∈ Rn.

1.1 Definition. Let m,n ∈ N ∼ {0}, 0 < m < n, γ ∈ (0,∞). We call κ : (Rn)m+2 → [0,∞)
an m dimensional Menger like curvature with exponent γ ∈ (0,∞) (or just a Menger like
curvature) if the following conditions hold

(a) continuity:

κ|Dm+1 : Dm+1 → [0,∞) is continuous ;

(b) degenerate simplices have zero curvature:

κ(T) = 0 whenever T ∈ (Rn)m+2 and Hm+1(4T) = 0 ;

(c) boundedness on unit diameter simplices:

sup
{
κ(T) : T ∈ Dm+1 , diam(4T) = 1

}
<∞ ;

(d) curvature scaling:

κ(λT) = λ−1κ(T) whenever λ ∈ (0,∞) and T ∈ Dm+1 ;

(e) repulsiveness: if

d, δ ∈ (0,∞) , T = (a,b1, . . . ,bm, c) ∈ Dm+1 , diam(4T) 6 d ,
m!Hm

(
4(a,b1, . . . ,bm)

)
> δdm , and P = span

{
b1 − a, . . . ,bm − a

}
,

then there exists Λ = Λ(δ,κ) ∈ (0,∞) such that

κ(T) >

(
Λdist(c− a,P)

d

)γ 1
d

.
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We say that κ is tame if additionally

(f) there exists Γ = Γ(κ) ∈ (0,∞) such that for any α ∈ (0, 1] the following holds: if Σ ⊆
Rn is a graph of some function f ∈ C 1,α(Rm,Rn−m), and T = (p0, . . . ,pm+1) ∈ Σm+2

satisfies Hm+1(4T) > 0, and

K = sup
{
‖Df(p(q)) −Df(p(p0))‖

|p(q) − p(p0)|α
: 0 < |q− p0| 6 diam(4T)

}
,

where p : Rn → Rm is given by p(x1, . . . , xn) = (x1, . . . , xm), then

κ(T) 6 (ΓK)γ diam(4T)αγ−1 .

For k ∈ N ∼ {0} let µkΣ be the product of k copies of Hm Σ, i.e.,

µkΣ = (Hm Σ)k .(1)

Given p ∈ (0, 1), l ∈ {1, . . . ,m + 2}, p0 ∈ Σ and a Menger like curvature κ we define the
averaged curvatures

Kl,pκ [Σ](p0) =

(ˆ (
µm+2−l
Σ

)
ess sup

pl,...,pm+1∈Σ
κ(p0, . . . ,pm+1)

p dµl−1
Σ (p1, . . . ,pl−1)

)1/p

(2)

with the understanding that there is no essential supremum in case l = m+ 2 and there
is no integral in case l = 1. With the above definitions we can now state our main higher
order rectifiability result.

1.2 Theorem. Assume

m,n ∈ N , 0 < m < n , Σ ⊆ Rn be (Hm,m) rectifiable , Hm(Σ) <∞ ,

p,γ ∈ (0,∞) , l ∈ {1, . . . ,m+ 2} , p > m(l− 1) , α = 1
γ

(
1 −

m(l−1)
p

)
∈ (0, 1] ,

κ is a Menger like curvature with exponent γ ,
Kl,pκ [Σ](p0) <∞ for Hm almost all p0 ∈ Σ .

Then Σ is (Hm,m) rectifiable of class C 1,α, i.e., there exists a countable family M ofm di-
mensional submanifolds of Rn of class C 1,α such that Hm(Σ ∼

⋃
M) = 0 (cf. 3.1).

Moreover, in case κ is tame and either γ = 1 or α < 1 the exponent α is optimal, i.e.,

(a) if α = 1 and γ = 1, then for each ε ∈ (0, 1) there exists Σ which is not (Hm,m) rectifi-
able of class C 2,ε but Kl,pκ [Σ](p0) <∞ for Hm almost all p0 ∈ Σ.

(b) if α < 1, then for each ε ∈ (0, 1) such that α + ε < 1 there exists Σ which is not
(Hm,m) rectifiable of class C 1,α+ε but Kl,pκ [Σ](p0) <∞ for Hm almost all p0 ∈ Σ.

Combining 1.2 with [Meu15, Theorem 3.4] we can, at least if γ = 2/(m(m + 1)),
essentially drop the assumption that Σ is (Hm,m) rectifiable. First define

Ml,p
κ (Σ) =

ˆ
Σ

Kl,pκ [Σ](p0)
p dHm(p0) .(3)

We obtain
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1.3 Corollary. Let Σ ⊆ Rn be Hm measurable with Hm(Σ) < ∞, and κ be a translation
invariant Menger like curvature with exponent γ = 2/(m(m + 1)), and p > m(m + 1). If
M
m+2,p
κ (Σ) <∞, then Σ is (Hm,m) rectifiable of class C 1,α, where α = 1 −m(m+ 1)/p.

The axioms of 1.1 are meant to reflect, in case γ = 1, properties of the so called
tangent-point curvature rtp[Σ]−1 given by

rtp[Σ](a,b)−1 =
2 dist

(
b− a, Tanm(Hm Σ,a)

)
|b− a|2

for a,b ∈ Σ with b 6= a ,(4)

where Tanm(Hm Σ,a) denotes the approximate tangent cone to Σ at a; see 3.7. For
each a ∈ Σ such that Tanm(Hm Σ,a) is an m dimensional plane, rtp[Σ](a,b)−1 equals
exactly the inverse of the radius of the uniquem dimensional sphere S passing through a
and b and such that Tanm(Hm Σ,a) = Tan(S,a). Moreover, if Σ is a graph of some
C 2 function, then lim supΣ3b→a rtp[Σ](a,b)−1 equals the operator norm of the second
fundamental form of Σ ⊆ Rn at a; see 4.1. Thus, rtp[Σ](a,b)−1 can be seen as a relaxed
version of the classical curvature and condition 1.1 (e), where the plane spanned by the
firstm+1 points of T plays the role of a “tangent plane”, is meant to imitate the behavior
of rtp[Σ]−1. We added the parameter γ to make it possible to include in our class all
the discrete curvatures defined in [LW09, §1.2 , §6.1.1] and [LW11, §10]. Menger like
curvatures with exponent 2/(m(m + 1)) which are translation invariant are also proper
integrands in the sense of [Meu15, Definition 3.1].

The additional condition 1.1 (f) says roughly that if κ is tame, it imitates closely some
classical notion of curvature; see 6.1. In particular, it implies that if Σ is a compact
submanifold of Rn of class C 2, then κ is bounded on Σm+2. In 6.2 we show that κγvol as
well as

κ
γ
h (T) =

(
hmin(T)

diam(4T)

)γ 1
diam(4T)

,

where hmin(T) denotes the minimal height of the simplex4T , are tame. This implies that
whenever κ . κγh , then κ is also tame; see 6.3. We use this observation to check that some
of the discrete curvatures of [LW09, LW11] are tame; see A.2. Although we are mainly
interested in tameMenger like curvatures we do not impose the condition 1.1 (f) by default
since not all known examples satisfy it. In particular, κS defined for T ∈ Dm+1 as the
inverse of the radius of the uniquem dimensional sphere containing all them+ 2 points
of T is not tame unless m = 1; in this case γ = 1 (see A.1 for an algebraic expression
defining κS). Observe that if m = 1, then κS is the original Menger–Melnikov curvature
(cf. [Men30, II.1] and [Mel95, Definition 2]).

Let a,b ∈ Σ be such that a 6= b and the approximate tangent cone Tanm(Hm Σ,a) is
an m dimensional plane. For p ∈ (0,∞) set

τ1,p[Σ](a) =
(
Hm Σ

)
ess sup

(
Σ 3 b 7→ rtp[Σ](a,b)−1)(5)

and τ2,p[Σ](a) =

(ˆ
Σ

rtp[Σ](a,b)−p dHm(b)

)1/p
.

Our second result, which is proven first and can be seen as a model case for 1.2, allows to
deduce higher rectifiability of Σ from finiteness Hm almost everywhere of one of τ1,p[Σ]
or τ2,p[Σ].
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1.4 Theorem. Let m ∈ N ∼ {0}, Σ ⊆ Rn be (Hm,m) rectifiable of class C 1, l ∈ {1, 2},
p ∈ R, p > m(l − 1). Assume τl,p[Σ](a) < ∞ for Hm almost all a ∈ Σ. Then Σ is
(Hm,m) rectifiable of class C 1,α, where α = 1 −m(l− 1)/p.

Moreover, the exponent α is optimal, i.e.,

(a) if l = 1, then for each ε ∈ (0, 1) there exists Σ which is not (Hm,m) rectifiable of
class C 2,ε but τ1,p[Σ](a) <∞ for Hm almost all a ∈ Σ.

(b) if l = 2, then for each ε ∈ (0, 1) such that α + ε < 1 there exists Σ which is not
(Hm,m) rectifiable of class C 1,α+ε but τ2,p[Σ](a) <∞ for Hm almost all a ∈ Σ.

Theorems 1.4 and 1.2 fit into a whole series of regularity results proven in the context
of discrete curvatures and associated energies in the recent years. Motivated by questions
arising in knot theory and variational problems emerging there Strzelecki and von der
Mosel [SvdM07] and Strzelecki, von der Mosel, and Szumańska [SSvdM09, SSvdM10]
studied the functionals M

l,p
κ in the case m = 1, l ∈ {1, 2, 3}, κ = κS, and Σ is a rectifiable

closed curve, i.e., Σ = im Γ for a Lipschitz map Γ : R/Z → R3 satisfying |Γ ′(t)| = L for
H1 almost all t ∈ R/Z and some fixed L ∈ (0,∞). They proved, among other things,
that finiteness of Ml,p

κS (Σ) for some p > l implies C 1,1−l/p regularity of Γ and, in case
l = 1, that finiteness of Ml,p

κS (Σ) is equivalent to Γ being of Sobolev class W2,p. This has
been further extended by Blatt [Bla13b] who showed, for l ∈ 2, 3 and p > l, that the
condition M

l,p
κS (Σ) < ∞ characterizes curves for which Γ is in the Sobolev–Slobodeckij

spaceW2−(l−1)/p,p. Similar results were also proven for the tangent-point energies

Tl,p(Σ) =

ˆ
τl,p[Σ](a)p dµ1

Σ(a) for l = 1, 2 .

In [SvdM12] the authors show C 1,1−2/p regularity for curves having finite T2,p energy
with p > 2.

Going into higher dimensions, in a pioneering work [SvdM11], Strzelecki and von
der Mosel initiated the study of discrete curvatures for surfaces in R3. They defined
κSvdM(T) = H3(4T)H2(∂4 T)−1 diam(4T)−2 whenever T ∈ D3 and proved that if Σ ⊆ R3

is a closed connected compact Lipschitz surface and M
4,p
κSvdM(Σ) = E < ∞ for some p > 8,

then Σmust be a submanifold of R3 of class C 1,1−8/p whose local graph representation is
controlled in terms of E and p only. The same authors established in [SvdM13] a similar
result for a wide class of m dimensional subsets of Rn (called δ-admissible there) hav-
ing T2,p energy finite for some p > 2m; in this case one obtains C 1,1−2m/p regularity.
Building on their ideas, the author studied a different class of m dimensional compact
subsets of Rn described briefly at the beginning of this introduction (they are called m-
fine in [Kol15]). We proved another geometric Sobolev–Morrey type embedding theorem
for the M

l,p
κ energies : if Σ is m-fine, l ∈ {1, 2, . . . ,m + 2}, κ = κ1

vol, and M
l,p
κ (Σ) < ∞

for some p > ml, then Σ is a C 1,1−ml/p submanifold of Rn. This has been further ex-
tended by Blatt [Bla13a], Blatt and the author [BK12] and the author, Strzelecki, and
von der Mosel [KSvdM13] showing that finiteness of Tl,p and M

l,p
κ with κ = κ1

vol actually
characterizes submanifolds which are locally graphs ofW2−m(l−1)/p,p ∩ C 1 maps.

Each of the embedding theorems mentioned above comes with a very rigid control of
the local graph representation of Σ in terms of the energy M

l,p
κ or Tl,p. This allowed to

prove [KSvdM15] finiteness of ambient C 1 isotopy types of submanifolds having energy

5



bounded by some fixed value and made it possible to find minimizers of the energy in
each isotopy class.

Definition 1.1 implies that κ(T) 6 Cdiam(4T)−1 for any Menger like curvature κ and
some constant C = C(κ). Thus, it is not hard to deduce (see 6.4) that if p < m(l − 1)
and Σ is Hm measurable with Hm(Σ) < ∞, then K

l,p
κ [Σ](a) < ∞ and τl,p[Σ](a) < ∞

for Hm almost all a ∈ Σ, and if Σ is additionally AD regular, then M
l,p
κ (Σ) < ∞ and

Tl,p(Σ) <∞; see 6.5. Therefore, the interesting case is when m(l− 1) 6 p <∞.
If p = m(l−1), and Σ ⊆ Rn isHmmeasurable withHm(Σ) <∞, and κ is aMenger like

curvature with exponent 2/(m(m+1)), then one might expect that finitenessHm almost
everywhere of Kl,pκ [Σ] implies that Σ is (Hm,m) rectifiable.

