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Abstract

We introduce n-dimensional equations of geophysical fluid dynamics (GFD) valid on ro-
tating n-dimensional manifolds. Moreover, by using straight and twisted differential forms
and an auxiliary velocity field, we introduce hierarchically-structured equations of (geophys-
ical) fluid dynamics in which the equations are split into metric-free and metric-dependent
parts. For these sets of equations we provide representations in local coordinate charts and
we show that they conserve potential vorticity and that Kelvin’s circulation theorem holds.
As such general n-dimensional formulations do not exist in vector calculus, we provide for
both covariant and vector-invariant equations a representation on a rotating coordinate frame
in an Euclidean space and compare these representations. This study reveals, among oth-
ers, that the prognostic variables, described by straight and twisted differential forms, are
independent of both metric and orientation. This makes them perfect descriptors of the
fluid’s quantities of interest, as they assign, analogously to physical measurement devices,
real valued numbers to finite distances, areas, or volumes. This is not the case for prognostic
variables described by (vector) proxy fields, as they depend on metric and orientation.

The new structuring reveals also important geometrical features of the equations of GFD.
For instance, the dimensioned differential forms display the geometric nature of the fluid’s
characteristics, while the equations’ structuring illustrates how the metric-free momentum
and continuity equations geometrically interact and how they are connected by the metric-
dependent Hodge star and Riemannian lift. Besides this geometric insight, this structuring
has also practical benefits: since equations containing only topological structure are less
complicated to implement and can be integrated exactly, our results may contribute to more
efficient and accurate discretizations.
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1 Introduction

Most of the literature on geophysical fluid dynamics (GFD) proposes equations written in
terms of classical vector calculus (see e.g. Durran (1999); Marshall and Plumb (2007); Pedlosky
(1979)). In vector calculus one deals with vector fields defined in a 3-dimensional Euclidean
space E3. The use of vector identities enables abstract calculations, i.e. free of concrete coordi-
nate representations, which makes calculations, proofs, and the resulting fluid equations valid for
any vector representation in E3 and invariant under changes in the coordinate system. Vector
calculus enables hence more abstract and understandable formulations, whereas calculations,
proofs, and the fluid equations in coordinate representations are often rather cumbersome and
possibly only valid for a certain choice of coordinate system. However, as vector calculus applies
the cross product, a generalization to higher dimensions or to general manifolds is not possi-
ble (Bossavit (1998b)). This restrictions usually transfer also to the discrete schemes such as in
mimic discretization approaches (e.g. Perot et al. (2006)), in which the discrete operators mimic
the analytical properties.
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The usage of exterior calculus and differential geometry (cf. Abraham et al. (1983); Jänich
(2001)) allows us to overcome the drawbacks of vector calculus. In particular, these methods
are not restricted to E3, hence enable formulations on general n-dimensional manifolds (referred
to as n-manifolds). This follows as dimensionless operators (such as the exterior derivative d
which unifies grad, curl and div) act on differential forms (which carry information about their
dimension and, possibly, orientation) that are used to describe the fluid’s characteristics such
as mass and velocity. Concepts of vector calculus are found in exterior calculus, in a general
dimension-independent form, such as dd = 0 in place of the vector calculus identities curl-
grad = 0 and div-curl = 0. In addition, the large amount of vector calculus identities, often
rather cumbersome to prove, condense in exterior calculus to same basic calculation rules.

Using differential geometry, the resulting so-called covariant equations are independent of
dimension and their form is invariant under changes in coordinate system. In several publi-
cations, e.g. in Flanders (1963); Kambe (2002); Wilson (2011), such covariant equations for
(non-rotating) fluids have been proposed. In particular, Abraham et al. (1983) introduced n-
dimensional equations on (non-rotating) Riemannian n-manifolds for ideal incompressible and
barotropic fluids. In Bauer (2013), we extended these equations to rotating covariant equations
of GFD on rotating Riemannian k-manifolds (k ≤ 3) embedded in R3. In Holm et al. (2002),
the authors derived a general covariant form of Euler-Poincaré equations and used it to derive
3-dimensional vector-invariant equations of GFD.

In literature, both fluid dynamics and geophysical fluid dynamics apply such covariant for-
mulations to derive structure-preserving discretizations, where analytical conservation prop-
erties are automatically fulfilled in the discrete case. Such property would be, for instance,
the Helmholtz decomposition where discrete vector fields consist, just as the analytical ones,
in divergence-free and rotation-free parts. To discretize general partial differential equations
(PDEs), the framework of “discrete exterior calculus (DEC)” has been developed using methods
of algebraic topology (Hatcher (2002)). This framework is built on discrete versions of manifolds,
differential forms and operators that mimic fundamental properties of their continuous counter-
parts (see e.g. Desbrun et al. (2005a,b); Hirani (2003); Mullen et al. (2011); Bochev and Hyman
(2006)). Alternatively, by combining the theories of functional analysis, homology and exterior
calculus, Arnold et al. (2006, 2010) have developed the framework of finite element exterior cal-
culus (FEEC). FEEC structures various finite element spaces in a geometrical consistent way
and provides a mathematical framework for derivations and proofs in order to derive consistent
and stable discretizations. Using FEEC, Arnold and colleagues thus derived suitable mixed finite
element pairs for various PDEs (e.g. Arnold (2013); Arnold et al. (2010)).

In computational fluid dynamics, only few studies (e.g. Desbrun et al. (2005b); Elcott et al.
(2007); Pavlov et al. (2011); Wilson (2011)) apply DEC or FEEC to discretize covariant fluid
equations. In geophysical fluid dynamics, where additional effects caused by Coriolis and cen-
tripetal forces have to be considered (Marshall and Plumb (2007)), we are aware of a few stud-
ies based on covariant shallow-water equations, but of none for the full 3-dimensional covari-
ant equations. For instance, applying DEC, Simarro (2007) introduced a triangular and Bauer
(2013) a hexagonal C-grid discretization of the shallow-water equations implemented in the next-
generation numerical weather prediction and climate model ICON (Bonaventura and Ringler
(2005); Rı́podas et al. (2009)). More recently, Cotter and Thuburn (2014) derived for geophysi-
cal applications from similar covariant equations various mixed finite element pairs using FEEC.

Our long term goal is to derive from general covariant equations of GFD structure-preserving
discretizations. However, there exist to the best of our knowledge neither n-dimensional covari-
ant equations of GFD on rotating n-manifolds nor corresponding discretization approaches. Such
n-dimensional equations and discretization methods would be, however, desirable as these for-
mulations are independent of dimension. In case equations are not n-dimensional, they might
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change with dimension, a fact which might be true for any proof conducted, and/or for the equa-
tions’ (conservation) properties. For instance, discretization schemes suitable for two dimensions
are often not generalizable to the 3-dimensional case. Besides such dimension-independent for-
mulation, by using (straight and twisted) differential forms as descriptors for the fluid’s quantities
of interest, one can find a form of the equations that is independent of the manifold’s orientation
and therefore avoids the confusion that usually comes along in vector calculus when using axial
and polar vectors (cf. Bossavit (1998b)).

In this paper we therefore derive n-dimensional covariant equations of GFD on rotating
n-manifolds using a covariant master balance law. In addition, by using straight and twisted
differential forms and an auxiliary velocity field, we introduce to the best of our knowledge new
hierarchically-structured equations of fluid dynamics and GFD, in which the equations are split
into metric-free and metric-dependent parts. These sets of equations are extensions of ideas
developed in Bauer (2013) for rotating k-manifolds (k ≤ 3) in R3 to the n-dimensional case. We
focus here on the analytical derivations of these equations in order to provide a profound basis
for their structure-preserving discretization using DEC and/or FEEC, which will be subject of
upcoming work.

The splitting of the equations will allow us to interpret the geometrical properties of the
single terms of the split equations and their mutual interaction. Similarly structured sets of
equations exist in literature: for instance, the split covariant Maxwell’s equations introduced
by Bossavit (2005) or the discrete shallow-water equations introduced by Cotter and Thuburn
(2014). Moreover, this form of the equations suggests their structure-preserving discretization
using DEC or FEEC, as introduced in Bauer (2013) for split linear shallow-water equations.

Finally, we show that these sets of equations are well-defined, prove that they conserve po-
tential vorticity and that Kelvin’s circulation theorem holds, and provide concrete n-dimensional
representations in local coordinate charts. We assess identities and differences between covari-
ant and vector-invariant equations for a representation in an Euclidean space, as only in the
latter space vector-invariant equations exist. As we will furthermore show, these formulations
behave differently under changes in coordinates, orientation or metric. We will discuss how these
different behaviors impact on how well these sets of equations model “reality”.

1.1 Content and structure of the manuscript

The paper consists of two major parts. Part 1 consisting of Sections 2 to 5 deals with the
formulation and comparison of the equations of GFD in either covariant or vector-invariant form.
In Sect. 2, we discuss suitable mathematical descriptors for the movement of fluid particles and
for the forces acting upon these particles. We introduce the required mathematical spaces and
operators in a hierarchical order, i.e. with respect to the mathematical structure required. In
Sect. 3, we introduce vector-invariant equations of GFD and how these are derived using vector
fields as descriptors. In Sect. 4, we derive the covariant equations of GFD on rotating general
manifolds embedded in R3. In Sect. 5, we represent covariant and vector-invariant equations on
a rotating coordinate frame, which allows us to compare both representations, and we discuss
similarities and differences.

In Part 2, consisting of Sections 6 to 9, we introduce and discuss formulations of the equations
of GFD that would not exist in vector calculus. In Sect. 6, we introduce with Theorem 2 the first
major result of this paper, namely to the best of our knowledge new n-dimensional covariant
equations of GFD on a rotating n-dimensional manifold. In Sect. 7, we introduce with Theorem 3
the second major result, namely to the best of our knowledge new hierarchically-structured fluid
equations that are split into metric-free and metric-dependent parts. This structure results
by describing the quantities of interest by straight and twisted differential forms, which will be
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introduced, alongside with additional mathematical structure, in Sect. 7.1. In Sect. 8, Theorem 4
and Theorem 5 are further major results which show that the (split) covariant equations conserve
potential vorticity and that Kelvin’s circulation theorem holds. In Sect. 9, we show for the
split covariant shallow-water equations the conservation of potential vorticity, and we show
explicitly how differential forms or vector fields used to describe the prognostic variables and the
corresponding covariant or vector-invariant equations transform under changes in metric and
orientation. In Sect. 10, we draw conclusions and provide an overview as on how the results of
this paper might impact on future research.

2 Mathematical spaces and descriptors for fluid flows

In Part 1 of the manuscript, we derive covariant equations of geophysical fluid dynamics for
general manifolds embedded in R3. Then, we compare these equations with the vector-invariant
ones, in a suitable coordinate representation. By the choice of adequate mathematical descriptors
for the fluid motion and the forces involved, these equations follow from balance laws.

In this section, we first introduce the required spaces and operators of differential geometry
and then discuss adequate mathematical descriptors for the fluid motion and for the forces acting
upon the fluid particles.

2.1 Exterior Calculus and Differential Geometry in a nutshell

We introduce the spaces, manifolds, and corresponding operators in a hierarchical order, i.e.
from general topological spaces, on which vector fields and differential forms are well-defined, to
more structured oriented Riemannian manifolds that are equipped with metric and orientation.
Moreover, we discuss operators that are defined on and that build connections between these
spaces. Throughout Section 2, we present the mathematical spaces and operators as usually
introduced in textbooks (e.g. Abraham et al. (1983); Bossavit (2005); Jänich (2001)). For more
details on their definitions, properties and proofs we refer to these references.

2.1.1 Topological manifolds

A topological space is the most general mathematical space that enables to define the notions of
connectedness, continuity, and convergence. It consists of a set of points and of a topology that
is a set of neighborhoods (or open sets) to each point satisfying certain axioms (Abraham et al.
(1983)). An n-dimensional topological manifoldM (called topological n-manifold) is a topolog-
ical space covered with open sets Ui ⊂ M, M = ∪i∈IUi, such that each p ∈ M lies in at least
one Ui, and equipped with a set of homeomorphisms φi : Ui → V ∈ Rn (cf. Kambe (2002)).
The pair (Ui, φi) defines coordinate patches onM and makes the manifold locally, in the neigh-
borhood U of each p, look like an n-dimensional affine space An. Differentiable manifolds are
those for which the overlap function φj ◦ φ

−1
i , i, j ∈ I, for any pair of coordinate charts (Ui, φi)

and (Uj , φj) is a C∞-map from φi(Ui ∩ Uj) to φj(Ui ∩ Uj) in Rn. We call the family of such
coordinate charts (Ui, φi)i∈I an atlas onM; and we call it a complete (or maximal) atlas, if it is
not already contained in any other atlas.

Given this atlas, functions f :M→N from the n-manifoldM to the l-manifold N can be
locally represented with respect to the coordinate charts (U1 ⊂ M, φ1) and (U2 ⊂ N , φ2) by
φ2 ◦ f ◦ φ

−1
1 : φ(U) : Rn → R

l. Properties valid for functions of the form R

n → R

l can thus
be transfered to differentiable manifolds. For instance, f is a Cr function if, for all coverings
of M and N , the local representatives are Cr functions. Similarly, the projection functions
uk : Rn → R, uk(x) := xk, k = 1, . . . , n, that assign to a point x ∈ Rn its coordinates (x1, . . . , xn)
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can be used to define the coordinate functions φk : U → R, k = 1, . . . , n, for a given chart (U, φU )
by φk(p) := uk(φU (p)). Then, the point p ∈ U ⊂M has the coordinates (φ1(p), . . . , φn(p)). As
frequently done (e.g. in the Ricci calculus), we write simply xk for the coordinate functions,
thus presenting the coordinates of p by the n-tuple of real numbers (x1(p), . . . , xn(p)).

Moreover, we need the concept of tangent spaces, which are spanned by tangent vectors of
curves on the manifold M. A curve on M is a smooth map γ : I → M from some interval
I ∈ R into M. Let the set of such curves that pass point p ∈ M at t = 0 be denoted by
Kp(M) = {γ : (−ǫ, ǫ) → M|ǫ > 0 and γ(0) = p}. Two curves γ1, γ2 ∈ Kp(M) are called
tangential equivalent, γ1 ∼ γ2, if for one (thus any) chart (U, φ) around p there is: d

dt(φ ◦

γ1(t))|t=0 = d
dt(φ ◦ γ2(t))|t=0 ∈ R

n. The equivalence classes [γ] ∈ Kp(M)/ ∼ are denoted as
tangent vectors of M at p and the vector space TpM := Kp(M)/ ∼ is called the tangent space
of M at p. The tangent spaces allow us to define the differential of a function f :M→ N at
point p by the linear mapping of tangent vectors: dfp : TpM → Tf(p)N , [γ] 7→ [f ◦ γ] (see e.g.
Jänich (2001)).

The union of tangent spaces on M defined by TM := ∪p∈MTpM is called the tangent
bundle. TM is a smooth 2n-dimensional manifold. Moreover, the projection π : TM → M,
with π(ζ) = p in case ζ ∈ TpM, is a smooth mapping with π−1(p) = TpM. This enables the
following definition.

Definition 1. A vector field X ∈ X (M) on an n-manifoldM is a smooth cross-section in the
tangent bundle TM by

X :M→ TM with π(X(p)) = p for all p ∈ M. (1)

In other words, a vector field is a smooth assignmentM∋ p 7→ Xp ∈ TpM for all p ∈M. X (M)
denotes the space of vector fields onM.

On a coordinate chart (U, φ), such vector field X can be expanded on U in the basis ∂
∂xk |p ∈

TpM, k = 1, ..., n, for all p ∈ U ⊂M by

X =

n∑

k=1

Xk ∂

∂xk
, (2)

where ∂
∂xk : p 7→ ∂

∂xk |p for all p ∈ U are vector fields on U and Xk are real functions on U .

Remark 1. Besides introducing coordinates on U by φk : U → R, a coordinate chart (U, φ)
assigns also to every point p ∈ U a basis for the tangent space TpM that corresponds under
the mapping φ : TpM → R

n to the canonical basis (e1, ..., en) of Rn. The corresponding
tangent vectors ∂

∂xk of TpM are represented by the curves t 7→ φ−1(φ(p) + tek), i.e.
∂

∂xk :=
(dφ−1)[φ(p) + tek]. Alternatively, as derivatives acting on functions f , they are defined by(

∂
∂xk

)
p
f := ∂

∂φk(p)
f ◦ φ−1|φ(p), k = 1, ..., n.

On the tangent spaces, or vector spaces in general, we can define multilinear maps as follows.

Definition 2. Given a real vector space V , a k-form ω on V is a skew-symmetric multilinear
map

ω : V × · · · × V︸ ︷︷ ︸
k−times

−→ R (3)

with ω(v1, . . . , vk) = 0 in case v1, . . . , vk ∈ V are linearly dependent. We denote the vector space
of k-forms on V by Λk(V ). For k = 0, we set Λ0(V ) := R.
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If α ∈ Λk(V ) and β ∈ Λl(V ), we define the exterior (or wedge) product α ∧ β ∈ Λk+l by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β) , (4)

in which ⊗ is the tensor product andA an alternating map, i.e. if two entries ofA are exchanged,
the sign changes. This product has the following properties (Abraham et al. (1983)):

(i) α ∧ β = Aα ∧ β = α ∧Aβ,

(ii) ∧ is bilinear,

(iii) α ∧ β = (−1)k+lβ ∧ α,

(iv) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

The direct sum of the spaces Λk(V ), k = 1, . . . , n, i.e. Λ(V ) := ⊕n
k=0Λ

k(V ), together with
its structure as a real vector space and multiplication induced by the wedge product ∧, is called
the exterior algebra (or Grassmann algebra) of V .