In case m = 1, l = 3, and κ = κS is the Menger curvature, finiteness of Ml,p
κ (Σ)

implies (H1, 1) rectifiability. This is the famous theorem of David [Dav98] (see also
Léger [Lég99]) proven in connection with the Vitushkin conjecture characterizing re-
movable sets for bounded analytic functions. The result of Meurer [Meu15] constitutes a
generalization of David’s theorem and has been proven using Léger’s approach. In this
context, Farag [Far99] showed that there is no equivalent of the Menger–Melnikov cur-
vature in higher dimensions which would relate to the Riesz transform in the way κS
relates to the Cauchy transform (cf. [Mel95]). Moreover, an analogue of the Vitushkin
conjecture in Rn has already been proven by Nazarov, Tolsa, and Volberg [NTV14] with-
out employing any discrete curvature. Nonetheless, Menger like curvatures can still be
used to study rectifiability of sets or measures.

By the results of Lerman andWhitehouse [LW09, LW11], if Σ is AD regular, l = m+2,
γ = 2/(m(m + 1)), κ = κ

γ
vol, and B ⊆ Rn is a ball, then M

l,p
κ (Σ ∩ B) is comparable to the

Jones’ square function

J2(Σ ∩ B̃) =
ˆ
Σ∩B̃

ˆ diam B̃

0
βmΣ,2(x, r)2

dr
r

dHm(x) ,

where B̃ is a ball with the same center as B and radius scaled by a factor and the number
βmΣ,2(x, r) is defined by

βmΣ,2(x, r) = inf
L

(
r−m

ˆ
Σ∩B(x,r)

(
dist(y,L)

r

)2
dHm(y)

)1/2

,

where the infimum is taken with respect to all affine m dimensional planes L in Rn.
Having in mind the various characterizations of uniformly rectifiable sets given by David
and Semmes [DS93, Theorem 1.57] the results of [LW09, LW11] yield yet another char-
acterization. In connection with that result it is adequate to mention one more develop-
ment concerning rectifiability. Tolsa [Tol15] and Azzam and Tolsa [AT15] proved that an
Hm measurable set Σ with Hm(Σ) <∞ is (Hm,m) rectifiable if and only if

ˆ 1

0
βmΣ,2(x, r)2

dr
r
<∞ for Hm almost all x ∈ Σ .(6)

Consulting [LW09, LW11] and [Meu15, Theorem 5.6] which give estimates for βmΣ,2 in
terms of the curvature energies one might acquire an impression that the integral in (6)
and K

l,p
κ [Σ] might be mutually comparable if γ = 2/(m(m + 1)). However, by now it is
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not clear whether the results of [AT15] imply [Meu15] or vice versa. Certainly the two
results were proven in parallel and using different techniques.

The fact remains that γ = 2/(m(m + 1)) is exactly the right exponent in the context
of characterizing (Hm,m) rectifiability. This is surprising since γ = 1 seems more nat-
ural and the curvatures with γ = 1 were successfully used to characterize Sobolev and
fractional Sobolev submanifolds in [Bla13a, BK12, KSvdM13].

Organization of the paper

In section 2 we introduce the notation and in section 3 we recall various facts from geo-
metric measure theory. In 3.17 we prepare the basic setup for the proofs and in 3.22 we
formulate a corollary of [Sch09, Lemma A.1] which will be our main tool in the proofs.
Next in section 4 we prove 1.4. After that in section 5 we prove some auxiliary results
which will allow to show that κγh is tame. In section 6 we show that κγh and κγvol are tame
and study some basic properties of Menger like curvatures which allow to show sharp-
ness of our results (cf. 6.6). In section 7 we prove theorem 1.2. And in the appendix A we
show that all the curvatures of [LW09, LW11] as well as κS satisfy definition 1.1.

2 Notation

In principle we shall use the book of Federer [Fed69] as our main reference and source
of definitions, and we shall adopt some, but not all, of its notation. In particular we
shall write {x ∈ X : P(x)}, in contrast to X ∩ {x : P(x)}, for the set of those x ∈ X which
satisfy some predicate P. We also prefer to say that a function is “injective” rather than
“univalent”. The symbols R and N shall be used for the set of real and natural numbers
including zero respectively. The closure of a subset A of some topological space X shall
be denoted by A and the interior by IntA. Moreover, whenever s, t ∈ R ∪ {−∞,∞} and
s < t, we shall write (s, t), [s, t] for the open and closed intervals in R and also (s, t] and
[s, t) with the usual meaning. If A and B are sets, we write A ∼ B for the set of these
a ∈ A which do not belong to B (set theoretic difference). If X is a vector space, A,B ⊆ X,
c ∈ X and r ∈ (0,∞) we adopt the notation c + A = {c + a : a ∈ A}, rA = {ra : a ∈ A} and
A + B = {a + b : a ∈ A , b ∈ B}. When we write Rn we always mean the n dimensional
Euclidean space with the standard scalar product denoted u • v for u, v ∈ Rn. We shall
write U(a, r) and B(a, r) for the open and closed ball centered at a and of radius r in the
metric space to which a belongs to. We adopt the definition of a measure from [Fed69,
2.1.2], which is sometimes called an outer measure in the literature. The symbolsHm and
Lm stand for the m dimensional Hausdorff and Lebesgue (outer) measures as defined
in [Fed69, 2.10.2(1) and 2.6.5]. Whenever m ∈ N ∼ {0} we use the symbol α(m) for the
Lebesgue measure of the unit ball in Rm. If X and Y are normed vector spaces, U ⊆ X
is open, k ∈ N, and α ∈ [0, 1], then a function f : U → Y is said to be of class C k,α if f is
continuous, has continuous derivatives up to order k (cf. [Fed69, 3.1.1 , 3.1.11]), and the
kth order derivativeDkf satisfies the Hölder condition with exponent α (cf. [Fed69, 5.2.1]);
in this case we write f ∈ C k,α(U, Y). The image of a set A ⊆ X under a mapping f : X→ Y

is denoted f[A] and similarly f−1[B] denotes the preimage of a set B ⊆ Y. We write idX
for the identity function on X. Whenever X is a metric space, A ⊆ X, and x ∈ X, we use
the notation dist(x,A) for the distance of x from A. We write Al to denote the Cartesian
product of l ∈ N ∼ {0} copies of a set A and if f : A→ B, then fl : Al → Bl is the Cartesian
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product of l copies of f, i.e. fl(a1, . . . ,al) = (f(a1), . . . , f(al)). For the Grassmannian of
m dimensional planes in Rn we write G (n,m) (cf. [Fed69, 1.6.2]). With each P ∈ G (n,m)

we associate the orthogonal projection

P\ : Rn → P ⊆ Rn onto P

and the orthogonal complement

P⊥ =
{
u ∈ Rn : u • v = 0 for all v ∈ P

}
= ker P\ .

Whenever v1, . . . , vk are vectors in some vector space X, we write span{v1, . . . , vl} for the
linear span of these vectors, and if p0, . . . ,pk ∈ X the convex hull of the set {p0, . . . ,pm}

is denoted 4(p0, . . . ,pm) ⊆ X. If µ measures some set X, f : X → R is µ-measurable and
A ⊆ X is µ-measurable, we write

ffl
A fdµ = µ(A)−1 ´

A fdµ for the mean value of f on A.
By X 3 x 7→ f(x)wemean an unnamed functionwith domain Xmapping x ∈ X to f(x). For
the essential supremum of a function f : X→ Rwith respect to ameasure µ overXwewrite
(µ) ess sup(f), which is defined to be equal to (µ)(∞)(f) in the notation of [Fed69, 2.4.12].
To optimize space we shall sometimes write (µ) ess supx∈X(f(x)) instead of (µ) ess sup(X 3
x 7→ f(x)).

The reader might also want to recall the definitions of the space of orthogonal pro-
jections O∗(n,m) (cf. [Fed69, 1.7.4]) and of the exterior algebra

∧
∗ X of a vector space X

(cf. [Fed69, 1.3]) with its associated wedge product ∧.
We do not reserve any special symbol for constants. By a “constant” wemean a positive

real valued function depending on some parameters which will not always be displayed;
to express the dependencies explicitly we shall write C = C(a,b, c) whenever C depends
only on a, b, and c.

3 Preliminaries

Rectifiability, densities, and tangent cones

3.1 Definition (cf. [AS94, Definition 2.1]). Let α ∈ [0, 1], m,k ∈ N ∼ {0}. A set Σ ⊆ Rn is
said to be (Hm,m) rectifiable of class C k,α if and only if Hm(Σ) < ∞ and there exists a
countable familyM ofm dimensional submanifolds ofRn of class C k,α (cf. [Fed69, 3.1.19])
such that Hm(Σ ∼

⋃
M) = 0.

3.2 Remark. In caseα = 0 and k = 1 the above definition coincides with [Fed69, 3.2.14(4)].

3.3 Definition (cf. [Fed69, 2.10.19]). Let µ be a measure over Rn, m ∈ N and a ∈ Rn.
The lower and upper m-densities of µ at a are given by

Θm∗ (µ,a) = lim inf
r↓0

α(m)−1r−mµ(B(a, r)) ,

Θ∗m(µ,a) = lim sup
r↓0

α(m)−1r−mµ(B(a, r)) .

If both quantities agree, then we write

Θm(µ,a) = Θ∗m(µ,a) = Θm∗ (µ,a) .
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3.4 Definition (cf. [Fed69, 3.1.21]). Assume S ⊆ Rn and a ∈ Rn. The tangent cone of S
at a is the set

Tan(S,a) =
{
v ∈ Rn : ∀ε > 0 ∃b ∈ S ∃ t > 0 |b− a| 6 ε and |t(b− a) − v| 6 ε

}
.

3.5 Remark. If u, v ∈ Rn ∼ {0}, then for any t ∈ (0,∞) there holds

|(u • v)|u|−2u− v| 6 |tu− v| .

Therefore, if v ∈ Tan(S,a) ∼ {0} and 0 < ε < |v|, then there exists b ∈ S ∼ {a} with
|b− a| 6 ε and (b− a) • v > 0 and one can take t = (b− a) • v|b− a|−2 in 3.4.

3.6 Proposition. Let S ⊆ Rn, T ∈ G (n,m) and a ∈ Rn. Assume

lim
b→a
b∈S

|T⊥\ (b− a)|

|b− a|
= lim
r↓0

sup
{
|T⊥\ (b− a)|

|b− a|
: b ∈ S ∩B(a, r) ∼ {a}

}
= 0 .

Then Tan(S,a) ⊆ T .

Proof. If Tan(S,a) ∼ {0} = ∅, the conclusion is evident. Suppose, then, that there exists
v ∈ Tan(S,a) ∼ {0}. Using 3.4 and 3.5, we see that for each ε ∈ (0, |v|) there exists
b ∈ S ∼ {a} with |b− a| 6 ε and |v− t(b− a)| 6 ε, where t = (b− a) • v|b− a|−2. Hence,

|T⊥\ v| 6 |T⊥\ (v− t(b− a))|+ |tT⊥\ (b− a)|

6 ε+ |v| sup
{
|T⊥\ (c− a)|

|c− a|
: c ∈ S ∩B(a, ε) ∼ {a}

}

holds for all ε ∈ (0, |v|). Letting ε→ 0, we obtain v ∈ T ; thus, Tan(S, x) ⊆ T .

3.7 Definition (cf. [Fed69, 3.2.16]). Let µ be a measure over Rn,m ∈ N and a ∈ Rn. The
m-approximate tangent cone of µ at a is

Tanm(µ,a) =
⋂{

Tan(S,a) : S ⊆ Rn , Θm(µ Rn ∼ S,a) = 0
}

.

3.8 Remark. For a, v ∈ Rn, ε ∈ (0,∞) define the cone

E(a, v, ε) =
{
b ∈ Rn : ∃ t ∈ (0,∞) |t(b− a) − v| < ε

}
.

Then (cf. [Fed69, 3.2.16]) v ∈ Tanm(µ,a) if and only if

Θ∗m(µ E(a, v, ε)) > 0 for all ε ∈ (0,∞).

Note that, as in 3.5, if 0 < ε < |v|, then b ∈ E(a, v, ε) if and only if

b 6= a and b− a

|b− a|
• v
|v|
>

(
1 −

ε2

|v|2

)1/2
.

3.9 Remark. If Σ ⊆ Rn is (Hm,m) rectifiable of class C 1, then by [Fed69, 3.2.19] for Hm
almost all a ∈ Σ

Θm(Hm Σ,a) = 1 and Tanm(Hm Σ,a) ∈ G (n,m) .
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3.10 Proposition. Let S ⊆ Rn, T ∈ G (n,m) and a ∈ Rn. Assume

lim
r↓0

r−m
ˆ
S∩B(a,r)

|T⊥\ (b− a)|

|b− a|
dHm(b) = 0 .(7)

Then Tanm(Hm S,a) ⊆ T .

Proof. If Tanm(Hm S,a) ∼ {0} = ∅, the conclusion is evident. In all other cases we shall
prove the proposition by contradiction. If there existed v ∈ Tanm(Hm S,a) ∼ T ; then
|T⊥\ v| > 0. Recalling 3.8, if ε ∈ (0,∞) satisfied ε < 1

4 |T
⊥
\ v|, then for each b ∈ E(a, v, ε)

setting t = (b− a) • v|b− a|−2, we would have

∣∣∣∣ b− a|b− a|
• v
|v|

∣∣∣∣ · ∣∣∣∣T⊥\ b− a

|b− a|

∣∣∣∣ = |T⊥\ t(b− a)|

|v|
>

|T⊥\ v|− |T⊥\ (v− t(b− a))|

|v|

>
|T⊥\ v|− ε

|v|
>

3
4
|T⊥\ v|

|v|
> 0 .

Hence, for any r > 0 and ε ∈
(
0, 1

4 |T
⊥
\ v|
)
, we would obtain

(8) r−m
ˆ
S∩B(a,r)

|T⊥\ (b− a)|

|b− a|
dHm(b) > r−m

ˆ
S∩E(a,v,ε)∩B(a,r)

|T⊥\ (b− a)|

|b− a|
dHm(b)

>
3
4
|T(x)⊥\ v|

|v|

(
1 −

ε2

|v|2

)−1/2
Hm(S ∩E(a, v, ε) ∩B(a, r))

rm
.

Since we assumed v ∈ Tanm(Hm S,a), we could argue that Θ∗m(Hm (S∩E(a, v, ε))) > 0
for all ε ∈ (0,∞). Then, for ε ∈ (0, 1

4 |T
⊥
\ v|), taking lim supr↓0 on both sides of (8), we would

get

lim sup
r↓0

r−m
ˆ
S∩B(a,r)

|T⊥\ (b− a)|

|b− a|
dHm(b) > 0 ,

which is impossible due to the assumption (7). Thereby, we conclude that it was not
possible to choose v ∈ Tanm(Hm S,a) ∼ T ; thus Tanm(Hm S,a) ⊆ T .

3.11 Remark. Observe that the condition

lim
r↓0

r−m−1
ˆ
S∩B(a,r)

|T⊥\ (b− a)|dHm(b) = 0(9)

implies

lim
r↓0

r−m
ˆ
S∩B(a,r)

|T⊥\ (b− a)|

|b− a|
dHm(b) = 0 ,(10)

which can be verified by representing the integral over S∩B(a, r) by a series of integrals
over “annuli” S∩B(a, 2−kr) ∼ U(a, 2−k−1r) for k ∈ N. Hence, the conclusion of 3.10 holds
also with assumption (10) replaced by (9).
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Product measures

Recall that whenever Σ ⊆ Rn the measure µlΣ was defined by (1).
3.12 Remark. If φ measures X and M ⊆ X is φ measurable, then (φ × φ) (M ×M) =
(φ M) × (φ M). This follows from the definition of the product measure (cf. [Fed69,
2.6.1]) using the fact that, ifM is φ measurable and A ⊆ M, then A is φ measurable if
and only ifA is φ Mmeasurable. In particular, if n = m andA ⊆ Rm is Lm measurable,
then Hm = Lm and Hml Al = µlA since, in this case, Hml = Lml is the Cartesian
product of l copies of Lm; see [Fed69, 2.6.5].

In general, whenm < n, the measure Hml over (Rn)l is not the Cartesian product of
l copies ofHm overRn and µlΣmight not be the same as themeasureHml Σl; see [Fed69,
3.2.24].

3.13 Proposition. Let m,n,k ∈ N, m 6 min{n,k}, Σ ⊆ Rn be Hm measurable and
g : Rn → Rk be Lipschitz such that g|Σ is injective. For l ∈ N ∼ {0} define

νlΣ = (Hm g[Σ])× · · · × (Hm g[Σ])︸ ︷︷ ︸
l times

and gl : (Rn)l → (Rk)l ,

gl(x1, . . . , xl) = (g(x1), . . . ,g(xl)) for (x1, . . . , xl) ∈ (Rn)l.

Then for any µlΣ measurable set S ⊆ (Rn)l there holds

νlΣ(g
l[S]) 6 Lip(g)mlµlΣ(g) .

Proof. For l = 1 the conclusion follows directly from the construction of the Hausdorff
measure; see [Fed69, 2.10.2]. Assume l > 1 and let S ⊆ (Rn)l be µlΣ measurable set.
Define B to be the set of sequences of l-tuples of ν1

Σ measurable subsets of Rk which
cover gl[S], i.e.

B =
{
(B1,i, . . . ,Bl,i)i∈N : Bj,i ⊆ Rk are ν1

Σ measurable , gl[S] ⊆
⋃
i∈N

B1,i × · · · × Bl,i
}

.

In a similar manner define

A =
{
(A1,i, . . . ,Al,i)i∈N : Aj,i ⊆ Rn are Borel , S ⊆

⋃
i∈N

A1,i × · · · ×Al,i
}

.

Observe that if (A1,i, . . . ,Al,i)i∈N ∈ A, then (g[A1,i], . . . ,g[Al,i])i∈N ∈ B, by [Fed69, 2.2.13].
Therefore,

A ⊆
{
(g−1[B1,i], . . . ,g−1[Bl,i])i∈N : (B1,i, . . . ,Bl,i)i∈N ∈ B

}
(11)

Since g|Σ is injective, we have

g
[
g−1[B] ∩ Σ

]
= B ∩ g[Σ] for any B ⊆ Rk .(12)
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Using the definition of the product measure [Fed69, 2.6.1], then the conclusion for l = 1,
and after that (11) together with (12), we obtain

νlΣ(g[S]) = inf


∞∑
i=0

l∏
j=1

Hm(Bj,i ∩ g[Σ]) : (B1,i, . . . ,Bl,i)i∈N ∈ B


6 Lip(g)ml inf


∞∑
i=0

l∏
j=1

Hm(g−1[Bj,i] ∩ Σ) : (B1,i, . . . ,Bl,i)i∈N ∈ B


6 Lip(g)ml inf


∞∑
i=0

l∏
j=1

Hm(Aj,i ∩ Σ) : (A1,i, . . . ,Al,i)i∈N ∈ A

 = Lip(g)mlµlΣ(S) ,

where the last equality holds because µ1
Σ = Hm Σ is Borel regular.

Graphs of functions and the slope of the tangent plane to a graph

A convenient way to work with graphs of functions defined on some T ∈ G (n,m) and
with values in T⊥ is to express the function using orthonormal bases for T and T⊥. To do
that one can choose orthogonal projections p ∈ O∗(n,m) and q ∈ O∗(n,n−m) (cf. [Fed69,
1.7.4]) such that im p∗ = T and im q∗ = T⊥. Since this is going to be done frequently, let
us summarize the procedure in the following way.

3.14. Let

n,m ∈ N ∼ {0} , m 6 n , p ∈ O∗(n,m) , q ∈ O∗(n,n−m) ,
T ∈ G (n,m) , A ⊆ Rm , f : A→ Rn−m , F : A→ Rn

be such that

im p∗ = T , im q∗ = T⊥ , F = p∗ + q∗ ◦ f .

Then

q|T⊥ : T⊥ → Rn−m and p|T : T → Rm are a linear isometries,
F is injective, F−1 : im F→ Rm , F−1 = p|imF , im F = graph(f) .

Moreover,
∧
k p is an orthogonal projection (cf. [Fed69, 1.7.6]) for any k ∈ N, so if f is

differentiable at some x ∈ IntA, then

‖DF(x)‖m > ‖
∧
mDF(x)‖ > ‖

∧
m p ◦

∧
mDF(x))‖ = ‖

∧
m idRm ‖ = 1 ,(13)

Df(x) = 0 if and only if DF(x) = p∗ if and only if Tan(im F, F(x)) = T .

Finally, if Lip(f) 6 L, then F is bilipschitz and

Lip(F) 6 (1 + L2)1/2 and Lip(F−1) = Lip(p|imF) 6 1 .

The following remark, made in the spirit of [All72, 8.9(5)], allows to express the “slope”
of the tangent plane to a graph by the norm of the derivative of the function; see 3.16.
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3.15 Remark. Assume T ∈ G (n,m) and η ∈ Hom(T , T⊥). Set S = {v + η(v) : v ∈ T } ∈
G (n,m). Observe that the function [0,∞) 3 t 7→ t2(1 + t2)−1 is increasing; hence, us-
ing [All72, 8.9(3)],

‖S\ − T\‖2 = ‖T⊥\ ◦ S\‖2 = sup
{
|T⊥\ u|

2|u|−2 : u ∈ S ∼ {0}
}

= sup
{
|η(w)|2|w+ η(w)|−2 : w ∈ T ∼ {0}

}
= sup

{
|η(w)|2(1 + |η(w)|2)−1 : w ∈ T , |w| = 1

}
=

‖η‖2

1 + ‖η‖2
.

3.16 Corollary. Let m, n, p, q, T , A, f, and F be as in 3.14. Assume that Σ ⊆ im F,
a ∈ Σ is such that Tan(Σ,a) ∈ G (n,m) and that f is differentiable at x = p(a). Then,
employing 3.15 with Df(x) in place of η, we obtain

‖Tan(Σ,a)\ − T\‖2 =
‖Df(x)‖2

1 + ‖Df(x)‖2
(14)

Let b ∈ Σ and set y = p(b). Then b = F(y) and DF(x)(y− x) ∈ Tan(Σ,a). Define

u = q∗(f(y) − f(x) −Df(x)(y− x)) = F(x) − F(y) −DF(x)(y− x) ∈ T⊥

and v = Tan(Σ,a)⊥\ (b− a) = Tan(Σ,a)⊥\ u .

Then, by (14), we get

|u− v| = |Tan(Σ,a)\u| = |Tan(Σ,a)\T⊥\ u| 6 ‖Tan(Σ,a)\ − T\‖|u| =
‖Df(x)‖ |u|

(1 + ‖Df(x)‖2)1/2 .

In consequence,

|Tan(Σ,a)⊥\ (b− a)| 6 |f(y) − f(x) −Df(x)(y− x)| ,

|Tan(Σ,a)⊥\ (b− a)| >
(

1 −
‖Df(x)‖

(1 + ‖Df(x)‖2)1/2

)
|f(y) − f(x) −Df(x)(y− x)| .

(15)

In particular, if f is Lipschitz with Lip(f) 6 1
2 , recalling that the function [0,∞) 3 t 7→

t2(1 + t2)−1 is increasing, we obtain

Tan(Σ,a)⊥\ (b− a) 6 |f(y) − f(x) −Df(x)(y− x)| 6 2Tan(Σ,a)⊥\ (b− a) .

3.17 Remark. If Σ ⊆ Rn is Hm measurable and (Hm,m) rectifiable of class C 1, then
there exists a countable collection A = {Mi : i ∈ N} of C 1 submanifolds of Rn such that
Hm(Σ ∼

⋃
A) = 0. Given α ∈ (0, 1], to prove that Σ is (Hm,m) rectifiable of class C 1,α, it

suffices to prove that Σ∩Mi is (Hm,m) rectifiable of class C 1,α for each i ∈ N separately.
Therefore, assume Σ ⊆M for some C 1 submanifold of Rn.

Employing the definition of a submanifold [Fed69, 3.1.19(5)], we can represent M
locally, around any a ∈ M, as a graph over the tangent plane Tan(M,a) of some C 1

function, i.e. we can find a neighborhood Ua of a in Rn and projections pa ∈ O∗(n,m),
qa ∈ O∗(n,n−m) such that

im p∗a = Tan(M,a) , im q∗a = Tan(M,a)⊥ , pa|M∩Ua is injective ,
(pa|M∩Ua)

−1 : pa[Ua]→ Rn is of class C 1 , D
(
(pa|M∩Ua)

−1)(pa(a)) = p∗a .
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Set Fa = (pa|M∩Ua)
−1 and fa = qa ◦ Fa; then

Fa = p∗a + q∗a ◦ fa , fa(pa(a)) = 0 , Dfa(pa(a)) = 0 .

Define an open “cuboid” adjusted to Tan(M,a) of radius r ∈ (0,∞) by the formula

C(a, r) = a+ p∗a
[
U(0, r)

]
+ q∗a

[
U(0, r)

]
=
{
y ∈ Rn : |pa(y) − pa(a)| < r and |qa(y) − qa(a)| < r

}
.

Recall Ua is a neighborhood of a in Rn so a ∈ IntUa. Thus, given any L ∈ (1, 2] for all
a ∈M there exists a radius ra > 0 such that

M ∩C(a, ra) = Fa[U(pa(a), ra)] ,
and 1 + ‖Dfa(x)‖ 6 L for x ∈ B(pa(a), ra).

Next, observe that Σ is a second-countable space as a subspace of a second-countable
space Rn; hence, it has the Lindelöf property (cf. [Mun00, Theorem 30.3]). Thus, from
the open covering

{
C(a, ra) ∩ Σ : a ∈ Σ

}
of Σ, one can choose a countable subcovering{

C(aj, raj) ∩ Σ : j ∈ N
}
of Σ. Now, to prove that Σ is (Hm,m) rectifiable of class C 1,α,

it suffices to prove that Σ ∩ C(aj, raj) is (Hm,m) rectifiable of class C 1,α for each j ∈ N
separately.

Therefore, in the sequel we shall usually assume that the following conditions hold
m, n, p, q, A, f, F are as in 3.14 , L ∈ (1, 2] , r0 ∈ (0,∞) , x0 ∈ Rm ,

A ⊆ U(x0, r0) is Lm measurable , f = g|A for some g ∈ C 1(U(x0, r0),Rn−m) ,
g(x0) = 0 , Dg(x0) = 0 , 1 + Lip(g) 6 L , Σ = F[A] .

(16)

3.18 Remark. Let Σ be a compactm dimensional submanifold of Rn of class C 2 and a ∈ Σ.
Proceeding as in 3.17, there exists a neighborhoodU of a inRn such that we can represent
Σ ∩ U as the graph of a function f over the tangent plane Tan(Σ,a), i.e., we can find
p ∈ O∗(n,m), q ∈ O∗(n,n−m) such that im p∗ = Tan(Σ,a), and im q∗ = Tan(Σ,a)⊥, and
p|Σ∩U is injective, and f = q ◦ (p|Σ∩U)−1 : p[U] → Rn−m is of class C 2, and Df(p(a)) = 0.
Then

q∗(D2f(p(a))(p(u), p(v))) = bΣ(a)(u, v) whenever u, v ∈ Tan(Σ,a) ,

‖bΣ(a)‖ = ‖D2f(p(a))‖ = lim
s↓0

sup
{
‖Df(y) −Df(p(a))‖

|y− p(a)|
: y ∈ B(p(a), s) ∼

{
p(a)
}}

,

where bΣ denotes the second fundamental form of Σ ⊆ Rn; cf. [Sim83, 7.3].