Using this multiplication, the general k-forms of (3) can be represented with a basis in
Λ(V ). To this end, we consider for a basis (e1, . . . , en) of V , the dual basis (e1, . . . , en) of the
dual space V ∗ which is defined by ei(ej) = δij . Then, the basis of Λk(V ) is given by

(n
k

)
-

basis vectors {eµ1 ∧ · · · ∧ eµk |1 ≤ µ1 < · · · < µk ≤ n} with eµ1 ∧ · · · ∧ eµk(eµ1 , . . . , eµk
) = 1

∀ 1 ≤ µ1 < · · · < µk ≤ n and 0 otherwise. In this basis, every k-form ω ∈ Λk(V ) can be written
as

ω =
∑

1≤µ1<···<µk≤n

ωµ1...µk
eµ1 ∧ · · · ∧ eµk , (5)

with components ωµ1...µk
:= ω(eµ1 , . . . , eµk

).
Such multilinear maps exist also in affine spaces, because a pointwise definition of k-forms

ω|x on vector spaces Vx at every point x can be introduced. For instance, for k = 1 and a given
x, Definition 2 includes the description of forces by covectors (linear maps) ω|x = Fx as elements
of the dual space Λ1Vx = V ∗

x (cf. discussion in Sect. 2.2.2). Analogously to affine spaces, for
every point p ∈ M such multilinear maps ωp exist on the tangent spaces TpM = Vp, as the
latter are vector spaces. The corresponding dual spaces, called cotangent spaces to the tangent
spaces TpM, will be denoted with T ∗

pM = V ∗
p .

Similarly to tangent bundles, there exist cotangent bundles defined by T ∗M := ∪p∈MT
∗
pM.

This allows us to define the bundle of k-forms by Λk(TM) := ∪p∈MΛk(TpM) with projection
π : Λk(TM) →M and with π(ωp) = p in case ωp ∈ Λk(TpM). In turn, the dual spaces of the
tangent spaces are spanned by π−1(p) = T ∗

pM. This enables the following general definition.

Definition 3. A differential form of grade k, or short (smooth) k-form, ω ∈ Ωk(M), is a
differentiable map

ω :M→ Λk(TM) with π(ω(p)) = p for all p ∈ M. (6)

In other words, a differential form is a smooth mapping ω : M ∋ p 7→ ωp ∈ Λk(TpM). We
denote the vector space of differentiable k-forms on M with Ωk(M). For k = 0, there is
Ω0(M) = C∞(M).

Similarly to the wedge product (4) on V , there exists a wedge product of differential forms on
M by ∧ : Ωk(M)×Ωl(M)→ Ωk+l(M), (ω, η) 7→ ω∧ η, defined pointwise by (ω∧ η)p := ωp ∧ ηp
for all p ∈ M. This wedge product onM shares the properties of (4), and gives also rise to the
algebra Ω := ⊕n

k=0Ω
k(M).

Analogously to k-forms on V , smooth k-forms onM can be locally represented in the form (5)
using coordinate charts. We first consider smooth 1-forms. On the coordinate chart (U, φ) with
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φ = (x1, . . . , xn), the differentials dxµ : TpM→ R of the coordinate functions xµ : U → R map
the basis vectors (∂1, . . . , ∂n) of TpM like

dxµ(∂ν) =
∂xµ

∂xν
= δµν :=

{
1 if µ = ν,

0 if µ 6= ν.
(7)

These differentials build at every point p ∈ U for the basis (∂1, . . . , ∂n)p the dual basis
(dx1, ..., dxn)p of T ∗

pM. Moreover, the differentials dxµ return the µ-component of a vector
X ∈ TpM by dxµ(X) =

∑
ν X

νdxµ(∂ν) = Xµ. Using this dual basis, a smooth 1-form ω can be
represented in local coordinates (U, φ) by ω|U =

∑
µ ω(∂µ)dx

µ.

In order to represent smooth k-forms, one applies the wedge product and the fact that
differential forms induce a smooth mapping: ω : X (M) × ... × X (M) −→ C∞(M). Then, in a
coordinate chart (U, φ), smooth k-forms can be represented by

ω =
∑

1≤µ1<···<µk≤n

ωµ1...µk
dxµ1 ∧ · · · ∧ dxµk , (8)

using the component functions: ωµ1...µk
= ω(∂µ1 , . . . , ∂µk

) : U → C∞(U). In the following when
there is no danger of confusion, smooth k-forms are frequently denoted simply as k-forms.

2.1.2 Operators on topological manifolds acting on vector fields and differential
forms

The following operators acting on vector fields X (M) and on differential forms Ω(M) are defined
on topological manifoldsM and require a differentiable structure onM.

Volume form We denote Ω = dx1 ∧ · · · ∧ dxn ∈ Ωn(Rn) as the standard volume form on Rn

with Ω(x) 6= 0∀x ∈ Rn. Analogously, a volume form on an n-manifold is a non-vanishing n-form
µ ∈ Ωn(M) with µ(p) 6= 0 for all p ∈ M. Such volume form exists if and only ifM is orientable
(Abraham et al. (1983)).

There exist an infinite number of different volume forms, obtained by multiplying any volume
form by a non-vanishing function. In case of an oriented Riemannian manifold, i.e. if a metric
g exists (cf. Sect. 2.1.4), there is a natural volume form given in local coordinates by µg =√
|g|dx1 ∧ · · · ∧ dxn with µg(∂1, ..., ∂n) = 1.

Exterior derivative For a differentiable topological n-manifoldM, there is a unique family
of mappings dk : Ωk(M)→ Ωk+1(M) (k = 0, . . . , n, and U is open inM), denoted with exterior
derivative d, with the following properties (Abraham et al. (1983)):

(i) d is a ∧-antiderivation, i.e. d is R-linear and for α ∈ Ωk(M) and β ∈ Ωl(M),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ (product rule); (9)

(ii) if f ∈ C∞(M), df is the total differential of f , i.e. (df)µ = ∂f
∂xµ and xµ, µ = 1, ..., n, are

local coordinates;

(iii) d2 = d ◦ d = 0 (that is, dk+1(U)dk(U) = 0);

(iv) d is a local operator, i.e. d is natural with respect to restrictions; that is, if U ⊂ V ⊂ M
are open and α ∈ Ωk(V ), then d(α|U) = dα|U .
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In a coordinate chart (U, φ), φ = (x1, . . . , xn), the exterior derivative of a smooth k-form
ω ∈ Ωk(M) with representation (8) takes the form

dω =
∑

1≤µ1<···<µk≤n

∂ωµ1...µk

∂xµ
dxµ ∧ dxµ1 ∧ · · · ∧ dxµk , (10)

with components ωµ1...µk
= ω(∂µ1 , . . . , ∂µk

) : U → C∞(U). For instance, for the 1-form ω1 =
ω1dx

1 + ω2dx
2 ∈ Ω1(M) in a 2-manifoldM, there follows

dω = ∂2ω1dx
2 ∧ dx1 + ∂1ω2dx

1 ∧ dx2 = (∂1ω2 − ∂2ω1)dx
1 ∧ dx2 . (11)

Remark 2. Be aware of the different notation between d and d, where d denotes the exterior
derivative and d the differential of the coordinate functions xµ.

Interior product (contraction) The inverse operation of the exterior derivative is the inte-
rior product (or contraction) iX : Ωk(M) → Ωk−1(M) for all k = 1, . . . , n. The contraction of
ω ∈ Ωk+1(M) by X ∈ X (M), iXω ∈ Ωk(M), can be defined by

iXω(X2, ...,Xk) = ω(X,X2, ...,Xk), (12)

for all vectors Xi ∈ X (M), i = 2, . . . , k. If ω ∈ Ω0(M), we put iXω = 0. The interior product has
the following properties (Abraham et al. (1983)): if α ∈ Ωk(M), β ∈ Ωl(M), and f ∈ Ω0(M),
then

(i) iX is a ∧-antiderivation, i.e. iX is R-linear and iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ),

(ii) ifXα = f iXα,

(iii) iXdf = LXf ,

(iv) LXα = iXdα+ diXα,

(v) LfXα = fLXα+ df ∧ iXα, where L denotes the Lie derivative, defined as follows.

Flows and Lie derivative We first introduce the notion of the flow ϕt of a vector field
X. This flow will be described by a one-parameter group of diffeomorphisms, i.e. the family
{ϕt|t < |ǫ|} of local diffeomorphisms at p ∈ U of the open set U ⊂M onto the open set ϕt(U),
given by ϕ : (−ǫ, ǫ)× U →M; (t, q) 7→ ϕt(q),∀q ∈ U , fulfills the properties ϕs(ϕt(q)) = ϕs+t(q)
and ϕ0(q) = q. At each q ∈ U there is an integral curve t 7→ ϕt(q) inducing a tangent vector field
X by q 7→ Xq(f) =

d
dtf(ϕt(q))|t=0 for all q ∈ U . The function f could be any of the coordinate

functions xµ, for instance. If X is a complete vector field, the interval (−ǫ, ǫ) can be extended
to the entire real line (cf. Isham (1999)). We call ϕt also the evolution operator.

On the basis of this flow description, we define the Lie derivative of a function (or tensor in
general) as the rate of change of this function (or tensor) along the flow. Therefore, let ϕt be
the flow of a vector field X ∈ X (M) and τ ∈ T r

s (M) be a tensor, both of class Ck. Then LX ,
called the Lie derivative with respect to X, is defined by

d

dt
ϕ∗
t τ = ϕ∗

tLXτ , (13)

in which t denotes the time variable and ∗ the pull back (Abraham et al. (1983)). Using the
Lie-bracket of vector fields [ , ] : X (M)×X (M)→ X (M), the Lie derivative L has the following
properties (Abraham et al. (1983)): let X,Y ∈ X (M), then

(i) [LX , iY ] = i[X,Y ],
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(ii) [LX ,LY ] = L[X,Y ],

(iii) iX ◦ LX = LX ◦ iX ,

(iv) d is natural with respect to LX , i.e. for ω ∈ Ωk(M), there follow LXω ∈ Ω(M)k and
dLXω = LXdω.

Because of Cartan’s formula (Eqn. (12) (iv)), there exists a metric-free form of the divergence
of a vector field X by

LXµ = iX dµ︸︷︷︸
=0

+diXµ = (divX)µ , (14)

using the volume form µ (Abraham et al. (1983)).

2.1.3 Oriented topological manifolds and integration

Equipping the topological manifoldM with orientation Or (cf. Sect. 7.1) enables to formulate
integrals over forms and, in particular, to define a general version of Stokes’ theorem. We denote
oriented topological manifolds by (M, Or). On an oriented n-dimensional manifold, the integral
over n-forms ω ∈ Ωn(M) is given in a coordinate chart (U, h) by

∫

M
ω :=

∫

R

n

(ω1...n ◦ h
−1)dx1 . . . dxn , (15)

with component function ω1...n := ω(∂1, ..., ∂n) : U → C∞(M) with compact support. Anal-
ogously, k-form can be integrated on k-dimensional submanifolds of M. We will study the
properties of this integral definition in more detail in Sect. 9.2.

The boundary of a topological n-manifoldM, denoted with ∂M, is an (n − 1)-dimensional
topological manifold without boundary (Jänich (2001)). In general, a surface such as ∂M
(possibly not connected) that encloses a manifold M can be consistently outer oriented by a
consistent crossing direction from inside M to the outside (Bossavit (1998a)). In case of an
oriented manifold (M, Or), this allows us to assign a consistent canonical inner orientation to
the boundary ∂M, namely by ordering first the outer normal on ∂M followed by the one inner
orientation of ∂M that gives Or ofM (cf. Bossavit (1998c)).

Let ω ∈ Ωk−1(M) be an (n − 1)-form with compact support on an oriented n-dimensional
manifold M with (n − 1)-dimensional boundary ∂M that is canonically inner oriented. Then,
Stokes’ theorem is given by ∫

M
dω =

∫

∂M
ω . (16)

Stokes’ theorem is also valid for twisted forms ω̃ of Definition 7 that act on outer oriented
manifolds (cf. Sect. 7.3).

The exterior derivative, defined in Sect. 2.1.2, is a map of the form d : Ωk(M)→ Ωk+1(M).
As indicated by Stokes’ theorem, the boundary operator acting on k-manifolds (or k-chains of
Definition 6) is a continuous map ∂k : Ck(M) 7→ Ck−1(M) on the space of manifolds (or chains)
(cf. Bossavit (2005)). As a consequence, the boundary of ∂M is null, or in general ∂∂ = 0, which
follows directly by dd = 0, because

∫
M ddω =

∫
∂M dω =

∫
∂∂M ω. By linearity, the boundary

operator acts on chains like ∂(
∑

i µiMi) =
∑

i µi∂Mi.

2.1.4 Oriented topological manifolds with metric (Riemannian manifolds)

Here, we equip (not necessarily oriented) topological manifolds (or affine spaces) with metric.
Then, notions like length, area, volume, orthogonality (or angles in general) are well-defined. In



A new hierarchically-structured n-dimensional covariant form of equations of GFD 11

addition, the metric structure allows us to define useful isomorphisms, such as an isomorphism
between vector and covector fields.

To introduce a metric on topological n-manifolds, we first introduce it on vector spaces.
To this end, let V be an n-dimensional vector space and g = 〈·, ·〉 a nondegenerate symmetric
bilinear form of rank n, i.e. the map V → V ∗, ~v 7→ 〈~v, ·〉, is an isomorphism. Then, there exists
a g-orthonormal basis (e1, ..., en) of V with dual basis (e1, ..., en) such that

g =

n∑

i=1

cie
i ⊗ ei , ci = ±1; with matrix of g:



c1 0

. . .

0 cn


 . (17)

The number of ci = −1 in the diagonal of matrix g is called index s := Ind(g). In case of s = 0,
the pair (V, 〈·, ·〉) is called Euclidean space En. More precisely, En is an affine space An where
at each x ∈ An the associated vector space Vx is equipped with such a bilinear form 〈·, ·〉x.

The metric g induces a nondegenerate symmetric bilinear form, denoted with g(k) = 〈·, ·〉,
on the vector space of k-forms Λk(V ): that is, if (e1, ..., en) is a g-orthonormal basis of V , then
(eµ1 ∧ ...∧ eµk)1≤µ1<...<µk≤n is a g-orthonormal basis of Λk(V ) with respect to g(k) and there is
〈eµ1 ∧ ... ∧ eµk , eµ1 ∧ ... ∧ eµk〉 = cµ1 ...cµk

.
With this we define: a semi-Riemannian manifold of index s is a pair (M, 〈·, ·〉) consisting

of a topological manifoldM and a family

〈·, ·〉 = {〈·, ·〉p}p∈M (18)

of symmetric nondegenerate bilinear forms 〈·, ·〉p on TpM of index s, such that, for all charts
(U, h) of an atlas, the mapping gµν := 〈∂µ, ∂ν〉p : U → R, p 7→ 〈∂µ, ∂ν〉p, for any vector field
∂µ, ∂ν ∈ X (M), is a C∞(M) function. In case of s = 0, the pair (M, 〈·, ·〉) is called Riemannian
manifold.1

Also on semi-Riemannian manifolds a symmetric nondegenerate bilinear form g(k) = 〈·, ·〉
exists, i.e. 〈·, ·〉 : Ωk(M)× Ωk(M)→ C∞(M) with 〈ω, η〉 = 〈η, ω〉 for all ω, η ∈ Ωk(M).

As it becomes clear from the context, we use for all nondegenerate symmetric bilinear forms
introduced so far the symbol 〈·, ·〉; in particular we omit the p in 〈·, ·〉p if not necessary. Moreover,
in case of s = 0 we call 〈·, ·〉 (or simply ·) an inner product. Only on spaces equipped with such
inner product, the notion of length, angle, orthogonality, etc., makes sense.

Remark 3. There exist different realizations of such metric structures on Euclidean spaces and
on Riemannian manifolds (see discussion in Sect. 9.2).

2.1.5 Operators on (oriented) Riemannian manifolds

Using a metric structure g on an n-manifoldM, we introduce in the following a mapping between
1-forms and vector fields. Equipping this Riemannian n-manifold (M,g) with an orientation,
also a mapping between k-forms and (n− k)-form can be established.

Flat and sharp operators A nondegenerate symmetric bilinear form 〈·, ·〉 on a finite-dimen-
sional vector space V induces an isomorphism V ∼= V ∗ by the map ~v 7→ 〈~v, ·〉. On Riemannian
manifolds, not necessarily oriented, such isomorphism also exists at every point p ∈ M between
the tangent and cotangent spaces, TpM∼= T

∗
pM. We use the notation

TpM
♭−−−→←−−−
♯
T ∗
pM , (19)

1In case of index Ind(g) = 1, thus c1 = −1, c2 = c3 = c4 = 1, one obtains a so-called Lorentz manifold.
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where ♭ : ~v 7→ 〈~v, ·〉 is denoted as flat operator and we write ♭(~v) = ~v ♭. The inverse operator
♯ : α := 〈~v, ·〉 → ~v is denoted as sharp operator and we write ♯(α) = α♯.

Because 〈·, ·〉 is smooth onM according to Eqn. (18), ♭ and ♯ act smoothly on smooth vector
fields and k-forms on M. That is, the isomorphism above exists also between 1-form Ω1(M)
and vector fields X (M) with corresponding mappings

♭ : X (M)→ Ω1(M) and ♯ : Ω1(M)→ X (M) . (20)

We denote in the following both mappings ♭ and ♯ as Riemannian lift if there is no danger of
confusion. Here it should be explicitly stressed that these operators do not depend on orientation
as no such structure is involved in their definitions.

Hodge star operator Let V be an oriented n-dimensional vector space and g = 〈·, ·〉 a
nondegenerate symmetric bilinear form. Let µ be the volume form of V . Then, there exists a
unique isomorphism, called Hodge star operator, ⋆ : Λk(V )→ Λn−k(V ) satisfying

α ∧ ⋆β = 〈α, β〉µ for α, β ∈ Λk(V ) . (21)

The Hodge star operator has the following properties (Abraham et al. (1983)): let α, β ∈ Λk(V ),
then

(i) α ∧ ⋆β = β ∧ ⋆α = 〈α, β〉µ,

(ii) ⋆1 = µ, ⋆µ = (−1)Ind(g),

(iii) ⋆ ⋆ α = (−1)Ind(g)(−1)k(n−k)α,

(iv) 〈α, β〉 = (−1)Ind(g)〈⋆α, ⋆β〉.

For a positive oriented g-orthonormal basis (e1, ..., en) of V and its dual basis (e1, ..., en),
there is

⋆ (eσ(1) ∧ ... ∧ eσ(k)) = cσ(1)...cσ(k)sign(σ)(e
σ(k+1) ∧ ... ∧ eσ(k+n)) , (22)

with σ(1) < ... < σ(k) and σ(k+1) < ... < σ(k+n), and permutation group σ with sign(σ) = 1
for even and sign(σ) = −1 for odd permutation. For instance, given in R3 a basis (e1, e2, e3), its
dual (e1, e2, e3), and the coefficients c1 = c2 = c3 = 1, the following relations hold: ⋆e1 = e2∧ e3,
⋆e2 = −e1 ∧ e3, and ⋆e3 = e1 ∧ e2.