Main higher order rectifiability criterion for graphs

To talk about approximate features of functions (limits, continuity, differentiability; cf. [Fed69,
2.9.2 , 3.1.2 , 3.2.16]) one needs to provide two parameters: a measure and a Vitali relation
(cf. [Fed69, 2.8.16]). It will be convenient to define a standard family of Vitali relations.

3.19 Definition. For k ∈ N ∼ {0}, we set

Vk =
{
(x, B(x, r)) : x ∈ Rk , r ∈ (0,∞)

}
.
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3.20 Remark. If k ∈ N ∼ {0} and φ is a measure over Rk such that all open sets are
φmeasurable and φ(A) <∞ for all bounded sets A ⊆ Rk, then due to [Fed69, 2.8.18] the
family Vk is a φ Vitali relation.

In the following proposition, whenever we write apDf we mean the approximate dif-
ferential with respect to (Lm,Vm).

3.21 Proposition. Let α ∈ (0, 1]. Suppose A ⊆ Rm is Lm-measurable and such that
Θm(Lm A,a) = 1 for all a ∈ A. Let f : A → Rn−m be (Lm,Vm) approximately differen-
tiable on A and satisfy one of the following conditions

lim sup
r↓0

r−m
ˆ
A∩B(y,r)

|f(z) − f(y) − apDf(y)(z− y)|
|z− y|1+α

dLm(z) <∞ for all y ∈ A ,

or

(Lm,Vm) ap lim sup
z→y

|f(z) − f(y) − apDf(y)(z− y)|
|z− y|1+α

<∞ for all y ∈ A .

Then there exist functions fk ∈ C 1,α(Rm,Rn−m), such that

Lm
(
A ∼

⋃∞
k=1
{
x ∈ A : f(x) = fk(x) and apDf(x) = Dfk(x)

})
= 0.

In particular, if Lm(A) <∞, then the graph of f is (Hm,m) rectifiable of class C 1,α.

Proof. The proof can be found in [Sch09, Lemma A.1] for the case α = 1. If 0 < α < 1,
exactly the same proof, with relevant occurrences of 2 replaced by 1 + α, establishes the
assertion.

3.22 Corollary. Let m, n, p, q, T , A, f, and F be as in 3.14. Suppose α ∈ (0, 1], A is
Lm measurable, Lm(A) < ∞, and f is (Lm,Vm) approximately differentiable on A. Set
Σ = F[A]. Assume that one of the following conditions is satisfied for Hm almost all a ∈ Σ

lim sup
r↓0

r−m
ˆ
Σ∩B(a,r)

|Tanm(Hm Σ,a)⊥\ (b− a)|
|b− a|1+α

dHm(b) <∞(17)

or

(Hm Σ,Vn) ap lim sup
b→a

|Tanm(Hm Σ,a)⊥\ (b− a)|
|b− a|1+α

<∞ .(18)

Then Σ is Hm measurable and (Hm,m) rectifiable of class C 1,α.

Proof. Employing [Fed69, 3.1.8] we can divide A into a countable family of Lm measur-
able sets {Ai : i ∈ N} such that f restricted to each of Ai is Lipschitz and

⋃
i∈NAi = A.

Then F|Ai is bilipschitz and, since Hm and Lm are Borel regular, Σi = F[Ai] is Hm mea-
surable for each i ∈ N. Hence, Σ =

⋃
i∈N Σi is also Hm measurable. Moreover, if one of

the conditions (17) or (18) is satisfied for Hm almost all a ∈ Σ, then the same condition
holds for Hm almost all a ∈ Σi for each i ∈ N. Hence, it suffices to prove the Corollary
separately for each Ai and Σi in place of A and Σ. In the sequel we will assume this
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replacement has been done and that f has been extended to the whole of Rm by means
of the Kirszbraun’s theorem [Fed69, 2.10.43], so that we have

f : Rm → Rn−m satisfies L = Lip(f) <∞
and Tanm(Hm Σ,a) = Tan(Σ,a) for Hm almost all a ∈ Σ.

Define the set Σ ′ ⊆ Σ in the following way:

• if (17) holds for Hm almost all a ∈ Σ, set

Σ ′ =

{
a ∈ Σ : lim sup

r↓0
r−m

ˆ
Σ∩B(a,r)

|Tan(Σ,a)⊥\ (b− a)|
|b− a|1+α

dHm(b) <∞} ;

• if (18) holds for Hm almost all a ∈ Σ, set

Σ ′ =

{
a ∈ Σ : (Hm Σ,Vn) ap lim sup

b→a

|Tan(Σ,a)⊥\ (b− a)|
|b− a|1+α

<∞} .

Since Hm(Σ ∼ Σ ′) = 0, we know Σ ′ is Hm measurable. Recall the definitions of p, q, and
F from 3.14. Set B ′ = p[Σ ′] and note that B ′ = F−1[Σ ′] so it is Lm measurable. Next,
set B̃ = {x ∈ B ′ : Df(x) exists}. Then Lm(B ′ ∼ B̃) = 0 due to the Rademacher’s theorem
(cf. [Fed69, 3.1.6]); hence, B̃ is also Lm measurable. Define B = {x ∈ B̃ : Θm(Lm B̃, x) =
1}. Then, by [Fed69, 2.9.11], B is Lm measurable, Lm(B̃ ∼ B) = 0 and Θm(Lm B, x) = 1
for all x ∈ B. Observe

Hm(Σ ∼ F[B]) = Hm(Σ ∼ Σ ′) +Hm(F[B ′ ∼ B]) = 0 because F is Lipschitz;(19)

hence, it suffices to check that 3.21 applies to f|B.
Set λ = (1 + L2)−1/2 ∈ (0, 1] and note that Lip(F) 6 λ−1; hence,

F[B(p(a), λr) ∩ B] ⊆ B(a, r) ∩ F[B] for each a ∈ Σ and r ∈ (0,∞);(20)

Employing (19) combinedwith 3.16 (15) and then applying the area formula [Fed69, 3.2.3]
together with (20) and 3.14 (13), we obtain

r−m
ˆ

B(a,r)∩Σ

|Tan(Σ,a)⊥\ (b− a)|
|b− a|1+α

dHm(b)

> λ1+α(1 − λL)r−m
ˆ

B(a,r)∩F[B]

|f(p(b)) − f(p(a)) −Df(p(a))(p(b) − p(a))|

|p(b) − p(a)|1+α
dHm(b)

> λ1+α+m(1 − λL)(λr)−m
ˆ

B(x,λr)∩B

|f(y) − f(x) −Df(x)(y− x)|

|y− x|1+α
dLm(y)

for r ∈ (0,∞), x ∈ B, and a = F(x). Hence, if (17) holds, then one can employ 3.21 to see
that F[B] is (Hm,m) rectifiable of class C 1,α and, due to (19), so is Σ.

Fix a ∈ F[B] and set x = p(a). For y ∈ B and b ∈ F[B] define

g(b) =
|Tan(Σ,a)⊥\ (b− a)|

|b− a|1+α
, h(y) =

|f(y) − f(x) −Df(x)(y− x)|

|y− x|1+α
,

and φ = Hm F[B] = Hm Σ ,
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Setting ∆ = λ1+α(1 − λL) we obtain, by 3.16 (15) and the area formula [Fed69, 3.2.3],

∆h(p(b)) 6 g(b) and Lm(S) 6 φ(F[S]) 6 λ−mLm(S)

whenever b ∈ F[B] and S ⊆ B is Lm measurable. Hence, for each r, t ∈ (0,∞)

{y ∈ B : h(y) > t} ⊆ p
[
{b ∈ F[B] : g(b) > ∆t}

]
,

Lm(B(x, λr) ∩ {y ∈ B : h(y) > t})

Lm(B(x, r) ∩ B) 6
φ(B(a, r) ∩ {b ∈ F[B] : g(b) > ∆t})

λmφ(B(a, r)) .

Therefore,

(21) inf
{
t ∈ R : lim

r↓0

Lm(B(x, λr) ∩ {y ∈ B : h(y) > t})

Lm(B(x, r) ∩ B) = 0
}

6 inf
{
t ∈ R : lim

r↓0

φ(B(a, r) ∩ {b ∈ F[B] : g(b) > ∆t})
λmφ(B(a, r)) = 0

}
.

For any x ∈ B we have Θm(Lm B, x) = 1 so it follows that

lim
r↓0

Lm(B(x, λr))
Lm(B(x, r) ∩ B) = λm <∞ .(22)

Recalling x = p(a) ∈ B was chosen arbitrarily and combining (21) with (22) yields

(Lm,Vm) ap lim sup
y→x

h(y) 6 (φ,Vn) ap lim sup
b→a

g(b)

for all x ∈ B and a = F(x). Consequently, if (18) holds, then one can employ 3.21 to see
that F[B] is (Hm,m) rectifiable of class C 1,α and, because of (19), so is Σ.

4 Higher order rectifiability via the tangent-point curvature

Recall that if Σ ⊆ Rn is (Hm,m) rectifiable of class C 1 and a,b ∈ Σ are such that
Tanm(Hm Σ,a) ∈ G (n,m), then rtp[Σ](a,b) was defined by (4) and τ1,p[Σ] and τ2,p[Σ]
were defined by (5).
4.1 Remark. If Σ is an m dimensional submanifold of Rn of class C 2 and a ∈ Σ, then

lim
r↓0

sup
{
rtp[Σ](a,b)−1 : b ∈ Σ ∩B(a, r)

}
= ‖bΣ(a)‖ ,

where bΣ denotes the second fundamental form of Σ ⊆ Rn which can be verified bymeans
of 3.16 (15) and 3.18.

4.2 Lemma. Let α ∈ (0, 1], l ∈ {1, 2}, p > m(l − 1), f ∈ C 1,α(Rm,Rn−m), and Σ ⊆ Rn be
the graph of f|B(0,1). Assume one of the following holds

(a) l = 2 and α > 1 −m(l− 1)/p,

(b) or l = 1 and α = 1,

then τl,p[Σ](a) <∞ for all a ∈ Σ.
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Proof. In both cases (a) and (b) for any a,b ∈ Σ with a 6= b we have, by 3.16 (15),

rtp[Σ](a,b)−1 6 2K|b− a|α−1 ,

where K = sup
{
‖Df(p(c)) − Df(p(a))‖|p(c) − p(a)|−α : c ∈ Σ , 0 < |c − a| 6 |b − a|

}
and

p ∈ O∗(n,m) is given by p(x1, . . . , xn) = (x1, . . . , xm). Hence, if l = 1, then α = 1 and
τ1,p[Σ](a) < 2K for all a ∈ Σ. Otherwise, l = 2 and p(α − 1) > −m; thus, τ2,p[Σ](a) < ∞
for all a ∈ Σ by the area formula.

4.3 Theorem. Consider the situation as in 3.17 (16). Let l ∈ {1, 2}, p ∈ R satisfy p >
m(l− 1), and α = 1 −

m(l−1)
p . Assume τl,p[Σ](a) <∞ for Hm almost all a ∈ Σ. Then Σ is

(Hm,m) rectifiable of class C 1,α.

Proof. In case l = 1 one applies 3.22 directly to see that Σ is (Hm,m) rectifiable of
class C 1,1.

Assume now that l = 2. For brevity of the notation let us set

d(a,b) = |Tanm(Hm Σ,a)⊥\ (b− a)|

whenever a,b ∈ Σ are such that Tanm(Hm Σ,a) ∈ G (n,m). Using Hölder’s inequality
one gets

(23)
ˆ

B(a,r)

d(a,b)
|b− a|2−m/p

dµ1
Σ(b)

6

(ˆ
B(a,r)

d(a,b)p
|b− a|2p

dµ1
Σ(b)

)1/p(ˆ
B(a,r)

|b− a|m/(p−1) dµ1
Σ(b)

)1−1/p
.

for Hm almost all a ∈ Σ and all r ∈ (0,∞). Recalling 3.17 (16), in particular Lip(F) 6 L,
and employing the area formula [Fed69, 3.2.3], we get

(24)
(ˆ

B(a,r)
|b− a|m/(p−1) dµ1

Σ(b)

)1−1/p

6

(
Lm

ˆ
B(p(a),r)∩A

|y− x|m/(p−1) dLm(y)

)1−1/p
6

(
Lmα(m)

p− 1
p

)1−1/p
rm

for Hm almost all a ∈ Σ and all r ∈ R with 0 < r < r0 − |p(a − x0)|. Combining (23)
with (24) gives

lim
r↓0

r−m
ˆ

B(a,r)

d(a,b)
|b− a|1+α

dµ1
Σ(b) 6 C lim

r↓0

(ˆ
B(a,r)

d(a,b)p
|b− a|2p

dµ1
Σ(b)

)1/p
= 0

for Hm almost all a ∈ Σ, where C = (Lmα(m)(1 − 1/p))1−1/p. Applying 3.22 we see that
Σ is (Hm,m) rectifiable of class C 1,α.

Now we are in position to prove our second main theorem.
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Proof of Theorem 1.4. The first part of theorem 1.4 follows immediately by combining 4.3
with 3.17. Thus, it remains to show that α is indeed optimal.