The Hodge star operator ⋆ generalizes to oriented Riemannian manifolds (M,g, Or) via the
definition over the tangent spaces, i.e. there follows the isomorphism ⋆ : Ωk(M) → Ωn−k(M)
between smooth k- and (n − k)-forms by α ∧ ⋆β = 〈α, β〉µ for α, β ∈ Ωk(M). This Hodge star
operator onM shares Properties (i)-(iv) from Definition (21).

Remark 4. On an oriented Euclidean space E3 consisting of a 3-dimensional oriented affine space
with metric g, a bilinear antisymmetric mapping, called the cross product, × : V ×V → V can be
defined. This operator will be required later on in order to represent vector-invariant equations
such as in Eqn. (28). The cross product can also be represented by means of the operators ♭
and ⋆, i.e. ~v × ~w = [⋆(~v ♭ ∧ ~w ♭)]♯ for ~v, ~w ∈ V (see e.g. Abraham et al. (1983)).

The cross product allows us to assign to 2-forms u ∈ Ω2(M) their corresponding vector
proxies. That is, an alternating bilinear form, associated to a vector ~u := u♯ can be found by
{~v, ~w} 7→ ~u · (~v × ~w) for all ~v, ~w ∈ V (cf. Bossavit (1998b)).

2.2 Mathematical descriptors for displacement and force fields

In this section, we introduce precise mathematical descriptors for particle displacements and fluid
motion, and for forces and force fields that act upon the fluid particles. The descriptors should
precisely describe the physical entities while employing only minimal mathematical structure. In
this context, we are guided by the parsimony principle (Bossavit (2012)) suggesting that “a well
structured theory will start with weak mathematical structures and will enrich them on demand”.
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Figure 1: Left: affine translation aλ~v, λ ∈ [1, 2], in An. Right: equipotential surfaces of covector
field F . The force field described by the vector proxy ~F is perpendicular to the equipotential
surfaces of F (cf. Eqn. (23)).

2.2.1 From displacement vectors to dynamic vector fields

The physical displacement of a particle within a fluid from a given to a new position can ad-
equately be characterized by two properties: (i) given an initial point, in principle, all new
positions should be accessible, and (ii) the displacement has a direction and a magnitude.

An optimal mathematical descriptor for the particle displacement is provided by an affine
translation a~v = x → x + ~v as element of an affine space An. This space consists of a set of
points x that admits a regular and transitive action of a vector space V via a~v. The affine
translation is transitive, i.e. for any pair {x, y} there is a vector ~v with y = x+~v, and is regular,
i.e. for any x, there is x+ ~v 6= x if ~v 6= 0. As an affine map meets Conditions (i) and (ii), it is
an optimal descriptor for particle displacement. Moreover, it conserves the alignment of points,
leaves the barycenters and the ratio of distances between aligned points unchanged, and keeps
parallel lines parallel; it does not however conserve quantities such as distances between points,
orthogonality, or angles in general (see Fig. 1 (left)).

The displacements of all particles are described by the vector field ~v : An → Vx, x 7→ ~vx∀x ∈
An, which assigns to every point x ∈ An a tangent vector ~vx ∈ Vx. These displacement vectors
are bound to the positions x and, therefore, often denoted as bound vectors.2 In the dynamical
case, the tangent vector field x(t) 7→ ~v(t) describes the fluid particles’ velocities at time t and is
a purely affine object.3

In affine spaces An, the particles’ trajectories x(t) ∈ An are lines, instead of general smooth
curves, because of the linear character of affine spaces. The movement of fluid particles on
general (possibly bent) surfaces can be optimally described by smooth (dynamic) vector fields
~v(t) ∈ X (M) on topological manifolds M. These vector fields assign smoothly to every par-
ticle at position p ∈ M a tangent vector ~vp ∈ TpM that describes the particle’s infinitesimal
displacement (or its velocity) caused by forces acting upon it. The affine transformations in
An can be regarded as local linearizations of such smooth vector fields onM, because topolog-
ical manifolds are locally isomorphic to affine spaces. At every point An ∋ x = p ∈ M, the
affine transformations given by bound vectors ~vx ∈ Vx correspond locally to the tangent vectors
~vp ∈ TpM.

2Bound vectors {x,~v(x)} or {y,~v(y)} are elements of the vector spaces V n|x at x or V n|y at y, respectively.
They form an affine space, because they can be added when regarded as pair of points, i.e. {x, x+~v(x)}+ {y, y+
~v(y)} = {x+ y, x+ y + ~v(x) + ~v(y)} =: {z,~v(z)}, and multiplied by λ ∈ R. However, bound vectors on different
position (here in case of x 6= y) do not form a vector space (Bossavit (1998a)).

3Whereas vector fields are pure affine object without the concepts of metric and orientation, velocity fields, as
presented, require the additional concept of a chronometer to measure time (Bossavit (1998b)).
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2.2.2 From force covectors to differential forms

A description of forces should cover the following properties: (i) forces are not directly visible:
we experience them only by the effects they have on material, such as the displacements of
particles; (ii) unlike displacements, forces do not have intrinsic pointing directions; (iii) through
the displacements ~v, force F performs work W = F · |~v| on fluid particles (Bossavit (1998b)).

To describe forces by their effects (i.e. displacements) on particles, recall that we describe
the particles’ positions by x as elements of the affine space An and the particles’ displacements
by the bound vectors ~vx ∈ Vx, which span the vector space Vx. Then, an optimal descriptor for
forces at point x is given by linear maps (covectors)

Fx : Vx → R, ~vx 7→ Fx(~vx) ∈ R , (23)

as elements of the dual space V ∗
x of the vector space Vx. The idea is that forces assign to a virtual

displacement an amount of virtual work. Such linear maps Fx ∈ V ∗
x acting on displacements

~vx ∈ Vx satisfy the Conditions (i)-(iii) imposed on forces and thus provide optimal descriptors
for forces while only minimal mathematical structure is required.

Similarly to topological manifolds, the vector space Vx corresponds to the tangent space of
An at point x, i.e. Vx = TxAn, hence Fx is an element of the cotangent space V ∗

x = T ∗
xAn. An

optimal descriptor for a (dynamical) force field is then given by the covector field F , which is
a linear map F : TAn → R assigning a covector Fx to every point x ∈ An. This definition
of forces as linear maps over affine spaces only requires an affine structure (i.e. no metric and
orientation), analogously to the definition of affine translations.

Such piecewise linear covector fields F : ~vx 7→ Fx(~vx) ,∀x ∈ An, act on piecewise linear
vector fields ~v : x 7→ ~vx ,∀x ∈ An, and are therefore valid on piecewise linear lines, surfaces or
volumes, as in case of simplicial complexes. Smooth force fields acting on smooth vector fields
X (M) can be optimally described by smooth 1-forms ω ∈ Ω1(M) (i.e. smooth covector fields)
on topological manifolds M; at every point p ∈ M, this force field smoothly assigns by the
covector ωp ∈ T

∗
pM to a displacement ~vp ∈ TpM an amount of work ωp(~vp) ∈ R. Similarly,

also other fluid’s quantities of interest are optimally described by k-forms; for instance, a 2-form
assigns an amount of circulation to an area or a 3-form assigns an amount of mass to a volume.
The latter fact will be subject of our discussion in Sect. 7.3. Similarly to the fact that affine
spaces An can be regarded as local linearizations of a manifold M around point p ∈ M, the
multilinear maps ωp ∈ Λ(V ) of Eqn. (3) can be regarded as local linearizations of the differential
forms ω ∈ Ω(M) of Definition 3 around point p ∈ M.

Remark 5. On topological manifolds (or in affine spaces) force fields can be optimally described
by smooth covector fields F , which means that their definition requires minimal structure. The
full information about the force field is encoded in the distribution of equipotential surfaces, as
illustrated in Fig. 1 (right). These surfaces are approximated by parallel tangent planes, which
are spanned by vectors δ~v that lie in the kernel of the linear maps F , i.e. F(δ~v) = 0. The
virtual work performed by virtual displacements δ~v that lie in these planes is zero. The distance
between two parallel planes indicates the strength of the force field, where smaller distance
means higher magnitude, or, in other words, the higher the density of the equipotential surfaces,
the stronger is the force field. This description of force fields is valid on topological manifolds
(or affine spaces) since it does not require length nor orthogonality, whereas the parallel planes
remain parallel under affine transformations.

Remark 6. In case of Riemannian manifolds, the covector field (force field) F of Eqn. (23) can also
be represented by its vector proxy field ~F defined by F = ~F ♭ = 〈~F , ·〉 using the Riemannian lift
♭. As illustrated in Fig. 1 (right), this force field ~F is at every point of the domain perpendicular
to the equipotential surfaces of F . As the notion of perpendicularity only exists in spaces with
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metric, vector proxy fields require such structure to describe forces. As there exists no unique
metric structure on topological manifolds (or An), there exists also no unique vector proxy field
to F . In addition, the vector proxy field describes by its integral curves only the trajectories
of point particles that are exposed to the field (Bossavit (1998b)). We therefore conclude that
covector fields are optimal descriptors as their equipotential surfaces of F describe the entire
field while employing only minimal mathematical structure.

2.2.3 From the mathematical descriptors to the model equations

For simulations, we require closed sets of (geophysical) fluid equations which describe the physical
phenomena. These equations can be derived by (i) describing particle displacements and forces
by mathematical descriptors and (ii) by solving the balance of mass, momentum, and energy
equations. The solutions of the balance equations describes then the time evolution of the fluid
flow. The choice of the mathematical descriptors for displacements and forces determines the
form of the equations. For instance, in describing the particle displacements by the vector field ~v
and the forces acting upon these particles by the vector field ~F , the fluid’s velocity is represented
by a vector-valued equation of the form ∂

∂t~v + ... ∝ ~F (see e.g. Eqn. (26)), which follows from
solving the balance of momentum equation. This approach is usually followed in geophysical
fluid dynamics (GFD). Alternatively, one can describe the involved forces by the above discussed
covector fields F : ~v → F(~v) ∈ R. Using a covector field u to describe the fluid’s velocity, the
resulting equation has the form ∀~v : ∂

∂tu(~v) + ... ∝ F(~v) (see e.g. Eqn. (42)), which follows from
solving a covariant master balance law. In the next sections, we will derive both formulations
for the equations of (geophysical) fluid dynamics.

3 The equations of GFD in vector-invariant form

In this section we derive the equations of GFD in vector-invariant form as they are usually
expressed in the geophysical community. In the next section, we follow the same approach for
the derivation of the covariant equations, and in Sect. 5 we compare both sets of equations.

Here, we illustrate in terms of vector calculus how these equations descend from balance laws,
following the method of Abraham et al. (1983). Using vectors to represent particle displacements
and forces, we solve a vector-valued balance law to find the vector-valued momentum equation.
The continuity and energy closure equations follow as solutions of scalar balance laws.

Let (M,g, Or) be a compact, oriented, finite-dimensional Riemannian n-manifold (possibly
with boundary). Let µ ∈ Ωn(M) be the Riemannian volume form onM and dµ the correspond-
ing volume element. To describe the motion of the fluid inM, let x ∈ M be the position of a
fluid particle at time t = 0. This particle traverses a well-defined trajectory given by the evolu-
tion operator ϕt(x) = ϕ(x, t) and ϕ(x, 0) = x (cf. Eqn. (13)). Let ~u(x, t) denote the velocity of
the fluid particle at position x at time t. ~u ∈ X (M) is denoted as velocity field of the fluid and

obeys the following relation: dϕt(x)
dt = ~u(ϕt(x), t).

To find the governing equations for the fluid motion one usually applies three basic principles:
(i) mass conservation, (ii) balance of momentum, (iii) energy conservation.

Mass conservation Let ρt(x) = ρ(x, t) be the mass-density of the fluid and let, for any region
W ⊂M at time t, the fluid’s mass be given by m(W, t) =

∫
W ρtdµ. In case of mass conservation

the total mass of the fluid occupying a smooth region W at t = 0 remains unchanged after t, i.e.∫
ϕt(W ) ρtdµ =

∫
W ρ0dµ. After some reformulations (cf. Abraham et al. (1983); Bauer (2013))

one finds
∂ρ

∂t
+ div(ρ~u) = 0 , (24)
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describing the law of conservation of mass in differential (local) form, which is known as conti-
nuity equation.

Balance of momentum To derive the vector-valued momentum equation, we assume that
a portion W of the fluid is moving in M ⊂ R

3, i.e. M is an Euclidean space (E3,g, Or).
Let the momentum of this portion at time t that occupied at time t = 0 the region W be
given by

∫
ϕt(W ) ρ~u dµ with the fluid’s velocity ~u ∈ X (R3). Here, the integral is R3-valued and

the integrations are performed componentwise. According to Newton’s second law, the rate of
change of momentum of this portion of fluid is given by the total force applied to it, i.e. the
balance of momentum is given by

d

dt

∫

ϕt(W )
ρ~u dµ =

∫

ϕt(W )
ρ~b dµ+

∫

∂ϕt(W )
σ̂ · ~n da . (25)

The first term on the right-hand side of (25) accounts for the total body forces acting on W
with ~b as the body force density. The second term accounts for the forces of stress, where σ̂ is
the Cauchy stress tensor and where the surface element da is induced by the volume element dµ
on the boundary ∂W with outer unit normal ~n.4

We only consider ideal (or perfect) fluids; the Cauchy stress tensor is therefore given in terms
of a function p(~x, t) called the pressure, i.e. σ̂ = −pI, with identity I. Then, σ̂·~n = −pI·~n = −p~n.
Hence, for the last term in Eqn. (25) there follows:

∫
∂ϕt(W ) σ̂ · ~n da = −

∫
∂ϕt(W ) p · ~n da =

−
∫
ϕt(W )∇p dµ. After some further reformulations, similar to those performed in Section 4.1 (cf.

also Abraham et al. (1983); Bauer (2013)), Euler’s equations for ideal fluids are given by

∂~u

∂t
+ (~u · ∇)~u+

1

ρ
∇p = ~b , (26)

with ∇ := (∂x, ∂y, ∂z), which describe the balance of momentum in differential (local) form. For
further calculations it will be useful to use Weber’s transformation: (~u · ∇)~u = ∇(~u 2/2) + (∇×
~u)× ~u (see e.g. Pedlosky (1979)). The vector ~ζ := ∇× ~u describes the relative vorticity of the
fluid.

In case of the rotating earth, body forces such as gravitation, centripetal, and Coriolis forces
act on each fluid particle. To determine these forces, one often represents the velocity field
~u ∈ R3, that is measured in a frame R rotating with uniform angular velocity ~Ω, relative to an
inertial frame (cf. Fig. 2). Then, the vector-invariant momentum equation on R is given by

∂~u

∂t
+ (~u · ∇) ~u+

1

ρ
∇p = −2~Ω× ~u− ~Ω× (~Ω × ~r)−∇ΦN + ~F , (27)

(cf. Marshall and Plumb (2007); White et al. (2005)), in which the forces on the right-hand side
are caused by earth rotation and gravitation and can be identified with the body force density
~b of Eqn. (26). With ~r we denote the position of the fluid particle relative to any fixed origin on
the rotational axis of R; ΦN is the Newtonian gravitational potential and ~F is any other force,
which will not be further considered, i.e. ~F = 0.

The term −2~Ω× ~u, denoted as planetary vorticity vector, describes the Coriolis acceleration
and will be discussed in more detail in Section 5. The centrifugal acceleration −~Ω× (~Ω × ~r) =
∇
(
1
2 |
~Ω|2r 2

⊥

)
is directed outward normally to the rotation axis, with r⊥ as the perpendicular

4More concretely, using Eqns. (14) and (16), Gauss’ Theorem states:
∫
W
(div ~X)µ =

∫
∂W

i ~Xµ =
∫
∂W

〈 ~X,~n〉µ|∂W

for ~X ∈ X (W ). Then, da is the surface element of the volume 2-form µ|∂W ∈ Ω2(∂W ).



A new hierarchically-structured n-dimensional covariant form of equations of GFD 17

distance of the particle from this axis, and can be combined with the Newtonian gravity −∇ΦN

to the apparent gravity ΦA :=
(
ΦN −

1
2 |
~Ω|2r 2

⊥

)
. There follows

∂~u

∂t
+ ~ζ × ~u+∇(~u 2/2) +

1

ρ
∇p = −2~Ω× ~u−∇ΦA , (28)

where Weber’s transformation has been used. Eqn. (28) agrees for ~b := −2~Ω × ~u − ∇ΦA with
Eqn. (26).

Energy conservation With ~u, ρ, p there are n+ 2 scalar unknowns. We have, however, only
n + 1 equations yet. The needed further one, that closes the set of equations, can be derived
using the law of conservation of energy.

Following again Abraham et al. (1983) and Bauer (2013), we assume that the total energy
of the fluid can be written as a sum of kinetic and internal energy

Etot = Ekin + Eint , (29)

where the kinetic energy of the fluid with velocity field ~u is given by

Ekin =
1

2

∫

M
ρ||~u||2dµ with ||~u||2 = 〈~u, ~u〉 . (30)

With Eint we describe the internal energy of the fluid consisting of all internal energy sources
such as intermolecular potentials and molecular vibrations. Despite the fact that the exact form
of Eint is unknown, the assumption of a certain behavior of Eint allows us to derive the desired
energy equations. We illustrate this procedure on the examples of incompressible and barotropic
fluids.

Case 1) of incompressible flows The main assumption is that Eint is constant. In case
no energy is pumped into the system and the fluid does not perform work, i.e. Etot remains
constant, the kinetic energy Ekin should be constant too, according to Eqn. (29). It follows:

0 =
d

dt

(
1

2

∫

M
ρ||~u||2dµ

)
=

∫

M
(div(~u))pµ , (31)

(cf. Abraham et al. (1983); Bauer (2013)). In order to fulfill Eqn. (32) for all conceivable fluid
motions, we need either

div(~u) = 0 or p = 0 (32)

to hold. p = 0 is possible but not further considered. If instead we require div(~u) = 0, we
consider the case of incompressible fluids with the boundary condition i~uµ = 0 on ∂M.

Case 2) of barotropic (or ideal isentropic) flows The main assumption is that the internal
energy Eint (here not constant) over a region W is a function of the internal energy density per
unit of mass, denoted with w, i.e.

Eint =

∫

W
ρwdµ . (33)

The energy should be balanced such that the rate of change of energy within a region W equals
the work done on it:

d

dt

(∫

ϕt(W )
ρ
1

2
||~u||2dµ + ρwdµ

)
= −

∫

∂ϕt(W )
p~u · ~nda . (34)
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Moreover, one may apply the so-called barotropic assumptions, i.e. the internal energy density
w = w(ρ) ∈ Ω0(M) only depends on how much the fluid is compressed. Such fluids are called
ideal isentropic or barotropic. Under these assumptions, Eqn. (34) can be reformulated (cf.
Abraham et al. (1983); Bauer (2013)) to

0 =

(
p− ρ2

∂w

∂ρ

)
div(~u) ⇒ p = ρ2

∂w

∂ρ
, (35)

as the value for the divergence div(~u) is not restricted. The equation on the right-hand side of
(35) is called an equation of state.

Equations of GFD in vector-invariant form In sum, the vector-invariant equations of
GFD in a 3-dimensional oriented Euclidean space (E3,g, Or), rotating with uniform angular
velocity ~Ω relative to an inertial frame in R3, are given by

∂~u

∂t
+ (~ζ + 2~Ω)× ~u+

1

ρ
∇p+∇(~u 2/2) +∇ΦA = 0,

∂ρ

∂t
+ div(ρ~u) = 0,

(with boundary condition) 〈~u, ~n〉 = 0,

(36)

with initial conditions ~u(x, 0) = ~u0(x) and with relative vorticity ~ζ := ∇× ~u. Using the energy
equations from above, this system of equations can be closed. One obtains either

1. the incompressible fluid equations assuming div(~u) = 0 or

2. the barotropic fluid equations using the equation of state p = ρ2 ∂w
∂ρ with w = w(ρ).

4 The equations of GFD in covariant form

The aim of this section is to introduce covariant equations describing the time evolution of the
fluid motion on general (possibly rotating) manifolds. To derive these equations, we represent
particle displacements by vectors but, in contrast to Sect. 3, we represent forces by linear maps.
Covariant fluid equations valid on oriented Riemannian manifolds (M,g, Or) follow as solutions
of the covariant master balance law (37) (cf. Marsden and Hughes (1983)).

Having started our derivations in Sect. 3 from n-dimensional manifolds (M,g, Or) by using
scalar balance laws such as (34), which agree with the covariant master balance law (37), the
continuity equation (24) and the energy equations (32) and (35) are covariant and hence valid
onM.

Since the derivation of the vector-valued momentum equation (26) requires its component-
wise representation in R3, it is neither valid on general manifolds M nor covariant. To derive
(Sect. 4.1) covariant n-dimensional equations for ideal (perfect) fluids, we use the covariant
master balance law (37). As a second step (Sect. 4.2), we restrict our considerations to general
manifolds embedded inR3. Then, we introduce to the best of our knowledge new (3-dimensional)
covariant equations of GFD.

4.1 Derivation of covariant equations for ideal fluids using the master balance
law

Similarly to Sect. (3), let (M,g, Or), or short M, be a compact, oriented, finite-dimensional
Riemannian n-manifold (possibly with boundary) with volume form µ ∈ Ωn(M), volume element
dµ, evolution operator ϕt(x) = ϕ(x, t) and ϕ(x, 0) = x for x ∈M, t = 0, and velocity field ~u(x, t).
On these manifolds, the following master balance law can be formulated.
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The master balance law (Marsden and Hughes (1983)) Let a(x, t), b(x, t) be scalar
fields, ~c(x, t) be a vector field on a portion W ⊂M of a Riemannian n-manifoldM. Let ϕt(W )
be a C1 regular motion on M. a, b,~c satisfy the master balance law if, for any nice open set
W ⊂M, the integrals that appear in the following exist,

∫
ϕt(W ) a dµ is t-differentiable, and

d

dt

∫

ϕt(W )
a dµ =

∫

ϕt(W )
b dµ+

∫

∂ϕt(W )
〈~c, ~n〉da . (37)

Analogously to Eqn. (25), the surface element da is induced by the volume element dµ on the
boundary ∂W with outer unit normal ~n. This master balance law for scalars is covariant and
valid on general manifoldsM (Marsden and Hughes (1983)).

The covariant fluid equations We use the covariant master balance law (37), valid for
smooth functions onM, to derive the covariant momentum equation. Here, we exploit the fact
that smooth 1-forms map from the space of smooth vector fields X (M) to the space of smooth
functions C(M). Hence, instead of considering in Eqn. (25) the vector components of ~u,~b, and
σ̂ · ~n (or ∇p in case of an ideal fluid), we represent the velocity, the external forces, and the
pressure gradient as 1-forms ~u ♭(x, t),~b ♭(x, t), and dp(x, t), respectively, which map a test vector
field ~w(x) ∈ X (M) to the space of smooth functions C(M). The ♭ superscript indicates the
unique relation between the 1-forms and the corresponding vector proxies (cf. Eqn. (19)).

On a local coordinate chart with basis ∂i :=
∂
∂xi and dual basis dxi with dxi(∂j) = δij for

i, j = 1, ..., n, the 1-forms can be represented by ω =
∑

i ωidx
i. Without restriction of generality,

we can assume that ~w(x) = ∂i and hence ω(∂i) = ωi. Then, there follows for Eq. (25)

d

dt

∫

ϕt(W )
(ρu)i dµ =

∫

ϕt(W )
(ρb)i dµ −

∫

ϕt(W )
(dp)i dµ ∀i, (38)

which balances the ith-coefficient functions of the corresponding 1-forms and the density function
ρ. As these functions are smooth onM, they obey the covariant master balance law (37).

By the change-of-variable formula and the Lie derivative formula, there follows

d

dt

∫

ϕt(W )
(ρu)i dµ =

∫

W

d

dt
ϕ∗
t

(
(ρu)iµ

)
=

∫

W
ϕ∗
tL~u

(
(ρu)iµ

)

=

∫

ϕt(W )

[
∂(ρu)i
∂t

µ+ (L~uρ)uiµ+ ρ(L~uui)µ+ (ρu)iL~uµ

]

=

∫

ϕt(W )

[
∂ρ

∂t
ui + ρ

∂ui
∂t

+(dρ · ~u)ui +ρL~uui +ρuidiv ~u

]
dµ,

(39)

using the identities L~uµ = (div ~u)µ and L~uρ = dρ · ~u. Then, the ith-coefficient functions of
Eqn. (38) are balanced as

(
∂ρ

∂t
+ (dρ · ~u) + ρdiv ~u

)
ui + ρ

∂ui
∂t

+ ρL~uui = (ρb)i − (dp)i . (40)

The term in brackets on the very left vanishes by conservation of mass (24), as dρ · ~u+ ρdiv ~u =
div(ρ~u). To find a covariant expression for L~uui =

∑
j u

j ∂ui

∂xj with ~u =
∑

j u
j∂j , we exploit the

fact that the coordinate representations of L~u acting on either a 0-form or a 1-form are related
by

L~uui =
∑

j

[
uj

∂ui
∂xj

+ uj
∂uj
∂xi︸ ︷︷ ︸
−uj

∂uj
∂xi︸ ︷︷ ︸

]
= (L~uu)i − (d

1

2
u(~u))i . (41)
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Summing up the coefficients of the corresponding 1-forms leads to the covariant momentum
equation for ideal fluids

∂~u ♭

∂t
+ L~u(~u

♭)−
1

2
d(~u ♭(~u)) +

1

ρ
dp = ~b ♭ , (42)

which is valid on n-dimensional compact Riemannian manifolds with smooth boundary ∂M and
outward unit normal ~n.

Remark 7. The n-dimensional covariant momentum equation (42) agrees with that derived by
Abraham et al. (1983). The authors generalized therein vector-invariant fluid equations by using
the Riemannian lift ♭ of Def. (19) and they performed reformulations to the Lie derivative similar
to those introduced in this section.

As this will be useful later on, in particular when comparing the covariant and vector-
invariant equations in Sect. 5, we further modify the term including the Lie derivative L in
Eqn. (42). L can be represented using the exterior derivative d and the interior product i (cf.
Eqn. (12) (iv)). Thus, L applied to the 1-form ~u ♭ may be written as L~u~u

♭ = di~u(~u
♭) + i~ud~u

♭,
whereas di~u(~u

♭) = d(~u ♭(~u)). The function i~u~u
♭ = ~u ♭(~u) (cf. Corollary 3) represents twice the

kinetic energy and the 2-form d~u ♭ ∈ Ω2(M) the covariant relative vorticity.

4.2 Derivation of covariant equations of GFD for the rotating earth

In the covariant equation (42), additional forces are taken into account by the body force density
1-form ~b ♭ ∈ Ω1(M). In order to determine ~b ♭ in case of geophysical fluid flow, we restrict the
following discussion to Riemannian k-manifolds, with k ≤ 3, embedded in R3 and uniformly
rotating with ~Ω. Then, according to Eqn. (28) and by the linearity of the isomorphism ♭ (cf.
Bauer (2013)), the body force density 1-form is given by ~b ♭ = −2(~Ω × ~u)♭ − (∇ΦA)

♭. For the
latter term, we use, as in Sect. 4.1, the exterior derivative d acting on the function ΦA ∈ Ω0(M)
instead of the gradient operator ∇, i.e. (∇ΦA)

♭ = dΦA.

To further reformulate the covariant Coriolis acceleration term 2(~Ω× ~u)♭, we first introduce
a lemma of Hirani (2003) which will be rather useful here and for some subsequent proofs.

Lemma 1. (Hirani (2003)) Let ~X ∈ X (M) be a vector field and α ∈ Ωk(M) a k-form on a
smooth n-manifold M. Then, the interior product can be computed with the following formula:

i ~Xα = (−1)k(n−k) ⋆ (⋆α ∧ ~X♭) . (43)

In addition to Lemma 1, we use a representation of the cross product in terms of differential
forms by ~v × ~w = [⋆(~v ♭ ∧ ~w ♭)]♯ for any vectors ~v, ~w ∈ R3 (cf. Abraham et al. (1983)). As
♯ is the inverse of ♭, this representation allows us to express the Coriolis acceleration term as
2(~Ω × ~u)♭ = 2 ⋆ (~Ω♭ ∧ ~u ♭). On the other hand, the right-hand side of the latter equation can
be written in terms of an inner product using Lemma 1. To this end, we first apply the Hodge
star ⋆ on the (3-dimensional) 1-form ~Ω♭. This results in the 2-form ⋆~Ω♭ ∈ Ω2(R3) valid for any
k-manifold embedded in R3 and rotating with ~Ω ∈ R3. Then, if we associate in Eqn. (43) α
with the 2-form ⋆~Ω♭, there follows

i~u(2 ⋆ ~Ω
♭) = 2(−1)2(3−2) ⋆ (⋆ ⋆ ~Ω♭ ∧ ~u ♭) = 2 ⋆ (~Ω♭ ∧ ~u ♭) , (44)

using ⋆ ⋆ ~Ω♭ = (−1)k(n−k)~Ω♭ = ~Ω♭ ∈ Ω1(R3) (cf. Eqn. (21) (iii)). The notation ⋆~Ω♭ of the
2-form indicates that the k-manifoldM is embedded in an ambient space R3. The 2-form 2⋆ ~Ω♭

describes the covariant planetary vorticity. Using Eqn. (44), we establish the following theorem.



A new hierarchically-structured n-dimensional covariant form of equations of GFD 21

Theorem 1. The covariant equations of GFD on a compact, oriented Riemannian k-manifold
(M,g, Or), with k ≤ 3, rotating with uniform angular velocity ~Ω relative to an inertial frame in
R

3 are given by

∂~u ♭

∂t
+ i~u

(
d~u ♭ + 2 ⋆ ~Ω♭

)
+

1

2
d(~u ♭(~u)) +

1

ρ
dp+ dΦA = 0 ,

∂ρ

∂t
+ ⋆d ⋆ (ρ~u) ♭ = 0 ,

(with boundary condition on ∂M) i~uµ = 〈~u, ~n〉 = 0 ,

(45)

with initial conditions ~u(x, 0) = ~u0(x). Using the energy closure equations, there follow either

1. the incompressible fluid equations assuming ⋆d ⋆ ~u ♭ = 0 or

2. the barotropic fluid equations using the equation of state p = ρ2 ∂w
∂ρ with w = w(ρ).

In case M is an oriented Euclidean space E3, these covariant equations are equivalent to the
vector-invariant equations of GFD (36).

Remark 8. In order to obtain a purely differential geometrical representation of Eqn. (45), we
use identity div(ρ~u) = ⋆d ⋆ (ρ~u)♭ (see Corollary 4). The set of equations would however also be
covariant when using the conventional form of the continuity equation as in (24).

Proof. The covariance of Eqns. (45), hence their form invariance under changing coordinates,
follows directly from the coordinate-independent definitions of differential forms and operators of
differential geometry (cf. Section 2). Because Eqn. (44) changes sign with changing orientation,
M has to be oriented (cf. Theorem 2 for an orientation independent formulation).

Next, we show that in case M ⊂ R3 is an oriented Euclidean space, the covariant equa-
tions (45) correspond to the vector-invariant equations (36), which, in turn, immediately proves
that Eqns. (45) provide a closed set of equations describing geophysical fluid flows. To show
this equivalence, we first note that the covariant and the vector-invariant planetary vorticities
agree according to Eqn. (44). In addition, we use the original form of the nonlinear advection
term L~u~u

♭ − 1
2d(~u

♭(~u)) as given in Eqn. (42), and we apply L~u~u
♭ = (∇~u ~u)

♭ + 1
2d(~u

♭(~u)) (cf.

Abraham et al. (1983)) with Riemannian connections ∇~u. The resulting term (∇~u ~u)
♭, as well as

the 1-forms ~u ♭ and ~b ♭ can be mapped by ♯ (cf. Def. (19)) to the vector proxies (∇~u ~u), ~u and ~b,
respectively. In addition, dp,dΦA are mapped by ♯ to the gradients ∇p,∇ΦA, respectively. This
results in the vector-invariant momentum equation (36) because in R3 the Christoffel symbols
are zero leading to ~u · (∇ · ~u) = ∇~u ~u.

This proves that in R3, both covariant and vector-invariant momentum equations agree.
Because of Corollary 4, the continuity equations (24) and (45) agree, too, and hence also the
full set of covariant and vector-invariant equations of GFD.

Corollary 1. From Theorem 1 there follows the identity:

i~u(d~u
♭ + 2 ⋆ ~Ω♭) =

(
(~ζ + 2~Ω)× ~u

)♭
. (46)

Proof. This identity can be verified directly by using Corollary 2, Eqn. (72), and ♯ to represent the
left-hand side of (46) in Cartesian coordinates of R3. The resulting vector-valued representation
agrees with the right-hand side of (46), where ♯ too has been applied on (cf. Section 5 for more
details).
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Remark 9. The restriction to k-manifolds with k ≤ 3 for the derivation of Theorem 1 is nec-
essary, as we describe their rotation with the 3-dimensional vector ~Ω, or equivalently, with the
covariant planetary vorticity 2-form ⋆~Ω♭. This restriction usually provides no limitation in prac-
tical terms. Nonetheless, Eqns. (42) are mathematically (not necessarily physically) meaningful
for any dimension. Hence, in Sect. 6 we will introduce general n-dimensional covariant equations
of GFD that are also valid on rotating n-manifolds.

Although the sets of covariant and vector-invariant equations of GFD are equivalent in
R

3, they behave differently, for instance, under coordinate transformations, under changing
dimensions (cf. Eqns. (57) and (59)), and under changes in metric and orientation. We will
study these different behaviors in more detail in Sections 5 and 9.

5 Examples and Discussion of Part 1

In this last section of Part 1, we introduce concrete coordinate representations for the covariant
and vector-invariant equations. We represent them, as often done in geophysical fluid dynamics,
on a rotating Cartesian coordinate frame, for which we introduce approximations required for the
2-dimensional equations. In terms of these coordinate representations, we identify similarities
and differences between covariant and vector-invariant equations and we discuss advantages and
disadvantages of these formulations.

5.1 Rotating Cartesian coordinate frame on the sphere

In order to represent the fluid equations on a rotating sphere, we choose an approach frequently
used in geophysical applications (see e.g. Marshall and Plumb (2007)). Using spherical coor-
dinates (λ, ϕ, r), a local Cartesian coordinate frame R is positioned on the earth surface, with
distance a to the center of the earth, at latitude ϕ and longitude λ such that its (x1, x2, x3)
directions point eastward, northward, and upward, respectively. The corresponding dual basis
is given by (dx1, dx2, dx3) with dx1 = a cosϕdλ, dx2 = adϕ, and dx3 = dr (cf. Fig. 2). The
rotation of the earth can be represented by the 3-dimensional vector ~Ω with angular velocity
|~Ω|. The components of ~Ω in this local coordinates are given by ~Ω = (0,Ωcosϕ,Ω sinϕ) with
the uniform angular velocity Ω := |~Ω|.

In R ⊂ R3 we represents vectors by ~v =
∑

i v
ixi and 1-form by ω =

∑
i ωidx

i with dxi(xj) =
δij for i, j = 1, 2, 3, and inner product 〈·, ·〉 that follows from the Euclidean metric g with
gij = δij . Here, xi are unit vectors while x

i are the coordinate functions (cf. Sect. 2.1.1). Hence,
the Riemannian lift ♭ acts on vectors like ♭(~v) =

∑
i ♭(v

ixi) =
∑

i v
♭
idx

i = ~v ♭ with coefficients
v♭i =

∑
j v

jgij (cf. Bauer (2013)).

Choosing this representation, we implicitly apply (i) the spherical geopotential approximation
and (ii) the shallow-atmosphere approximation. In the spherical geopotential approximation
we assume that the earth’s apparent geopotentials ΦA := ΦN − 1/2|~Ω|2r 2

⊥ (cf. Eqn. (28)) are
spherical. This is in general not the case, but the deviation is sufficiently small. This assumption
eases the representation of the vector-invariant equations in vector components significantly
(White et al. (2005)).

The shallow-atmosphere approximation is based on the fact that the atmosphere is very thin
as compared to the earth radius a, i.e. r = a + x3 ≈ a. Then, the apparent gravitational
potential simplifies to Φshw−atm

A = (ΦN − 1/2|~Ω|2a 2 cos2 ϕ) and the Newtonian gravitational
potential can be represented by ΦN = gx3 with gravity g. In addition, vertical velocity values
(typically ≤ 1 cm/s) are much lower than the horizontal ones, which allows us to omit terms
including them.
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Figure 2: Representation of a rotating Cartesian coordinate frame R, with (x1, x2, x3) of R
3, at

longitude λ and latitude ϕ on the surface of a sphere with radius a that rotates with uniform
angular velocity |~Ω|.