In case l = 2, choose ε ∈ (0, 1) such thatα+2ε < 1 and consider a function f : [0, 1]→ R
of class C 1,α+2ε which graph is not (H1, 1) rectifiable of class C 1,α+ε (a construction of
such function can be found, e.g., in [AS94, Appendix]). Then, setting Σ = graph(f), we
obtain τ1,p[Σ](a) <∞ for all a ∈ Σ, by 4.2, but Σ is not (H1, 1) rectifiable of class C 1,α+ε.

In case l = 1 we proceed similarly. We chose ε ∈ (0, 1) and a function f : [0, 1] → R
of class C 2 which graph is not (H1, 1) rectifiable of class C 2,ε. Setting Σ = graph(f) and
applying 4.2 shows sharpness of α.

4.4 Remark. Rectifiability of class C 1,1 implies rectifiability of class C 2 (cf. [AS94, Propo-
sition 3.2]) so if l = 1 in 1.4, then Σ is (Hm,m) rectifiable of class C 2.

5 Estimate on the minimal height of a simplex inside a slab

Recall that whenever we write T ∈ (Rn)k+1 for some k ∈ N ∼ {0} we mean that T =
(p0, . . . ,pk) for some k + 1 points p0, . . . ,pk ∈ Rn. If Hk(4T) > 0, then 4T is a k dimen-
sional simplex with vertexes p0, . . . ,pk.

5.1 Definition. The minimum height of T = (p0, . . . ,pk) ∈ (Rn)k+1 is defined as

hmin(T) = min
{
|(Pi)

⊥
\ (pi − pj)| : i, j ∈ {0, 1, . . . , k} , i 6= j

}
,

where Pi = span
{
pj − pl : j, l ∈ {0, 1, . . . , k} ∼ {i}

}
.

Remark. Note that hmin(T) = 0 if and only if Hk(4T) = 0.
Remark. If T = (p0, . . . ,pk), S = (q0, . . . ,qj) for some j,k ∈ N ∼ {0} satisfy j 6 k, hmin(T) >
0, and {q0, . . . ,qj} ⊆ {p0, . . . ,pk}, then hmin(S) > hmin(T). In other words, the minimal
height of 4T is shorter then any height of any of the faces of 4T .

Now we shall estimate hmin(T) in case we know4T lies inside a thin slab as is the case
when the vertexes of 4T lie on a smooth submanifold of Rn and diam(4T) is very small.
First we need to show that the minimal height of4T is realized by a line segment which
might not be contained inside 4T but at least lies close to 4T – this is proven in 5.2.
Next, we show how to estimate hmin(T) in terms of the thickness of the slab; see 5.3.

5.2 Lemma. Let m ∈ N, and T = (p0, . . . ,pm+1) ∈ (Rn)m+2, and P = {0} if m = 0 or
P = span{p1 − p0, . . . ,pm − p0} if m > 0, and q = p0 + P\(pm+1 − p0). Assume

hmin(T) = |P⊥\ (pm+1 − p0)| = |pm+1 − q| > 0

and q− p0 =

m∑
i=1

ti(pi − p0) for some t1, . . . , tm ∈ R .

Then ti ∈ (−1, 1) for each i = 1, 2, . . . ,m.

Proof. Define vi = pi − p0 for i = 1, . . . ,m + 1 and w = P⊥\ (pm+1 − p0)|P
⊥
\ (pm+1 −

p0)|
−1. Note that for each i = 0, 1, . . . ,m + 1 the quantity (m + 1)Hm+1(4T), which

does not depend on i, is equal to the product of the height of4T lowered from pi and the
Hm measure of the face of4T which does not contain pi. Hence, since the height lowered
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from pm+1 is minimal, the face 4(p0, . . . ,pm) must have maximal Hm measure among
the faces of 4T . Recall m!Hm(4(p0, . . . ,pm)) = |v1 ∧ · · ·∧ vm|. Using [Fed69, 1.7.5] and
the fact that w is orthogonal to all of v1, . . . , vm we obtain

|v2 ∧ · · ·∧ vm+1|
2 = t21|v1 ∧ v2 ∧ · · ·∧ vm|2 + hmin(T)

2|w∧ v2 ∧ · · ·∧ vm|2

> t21|v1 ∧ v2 ∧ · · ·∧ vm|2 .

Since |v2∧ · · ·∧vm+1|
2 cannot be larger that |v1∧v2∧ · · ·∧vm|2, which is maximal, we see

that t21 < 1. Considering |v1 ∧ · · ·∧ vi−1 ∧ vi+1 ∧ · · ·∧ vm+1|
2 in place of |v2 ∧ · · ·∧ vm+1|

2

and estimating as above we see that also t2i < 1 for i = 2, . . . ,m.

5.3 Lemma. Let m ∈ N, h ∈ [0,∞), T ∈ (Rn)m+2, a ∈ Rn, and S ∈ G (n,m). Assume

4T ⊆
{
b ∈ Rn : |S⊥\ (b− a)| 6 h

}
.

Then hmin(T) 6 m(m+ 1)h.

Proof. Without loss of generality we may assume hmin(T) > 0. Let p0, . . . ,pm+1 ∈ Rn be
such that T = (p0, . . . ,pm+1). Set Pm+2 = span{p1−p0, . . . ,pm+1−p0}. Since hmin(T) > 0,
we know dim Pm+2 = m+ 1. For i = 1, . . . ,m+ 1 define

Ti = (p0, . . . ,pi) and Pi = span{p1 − p0, . . . ,pi−1 − p0} ∈ G (n, i− 1) .

Possibly permuting the tuple T we can assume

hmin(Ti) = |Pi
⊥
\ (pi − p0)| > 0 for i = 1, . . . ,m+ 1.(25)

We shall first prove by induction the following claim:
if i ∈ {1, 2, . . . ,m+ 1} and there exist Si ∈ G (n, j− 1) and hi ∈ (0,∞) satisfying

4Ti ⊆
{
b ∈ Rn : |Si

⊥
\ (b− p0)| 6 hi

}
and Si ⊆ Pj+1 ,(26)

then hmin(Ti) 6
1
2 i(i+ 1)hi.

If i = 1 and (26) holds for some h1 ∈ (0,∞) and S1 ∈ G (n, 0), then T1 = (p0,p1) and
S1 = {0}. Hence, 4T1 ⊆ B(p0,h1), which immediately gives hmin(T1) = |p1 − p0| 6 h1.

Assume now j ∈ {2, . . . ,m+1}, our claim is true for i = 1, 2, . . . , j−1, and (26) holds for
some Sj ∈ G (n, j− 1) and hj ∈ (0,∞). Consider the minimal height of 4Tj, which, due
to the way we ordered vertexes of 4T , cf. (25), is realized by the height lowered from pj.
Setting q = p0 + Pj\(pj − p0) we have hmin(Tj) = |pj − q|. Let u = Pj

⊥
\ (pj − p0) = pj − q

and ζ = |u|/hj so that |u| = hmin(Tj) = ζhj. We claim that ζ 6 1
2 j(j + 1). Assume the

contrary, i.e., ζ > 1
2 j(j + 1) > j. If this was the case, we could employ 5.2 to see that

q =
∑j−1
l=1 tl(pl − p0) for some t1, . . . , tj−1 ∈ (−1, 1) and then

|Sj\Pj
⊥
\ u| = |Sj\u| > |u|− |Sj

⊥
\ (pj − p0) − Sj

⊥
\ (q− p0))| > ζhj − jhj = (ζ− j)hj .

Using [All72, 8.9(3)], we could then write

‖Pj\ − Sj\‖ = ‖Sj\ ◦ Pj
⊥
\ ‖ >

|Sj\Pj
⊥
\ u|

|u|
>

(ζ− j)hj
ζhj

= 1 −
j

ζ
> 0 .(27)
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Recalling ‖Sj\−Pj\‖ = ‖Sj
⊥
\ ◦Pj\‖, by [All72, 8.9(3)], we could find v ∈ Pj∩ (Sj∩Pj)⊥ such

that |v| = 1 and |Sj
⊥
\ v| = ‖Sj\ − Pj\‖. Next, we would define Sj−1 = Sj ∩ Pj and, recalling

dim(Sj + Pj) = dim(Pj+1) = j, we would observe that

dim Sj−1 = dim(Sj ∩ Pj) = dim Sj + dim Pj − dim(Sj + Pj) = j− 2 ;
hence, Sj−1 = {σ ∈ Pj : σ • v = 0} ,

and for any b ∈ 4Tj−1, since Sj−1 ⊆ Sj and b− p0 ∈ Pj, employing (27),

hj > |Sj
⊥
\ (b− p0)| = |Sj

⊥
\ Sj−1

⊥
\ (b− p0)| =

∣∣((b− p0) • v
)
Sj
⊥
\ v
∣∣ > ζ− j

ζ

∣∣Sj−1
⊥
\ (b− p0)

∣∣ ,
Hence, setting hj−1 = ζ

ζ−jhj, we would obtain

4Tj−1 ⊆
{
b ∈ Rn : |Sj−1

⊥
\ (b− p0)| 6 hj−1

}
, Sj−1 ⊆ Pj ,

and hmin(Tj−1) > hmin(Tj) = ζhj = (ζ− j)hj−1 >
1
2 j(j− 1)hj−1 ,

which contradicts the inductive hypothesis.
Now it suffices to show that the claim can be applied to T = Tm+1 with Sm+1 = S and

hm+1 = h. If it happens that dim S∩Pm+2 = l < m, then S⊥∩Pm+2 = span{e1, . . . , em+1−l}
for some orthonormal vectors e1, . . . , em+1−l ∈ Rn and setting S̃ = (S∩Pm+2)+span{e1, . . . , em−l}

we obtain 4T ⊆
{
b ∈ Rn : |S̃⊥\ (b − a)| 6 h

}
. Therefore, possibly considering S̃ in place

of S, we can assume S ⊆ Pm+2. Furthermore, by triangle inequality,

4T ⊆
{
b ∈ Rn : |S⊥\ (b− p0)| 6 2h = 2hm+1

}
.

Therefore, by the proven above claim, hmin(T) 6 m(m+ 1)h.

6 Basic properties of Menger like curvatures

Recall that if Σ ⊆ Rn is (Hm,m) rectifiable of class C 1 and κ is a Menger like curvature,
then K

l,p
κ [Σ] was defined by (2) and M

l,p
κ by (3).

6.1 Remark. If Σ is a compact m dimensional submanifold of Rn of class C 2, p0 ∈ Σ, and
κ is a tame Menger like curvature with exponent 1, then it follows from 3.18 that

lim
d↓0

sup
{
κ(T) : T = (p0, . . . ,pm+1) ∈ Σm+2 ∩Dm+1 , diam(4T) 6 d

}
6 Γ‖bΣ(p0)‖ ,

where Γ = Γ(κ) is a constant and bΣ denotes the second fundamental form of Σ ⊆ Rn.
Next, we give two principal examples ofMenger like curvatures. A few other examples,

including all the discrete curvatures of [LW09, LW11], can be found in Appendix A.
6.2 Example. Let γ ∈ (0,∞). For T ∈ Dm+1 we set

κ
γ
vol(T) =

(
(m+ 1)!Hm+1(4T)

diam(4T)m+1

)γ 1
diam(4T)

,

and κ
γ
h (T) =

(
hmin(T)

diam(4T)

)γ 1
diam(4T)

,

21



andwe set κγvol(T) = 0 = κγh (T)whenever hmin(T) = 0 in accordance with 1.1 (b). Obviously
κ
γ
vol and κ

γ
h (T) satisfy 1.1 (a) (c) (d).

Assume now that d, δ ∈ (0,∞), T = (a,b1, . . . ,bm, c) and P are as in 1.1(e). Note that

(m+ 1)!Hm+1(4T) =
∣∣(b1 − a)∧ · · ·∧ (bm − a)

∣∣dist(c− a,P) ;(28)

hence (
dist(c− a,P)
diam(4T)

)γ
diam(4T)−1 > κγvol(T) >

(
δdist(c− a,P)

d

)γ
d−1 ,(29)

where the first inequality follows from the simple estimate
∣∣(b1 − a)∧ · · ·∧ (bm − a)

∣∣ 6
diam(4T)m. Therefore, κγvol is a Menger like curvature with exponent γ and Λ(δ, κ) = δ.

To see that κγh satisfies 1.1 (e) define πi : (Rn)m+2 → (Rn)m+1 to be the projection
forgetting the ith coordinate, i.e.

πi(q0, . . . ,qm+1) = (q0, . . . ,qi−1,qi+1, . . . ,qm+1) for q0, . . . ,qm+1 ∈ Rn .

Then, for i = 0, . . . ,m+ 1, the height of 4T lowered from the ith vertex equals

hi(T) =
(m+ 1)!Hm+1(4T)
m!Hm(4πi(T))

.

Recalling diam(4T) < d, we havem!Hm(4πi(T)) 6 dm and |(b1−a)∧· · ·∧(bm−a)|d−m >
δ, and using (28) we obtain

hi(T) > δdist(c− a,P) for i = 0, . . . ,m+ 1 .

Hence, hmin(T) = min
{
hi(T) : i = 0, 1, . . . ,m + 1

}
> δdist(c − a,P) and κγh is a Menger

like curvature with exponent γ and Λ(δ, κ) = δ.
To see that κγh is tame assume Σ ⊆ Rn is a graph of some function f : Rm → Rn−m of

class C 1,α, where α ∈ (0, 1]. Let T = (p0, . . . ,pm+1) ∈ Σm+2 satisfy hmin(4T) > 0 and let
p ∈ O∗(n,m) be such that p(x1, . . . , xn) = (x1, . . . , xm). Set d = diam(4T) and

K = sup
{
‖Df(p(q) −Df(p(p0))‖|p(q) − p(p0)|

−α : q ∈ Σ , 0 < |q− p0| 6 d
}

.