Remark 10. The chosen Cartesian coordinate frame R neglects the actual earth’s shape and cur-
vature, which is a justified approximation because of the thinness of the atmosphere and ocean.
There exist however more accurate representations of the equations of GFD, such as on spherical
polar coordinates, which better matches the earth’s actual shape (see e.g. Staniforth and Wood
(2003); White et al. (2005)). The corresponding coordinate representations of the equations
might be, however, more complicated.

5.2 Representation of the covariant equations of GFD on a rotating Cartesian
coordinate frame

In this section, we provide for the covariant equations of GFD, which are given in Eqns. (45) in
rather abstract form, concrete 2- and 3-dimensional coordinate representations in R.

5.2.1 Representation of the 3-dimensional covariant equations

In the coordinate frame R the single terms of Eqns. (45) are represented as follows. Because
of Corollary 4, there is ⋆d ⋆ (ρ~u)♭ = div(ρ~u) and hence div(ρ~u) =

∑3
i=1 ∂i(ρu

i) with ∂i :=
∂
∂xi .

This already represents completely the continuity equation in R.

In the momentum equation, the velocity proxy field is given by ~u =
∑

i u
ixi, the velocity

1-form by u = ~u ♭ =
∑

i uidx
i with ui := u♭i = ui ∀i, and the total differentials of pressure p, of

gravitational potential ΦA, and of kinetic energy κ = 1
2〈~u, ~u〉 (cf. Corollary 3) are given by the

1-forms dp =
∑

i ∂ipdx
i, dΦA =

∑
i ∂iΦAdx

i, and dκ =
∑

i ∂iκdx
i, respectively. It remains to

discuss the Coriolis and nonlinear terms.

Connection between rotation vector and rotation 2-form In Eqn. (45) the rotation
of the 3-manifold is described by the 2-form ⋆~Ω♭ ∈ Ω2(R3). On the other hand, a 2-form
is given by Ωrot =

∑
1≤i<j≤3Ωijdx

i ∧ dxj . Hence, for the given representation in R with
~Ω = (0,Ωcosϕ,Ω sinϕ), the relation Ωrot = ⋆~Ω♭ ∈ Ω2(R3) resulting from Eqn. (44) allows
us to assign values to the coefficients Ωij. Therefore, we apply in succession ♭ and ⋆ on ~Ω, i.e.

~Ω♭ = 0dx1 +Ωcosϕdx2 +Ωsinϕdx3 ,

⋆~Ω♭ = 0dx2 ∧ dx3 −Ωcosϕdx1 ∧ dx3 +Ωsinϕdx1 ∧ dx2 . (47)
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In R3, the 2-form Ωrot is given in local coordinates by Ωrot = Ω12dx
1 ∧ dx2 + Ω23dx

2 ∧ dx3 +
Ω13dx

1 ∧ dx3. Since Ωrot = ⋆~Ω♭, we identify the following coefficients:

Ω12 = Ωsinϕ, Ω13 = −Ωcosϕ, Ω23 = 0 . (48)

These coefficients describe the magnitude of angular velocity Ω of the (xi, xj)-plane in depen-
dency of ϕ (cf. Fig. 2). In case of ϕ = 0◦, the (x1, x2)-plane does not rotate, whereas the
(x1, x3)-plane does rotate with full angular velocity −Ω. In case of ϕ = 90◦, the (x1, x3)-plane
does not rotate, whereas the (x1, x2)-plane rotates, but now with +Ω. The (x2, x3)-plane does
not rotate for any ϕ. The identification of the coefficients (48) allows us to formulate the fol-
lowing definition.

Definition 4. The 2-form ΩEarth|3D := ⋆~Ω♭ ∈ Ω2(R3) in R3 with coefficients given in (48) is
called Earth-rotation 2-form. The term 2ΩEarth|3D describes the covariant planetary vorticity.

This allows us to represent the Coriolis and nonlinear terms in R. Hence, for Ω12 = Ωsinϕ,
Ω13 = −Ωcosϕ, and Ω23 = 0, there follows in local coordinates by Corollary 2 and n = 3:

i~u2ΩEarth|3D = (2Ωu3 cosϕ− 2Ωu2 sinϕ)dx
1 + 2Ωu1 sinϕdx

2 − 2Ωu1 cosϕdx
3 . (49)

Again, by Corollary 2 and n = 3 there follows for the nonlinear term:

i~udu = (ω31u3 − ω12u2)dx
1 + (ω12u1 − ω23u3)dx

2 + (ω23u2 − ω31u1)dx
3 , (50)

with coefficients ω12 := (∂1u2 − ∂2u1), ω23 := (∂2u3 − ∂3u2), and ω31 := (∂3u1 − ∂1u3) using
property ωij = −ωji. According to Corollary 2, this coefficients determine the 3-dimensional
2-form du =

∑
i<j ωijdx

j ∧ dxj that describes the covariant relative vorticity.
In sum, the terms presented here provide a complete representation of the covariant equations

of GFD (45) on the rotating frame R, which consists of a scalar continuity equation and of
a covariant momentum equation based on 1-forms. Applying ♯ on the latter, this covariant
equation can also be represented in a more familiar form, namely as a vector-valued equation
(see discussion below).

5.2.2 Representation of the 2-dimensional covariant equations

For certain cases it is of interest to employ 2-dimensional equations, such as the barotropic or
shallow-water equations. These equations capture already major flow features of atmosphere
and ocean (cf. Marshall and Plumb (2007)).

In the context of the rotating earth and under the shallow-atmosphere assumption, we rep-
resent the 2-dimensional equations on the horizontal (x1, x2)-plane and omit terms including
the x3-direction, such as the vertical velocities. Given the corresponding dual basis (dx1, dx2),
the divergence div(ρ~u) of the continuity equation and the 1-forms ~u ♭, dp, dΦA, and dκ of the
momentum equation of Eqns. (45) are exactly those of Section 5.2.1, but for the index i = 1, 2.

The rotation 2-form ΩEarth|3D of Definition 4 reduces in two dimensions to ΩEarth|2D :=
Ω12dx

1 ∧ dx2 with coefficient Ω12 = Ωsinϕ of Eqn. (48), whereas Ω13 = Ω23 = 0. ΩEarth|2D is
called Coriolis 2-form and describes the (horizontal) 2-dimensional covariant planetary vorticity.
Then, according to Corollary 2 for n = 2, there follows the 2-dimensional Coriolis term in local
coordinates by

i~u2ΩEarth|2D = −2Ωu2 sinϕdx
1 + 2Ωu1 sinϕdx

2. (51)

Similarly, according to Corollary 2 for n = 2, there follows the 2-dimensional nonlinear term in
local coordinates by

i~udu = −ω12u2dx
1 + ω12u1dx

2 , (52)
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with coefficient ω12 := (∂1u2−∂2u1), which determines the 2-dimensional 2-form du = ω12dx
1∧

dx2, i.e. the covariant relative vorticity.

Similarly to Sect. 5.2.1, these terms provide a complete 2-dimensional representation in the
horizontal (x1, x2)-plane of R. Also here, the covariant momentum equation can be mapped by
♯ to the corresponding vector-valued version.

5.3 Representation of the vector-invariant equations of GFD on a rotating
Cartesian coordinate frame

In this section, we provide for the vector-invariant equations of GFD (36) concrete 2- and 3-
dimensional representations in R. These derivations will serve us in the next section to compare
the representations of vector-invariant and covariant equations.

5.3.1 Representation of the 3-dimensional vector-invariant equations

Here, we represent the vector-invariant equations of GFD (36) in terms of the rotating Cartesian
coordinate frame R of Fig. 2. In R, any vector is given by ~v =

∑
i v

ixi and we use, as usually
done, the coefficient vector (v1, v2, v3) to describe it. The Nabla-operator is given by the vector
∇ := ( ∂

∂x1 ,
∂

∂x2 ,
∂

∂x3 ).

Analogously to Eqn. (45), there follows for the divergence div(ρ~u) = ∇·(ρ~u) =
∑3

i=1 ∂i(ρu
i),

which completely represents the continuity equation (36). For the momentum equation (36), the
velocity is given by (u1, u2, u3), and the gradients of the functions p, ΦA, and κ are given by
∇p := (∂1p, ∂2p, ∂3p), ∇ΦA, and ∇κ, respectively. The representation of the Coriolis term that
depends on ~Ω is given in R by

2~Ω× ~u = 2




Ωu3 cosϕ− Ωu2 sinϕ
Ωu1 sinϕ
−Ωu1 cosϕ


 . (53)

Given the vorticity vector ~ζ = (ζ1, ζ2, ζ3) := (∇× ~u) with ζ1 = (∂2u
3−∂3u

2), ζ2 = (∂3u
1−∂1u

3),
and ζ3 = (∂1u

2 − ∂2u
1), there follows furthermore:

~ζ × ~u =




ζ2u3 − ζ3u2

ζ3u1 − ζ1u3

ζ1u2 − ζ2u1


 . (54)

Term (53) describes the planetary and term (54) the relative vorticity. All these terms together
provide a complete 3-dimensional representation of the vector-invariant equations of GFD (36).

5.3.2 Representation of the 2-dimensional vector-invariant equations

We want to present also for the vector-invariant equations (36) a 2-dimensional representation
in R, in particular on the horizontal (x1, x2)-plane. Then, vector fields are given by component
vectors ~v = (v1, v2, 0) and the Nabla-operator is given by ∇h = ( ∂

∂x1 ,
∂

∂x2 , 0). Similarly to the

3-dimensional case, there follow for the divergence div(ρ~u) = ∇h · (ρ~u) =
∑2

i=1 ∂i(ρu
i) and for

the gradients ∇hp = (∂1p, ∂2p, 0), ∇hΦA, and ∇hκ.

As the Coriolis and nonlinear terms apply the cross product, which is only defined in R3,
their 2-dimensional representations require certain approximations.
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Approximations of the Coriolis and nonlinear terms The Coriolis term (53) indicates
that the earth rotation influences the fluid flow in all three dimensions. This is true also for the
nonlinear term (54). To find nevertheless valid 2-dimensional approximations on the horizontal
(x1, x2)-plane of these terms, we assume the following (according to Marshall and Plumb (2007)
good) approximations:

1. Because of the thinness of atmosphere and ocean, vertical velocities are much smaller than
horizontal ones, which allows us to omit the terms including u3 in the Coriolis term;

2. Since the x3-component acts in opposite direction to gravity, but with negligible strength
as Ωu1 ≪ g, we neglect the influence of the vertical x3-component of the Coriolis term.

Applying these two approximations on (53), there follows the 2-dimensional approximated Cori-
olis term

2~Ω× ~u ≈



−2Ωu2 sinϕ
2Ωu1 sinϕ

0


 = f~k × ~u , (55)

with ~k = (0, 0, 1). Usually, f := 2Ω sinϕ is denoted as Coriolis parameter. The Coriolis term (55)
describing the 2-dimensional planetary vorticity takes only horizontal effects of the earth rotation
into account.

In case we apply these approximations to (54), namely neglecting the x3-direction and setting
u3 = 0 which leads to ζ1 = ζ2 = 0, there follows the 2-dimensional nonlinear term:

ζ3(~k × ~u) =



−ζ3u2

ζ3u1

0


 , (56)

with ~k = (0, 0, 1), ζ3 = ~k · ~ζ, and ~ζ = ∇ × ~u. Term (56) describes the 2-dimensional relative
vorticity. All these terms together provide a complete 2-dimensional representation of Eqns. (36).

5.4 Identities between representations of covariant and vector-invariant equa-
tions

At this point, we can directly compare the representations of the covariant (Sect. 5.2) and vector-
invariant (Sect. 5.3) equations in R. As a direct consequence of Corollary 4, the continuity
equations in (45) and (36) agree in these representations.

As mentioned at the end of Sect. 5.2, the 1-forms in the covariant momentum equation can
be mapped by ♯ to their corresponding vector proxies. The coefficients of a 1-form ~v ♭ =

∑
i vidx

i

and its vector proxy ~v =
∑

i v
ixi are related by vi =

∑
j v

jgij = vi as gij = δij inR (cf. Sect. 5.1).

Hence, ♯ (the inverse of ♭) maps the 1-form ~v ♭ to the vector (~v ♭)♯ = ~v with component vector
(v1, v2, v3) in case of three, and (v1, v2, 0) in case of two dimensions. Under these mappings, the
representations of the covariant and vector-invariant momentum equations agree in R for two
and three dimension, in agreement with Theorem 1.

As a consequence of this equivalence, the following identities between covariant and vector-
invariant representations of the Coriolis and nonlinear terms exist in R:

in 3 dimensions: i~u(d~u
♭ + 2ΩEarth|3D) =

(
(~ζ + 2~Ω)× ~u

)♭
, (57)

i~u(d~u
♭ + 2ΩEarth|2D) =

(
(~ζ + f~k)× ~u

)♭
, (58)

in 2 dimensions: i~u(d~u
♭ + 2ΩEarth|2D) =

(
(ζ3 + f)~k × ~u

)♭
, (59)
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in which ~ζ = ∇×~u denotes the full relative vorticity vector and ζ3 := ~k ·~ζ its vertical component
with ~k = (0, 0, 1). ΩEarth|3D is the 3-, and ΩEarth|2D the 2-dimensional Earth-rotation 2-form of

Definition 4 with coefficients (48) or (51), respectively, resulting from ~Ω = (0,Ωcosϕ,Ω sinϕ).

Applying ♭ or ♯, identity (57) results from comparing Eqns. (53) and (54) with (49) and (50),
respectively, while considering ζ1 = ω23, ζ

2 = ω31, ζ
3 = ω12; identity (59) results from comparing

Eqns. (55) and (56) with (51) and (52), respectively. Identity (58) follows directly from (57) when
using the approximated Coriolis terms of (51) and (55), because for ΩEarth|2D = Ω12dx

1 ∧ dx2

there is f = 2Ω sinϕ = 2Ω12 by Eqn. (48).

Remark 11. A comparison of the identities (57), (58), and (59) reveals that:

• the form of the covariant terms on the left-hand side is invariant under changes in dimen-
sion, whereas the form of the vector-invariant terms on the right-hand side changes;

• the covariant terms are well-defined on topological n-manifolds M, whereas the vector-
valued terms require an oriented 3-dimensional Euclidean space (E3,g, Or);

• the approximated Coriolis terms ΩEarth|2D and f~k×~u can also be used in the 3-dimensional
equations. They provide good approximations and often ease calculations significantly, in
particular for the vector-invariant equations.

Remark 12. Exterior calculus enables to represent the horizontal Coriolis term (51) in a 2-
dimensional ambient space R2. In case of vector calculus, a purely 2-dimensional representation
is not possible, because the cross product only exists in 3 (and 7) dimensions (cf. Bossavit (2005)
and references therein). In order to nevertheless represent the approximated 2-dimensional
Coriolis term in the (x1, x2)-plane of Fig. 2 in terms of vector calculus, one requires an auxiliary
3-dimensional vector ~k pointing in the x3-direction to formulate the cross product (cf. Eqn. (55)).

Remark 13. If we compare the derivations leading either to the 2-dimensional covariant
(Sect. 5.2.2) or to the vector-invariant (Sect. 5.3.2) equations, we note that the covariant ones
follow naturally by the rules of exterior calculus when using 2-dimensional k-forms, such as
~u ♭ = u1dx

1+u2dx
2 and ΩEarth|2D = Ω12dx

1∧dx2. In contrast, as the cross product requires R3,
a purely 2-dimensional derivation of the 2-dimensional Coriolis term (55) is not possible, which
makes it necessary to perform the above discussed approximations on term (53), i.e. omitting
terms including x3 and u3 (cf. Sect. 5.3.2).

The 2-dimensional covariant equations also respect these approximations. This can be illus-
trated omitting dx3 and u3 in the covariant term (49), which leads to (51). The latter term is
equivalent to the 2-dimensional Coriolis term (55), which indicates that both derivations lead
to the same result.

Remark 14. Here, we would like to point out an important advantage of covariant equations. As
these equations are based on differential forms, they are well-defined on topological manifolds,
and, in contrast to vector-invariant equations, they do not require a componentwise representa-
tion in order to assure that their integrals are well-defined. By Definition 7, integrals of differ-
ential forms over chains (sums of oriented topological manifolds) assign to the chain elements
real numbers (i.e. they assign degrees of freedom to the mesh elements). The latter property
will allow us in upcoming work (beyond the scope of this paper) to introduce a discretization
method, similar to that presented in Bauer (2013), that does not require a componentwise rep-
resentation of the equations. In contrast, vector-invariant equations to be discretized have to be
represented as component equations in some coordinate system (White et al. (2005)).
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5.5 Summary of Part 1

In this first part of the manuscript, we discussed optimal mathematical descriptors for particle
displacements and force fields, and we introduced in Theorem 1 a new form of covariant equations
of GFD valid on rotating k-dimensional manifoldsM (k ≤ 3) that are embedded in R3. These
equations, using differential forms to describe forces and descending from a covariant master
balance law, are independent of coordinates and dimension. These properties follow from the
definitions and calculation rules of differential geometry and exterior calculus (see Sect. 2). In
contrast, the vector-invariant equations of GFD (36) written in terms of vector calculus do not
share these properties: for instance, there exist neither a general definition of a vector-valued
integral nor a cross product on general n-dimensional manifolds.

In case we regard fluids moving in a 3-dimensional Euclidean space E3, the vector-invariant
and covariant equations of GFD are equivalent (cf. Theorem 1). We illustrated this equiva-
lence also in terms of concrete coordinate representations for both sets of equations in Sect. 5.2
and 5.3. These representations allowed us to identify similarities, but also differences. For
instance, the derivations illustrated clearly that calculations in vector calculus can be rather
tedious, in particular when regarding 2-dimensional equations which apply the cross product
(cf. Sect. 5.3.2). This advocates the use of exterior calculus as it generalizes the derivations to
standard differential geometrical methods, which are valid in any dimension.

Although both formulations agree in E3, they behave differently under coordinate transfor-
mations, in different dimensions, and under changing metric structures. We will discuss these
issues in more detail in Sect. 8 and 9. Therein, we will also discuss their conservation properties
with respect to potential vorticity. Before we come to this discussion, we will first introduce
formulations of the equations of GFD that do not exist at all in terms of vector calculus.

6 Covariant equations of GFD on rotating n-dimensional mani-

folds

In this second part of the manuscript, we will introduce to the best of our knowledge new formu-
lations of equations of GFD, namely (i) n-dimensional covariant equations and (ii) hierarchically-
structured n-dimensional covariant equations that are split into metric-free and metric-dependent
parts. Both these new formulations rely essentially on the tools of differential geometry; similar
formulations do not exist in term of vector calculus. In addition, we will introduce and discuss
the new features which are incorporated in these new formulations.

In this section, we introduce the new n-dimensional covariant equations of GFD on rotating n-
dimensional manifolds. Since the differential forms as used in the previous covariant formulations
are n-dimensional objects by definition, the essential step is here to represent the rotation of the
n-manifold too with a general object that is valid for n-dimensions. The right mathematical tool
to represent the rotation of n-dimensional objects is a 2-form (cf. Bossavit (1998b); Hestenes
(1971); Mortari (2001)):

Definition 5. The 2-form Ωrot =
∑

1≤i<j≤nΩijdx
i ∧ dxj , in which the coefficients Ωij ∈ R

describe the angular velocities of an n-dimensional object rotating in the (xi, xj)-planes, is
called rotation 2-form.

Remark 15. Using an orthonormal basis, the rigid body rotation in n dimensions can also be
represented by skew-symmetric orthogonal (n×n)-matrices, which depend on n(n−1)

2 parameters
(Bossavit (1998b)). This number agrees with the number of coefficients Ωij of Definition 5 that
describe the angular velocities of the rotation in the (xi, xj)-planes (cf. Mortari (2001)).
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For n = 3, there follow three parameters. This is why vectors can describe rotation only in
R

3. As a consequence, the necessity to restrict Theorem 1 to k ≤ 3 descends from describing
the rotation by a vector instead of a 2-form, i.e. by using ⋆~Ω♭ ∈ Ω2(R3).

To account for the fact that differential forms are more general objects than their vector
proxies, and that the latter follow from the former by using the Riemannian lift ♯, i.e. for
any ω ∈ Ω1(M) and ~w ∈ X (M) there is: ω♯ = ~w

(
⇔ ω = ~w ♭

)
, we change the notation with

respect to Theorem 1. The resulting set of n-dimensional equations is presented in the following
theorem.

Theorem 2. Let the 1-form u ∈ Ω1(M), and the functions ρ, p ∈ Ω0(M) describe the velocity,
the density and pressure, respectively, of an ideal fluid. Then, the covariant Euler’s equations of
GFD on a compact, with Ωrot uniformly rotating Riemannian n-manifold (M,g) with smooth
boundary ∂M and outward unit normal ~n are given by

∂u

∂t
+ iu♯

(
du+ 2Ωrot

)
+

1

2
d
(
u(u♯)

)
+

1

ρ
dp+ dΦAn = 0 ,

∂(⋆ρ)

∂t
+ d ⋆ (ρu) = 0 ,

iu♯µ = 〈~u, ~n〉da = 0 (on ∂M) ,

(60)

with u♯ = ~u and initial conditions ~u(x, 0) = ~u0(x). By the energy closure equations, there follows
either

1. the incompressible fluid equations assuming ⋆d ⋆ u = 0 or

2. the barotropic fluid equations using the equation of state p = ρ2 ∂w∂ρ with w = w(ρ).

The generalized apparent gravity is described by the potential ΦAn :=
(
ΦN −

∑
1≤i<j≤n

1
2Ω

2
ijr

2
ij

)

with rij the perpendicular distance of a particle from the fixed point of the rotating (xi, xj)-plane
with angular velocity Ωij.

Proof. As a direct consequence of Eqn. (42), which is valid for n dimensions (cf. also
Abraham et al. (1983)), it is sufficient to study only those terms in (60) that occur because
of the n-dimensional rotation; the remaining terms including the energy closure equations (cf.
Theorem 1) and the boundary condition (cf. footnote 4) stay valid for any dimension n. Thus,
we study in the following the nonlinear Coriolis term iu♯ (du+ 2Ωrot), the apparent gravity term
dΦA, and the continuity equation.

By linearity of the interior product, the nonlinear Coriolis term can be written as iu♯du +
iu♯2Ωrot. Adding to the first term in the latter equation twice the kinetic energy gives the Lie
derivative of u along ~u, i.e. Lu♯u = iu♯du+ diu♯u (cf. end of Sect. (4.1)), which is well-defined
in n dimensions according to Eqn. (42). It thus remains to study iu♯2Ωrot.

As described in Definition 5 and in literature (Bossavit (1998b); Hestenes (1971); Mortari
(2001)), the rigid body rotation in n dimensions can be described by a 2-form given in local coor-
dinates by Ωrot =

∑
i<j Ωijdx

i∧dxj with coefficients Ωij for 1 ≤ i < j ≤ n. From a mathematical

point of view, this representation agrees with the 2-form du =
∑

i<j ωijdx
i ∧ dxj that describes

an n-dimensional rotation of the velocity field with coefficients ωij = (−1)(i+j−1)(∂iuj − ∂jui).
Consequently, the acceleration of the velocity u caused by the rigid body rotation can be rep-
resented – similarly to iu♯du for the vorticity du – with the interior product by iu♯2Ωrot. As
shown in Corollary 2 and Eqn. (72), the local representations of both the latter terms agree too.
Thus, the term iu♯(du+ 2Ωrot) is well-defined in n dimensions.
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Next, we study the generalized apparent gravity potential ΦAn . By linearity of d, the gradient
of this potential dΦAn consists of the gradient of the Newton potential dΦN , which is well-
defined in n dimensions as a consequence of the identification ~b ♭ = dΦN in Eqn. (42), and of the
gradient of a sum of potentials d

(∑
1≤i<j≤n−

1
2Ω

2
ijr

2
ij

)
. To understand what the latter potentials

describe, let us first investigate the 3-dimensional case. The term −∇
(
1
2 |
~Ω|2r 2

⊥

)
of Eqn. (28)

reveals that the centrifugal force can be represented as the gradient of a centrifugal potential.
The centrifugal force grows linearly with r⊥, the perpendicular distance from the rotation axis,
and quadratically with the angular velocity |~Ω|. The minus sign indicates that the centrifugal
force is opposite to the centripetal force and to the rotation axis. Similarly, such potentials can
be formulated for every rotating (xi, xj)-plane with angular velocity Ωij and distance rij from
the plane’s rotation axis (i.e. the fixed point of the (xi, xj)-plane under rotation). The gradient
d(12Ω

2
ijr

2
ij) describes the centrifugal force caused by this rotation. By linearity of the gradient

operator acting on functions, the contributions of all rotating (xi, xj)-planes can be added to the
sum of potentials as given by ΦAn . The gradient of the latter describes then the total centrifugal
force that is induced by the n-dimensional rotation. For a rotating sphere in R3, the calculation
in Eqn. (77) shows that this apparent gravity potential is well-defined.

Finally, when applying ⋆ on both sides of the continuity equation (60), the conventional
formulation of Eqn. (24) follows as (i) ⋆⋆ρ = ρ and (ii) ⋆d⋆ (ρu) = div(ρ~u). As ρ is a 0-form, (i)
follows from the identity ⋆⋆ρ = (−1)0(n−0)ρ (cf. proof to Corollary 2). The fact that identity (ii)
holds for any n is shown in Corollary 4. Hence, the continuity equation (60) is well-defined for
any dimension n. Moreover, it is independent of the choice of an orientation onM, analogously
to Eqn. (24) (cf. Sect. 9.2).

The fact that Theorem 1 requires an oriented manifold follows as the term 2 ⋆ ~Ω♭, describing
the manifold’s rotation, depends on orientation, since ⋆ does (cf. Sect. 7). In contrast, by the
orientation independent definition of Ωrot, the manifoldM of Theorem 2 need not be oriented.

We present in the following Corollaries n-dimensional local representations of the single
terms of Eqns. (60). Gradients of functions f ∈ Ω0(M) are given by df =

∑n
i=1 ∂ifdx

i with
∂i :=

∂
∂xi . These representations have already been used in Section 5.1 to compare the covariant

and vector-invariant equations in two and three dimensions.

Corollary 2. Let u ∈ Ω1(M) be a 1-form, the relative vorticity du the corresponding 2-form,
and ~u ∈ X (M) a vector field on a Riemannian n-manifold (M,g) on which the identification
u♯ = ~u holds. Then, the following identity holds:

i~udu =
∑

1≤i<j≤n

(ωijuidx
j − ωijujdx

i) , (61)

and provides an n-dimensional local representation in the coordinates dxi, i = 1, ..., n, with
du =

∑
1≤i<j≤n ωijdx

i ∧ dxj and ωij = (−1)(i+j−1)(∂iuj − ∂jui).

Proof. In local coordinates we can represent the velocity by u =
∑n

i=1 uidx
i, which leads to

du =
∑

1≤i<j≤n ωijdx
i ∧ dxj with ωij := (−1)(i+j−1)(∂iuj − ∂jui) according to the definition of

d in Sect. 2.1.2. We apply Lemma 1 to represent the left-hand side of Eqn. (61). Then,

i~udu = ⋆
(
(⋆du) ∧ ~u ♭

)
=

∑

1≤i<j≤n

n∑

k=1

ωijuk ⋆
(
⋆
(
dxi ∧ dxj

)
∧ dxk

)
. (62)

Before we can further reformulate the right-hand side of (62), we first show how the Hodge
star operator acts on local coordinates (dxi, i = 1, ..., n). Recall that for any k-forms α, β ∈
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Ωk(M) there is (i) α∧⋆β = β∧⋆α = 〈α, β〉µ and (ii) ⋆⋆α = (−1)k(n−k)α (cf. Eqn. (21)). Given
the volume form µ = dx1 ∧ ... ∧ dxn, the Hodge star ⋆ maps the 1-forms dxi for all i = 1, ..., n,
to the (n− 1)-forms ⋆dxi as:

⋆dxi = (−1)(i−1)dx1 ∧ ... ∧ d̂xi... ∧ dxn, while (63)

⋆ ⋆ dxi = (−1)1(n−1)dxi. (64)

The notation̂over the ith-entry means that it is omitted. Eqn. (63) follows from µ = dxi∧⋆dxi =

dxi ∧
(
(−1)(i−1)dx1 ∧ ... ∧ d̂xi... ∧ dxn

)
= (−1)2(i−1)µ = +µ ∀i = 1, ..., n, where the second

factor (−1)(i−1) arises from reordering dxi to its ith position. To show Eqn. (64), we regard
the (n − 1)-form α := ⋆dxi of (63) and calculate cµ = α ∧ ⋆α = ⋆dxi ∧ ⋆ ⋆ dxi, applying
⋆ ⋆ dxi = cdxi with some constant c. Using in addition the representation of Eqn. (63), there

follows cµ =
(
(−1)(i−1)dx1 ∧ ... ∧ d̂xi... ∧ dxn

)
∧ dxi = (−1)(n−i)+(i−1)µ and thus c = (−1)(n−1),

in which the factor (−1)(n−i) follows by reordering dxi, now from the right, to its ith-position.
For the 1-forms dxi, Eqn. (64) thus agrees with Condition (ii). Furthermore, ⋆ maps the 2-forms
dxi ∧ dxj for all 1 ≤ i < j ≤ n to the (n− 2)-forms

⋆
(
dxi ∧ dxj

)
= (−1)(i+j−3)dx1 ∧ ... ∧ d̂xi... ∧ d̂xj ... ∧ dxn ∀i < j. (65)

Similarly to Eqn. (63) this can be seen by calculating µ = dxi ∧ dxj ∧ ⋆(dxi ∧ dxj). Using
Eqn. (65) and reordering provides the factor (−1)(i+j−3). This factor follows because moving
dxi from position 1 to the ith-position gives the sign (−1)(i−1), while permuting dxj from position
2 to the jth-position gives (−1)(j−2).5

With this, we are ready to represent the right-hand side of Eqn. (62) for all 1 ≤ i < j ≤ n
and k = 1, ..., n by:

⋆(⋆
(
dxi ∧ dxj

)
∧ dxk) = ⋆

(
(−1)(i+j−3)

(
dx1 ∧ ... ∧ d̂xi... ∧ d̂xj ... ∧ dxn

)
∧ dxk

)
(66)

=(−1)(i+j−3)+(n−j)δjk ⋆
(
dx1 ∧ ... ∧ d̂xi... ∧ dxn

)
(67)

+ (−1)(i+j−3)+(n−(i−1))δik ⋆
(
dx1 ∧ ... ∧ d̂xj ... ∧ dxn

)
(68)

=(−1)(i+j−3)+(n−j)+(n−i)δjkdx
i (69)

+ (−1)(i+j−3)+(n−(i−1))+(n−j)δikdx
j (70)

=− δjkdx
i + δikdx

j ∀k, i < j . (71)

The factor (−1)(n−j)δjk in (67) comes from reordering dxk from the right to position j, whereas
(−1)(n−(i−1))δik in (68) arises from reordering dxk from the right to position i while position j
is missing. The signs in Eqn. (69), (−1)2n−3 = −1 ∀n, and in Eqn. (70), (−1)2n−2 = 1 ∀n, are
independent of the indices. The local representation in Eqn. (61) follows when Eqn. (71) is used
in Eqn. (62).

Remark 16. The representation of the rotation 2-form Ωrot =
∑

i<j Ωijdx
i∧dxj with coefficients

Ωij describing the angular velocities of an n-dimensional object rotating in the (xi, xj)-planes is
similar to the n-dimensional representation (61) of the relative vorticity 2-form du of Corollary 2.
This latter corollary is thus valid for Ωrot too and, moreover, as the interior product iu♯ is linear,
it follows:

i~ud(u+ 2Ω) =
∑

1≤i<j≤n

(ωij + 2Ωij)
(
uidx

j − ujdx
i
)
. (72)

5A permutation of dxk, for i < j < k, from position 3 to the kth-position gives the factor (−1)(k−3) leading to

the term ⋆
(
dxi ∧ dxj ∧ dxk

)
= (−1)(i−1)+(j−2)+(k−3)dx1 ∧ ... ∧ d̂xi... ∧ d̂xj ... ∧ d̂xk... ∧ dxn, and so forth.
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Corollary 3. Let u ∈ Ω1(M) be a 1-form and ~u ∈ X (M) a vector field on a Riemannian
n-manifold (M,g), on which the identification u♯ = ~u holds. Then, the following identities hold:

i~uu = u(~u) = 〈~u, ~u〉 , (73)

where κ := 1
2 i~uu, the kinetic energy, is a smooth function on M.

Proof. First, we apply Lemma 1 to represent the left term in (73) while representing the 1-form
u =

∑n
i=1 uidx

i and the vector ~u =
∑n

i=1 ui∂i in local coordinates. Then,

i~uu = (−1)1(n−1) ⋆
(
(⋆u) ∧ ~u ♭

)
= (−1)1(n−1)

n∑

i,j=1

uiuj ⋆
(
(⋆dxi) ∧ dxj

)
︸ ︷︷ ︸
=(−1)1(n−1)δij

=
n∑

i=1

u2i . (74)

To reformulate ⋆
(
(⋆dxi) ∧ dxj

)
, we insert representation (63) and then move dxj from the right

to position i to obtain the volume form µ, i.e. (−1)(i−1) ⋆
(
(dx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn) ∧ dxj

)
=

(−1)(i−1)+(n−i)δij ⋆µ = (−1)(n−1)δij , as µ is only non-zero in case i = j and as ⋆µ = 1 according
to Def. (21). The rightmost equality in (74) follows as (−1)2(n−1) = 1∀n.

The middle term in Eqn. (73) corresponds to the mapping u : ~u 7→ u(~u) =
∑n

i,j=1 uiujdx
i(∂j) =∑

i u
2
i , in which the latter identity follows from dxi(∂j) = δij for a basis and its dual. This middle

term can also be represented by the Riemannian lift ♭ : ~u 7→ ~u ♭ = 〈~u, ·〉 of Eqn. (20) leading to
u(~u) = ~u ♭(~u) = 〈~u, ~u〉 =

∑n
i=1 u

2
i , where the sum results from the definition of an inner product

by Eqn. (17). Thus all terms in Eqn. (73) agree. As the inner product and the Riemannian lift
are smooth operators onM, κ ∈ Ω0(M) is a smooth function onM.

Finally, we establish in the following corollary a representation of the divergence operator in
terms of operators of differential geometry.

Corollary 4. Let ρ ∈ Ω0(M) be a function, u ∈ Ω1(M) a 1-form and ~u ∈ X (M) a vector
field on a Riemannian n-manifold (M,g), on which the identification u♯ = ~u holds. Then, the
following identity holds:

⋆ d ⋆ (ρu) = div(ρ~u) . (75)

Proof. We represent the 1-form ρu =
∑n

i=1 ρuidx
i with density ρ ∈ Ω0(M) and the vector

~u =
∑n

i=1 ui∂i in local coordinates and evaluate the left-hand side of Eqn. (75). Applying ⋆ on
ρu gives

∑n
i=1 ρui ⋆ dx

i. Using the representation (63) and by the definition of d it follows:

⋆ d ⋆ (ρu) = (−1)(i−1)
n∑

i,j=1

∂j(ρui) ⋆
(
dxj ∧ dx1... ∧ d̂xi... ∧ dxn

)
︸ ︷︷ ︸

=(−1)(i−1)δij⋆µ

=
n∑

i=1

∂i(ρui), (76)

with ⋆µ = 1. The factor (−1)(i−1) in front of δij results from reordering dxj to position i to
obtain the volume form µ, which is only non-zero in case i = j. This leads to a positive sign of
the sum for all i as (−1)2(i−1) = 1∀i. The rightmost sum in Eqn. (76) agrees with the definition
of the divergence of a vector, i.e. with div(ρ~u).

6.1 Representation of the covariant equations of GFD including the general-
ized apparent gravity potential

To represent, similarly to Sect. 5, the covariant equations of GFD of Theorem 2 on a rotating
Cartesian coordinate frame of Fig. 2 in R3, we require only a representation of the generalized
apparent gravity potential ΦAn =

(
ΦN −

∑
1≤i<j≤n

1
2Ω

2
ijr

2
ij

)
with coefficients (48), because
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Corollaries 2, 3, and 4 provide corresponding 3-dimensional representations for the remaining
terms.