Note |f(p(q) − f(p(p0)) −Df(p(p0))(p(q) − p(p0))| 6 K|p(q) − p(p0)|
1+α 6 K|q − p0|

1+α for
all q ∈ Σ with 0 < |q − p0| 6 d. Hence, employing 3.16 (15), we obtain 4T ⊆

{
q ∈ Rn :

|Tan(Σ,p0)
⊥
\ (q−p0)| 6 Kd1+α}. Thus, 5.3 yields hmin(T) 6 Km(m+1)d1+α; consequently

κ
γ
h satisfies 1.1 (f).
Observe that since κγvol is invariant under permutations of its parameters, (29) shows

that κγvol(T) 6 κ
γ
h (T), so κ

γ
vol is also tame.

6.3 Corollary. A sufficient condition for a Menger like curvature κ with exponent γ to be
tame is that κ 6 Γ(κ)κγh for some constant Γ = Γ(κ).

Remark. If γ = 1, then κγvol is, up to a constant, the same as one of the discrete curva-
tures studied in the series of articles [BK12, KS13, KSvdM13, Kol15, KSvdM15]. If γ =
2/(m(m+ 1)), then κγh coincides with the curvature defined in [LW11, §10].
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The following lemma demonstrates, that p = m(l − 1) is the minimal exponent for
which finiteness µ1

Σ almost everywhere of Kl,pκ [Σ] may imply higher regularity of Σ.

6.4 Lemma. Let κ be a Menger like curvature and Σ ⊆ Rn be Hm measurable with
Hm(Σ) <∞. Assume l ∈ {2, 3, . . . ,m+ 2} and p ∈

(
0,m(l− 1)

)
. Then K

l,p
κ [Σ](p0) <∞ for

Hm almost all p0 ∈ Σ.

Proof. Recall that Θ∗m(µ1
Σ,p0) 6 1 for Hm almost all p0 ∈ Σ by [Fed69, 2.10.19(5) and

2.10.6]. Fix p0 ∈ Σ such that Θ∗m(µ1
Σ,p0) 6 1. Let C ∈ (1,∞) and choose r0 ∈ (0,∞) such

that µ1
Σ(B(p0, r)) 6 Cα(m)rm for all r ∈ (0, r0). For s, r ∈ [0,∞] with s < r define

A(s, r) =
{
(p1, . . . ,pl−1) ∈ (Rn)l−1 : s < diam({p0,p1, . . . ,pl−1}) 6 r

}
and note A(s, r) ⊆ B(p0, r)l−1. Set L = sup

{
κ(T) : T ∈ (Rn)m+2 , diam(4T) = 1

}
; then

L <∞ by 1.1 (b) (c). Directly from the definition 1.1 it follows that for T ∈ Dm+1

κ(T) = diam(4T)−1κ(diam(4T)−1T) 6 Ldiam(4T)−1 ;

hence, κl[Σ](p0, . . . ,pl−1) 6 Ldiam
(
{p0, . . . ,pl−1}

)−1 .

Thus, we can estimate

(30) Kl,pκ [Σ](p0) 6 L
ˆ

diam({p0,p1, . . . ,pl−1})
−p dµl−1

Σ (p1, . . . ,pl−1)

= L

ˆ
A(1,∞)

diam({p0,p1, . . . ,pl−1})
−p dµl−1

Σ (p1, . . . ,pl−1)

+ L

∞∑
j=0

ˆ
A(2−j−1,2−j)

diam({p0,p1, . . . ,pl−1})
−p dµl−1

Σ (p1, . . . ,pl−1)

6 L
(
Hm(Σ)

)l−1
+ L
( ∞∑
j=0

(Cα(m)2−jm)l−12p(j+1)
)

= L
(
Hm(Σ)

)l−1
+ L(Cα(m))l−1

( 2p
1 − 2p−m(l−1)

)
<∞ .

If we assume additionally a uniform lower bound on the density ratios for Σ ⊆ Rn (see
below), then we also obtain finiteness of the full energy M

l,p
κ (Σ) for p < m(l− 1).

6.5 Corollary. Let κ be a Menger like curvature, Σ ⊆ Rn be Hm measurable and such
that Hm(Σ) < ∞. Assume that there exist r0 ∈ (0,∞) and C ∈ (0,∞) such that for all
x0 ∈ Σ and all r ∈ (0, r0] there holds

Hm(Σ ∩B(x0, r)) 6 Crm .

Then M
l,p
κ (Σ) <∞ for all l ∈ {2, 3, . . . ,m+ 2} and p ∈

(
0,m(l− 1)

)
.

Proof. Since the estimate (30) of the proof of 6.4 holds in the present case for all p0 ∈ Σ
and Hm(Σ) <∞, the assertion is evident.

Next, we show that if p > m(l − 1), κ is tame, and Σ ⊆ Rn is a graph of a smooth
enough function, then the energy M

l,p
κ (Σ) is finite.
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6.6 Lemma. Let m,n ∈ N, p,γ ∈ (0,∞), l ∈ {2, . . . ,m+ 2}, α,β ∈ [0, 1). Assume

κ is a tame Menger like curvature with exponent γ,
1 6 m < n , p > m(l− 1) , α = 1

γ

(
1 −

m(l−1)
p

)
< 1 , α < β , βγ < 1 ,

f ∈ C 1,β(Rm,Rn−m) , Σ = graph(f|B(0,1)) .

Then M
l,p
κ (Σ) <∞.

Proof. For p0 ∈ Σ and i ∈ N define

Ai(p0) =
{
(p1, . . . ,pl−1) ∈ (Rn)l−1 : 2−i < diam(4(p0, . . . ,pl−1)) 6 2−i+1} .

Set L = 1 + Lip(f). Since κ is tame we can find Γ = Γ(κ) ∈ (0,∞) and K = K(f) ∈ (0,∞)
as in 1.1 (f). Setting C = (ΓK)pγ, using 1.1 (f), and noting m(l − 1) + p(βγ − 1) > 0 we
estimate

Ml,p
κ (Σ) 6 C

ˆ ∞∑
i=0

ˆ
Ai(p0)

diam(4(p0, . . . ,pl−1))
p(βγ−1) dµl−1

Σ (p1, . . . ,pl−1)dµ1
Σ(p0)

6 CHm(Σ)α(m)l−1(2L)m(l−1)
∞∑
i=0

2−i(m(l−1)+p(βγ−1)) <∞ .

7 Higher order rectifiability via averaged Menger like curvatures

7.1. In this section we shall consider the following situation:

l,m,n ∈ N ∼ {0} , p ∈ [1,∞) , α,γ ∈ (0,∞) ,
m 6 n , 1 6 l 6 m+ 2 , m(l− 1) < p , α = γ−1(1 −

m(l−1)
p

)
6 1 ,

Σ ⊆ Rn is Hm measurable , µ
j
Σ is defined by (1) for each j ∈ N ∼ {0} ,

κ is a Menger like curvature with exponent γ (see 1.1) ,
Kl,pκ [Σ] is defined by (2) ,

κl[Σ](p0, . . . ,pl−1) =
(
µm+2−l
Σ

)
ess sup

pl,...,pm+1∈Σ
κ(p0, . . . ,pm+1) ,

with the understanding that κm+2[Σ] = κ, and for δ ∈ [0, 1], a ∈ Rn and r ∈ (0,∞)

Xδ(a, r) =
{
(b1, . . . ,bm) ∈ (B(a, r) ∩ Σ)m : |(b1 − a)∧ · · ·∧ (bm − a)| > δrm

}
,

E(a, r) = Kl,pκ [Σ ∩B(a, r)](a)p .

7.2 Remark. By [Fed69, 2.10.19(2)], if S ⊆ Rn and Hm(S) < ∞, then Θm∗(Hm S,a) > 0
for Hm almost all a ∈ S. In consequence, S is (Hm,m) rectifiable of class C 1,α if and
only if

{
a ∈ S : Θm∗(Hm S,a) > 0

}
is (Hm,m) rectifiable of class C 1,α. Therefore, being

interested in rectifiability of Σ, we do not loose any generality assumingΘm∗(Hm Σ,a) >
0 for all a ∈ Σ.
7.3 Remark. If κ is a Menger like curvature, then κ|Dm+1 : Dm+1 → [0,∞) is continuous.
Assume Θm∗(Hm Σ,a) > 0 for all a ∈ Σ. Then, for (p0, . . . ,pl−1) ∈ Σl, we have

κl[Σ](p0, . . . ,pl−1) = sup
{
κ(p0, . . . ,pm+1) : pl, . . . ,pm+1 ∈ Σ

}
.
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7.4 Lemma. Let r, δ ∈ (0,∞), ε ∈ (0, 1), P,Q ∈ G (n,m), v1, . . . , vm ∈ Rn satisfy

Q = span{v1, . . . , vm} , |v1 ∧ · · ·∧ vm| > δrm , |vi| 6 r , and |P⊥\ vi| 6 εr

for i = 1, . . . ,m. Then ‖P\ −Q\‖ 6 mδ−1ε.

Proof. By [All72, 8.9(3)], there exists u ∈ Q such that

|u| = 1 and ‖P\ −Q\‖ = ‖P⊥\ ◦Q\‖ = |P⊥\ u| .

Choose α1, . . . ,αm ∈ R such that u =
∑m
i=1 αivi. For each i = 1, . . . ,m we have

αi =
(
v1 ∧ · · ·∧ vi−1 ∧ u∧ vi+1 ∧ · · ·∧ vm

)
• v1 ∧ · · ·∧ vm
|v1 ∧ · · ·∧ vm|2

and |αi| =
|v1 ∧ · · ·∧ vi−1 ∧ u∧ vi+1 ∧ · · ·∧ vm|

|v1 ∧ · · ·∧ vm|
6

1
δr

;

hence, ‖P\ −Q\‖ = |P⊥\ u| 6
m∑
i=1

|αi||P
⊥
\ vi| 6 mδ

−1ε .

7.5 Remark. We shall frequently use the Chebyshev’s inequality in the following form.
Whenever µ measures some set X, f : X → R is a µ measurable function, t ∈ (0,∞) and
A ⊆ X is µ measurable, then

ˆ
A

|f|dµ >
ˆ
{x∈A:|f(x)|>t}

|f|dµ > tµ({x ∈ A : |f(x)| > t}) .

For any K ∈ (0,∞), setting t = K
ffl
A |f|dµ one obtains

µ
({
x ∈ A : |f(x)| > K

ffl
A|f|dµ

})
6 K−1µ(A) .

7.6 Lemma. Consider the situation as in 7.1 and assume Θm∗(µ1
Σ,a) > 0 for all a ∈ Σ.

Let δ,σ ∈ (0, 1), A ∈ [1,∞) and r0 ∈ (0,∞). Define S to be the set of those a ∈ Σ for which
E(a, 4r0) <∞, and

A−1α(m)rm 6 µ1
Σ(B(a, r)) 6 Aα(m)rm , and µmΣ (Xδ(a, r)) > σµmΣ (B(a, r)m) ,(31)

whenever r ∈ (0, r0]. Then there exists a constant C = C(m, l,p,σ,γ, δ,A) and for each
a ∈ S there exists T(a) ∈ G (n,m) such that

(a) in case l < m+ 2: for all b ∈ Σ ∩B(a, r0)

|T(a)⊥\ (b− a)| 6 CE(a, |b− a|)1/(γp)|b− a|1+α

and, whenever b ∈ S ∩B(a, 1
2r0),

‖T(a)\ − T(b)\‖ 6 CE(a, |b− a|)1/(γp)|b− a|α ;

in particular Tan(Σ,a) ⊆ T(a), by 3.6;
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(b) in case l = m+ 2: for any r ∈ (0, r0]( 
B(a,r)

dist(c− a, T(a))p dµ1
Σ(c)

)1/p
6 CE(a, 4r)1/(γp)r1+α ;

in particular Tanm(µ1
Σ,a) ⊆ T(a), by 3.10 and 3.11.

Proof. Obviously we can assume S is not empty – otherwise there is nothing to prove.
Set K = 24m2

A2mσ−1. For a ∈ Rn and r ∈ (0,∞) define Σ(a, r) = Σ ∩ B(a, r) and, if
2 6 l 6 m+ 1, set

Y(a, r) =
{
(b1, . . . ,bm) ∈ Σ(a, r)m : κl[Σ(a, r)](a,b1, . . . ,bl−1)

p >
KE(a, r)

µl−1
Σ (B(a, r)l−1)

}
,

if l = m+ 2, set

Y(a, r) =
{
(b1, . . . ,bm) ∈ Σ(a, r)m :

ˆ
B(a,r)

κ(a,b1, . . . ,bm, c)p dµ1
Σ(c) >

KE(a, r)
µmΣ (B(a, r)m)

}
,

and if l = 1, set Y(a, r) = ∅. Employing Chebyshev’s inequality 7.5 we obtain

µmΣ (Y(a, r)) 6 K−1µmΣ (B(a, r)m)(32)

for all l ∈ {1, . . . ,m+2}, a ∈ Rn and 0 < r <∞. Since K > σ−1, using (31), we get for each
a ∈ S and 0 < r 6 r0

µmΣ (Xδ(a, r) ∼ Y(a, r)) >
(
σ− 1

K

)
µmΣ (B(a, r)m) > 0 .(33)

Recall that Θm∗(µ1
Σ,a) > 0 for all a ∈ Σ; thus, employing remark 7.3, we can replace the

“
(
µm+2−l
Σ

)
ess sup” in the definition of κl[Σ] by the usual “sup”. Let Λ = Λ(2−mδ, κ) be

the number defined in 1.1(e) for κ. For any a ∈ S, 0 < r 6 r0, and (g1, . . . ,gm) ∈ Xδ(a, r) ∼
Y(a, r) if P = span{g1 − a, . . . ,gm − a} and 1 6 l 6 m+ 1, then by (31) and 1.1(e)

KE(a, r)(
A−1α(m)rm

)l−1 >
KE(a, r)

µl−1
Σ (B(a, r)l−1)

> κl[Σ(a, r)](a,g1, . . . ,gl−1)
p

> sup
b∈Σ(a,r)

κ(a,g1, . . . ,gm,b)p > sup
b∈Σ(a,r)

[(
Λdist(b− a,P)

2r

)γ 1
2r

]p
which implies, recalling α = γ−1(1 −m(l− 1)/p),

sup
b∈Σ(a,r)

dist(b− a,P) 6 C1E(a, r)1/(γp)r1+α ,(34)

where C1 = A(l−1)/(γp)K1/(γp)α(m)(1−l)/(γp)21+1/γΛ−1 .

An analogous computation shows that in case l = m + 2, for any a ∈ S, 0 < r 6 r0, and
(g1, . . . ,gm) ∈ Xδ(a, r) ∼ Y(a, r) if P = span{g1 − a, . . . ,gm − a}, then( 

B(a,r)
dist(c− a,P)p dµ1

Σ(c)

)1/p
6 C1E(a, r)1/(γp)r1+α .(35)
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Now, we shall prove the lemma in case 1 6 l 6 m+ 1. Due to (33), for each a ∈ S and
0 < r 6 r0 there exists an m-tuple(

g1(a, r), . . . ,gm(a, r)
)
∈ Xδ(a, r) ∼ Y(a, r)

and we can define

P(a, r) = span
{
(g1(a, r) − a), . . . , (gm(a, r) − a)

}
∈ G (n,m) .

Whenever a ∈ S and 0 6 s 6 r 6 r0, noting gi(a, s) ∈ Σ(a, r) for i = 1, . . . ,m, we may
employ (34) together with 7.4 to obtain

‖P(a, r)\ − P(a, s)\‖ 6 mδ−1C1E(a, r)1/(γp)rα .

Therefore, for each a ∈ S, the spaces P(a, r) converge as r → 0 to some T(a) ∈ G (n,m)

and

‖P(a, r)\ − T(a)\‖ 6 C2E(a, r)1/(γp)rα , where C2 = mδ−1C1 .

Moreover, by (34) and the triangle inequality, for any a ∈ S and b ∈ Σ ∩B(a, r0)

|T(a)⊥\ (b− a)| 6 (C1 + C2)E(a, |b− a|)1/(γp)|b− a|1+α .

Assume a ∈ S, r ∈ (0, r0] and b ∈ S ∼ {a} are such that |b − a| = 1
2r. Then for each

i = 1, . . . ,m there holds |gi(b, 1
2r) − a| 6 r and it follows from (34) that∣∣∣P(a, r)\

(
gi(b, 1

2r) − a
)∣∣∣ 6 2C1E(a, r)1/(γp)r1+α ;

hence, employing 7.4, we get∥∥P(a, r)\ − P
(
b, 1

2r
)
\

∥∥ 6 21+αC2E(a, r)1/(γp)|b− a|α .

In consequence, for all a,b ∈ S, r ∈ (0,∞) with |a− b| = 1
2r 6

1
2r0

‖T(a)\ − T(b)\‖ 6 ‖T(a)\ − P(a, r)\‖+ ‖P(a, r)\ − P
(
b, r2

)
\
‖+ ‖P

(
b, r2

)
\
− T(b)\‖

6 C3E(a, r)1/(γp)|b− a|α , where C3 = C2(2 + 21+α).

This finishes the proof in case 1 6 l 6 m+ 1.
Next, we shall consider the case l = m+ 2. For a ∈ S and i = N define inductively

ρi = 2−ir0 , Q0(a) = P(a, ρ0) ,

Zi(a) =

{
c ∈ Σ(a, ρi) : dist(c− a,Qi(a))p > K

 
B(a,ρi)

dist(z− a,Qi(a))p dµ1
Σ(z)

}
,

Wi(a) =
{
(c1, . . . , cm) ∈ Σ(a, ρi)m : ∃j ∈ {1, . . . ,m} cj ∈ Zi(a)

}
,

and, whenever i > 1,(
hi,1(a), . . . ,hi,m(a)

)
∈ X(a, ρi) ∼ (Y(a, ρi) ∪Wi−1(a)) ,

Qi(a) = span
{
hi,1(a) − a, . . . ,hi,m(a) − a

}
.
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Note that (hi,1(a), . . . ,hi,m(a)) exists for all i ∈ N and a ∈ S. Indeed, for i ∈ N and a ∈ S
Chebyshev’s inequality 7.5 yields

µ1
Σ(Zi(a)) 6

1
Kµ

1
Σ(B(a, ρi)) ;

hence µmΣ (Wi(a)) 6
(
1 −

(
1 − 1

K

)m)
µmΣ (B(a, ρi)m) ,

which implies for i ∈ N ∼ {0}, combining (31) with (32) and noting (1 − (1 − K−1)m) 6
2mK−1 and K > A2mσ−1(1 + 2m2+m),

µmΣ
(
X(a, ρi) ∼ (Y(a, ρi) ∪Wi−1(a))

)
>
(
α(m)ρmi

)m( σ

Am
−
Am

K

(
1 + 2m2+m

))
> 0 .

Observe that for a ∈ S, i = N ∼ {0} and j = 1, 2, . . . ,m, employing (35),

dist(hi,j(a) − a,Qi−1(a)) 6

(
K

 
B(a,ρi−1)

dist(z− a,Qi−1(a))
p dµ1

Σ(z)

)1/p

6 21+αK1/pC1E(a, ρi−1)
1/(γp)ρ1+α

i .

Therefore, lemma 7.4 yields for a ∈ S and i ∈ N ∼ {0}

‖Qi(a)\ −Qi−1(a)\‖ 6 C4E(a, ρi−1)
1/(γp)ραi , where C4 = mδ−121+αK1/pC1 .

Summing up a geometric series we see that for a ∈ S the spacesQi(a) converge as i→∞
to some T(a) ∈ G (n,m) satisfying

‖Qi(a)\ − T(a)\‖ 6 C5E(a, 2ρi)1/(γp)ραi , where C5 = (1 − 2−α)−1C4 .

Let a ∈ S, ρ ∈ (0,∞) and i ∈ N be such that ρi+1 < ρ 6 ρi 6 r0. Then( 
B(a,ρ)

dist(c− a, T(a))p dµ1
Σ(c)

)1/p
6

( 
B(a,ρ)

dist(c− a,Qi(a))p dµ1
Σ(c)

)1/p

+

( 
B(a,ρ)

‖Qi(a) − T(a)‖p|c− a|p dµ1
Σ(c)

)1/p

6 (C1 + C5)E(a, 2ρi)1/(γp)ρ1+α
i 6 C6E(a, 4ρ)1/(γp)ρ1+α ,

where C6 = 21+α(C1 + C5).

7.7 Lemma. Consider the situation as in 3.17 (16) and let Xδ be defined as in 7.1. Given
σ ∈ (0, 1) there exist L0 = L0(m,σ) ∈

(
1, 5

4
)
, A = A(m,σ) ∈ (1, 2], and δ = δ(m) ∈

(
0, 1

2
)

such that if L 6 L0 and a ∈ Σ satisfy for some R0 ∈ (0,∞)

A−1α(m)rm 6 µ1
Σ(B(x, r)) 6 Aα(m)rm for r ∈ (0,LR0] ,

then

µmΣ (Xδ(a, r)) > σµmΣ (B(x, r)m) for r ∈ (0,R0] .
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Proof. Choose ε ∈ (0, 1) such that σ+ 2ε < 1 and ε 6 3σ. For λ ∈ [0, 1] set

Zλ =
{
(u1, . . . ,um) ∈ Rm·m : |ui| 6 1 for i = 1, . . . ,m and |u1 ∧ · · ·∧ um| > λ

}
.

Due to continuity of the exterior multiplication (i.e. ∧) and continuity of the Radon mea-
sure Lm·m the mapping [0, 1] 3 λ 7→ Lm·m(Zλ) is continuous. Moreover, Lm·m(Z0) =
Lm·m(B(0, 1)m) and Lm·m(Z1) = 0. Hence, there exists δ ∈ (0, 1

2) such that

Lm·m(Z2δ) = (σ+ 2ε)Lm·m(B(0, 1)m) .(36)

Set

A = min
{(

1 −
ε

m

)−1
,
(
1 +

ε

3σ

)1/m
}

,(37)

L0 = min
{(

4
3

)1/m
, 1 +

δ

2m ,
((

1 −
ε

m

)
A
)−1/m

,
(
1 +

ε

3σ

)1/m2
}

.(38)

If r ∈ (0,LR0], employing (38) and noting that Σ ∩B(a, r) = F [p [Σ ∩B(a, r)]], we get

Lm(p[Σ ∩B(a, r)]) > L−mHm(Σ ∩B(a, r)) >
(
1 −

ε

m

)
α(m)rm .(39)

Recall that (1 + t)m > 1 +mt for all t ∈ [−1,∞) by convexity of the function [−1,∞) 3
t 7→ (1 + t)m; hence, 1 −

(
1 − ε

m

)m
6 ε. We compute using (39)

Lm·m
(
B(p(a), r)m ∼ p[Σ ∩B(a, r)]m

)
6 ε (α(m)rm)m .(40)

Combining (36) and (40), we obtain

Lm·m((p(a) + rZ2δ) ∩ p[Σ ∩B(a, r)]m) > (σ+ ε)(α(m)rm)m for r ∈ (0,LR0].(41)

Fix r ∈ (0,LR0] and let (u1, . . . ,um) ∈ rZ2δ. Set

ηi = F(p(a) + ui) − F(p(a)) = p∗(ui) + q∗(f(p(a) + ui) − f(p(a))) for i = 1, . . . ,m.

Note, recalling (38), that |q∗(f(p(a) + ui) − f(p(a))| 6 Lip(f|B(p(a),r))|ui| 6
δ

2mr. Hence,
using the estimates (1 + t)m 6 1 + mt

1−mt for t ∈ (−∞, 1
m) and δ < 1

2 , we get

|η1 ∧ · · ·∧ ηm| > |p∗(u1)∧ · · ·∧ p∗(um)|− rm
m∑
i=1

(
m

i

)(
δ

2m

)i
= |u1 ∧ · · ·∧ um|− rm

((
1 +

δ

2m

)m
− 1
)

>
(
2δ− 2

3δ
)
rm > 4

3δr
m ,

which shows, recalling Lm 6 4
3 by (38),

Fm
[
(p(a) + rZ2δ) ∩ p[Σ ∩B(a, r)]m

]
⊆ X3δ/(2Lm)(a,Lr) ⊆ Xδ(a,Lr) .(42)
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Let r ∈ (0,R0], set s = Lr and note that s 6 LR0. Employing (42), then using 3.13 with
g = p, after that recalling 3.12 to argue that (Lm p[Σ])m = Lm·m p[Σ]m, and finally
applying (41), we obtain

µmΣ (Xδ(a, s)) > µmΣ
(
Fm
[
(p(a) + rZ2δ) ∩ p[Σ ∩B(a, r)]m

])
> Lm·m

(
(p(a) + rZ2δ) ∩ p[Σ ∩B(a, r)]m

)
> (σ+ ε)(α(m)rm)m =

σ+ ε

Lm·m
(α(m)sm)m

>
σ+ ε

AmLm·m
Hm(Σ ∩B(a, s))m .

(43)

Now observe that due to (37) and (38) we have Am 6 1 + ε
3σ and Lm·m 6 1 + ε

3σ ; hence,
recalling ε 6 3σ,

σ+ ε > σ+

(
2
3 +

ε

9σ

)
ε > AmLm·mσ .(44)

Plugging (44) into (43) finishes the proof.

Now we can prove our first main theorem.

Proof of Theorem 1.2. Recalling 7.2 we can assume Θm∗(Hm Σ,a) > 0 for all a ∈ Σ. Set
σ = 1

2 and let A ∈ (1, 2], L0 ∈
(
1, 5

4
)
and δ ∈ (0, 1

2) be given by 7.7. Employing 3.17, we
can further assume that Σ satisfies the conditions of 3.17 (16) with L = L0. Let p, q, g,
x0, and r0 be as in 3.17 (16). SetM = (p∗ + q∗ ◦ g)[U(x0, r0)] so that Σ ⊆ M andM is an
m dimensional submanifold of Rn of class C 1. For each a ∈M and r ∈ (0,∞) let pa, qa,
fa, Fa, C(a, r), ra be defined as in 3.17. For j ∈ N ∼ {0} define the sets

Σj =

{
a ∈ Σ : ra >

L

j
and 1

A
α(m)sm 6 µ1

Σ(B(a, s)) 6 Aα(m)sm for 0 < s 6 L

j

}
and observe, recalling 3.9, that Hm(Σ ∼

⋃∞
j=1 Σj) = 0. Applying 7.7, with Σ replaced by

Σ ∩C(a,L/j), we see that for all j ∈ N ∼ {0} and a ∈ Σj

µmΣ
(
Xδ(a, 1/j)

)
> σµmΣ

(
B(a, 1/j)m

)
.