As for both the (x1, x2)- and the (x1, x3)-planes, the distance from the rotation axis ~Ω is
given by r12 = r13 = a cosϕ with earth radius a (see Fig. 2), there follows:

ΦAn =
(
ΦN −

1

2
(Ω2 cos2 ϕ+Ω2 sin2 ϕ)a2 cos2 ϕ

)
=
(
ΦN −

1

2
Ω2a2 cos2 ϕ

)
, (77)

which agrees with the definition in Eqn. (28). This provides a complete coordinate representation
of Eqns. (60) and, moreover, indicates that the generalized apparent gravity potential is well-
defined.

7 Hierarchically-structured (split) covariant equations of GFD

The covariant fluid equations given in Theorem 2 are mathematically well-defined on rotating n-
dimensional manifolds. Yet these equations do not precisely describe the geometrical properties
of the fluid flow and the involved prognostic variables. Therefore, we introduce here a new
structuring of the equations of GFD, which is based on equations (60) but takes also geometrical
properties, such as the physical dimensions of the fluid’s quantities of interest (e.g. density,
mass-flux, vorticity), into account. Then, we explain how this new form better fits the physical
properties of the fluid’s quantities of interest and the fluid flow in general.

7.1 Additionally required mathematical concepts and structures

Before we come to this new formulation, we introduce some additional definitions and operators
used in differential geometry. Some of them, such as the orientation of a manifold, have already
been implicitly used above. Others, such as chains (i.e. weighted sums of manifolds) as well as
the notion of straight and twisted differential forms and Hodge star operators, have not been
required yet, but will be essential later on.

Orientation, inner and outer oriented manifolds Given the set of bases B(V ) of a
real vector space V , two bases (v1, ..., vn) and (w1, ..., wn) of B(V ) have the same orienta-
tion, (v1, ..., vn) ∼ (w1, ..., wn), if one basis follows from the other by an automorphism f : V →
V, f(vi) = wi, i = 1, ...n, with positive determinant det f > 0. Two bases with negative determi-
nant det f < 0 have opposite orientation. The equivalence relation of having same orientation
forms exactly two equivalence classes of bases on B(V ). These equivalence classes are called
orientation of V . An oriented vector space is a pair (V,Or) consisting of a real vector space with
one of the two orientations. By convention, points (0-dimensional vector spaces) can be oriented
by ±1 (Jänich (2001)).

Similarly, on orientable manifolds M (i.e. a volume form exists), two volume forms µ1

and µ2 are called equivalent, if there is an f ∈ C∞(M) with f(p) > 0∀p ∈ M such that
µ1 = fµ2. An orientation ofM is an equivalence class [µ] of volume forms onM. An oriented
manifold (M, Or) is an orientable manifoldM together with one of the two possible orientations
(Abraham et al. (1983)).

We distinguish between inner and outer orientated manifolds. Let us assume a decomposition
of an ambient space V into two complementary subspaces U and W , i.e. V = U + W . Then,
an inner orientation of, say, U may be assigned (e.g. by a pointing direction of a vector or
a rotation direction within an area) without orienting neither its complementary space W nor
the ambient space V . In contrast, an outer orientation of a subspace, say, V is given by the
orientation of one of its complements U or W . This concept of outer orientation allows us to
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define, for instance, the notion of a flux through a surface: an inner-oriented line, say, U defines
a crossing direction through a surface W and thus outer orients the latter. In case the ambient
space V is oriented too, the outer orientation of W also determines the inner orientation of U
(cf. Bossavit (1998a,c, 2005) for more details).

Straight and twisted k-chains The structure of orientation on topological manifolds enables
to introduce chains as weighted sums of oriented manifolds and as elements of an exterior algebra.

Definition 6 (Bossavit (2005)). A k-chain is a finite familyM = {Mi, i = 1, . . . k} of oriented
connected k-manifolds – denoted with components of the chain – each weighted with µi that
belongs to some ring (here R). We denote the chain by the formal sum:

∑
i µ

iMi := µ1M1 +
· · ·+ µkMk.

Treating chains as whole objects and using formal sums allow us to treat chains according
to the rules of (exterior) algebra, i.e. the sum of two chains, given by

∑
i µ

iMi +
∑

j ν
jNj, is

a new chain consisting of components of the two families M and N . In this context, one uses
the following conventions: (i) µM′ equals −µM in case M′ is the same manifold as M with
opposite orientation; (ii) in case all weights are zero, the null chain, denoted with 0, follows.

To allow such algebraic calculations, the chains require to be consistently oriented. The
chains inherit the orientation by the component manifolds. We denote a chain a straight k-chain
if it consists of inner oriented component manifolds and twisted if it consists of outer oriented
ones. Straight and twisted chains are not added or mixed in any sense.

Straight and twisted differential forms (k-cochains) On oriented topological manifolds,
we define, alternatively to Definition 3, differential forms as dual objects acting on chains.

Definition 7 (Bossavit (2005)). A straight (resp. twisted) differential form of degree k, called
k-form, is a real valued map ω over the space of straight (resp. twisted) k-chains, linear with
respect to chain addition, and continuous in the sense of the topology defined on the topological
space.

We call Ωk(M) and Ω̃k(M) the space of straight and twisted k-forms, respectively, and
Ck(M) and C̃k(M) the space of straight and twisted k-chains, respectively. Ck(M) and Ωk(M)
(resp. C̃k(M) and Ω̃k(M)) are in duality via the bilinear bicontinuous map: <,>: Ck(M) ×
Ωk(M) → R;< c, ω > 7→

∫
c ω,∀c ∈ Ck,∀ω ∈ Ωk(M). This product is nondegenerate, that is

< c′, ω >= 0∀c′ implies ω = 0 and < c, ω′ >= 0∀ω′ implies c = 0 (Bossavit (2005)).

Remark 17. The differential forms of Definition 7 agree with those of Definition 3. In the latter
case, the sign of the value resulting from the mapping of k linearly independent vectors at point
p ∈ M to R by the k-form ω ∈ Ωk(M) depends on the ordering of these k vectors. As one can
assign to such ordering of vectors a consistent orientation of a k-manifold, k-forms of Definition 7,
as real valued maps over the space of such (inner or outer) oriented manifolds, agree with those
of Definition 3.

The integral of a differential form ω depends on the inner orientation of the manifold (or
submanifold)M over which ω is integrated. In case of opposite inner orientation ofM, denoted
with −M, it follows

∫
−M ω = −

∫
M ω. In case it is not induced by an outer orientation, the

inner orientation of a (sub)manifold is independent of the orientation of the ambient space.

Twisted differential forms and the twisted Hodge star The inner orientation of an outer
oriented manifold S changes with a change in ambient orientation (see discussion above). In
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order to find nevertheless integral values over outer oriented manifolds that do not depend on
ambient orientation, one defines twisted differential forms ω̃ ∈ Ω̃k(M) by

ω̃ := {{ω,Or}, {−ω,−Or}} , (78)

which provide concrete representations of the twisted forms of Definition 7. Then, the sign
and value of the integral

∫
S ω̃, represented in Or by ω hence

∫
S ω, and in −Or (which leads

to opposite inner oriented S) by −ω hence
∫
−S −ω, is independent of ambient orientation. In

case of maximal degree, namely a twisted n-form on a n-manifolds, these forms are also called
densities (Jänich (2001)).

Besides its metric dependency induced by 〈·, ·〉, the Hodge star operator ⋆ of Eqn. (21)
depends on the choice of orientation. This dependency follows because the volume form µ
consists of n-basis vectors dxi, i = 1, ..., n, that form a direct frame in Or and a skew frame in
−Or. Analogously to the definition of twisted forms in Eqn. (78), a formulation independent
of the ambient orientation, called twisted Hodge star operator ⋆̃, can be found by forming
equivalence classes, i.e.

⋆̃ω = {{⋆ω,Or}, {− ⋆ ω,−Or}}. (79)

By definition, it follows directly that ⋆̃ maps straight k-forms to twisted (n− k)-forms. On the
other hand, if one applies ⋆̃ to a twisted k-form ω̃, one selects for the latter one a representative
{ω,Or} and applies to ω the operator ⋆ that is defined by the selected Or. This returns the
straight (n − k)-form ⋆̃ ω̃. Analogously to ⋆, the twisted Hodge star fulfills ⋆̃ ⋆̃ ω = (−1)k(n−k)ω
for a k-form ω (Bossavit (1998d)).

Hierarchical structure of spaces and manifolds As summary of Sections 2 and 7.1, we
relate the spaces and manifolds and the thereon defined structures and operators. As illustrated
in the following commutative diagram, an affine space An equipped with a metric g and orien-
tation Or is an oriented Euclidean space En. On the other hand, the (possibly oriented) affine
space An and Euclidean space En can be seen as local linearizations by the differential dhp of a
chart (U, h) of the (possibly oriented) topological manifoldM and Riemannian manifold (M,g),
respectively. That is, the diagram

topological manifoldM
g, Or
−−−−→ oriented Riemannian manifold (M,g, Or)

dhp

y∀p∈U⊂M dhp

y∀p∈U⊂M

affine space An
g, Or
−−−−→ oriented Euclidean space (En,g, Or)

commutes for spaces endowed with, for instance, vector fields X ∈ X (M), straight and twisted
differential forms ω ∈ Ω(M) and ω̃ ∈ Ω̃(M), and various operators acting upon those fields. On
both En and (M,g) exist different equivalent realizations of metric structures. How this latter
fact influences the equations of GFD will be subject of Sect. 9.2.

7.2 Splitting the covariant equations into topological and metric parts

By reformulating equations (60), we aim to find structured fluid equations that apply only as
much mathematical structure as necessary and that better match the geometrical properties of
the fluid’s quantities of interest.

The basic idea in order to find a structure of the equations that would fulfill this two con-
ditions is to introduce in both momentum and continuity equations auxiliary quantities that
do not depend on the metric structure and to take into account that k-forms are integrated on
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k-manifolds for all k ≤ n. Then, the evolution of the fluid’s momentum along a curve c ⊂ M
is described by the 1-form u ∈ Ω1(M), by the functions (0-forms) ρ, p ∈ Ω0(M) for density
and pressure, respectively, by the auxiliary vector field ~V ∈ X (M), and by an integration of the
momentum equation along c. The density evolution in a volume V ⊂M is described by the aux-
iliary density n-form ρ̃ ∈ Ωn(M), by the auxiliary mass-flux (n− 1)-form ρ̃u ∈ Ω(n−1)(M), and
by the integrations over an n- and (n−1)-volume, respectively. As indicated by ,̃ both auxiliary
differential forms used in the continuity equation are twisted ones, as defined in Def. (78).

The resulting equations, in the following called topological equations, only require a topology
on M, but no metric. Metric information is contained in additional closure equations, in the
following called metric equations. The latter equations apply the metric-dependent operators
Riemannian lift ♯, ♭ of Def. (19) and twisted Hodge star ⋆̃ of Def. (79) and they relate the
auxiliary quantities with the corresponding original ones, as used in Eqn. (60), in order to close
the system of equations.

The suggested reformulation leads to a decoupling between the topological momentum and
the topological continuity equation and to an outsourcing of the metric information to additional
metric equations, as suggested in the following theorem.

Theorem 3. Let (M,g, Or) be a compact, with Ωrot uniformly rotating, oriented Riemannian
n-manifold with smooth boundary ∂M and let ΦAn be the corresponding apparent gravity of
Theorem 2. Let the fluid’s momentum be described by the straight 1-form u ∈ Ω1(M), by the
straight 0-forms ρ, p,ΦAn ∈ Ω0(M), and by the vector field ~V ∈ X (M), and its density evolution
by the twisted n-form ρ̃ ∈ Ωn(M) and by the twisted (n− 1)-form ρ̃u ∈ Ω(n−1)(M).

Then, the topological momentum and continuity equations in integral form for any static
curve c ⊂M or static n-volume V ⊂M, given by

∂t

∫

c
u+

∫

c
i~V (du+ 2Ωrot) +

∫

∂c

1

2
i~V u+

∫

∂c

(
w +

p

ρ

)
+

∫

∂c
ΦAn = 0 ,

∂t

∫

V
ρ̃+

∫

∂V
ρ̃u = 0 ,

(80)

are well-defined on oriented topological manifolds (M, Or) and are independent of the metric g.
The metric equations, given by

⋆̃(ρu) = ρ̃u , ⋆̃ρ = ρ̃ , u♯ = ~V , (81)

and which uniquely connect the twisted with the straight forms and the velocity 1-form with its
proxy, are well-defined on oriented Riemannian manifold (M,g, Or) and depend on g.

Both, topological (80) and metric (81) equations are independent of the choice of Or. They
provide, in combination with boundary conditions iu♯µ, with initial conditions u(x, 0) = u0(x),
and with energy closure for either (i) an incompressible flow (by ⋆d ⋆ u = 0) or (ii) a barotropic

flow (by p = ρ2 ∂w(ρ)
∂ρ with p = p(ρ) and internal energy w = w(ρ)), a closed set of equations of

GFD.

In the following, we refer to this closed set of equations, hierarchically-structured into topo-
logical and metric parts, as split Euler’s equations of geophysical fluid dynamics.

Remark 18. 1.) The structure of the fluid equations (80) and (81) is similar in form to the
covariant Maxwell’s equations split into topological and metric parts, as introduced by e.g.
Bossavit (1999, 2001).

2.) In contrast to the topological equations (80), the covariant momentum and continuity
equations in (60) apply both ♯ and ⋆ and, therefore, depend on g (see discussion below).
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In case of incompressible and barotropic fluids, one might use in the momentum equations
(45), (60), and (80) the pressure term dh, with enthalpy h = w + p/ρ, instead of (1/ρ)dp, as
shown in the following lemma (cf. also Abraham et al. (1983)).

Lemma 2. Let the pressure p = p(ρ) and the internal energy w = w(ρ) be functions of ρ. Then,
in case of incompressible or barotropic fluids, there exists the following identity for the pressure
term:

dh =
1

ρ
dp with enthalpy h :=

(
w +

p

ρ

)
, (82)

where the internal energy is given by w = −
∫
pd
(
1
ρ

)
(with w = 0 in case of incompressible

flow).

Proof. Under the conditions that both p = p(ρ) and w = w(ρ) are functions of ρ alone, the

internal energy w is determined by the equation of state 1
ρ2
p(ρ) = ∂w(ρ)

∂ρ . This follows from

integrating the latter equation on both sides over ρ, and substituting 1
ρ := ρ⇒ d(1/ρ)

dρ = − 1
ρ2 on

the left-hand side by using the separation of variables, i.e.

∫
p(ρ)

ρ2
dρ =

∫
∂ω(ρ)

∂ρ
dρ ⇒ −

∫
pd (1/ρ) =

∫
∂ω(ρ)

∂ρ
dρ = w . (83)

Setting for the integrand dω := −pd (1/ρ), one finds the identity for the pressure term by

d(p/ρ) = 1/ρdp + pd (1/ρ) = 1/ρdp − dω ⇒
1

ρ
dp = d (ω + p/ρ) = dh . (84)

In case of incompressible flows, this identity follows directly by the continuity equation, i.e. by
div(~v) = 0⇒ dρ = 0⇒ w = 0, and thus d (p/ρ) = 1

ρdp = dh.

Proof of Theorem 3. To show that the split Euler’s equations (80) and (81) provide a closed set
of equations of GFD, we reformulate them and compare them with those given in Theorem 2.
Besides the following proof, we provide in Sect. 7.3 a detailed geometrical interpretation of these
equations.

As seen in Sect. 2.1.3, integration over forms is well-defined on oriented topological manifolds.
The integrals of both momentum and continuity equations are calculated over static curves or
static n-volumes, respectively, because the dynamical aspect of the moving fluid has already
been taken into account. The latter fact follows directly as we use the Eulerian form of the fluid
equations (cf. Eqn. (39)). This allows us to integrate also over the tendencies

∫
c ∂tu and

∫
V ∂tρ̃.

Using Stokes’ theorem (16), we replace in the momentum equation the integrals of function f
over ∂c by integrals of df over c, i.e.

∫
c df =

∫
∂c f . Analogously, we proceed for the mass-flux,

i.e.
∫
V dρ̃u =

∫
∂V ρ̃u. Substituting the metric equations for a given orientation Or into the

topological equations, we find the local form of the fluid equations by

∂tu+ iu♯(du+ 2Ωrot) +
1

2
diu♯u+ d

(
w +

p

ρ

)
+ dΦAn = 0 , ∂t ⋆ ρ+ d ⋆ ρu = 0 , (85)

as, according to Definition 7, the limits c→ 0 for the momentum and V → 0 for the continuity
equation exist. This set of local fluid equations also follows in case of −Or, because then
both terms of the continuity equation carry a minus sign (see discussion in Sect. 7.3). Because
of Lemma 2, one sees immediately that this local form agrees with the n-dimensional fluid
equations (60), which proves that equations (80) and (81) provide, with the corresponding
closure equations, a closed set of equations of GFD.
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In the momentum equation only straight forms and in the continuity equation only twisted
forms are used. The metric equations (81) connect straight and twisted forms via the twisted
Hodge star operator ⋆̃ defined in (79). By its definition, ⋆̃ connects uniquely straight k-forms with
twisted (n− k)-forms, i.e. ⋆̃ uniquely maps ρ to ρ̃ and (ρu) to ρ̃u (cf. Sect. 7.3). The fact that ⋆̃
is a unique map can be seen as follows. Assume that ⋆̃ maps the k-form ω to the (n−k)-form ⋆̃ω.
Assume further that ⋆̃ω is another (n−k)-form with ⋆̃ω 6= ⋆̃ω resulting from this mapping. As by
definition, ⋆̃ω = ⋆̃(ω1,...,kdx

1∧ ...∧dxk) = ω1,...,k⋆̃dx
1∧ ...∧dxk = (±)ω1,...,kdx

k+1∧ ...∧dxn = ⋆̃ω
(both ⋆̃ω and ⋆̃ω share the same sign following from the choice of orientation), the equality of
⋆̃ω and ⋆̃ω leads to a contradiction, which proves the uniqueness of ⋆̃ (cf. Sect. 7.3.2). Hence,
the split Euler’s equations are well-defined on oriented Riemannian manifolds.