Next, for each j ∈ N ∼ {0} and a ∈ Σj, setting Rj = 1
j , we can employ 7.6 to find a constant

C = C(m, l,p,σ,γ, δ,A) and an m-plane T(a) ∈ G (n,m) such that

• either 1 6 l 6 m+ 1, and Tan(Σ,a) ⊆ T(a), and for all b ∈ Σ ∩B(a,Rj)

|T(a)⊥\ (b− a)| 6 CE(a, |b− a|)1/(γp)|b− a|1+α

• or l = m+ 2, Tanm(Hm Σ,a) ⊆ T(a) and for all r ∈ (0,Rj]( 
B(a,r)

dist(b− a, T(a))p dµ1
Σ(b)

)1/p
6 CE(a, 4r)1/(γp)r1+α .

Recalling Σ ⊆M and 3.9 we see that Tanm(Hm Σ,a) = Tan(M,a) ∈ G (n,m) forHm al-
most all a ∈ Σ. Thus, for each j ∈ N ∼ {0}we actually have T(a) = Tan(Σ,a) forHm almost
all a ∈ Σj because G (n,m) 3 Tan(Σ,a) ⊆ T(a) ∈ G (n,m). In consequence, employing
Hm(Σ ∼

⋃∞
j=1 Σj) = 0, we obtain
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(a) either 1 6 l 6 m+ 1 and for Hm almost all a ∈ Σ

lim
b→a
b∈Σ

|Tan(Σ,a)⊥\ (b− a)|
|b− a|1+α

= 0

(b) or l = m+ 2 and for Hm almost all a ∈ Σ

lim
r↓o

r−(1+α)
(
r−m

ˆ
B(a,r)

dist(b− a, Tan(Σ,a))p dµ1
Σ(b)

)1/p
= 0 .

If (a) holds then, by 3.22, Σ is (Hm,m) rectifiable of class C 1,α. If (b) holds, then by
Hölder’s inequality

 
B(a,r)

dist(b− a, Tan(Σ,a))dµ1
Σ(b) 6

( 
B(a,r)

dist(b− a, Tan(Σ,a))p dµ1
Σ(b)

)1/p

and by a similar argument as in 3.11 we obtain

lim
r↓o

r−m
ˆ

B(a,r)

|Tan(Σ,a)(b− a)|⊥\
|b− a|1+α

dµ1
Σ(b) = 0 .

Hence, one can employ 3.22 once more and see that in this case Σ is also (Hm,m) rectifi-
able of class C 1,α.

If α = γ−1(1−m(l−1)/p) < 1 and κ is tame, then the exponent α is sharp. To see that
assumem = 1, n = 2, and ε ∈ (0, 1) is such that α+2ε < 1. Consider a function f : [0, 1]→
R of class C 1,α+2ε which graph is not (H1, 1) rectifiable of class C 1,α+ε (a construction of
such function can be found, e.g., in [AS94, Appendix]). Set Σ = graph(f). ThenM

l,p
κ (Σ) <

0, by 6.6, but Σ is not (H1, 1) rectifiable of class C 1,α+ε.
If α = 1, and γ = 1, and κ is tame, then l = 1 and it follows directly from 1.1 (f) that

K
l,p
κ [Σ] is bounded whenever Σ is a compact subset of a graph of a C 1,1 function. Thus,

proceeding as before, for each ε ∈ (0, 1/2) one can find a function f ∈ C 2,2ε([0, 1],R) such
that graph(f) is not (Hm,m) rectifiable of class C 2,ε but Kl,pκ [Σ](a) <∞ for all a ∈ Σ.

7.8 Remark. If α = γ−1(1 −m(l− 1)/p) = 1, then Σ is (Hm,m) rectifiable of class C 2.
7.9 Remark. Suppose γ = 1, l = m + 2, κ = κ1

vol, p > m(m − 1), α = 1 −m(m − 1)/p. In
this case one cannot expect to have an implication in the reverse direction, i.e. it is not
possible to prove that if Σ is (Hm,m) rectifiable of class C 1,α, then K

l,p
κ [Σ](p0) < ∞ for

Hm almost all p0 ∈ Σ. This can be seen by finding a function f of class C 1,α such that for
Σ = graph(f) one has Kl,pκ [Σ](p0) =∞ for all p0 ∈ Σ – such example is provided in [KS13,
§6].

A Examples of Menger like curvatures

A.1 Example. Let m,n ∈ N satisfy 1 6 m < n, T = (p0, . . . ,pm+1) ∈ Dm+1. Let S(T)
be the unique m dimensional sphere containing all the vertexes of 4T and r(T) be the
radius of S(T). We define

κS(T) = r(T)
−1 .
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If T ∈ (Rn)m+2 and hmin(T) = 0, then we set κS(T) = 0 in accordance with 1.1 (b). To prove
that κS is a Menger like curvature we shall derive an analytic expression for r(T). In this
example we shall treat Rn as a subspace of Rn+1, and Rn+1 as a subspace of Rn+2 with
the standard inclusions.

Define X = span{pi−p0 : i = 1, . . . ,m+1} to be them+1 dimensional linear subspace
of Rn containing (−p0) +4T and let e1, . . . , en+2 be an orthonormal basis of Rn+2 such
that e1, . . . , em+1 span X. Assume S(T) has radius r ∈ (0,∞) and center c ∈ Rn. If
pm+2 ∈ S(T), then the vector (c, |c|2) ∈ Rn+1 must be the unique solution to the following
system of linear equations for x ∈ Rn+1

−2
m+1∑
j=1

(pi • ej)(x • ej) + x • en+1 = r2 − |pi|
2 for i = 0, 1, . . . ,m+ 2,

x • ej = 0 for j ∈ N with m+ 2 6 j 6 n .

This can only happen if the vector (r2 − |p0|
2, . . . , r2 − |pm+2|

2) ∈ Rm+3 is a linear combi-
nation of the vectors (p0 • ej, . . . ,pm+2 • ej) ∈ Rm+3 for j = 1, . . . ,m + 1 and the vector
(1, 1, . . . , 1) ∈ Rm+3, which, in turn, is equivalent to the condition

ζ(p0)∧ · · ·∧ ζ(pm+2) = 0 where ζ : Rn → Rn+2 is given by ζ(x) = (x, |x|2, 1).(45)
Thus, S(T) consists exactly of these points pm+2 ∈ Rn, which satisfy (45). Define the map
ξ : Rn → Rn+1 by ξ(x) = (x, |x|2) and set qi = pi − p0 for i = 1, . . . ,m+ 1. Then

(−p0) + S(T) =
{
q ∈ Rn : ξ(q)∧ ξ(q1)∧ · · ·∧ ξ(qm+1) = 0

}
.

Note that (−p0) + S(T) still has radius r and has center c̃ = c− p0. For k = 1, 2, . . . ,n+ 1
let ∗ :

∧
kRn+1 →

∧
n−kRn+1 be the Hodge star operator with respect to e1 ∧ · · ·∧ en+1;

see [Fed69, 1.7.8]. Set
ψ = em+2 ∧ · · ·∧ en ∈

∧
n−(m+1)R

n+1

and ω = ξ(q1)∧ · · ·∧ ξ(qm+1) ∈
∧
m+1 R

n+1 .
For each q =

∑n
j=1 xjej ∈ (−p0) + S(T) we have xj = 0 for j = m+ 2, . . . ,n and

∗
(
ξ(q)∧ω∧ψ

)
= 0 = |q− c̃|2 − r2 .(46)

The left-hand side and the right-hand side of (46) are polynomials of degree 2 in the
variables x1, . . . , xn. Comparing the coefficients of these two polynomials we obtain

c̃ • ej =
− ∗(ej ∧ω∧ψ)

2 ∗(en+1 ∧ω∧ψ)
for j = 1, . . . ,m+ 1,

c̃ • ej = 0 for j = m+ 2, . . . ,n, and r2 = |c̃|2 .

Let ι : Rn → Rn+1 be the injection map, i.e. ι(x) = (x, 0). Observe

ω = ι(q1)∧ · · ·∧ ι(qm+1) +
m+1∑
i=1

ι(q1)∧ · · ·∧ |qi|
2en+1 ∧ · · ·∧ ι(qm+1) ,

ej ∧ω =

m+1∑
i=1

ej ∧ ι(q1)∧ · · ·∧ |qi|
2en+1 ∧ · · ·∧ ι(qm+1) for j = 1, . . . ,m+ 1,∣∣∗(en+1 ∧ω∧ψ)
∣∣ = |q1 ∧ · · ·∧ qm+1| ,∣∣∗(ej ∧ω∧ψ)

∣∣ = ∣∣ej • ∗(ω∧ψ)
∣∣ = ∣∣ω • ∗(ej ∧ψ)∣∣ for j = 1, . . . ,n+ 1.
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Thus,
∣∣∗(ej ∧ω∧ψ)

∣∣ = 0 for j = m+ 2, . . . ,n and we get

(47)
m+1∑
j=1

(
− ∗(ej ∧ω∧ψ)

)2
= | ∗(ω∧ψ)|2 − | ∗(en+1 ∧ω∧ψ)|2

= |ω|2 − |q1 ∧ · · ·∧ qm+1|
2 .

Therefore, we can write

κS(T) = r
−1 =

2
∣∣(p1 − p0)∧ · · ·∧ (pm+1 − p0)

∣∣(
|ξ(p1 − p0)∧ · · ·∧ ξ(pm+1 − p0)|2 − |(p1 − p0)∧ · · ·∧ (pm+1 − p0)|2

)1/2 .

Since κS(T) is the inverse of the radius of S(T) conditions 1.1 (a) (c) (d) are immediately
satisfied. To check 1.1 (e) assume d, δ, T = (a,b1, . . . ,bm, c) and P are as in 1.1(e). Note
that | ∗(ej ∧ω∧ψ)| = |ej ∧ω| 6 dm+2 for j = 1, . . . ,m+ 1, so recalling (47)

κS(T) >
2δdist(c− a,P)

d2

and we see that κS is a Menger like curvature with γ = 1 and Λ(δ, κ) = 2δ.
Remark. If m = 1, then κS(a,b, c) = 4H2(4(a,b, c))/(|a − b||b − c||c − a|) is the original
Menger curvature. Ifm > 2, then it is not hard to check that κS is not tame. This feature
was already observed in the last paragraph of [SvdM11, Appendix B].
A.2 Example. Let γ ∈ (0,∞). For T = (q0,q1, . . . ,qm+1) ∈ Dm+1 and i ∈ {0, 1, . . . ,m+ 1}
define

pm sini(T) =
(m+ 1)!Hm+1(4T)∏m+1

j=0 ,j6=i |qj − qi|
,

Pi(T) = span
{
qk − ql : k, l ∈ {0, 1, . . . ,m+ 1} ∼ {i}

}
∈ G (n,m) .

cd(T) = diam(4T)−1((m+ 2)−1∑m+1
i=0 pm sin2

i(T)
)γ/2 ,

cmin(T) = diam(4T)−1(min{pm sini(T) : i = 0, 1, . . . ,m+ 1}
)γ ,

cmax(T) = diam(4T)−1(max{pm sini(T) : i = 0, 1, . . . ,m+ 1}
)γ ,

and calg(T) =

(
pm sin0(T)∏

16i<j6m+1 |qi − qj|

)γ
.

If T ∈ (Rn)m+2 and hmin(T) = 0, then we set calg(T) = cmax(T) = cmin(T) = cd(T) = 0 in
accordance with 1.1 (b).

Observe that pm sini(λT) = pm sini(T) 6 1 for T ∈ Dm+1. Hence, whenever κ ∈
{cd , cmin , cmax , calg}, it follows that κ(λT) = λ−1κ(T); thus, κ satisfies 1.1 (a) (c) (d).

To check 1.1 (e) assume d, δ, T = (a,b1, . . . ,bm, c) and P are as in 1.1(e). Employ-
ing 6.2 (28) we obtain

pm sini(T) >
δdist(c− a,P)

d
for i = 0, 1, . . . ,m+ 1 ,

so κ(T) >

(
δdist(c− a,P)

d

)γ 1
d

whenever κ ∈ {cd , cmin , cmax , calg} .
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This shows that all of cd, cmin, cmax, calg are Menger like curvatures with γ = 2/(m(m+1))
and Λ(δ, κ) = δ.

To check that cmin is also tame take T = (q0, . . . ,qm+1) ∈ Dm+1. Permuting the tuple
T we can assume hmin(T) = dist(qm+1−q0,P), where P = span{q1−q0, . . . ,qm−q0}. Using
the triangle inequality we can find i ∈ {0, 1, . . . ,m} such that 2|qm+1 − qi| > diam(4T).
Then we get

pm sini(T) =
m!Hm

(
4({q0, . . . ,qm+1} ∼ {qm+1})

)
dist(qm+1 − qi,P)∏

k∈{0,1,...,m}∼{i} |qk − qi| · |qm+1 − qi|

6
2 dist(qm+1 − qi,P)

diam(4T)
=

2hmin(T)

diam(4T)
.

Thus, cmin is tame, by 6.3.
Remark. If one takes γ = 2/(m(m+1)), then the discrete curvatures of A.2 coincide with
the curvatures defined in [LW09, §1.2 , §6.1.1] and [LW11, §10].
Remark. We do not know whether any of cd, cmax, calg is tame or not.
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