By introducing metric-independent auxiliary quantities, the metric-dependent operators ⋆, ♯,
as used in Eqn. (60), are transferred from the topological equations (80) to the metric equa-
tions (81). Then, in the topological equations only topological operators, such as the exterior
derivative d and the interior product i, act on affine vector fields and on differential forms,
which are defined in purely topological manner (cf. Sect. 2.1.2). Therefore, the topological
equations (80) and the quantities of interest such as velocity u, vorticity du, and density ρ̃
described by differential forms are well-defined on the topological manifoldM. The integration
of these equations, though, requires that the manifold M is oriented. By using the suggested
combination of straight and twisted differential forms, both equations in (80) are nevertheless
independent of the choice of orientation (cf. Sect. 7.3.1).

The metric dependency of the metric equations follows directly by the definitions of the
Riemannian lift ♭, ♯ in (19) and of the twisted Hodge star ⋆̃ in (79). In both cases, an inner
product 〈·, ·〉 that depends on the chosen metric structure g is required. For a given inner
product, one finds a unique isomorphism ♭, ♯ that connects 1-forms with their vector proxies, i.e.
♭ : V → V ∗, ~v 7→ 〈~v, ·〉 for a vector space V , and a unique isomorphism ⋆, ⋆̃ between k-forms and
(n− k)-forms, i.e. ⋆ : Ωk(M)→ Ω(n−k)(M) with α∧ ⋆β = 〈α, β〉µ for α, β ∈ Ωk(M). Choosing
a different metric structure g on M, other, but also unique, isomorphisms ♭, ♯, ⋆, and ⋆̃ exist;
they differ from each other with respect to g. Therefore, the metric equations are well-defined
on (M,g) and depend on the chosen metric g.

Corollary 5. Given the assumptions of Theorem 3 except that an orientation of M is not
needed, the topological momentum and continuity equations in local form are given by

∂tu+ i~V (du+ 2Ωrot) +
1

2
di~V u+

1

ρ
dp+ dΦAn = 0 , ∂tρ̃+ dρ̃u = 0 . (86)

They require no metric and no orientation on topological manifolds M and provide, with the
metric equations (81) and the corresponding closure conditions, a closed set of local split Euler’s
equations of GFD.

Proof. The Corollary follows from Theorem 3 and from the fact that straight and twisted k-
forms, to be well-defined, do not require orientation on a topological manifold (cf. Sect. 2.1.3).

7.3 Geometrical interpretation of the split Euler’s equations of GFD

In this section, we present a geometrical interpretation of the structure provided by the split
Euler’s equations of GFD and we show how the straight and twisted k-forms used in Eqns. (80)
match in dimension and orientation the corresponding physical quantities of the fluid, such as
velocity, density, and mass-flux. In addition, we illustrate how the Hodge star operator connects
straight and twisted forms, how the Riemannian lift ♭, ♯ connects the velocity 1-form with its
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vector proxy, and how this relates to the split equations. To discuss physically realistic fluid
flows, we restrict our discussion to the split Euler’s equations of GFD in R3, and we provide
SI-units for the fluid’s quantities of interest.

7.3.1 The metric-free topological momentum and continuity equations

The use of differential forms in the split Eulers’ equations and their separation into topological
and metric parts, as given in Theorem 3, allow us to geometrically interpret the momentum and
continuity equations (80) separately, as indicated in Fig. 3.

The topological momentum equation In the momentum equation, the fluid’s velocity is
described by the straight 1-form u : c→

∫
c u, which measures the alignment of the velocity field

u along an inner oriented curve c ∈ M. Its time derivative ∂tu describes the work performed by
u along curve c in [m2/s2] = [J/kg] and thus corresponds to the definition of a specific energy
density, analogously to the internal energy w in Eqn. (33). This agrees with the interpretation
of forces as 1-forms that assign to the displacement of a particle an amount of work performed
on this particle (cf. Sect. 2.2.2).

The fluid’s rate of rotation within an area A, given in [m2/s], is represented by the straight
2-form du : A →

∫
A du which corresponds, via Stokes’ theorem

∫
A du =

∫
∂A u, to the fluid’s

circulation along this area’s boundary ∂A. The sign of
∫
A du describes the sense of rotation

and depends only on the inner orientation of A. The corresponding point value of du is called
vorticity and is given in the metric-free units [1/s]. The advection of the vorticity du in the
direction of ~V leads to a work performed along c. This flow feature can be adequately represented
by the straight 1-form i~V du : c →

∫
c i~V du in units of [m2/s2]. The same argumentation holds

for i~V 2Ωrot.

The straight 0-forms h, κ, and ΦAn , using the definitions of enthalpy h = w+p/ρ in Eqn. (82)
and of kinetic energy κ =: 1

2 i~V u for ~V = u♯, describe potentials in units of [m2/s2]. The potential
difference between the boundaries ∂c leads to work performed along curve c (cf. Fig. 3 (left)).
In case of a closed loop c = ∂A, the potential difference is zero, leading to the conservation of
absolute circulation (d/dt)

∫
A ωa = 0 with absolute vorticity ωa := (du + 2Ωrot) (cf. Sect. 8 for

more details).

The inner orientation of c assigns a direction to the fluid flow and determines the sign of
the integral

∫
c u. The signs of the potentials at the boundaries ∂c are determined by the inner

orientations of the boundary points. The latter, in turn, can be consistently derived by the
inner orientation of the curve c (cf. Sect 2.1.3). That is, we assume c to be its own ambient
space. Then, the crossing direction from inside c to the outside outer orients its boundary
points. This enables to assign to these points inner orientations. The boundary point where
the inner orientation of c and the outer orientation of ∂c point in the same direction is inner
oriented with (+) and denoted by ∂c+. The other boundary point with opposite direction to
c is inner oriented with (−) and denoted by ∂c− (see Fig. 3 (left)). In case of opposite inner
orientation of c, both boundary points change sign, leaving the topological momentum equation
invariant under changing inner orientation. The inner orientation of c is here independent of the
orientation Or of a surrounding ambient space.

In agreement with the proof to Theorem 3, this discussion illustrates that the topological
momentum equation is independent of the choice of orientation Or, as all differential forms used
are straight and thus act, according to Definition 7, on inner oriented manifolds. Moreover, as
indicated by the units [J/kg] of a specific energy density, the topological momentum equation
is metric independent.
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f(∂c+)

−f(∂c−) c

∂t
∫
c u+

∫
c i~V ωa

∂c−

∂c+
b

b

b

b

∂t
∫
−V

3ρ

V − ∂V

∫
∂V

2(ρu)

∂t
∫
V −

3ρ

∫
−∂V −

2(ρu)

in Or

in -Or

1
2

3

∂t

∫

c

u+

∫

c

i~V (du+ 2Ωrot︸ ︷︷ ︸
=:ωa

) +

∫

∂c

( p

ρ
+ w + κ+ΦAn

︸ ︷︷ ︸
=:f

)
= 0 ∂t

∫

V

ρ̃+

∫

∂V

ρ̃u = 0

Figure 3: Geometrical interpretation of the topological equations. Left: the work ∂t
∫
c u in [J/kg]

performed along c is caused by the potential differences f(∂c+) − f(∂c−) and by the advected
absolute vorticity

∫
c i~V ωa. Right: the mass change ∂t

∫
V ρ̃ in [kg/s] arises from the mass-flux∫

∂V ρ̃u over the boundary ∂V of volume V −.

The topological continuity equation In the continuity equation, the mass of a portion of
fluid with volume V is described by the twisted 3-form ρ̃ : V →

∫
V ρ̃ which assigns to V its mass

in units of [kg]. Its time derivative ∂tρ̃ describes, in [kg/s], the change in mass within V . This
change is caused by the mass-flux, i.e. by the amount of mass that traverses per unit of time the
boundary ∂V of V . This mass-flux, given in units of [kg/s], is described by the twisted 2-form
ρ̃u : ∂V →

∫
∂V ρ̃u (cf. Fig. 3 (right)). As indicated by these units, the topological continuity

equation is independent of any metric structure (in agreement with Theorem 3).

The notion of “flux through the surface ∂V ” outer orients this surface by a crossing direction.
In order to meet the sign convention in equations (80), this mass-flux must be directed from
a region that is outer oriented with (−) to a region outer oriented with (+). We denote the
region outer oriented with (−) by V − and with (+) by V + (cf. Fig. 4). The crossing direction
of ∂V points from V − toward V +, which corresponds in Fig. 3 (right) to a mass-flux from inside
V − to the outside. Depending on the ambient orientation, an outer orientation determines a
region’s inner orientation. The outer orientation (−) of V −, for instance, induces a negative
inner orientation in Or giving a negative integral −

∫
V −

3ρ for the positive representative 3ρ. We
use the upper index to indicate the differential form’s dimension. Using twisted forms, the same
integral follows in −Or as the inner orientation of V changes sign, which is compensated by the
negative representative −3ρ.

The crossing direction induces an inner orientation of ∂V , which depends on the ambient
orientation, too. In Or, this inner orientation is positive giving a positive mass-flux

∫
∂V

2(ρu)
from inside V − to the outside for the positive representative 2(ρu). In case of −Or and of fixed
crossing direction, the inner orientation of ∂V changes sign (cf. Fig. 3 (right)). Here as well, this
change in the sign of the integral is compensated by the negative representative −2(ρu). This
illustrates the orientation independent definition of the topological continuity equation (80).

Remark 19. The integral form of the split Euler’s equations of GFD (80) requires consistent
orientations of the inner oriented curve c, of the outer oriented volume V , and of their boundaries.
In this paragraph, we have introduced such consistently oriented manifolds that match the sign
convention of Eqns. (80). Because the local split Euler’s equations of GFD (86) are not integrated
over manifolds, they do not require the structure of orientation onM and are therefore, in this
sense, more general.
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7.3.2 The metric-dependent closure equations

As indicated by their name, the metric-dependent closure equations (81) aim (i) to equip the split
Euler’s equations of GFD with information about metric and (ii) to close the set of equations.

The metric information follows by using the twisted Hodge star operator ⋆̃ of Eqn. (79) and
the Riemannian lift ♯, ♭ of Eqn. (19) as both operators rely on the inner product that depends
on the metric structure g. However, both are independent of the choice of ambient orientation.
More concretely, the Hodge star ⋆ : ω ∧ ⋆ω = 〈ω, ⋆ω〉µ, mapping a k-form ω to a (n − k)-form
⋆ω, applies the inner product and depends thus on the metric. As ⋆ applies, in addition, the
volume form µ which consists of an n-basis that belongs to one of the two orientation classes,
⋆ depends on the orientation too. To avoid such dependency, we use the twisted Hodge star
⋆̃ of Def. (79) which is independent of orientation (see discussion below). The Riemannian
lift ♯ : ω = 〈~w, ·〉 → ~w maps a metric-independent 1-form ω to its vector proxy field ~w that
depends on the chosen metric structure, although vector fields are, in principle, affine object (cf.
Sect. 2.1.1). ♯ maps straight or twisted 1-forms to straight or twisted vector proxies, respectively,
independently of ambient orientation.

These operators are used to close the set of topological fluid equations (80). The metric
equations using the twisted Hodge star connect the initially independent topological momentum
with the continuity equation, as shown in Fig. 4. These equations have to be fulfilled in order to
obtain a well-defined set of fluid equations. The metric equation that applies the Riemannian
lift, i.e. u♯ = ~V , is confined to the topological momentum equation. In case this closure condition
is fulfilled in all terms, there follow the full nonlinear Euler’s equations of GFD. However, an
approximation of the latter condition, particularly when applied on the advection term to obtain
a set of linearized fluid equations, is possible. In the following, we discuss these different cases
in more detail.

The metric equations applying the twisted Hodge star To obtain a well-defined, closed
set of fluid equations, the initially independent topological momentum and continuity equations
(cf. Fig. 3) have to be connected with each other uniquely and in a consistent way, as illustrated
in Fig. 4, by those metric equations in (81) that apply the twisted Hodge star operator ⋆̃.

For the general n-dimensional split Euler’s equations of GFD, given in (80) or (86), the
twisted Hodge star ⋆̃ provides, according to Def. (79) and Theorem 3, a unique mapping between
the density function (0-form) ρ and the twisted n-form ρ̃ by ⋆̃ : ρ 7→ ρ̃ := {{nρ,Or}, {−nρ,−Or}}.
In other words, for a given density ρ, there exist two straight n-forms, namely nρ for Or and
−nρ for −Or, whereas there is only one twisted n-form ρ̃. Analogously, ⋆̃ provides a unique
mapping between the straight 1-form ρu and the twisted (n − 1)-form ρ̃u by ⋆̃ : (ρu) 7→ ρ̃u :=
{{(n−1)(ρu), Or}, {−(n−1)(ρu),−Or}}. In the following, we illustrate on a concrete example in
R

3 the uniqueness and consistency of ⋆̃.

As shown in Fig. 4, the twisted Hodge star ⋆̃ maps the straight density function ρ in units of
[kg/m3] to the twisted 3-form ρ̃ in units of [kg]. Analogously, the straight 1-form (ρu) in units
of [kg/(m · s)] is mapped to the twisted 2-form ⋆̃(ρu) in units of [kg/s]. In both cases, ⋆̃ maps
from metric-dependent to metric-independent forms by amending the former with the required
metric information. This shows that the twisted Hodge star ⋆̃ consistently connects the metric-
free momentum equation, given in units of [J/s], with the metric-free continuity equation, given
in units of [kg/s].

In addition, the twisted Hodge star ⋆̃ takes care of a consistent and from the ambient ori-
entation independent connection between the inner oriented momentum and the outer oriented
continuity equation, i.e. the inner orientations of c and ∂c consistently outer orient V and ∂V ,
respectively (cf. Fig. 4). To see this, recall that the inner orientation of c induces canonical
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⋆̃ρ

V +

V −
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+
ρ̃

⋆̃ρ

1
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3

3ρ

−3ρ

in Or

in -Or
b

bb

b

V +

V − ∂V

⋆̃(ρu)

in Or

in -Or

2(ρu)

−2(ρu)

1
2

3

⋆̃ρ = ρ̃ ⋆̃(ρu) = ρ̃u

Figure 4: Geometrical interpretation of the metric equations. Left: ⋆̃ maps the 0-form ρ in
[kg/m3] to the two representative 3-forms {3ρ,Or} and {−3ρ,−Or} in [kg]. Right: ⋆̃ maps the
1-form (ρu) in [kg/(m · s)] to the two representative 2-forms {2(ρu), Or} and {−2(ρu),−Or} in
[kg/s].

inner orientations of its boundary points, i.e. (+) for ∂c+ and (−) for ∂c− (cf. Fig. 3 (left)).
These orientations are independent of ambient orientation (cf. Sect. 7.3.1). Then, the inner
orientation of each boundary point orients its surrounding volume by the same sign, i.e. the
volume around ∂c− is outer oriented with (−) (denoted with V − according to Sect. 7.3.1) and
the volume around ∂c+ with (+) (i.e. V +). The resulting crossing direction of ∂V , pointing
from V − toward V + in Fig. 4, coincides with the inner orientation of the curve c (see Fig. 3)
and is independent of the ambient orientation.

As further discussed in Sect. 7.3.1, the integral of the topological momentum equation over
the inner oriented curve c and over its boundary points is independent of ambient orientation. As
just argued, the outer orientations of the volumes V − and V + and the crossing direction, both
induced by c, remain unchanged too with changing orientation. The inner orientations of these
volumes (cf. Fig. 4 (left)) and of the boundary ∂V between these volumes (cf. Fig. 4 (right)),
on the other hand, change. These changes in inner orientations are however compensated by the
twisted forms (cf. again Sect. 7.3.1) which make the integral of the continuity equations over the
outer oriented volume V with its outer oriented boundary ∂V independent of orientation too.
Hence, besides providing the required metric information, the twisted Hodge star ⋆̃ connects the
topological equations uniquely and independently of ambient orientation.

The metric equation applying the Riemannian lift In the metric equation (81) (right),
the Riemannian lift ♯ maps the 1-form u describing the fluid’s velocity to its vector proxy ~u
by ♯ : u = 〈~u, ·〉 7→ ~u. Here, we distinguish between the notation ~u, in case the latter closure
condition is fulfilled, and the general (auxiliary) vector field ~V , used in the topological momentum
equation (80). The mapping ♯ may serve, in a diagnostic step, to regain from u the conventional
descriptor for the fluid’s velocity by the vector field ~u. However, this vector field depends on the
metric, since ♯ does.

The metric dependency of this mapping can be illustrated on the topological momentum
equation. That is, if we map by ♯ the terms (e.g. ∂tu) of the covariant momentum equation
in units of specific energy density [J/kg] to the corresponding vector proxies, the resulting
terms (e.g. ∂t~u) of the corresponding vector-valued equation carry the units of a momentum
[J/kg/m] = [m/s2] and depend obviously on the metric. This latter dependency is shared by
the vector proxy ~u describing the fluid’s velocity in units of [m/s] (cf. Fig. 5 (left)).
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~u = u♯

~u⊥ ~V

~u

~u = u♯ ~V = ~u+ ~u⊥ with ~u = u♯

Figure 5: Geometrical interpretation of the metric equations. Left: ♯ maps from the metric-free
velocity 1-form u in [J ·s/kg] to metric-dependent velocity proxy field ~u in [m/s]. Right: General
vector field ~V consists of the vector proxy ~u = u♯ and of a to ~u perpendicular part ~u⊥.

Furthermore, we discuss those terms of the momentum equation (80) applying the interior
product i because they depend on the Riemannian lift ♯. According to Sect. 2.2.2, the 1-form
u can be interpreted as an operator that assigns to a (virtual) displacement δ~v an amount of
(virtual) work u(δ~v) ∈ R. Analogously, we can interpret the 2-form du as an operator that
assigns to the advection of the vortex du along δ~v an amount of (virtual) work iδ~vdu ∈ R.

In case of δ~v = ~u = u♯, the fluid’s velocity ~u itself advects the vortex du, leading to the
nonlinear term i~udu. For the kinetic energy, there follows the straight 0-form κ = 1

2 i~uu =
∑

i
1
2u

2
i

of Eqn. (73). This recovers the full nonlinear Euler’s equations. In case of a general vector field
δ~v = ~V 6= ~u that is independent of ~u, the linear term i~V du describes the linear advection of

the vortex du by some background vector field ~V , which could be, for instance, some external
vector field or some average of the vector proxy field. To our knowledge, there exists no similar
interpretation for the term i~V u.

For a more detailed discussion about the general vector field ~V , we represent the latter
in terms of the fluid’s velocity field ~u, i.e. ~V = ~u + ~u⊥ with u♯ = ~u and 〈~u, ~u⊥〉 = 0 (cf.
Fig. 5 (right)). By linearity of the interior product, the advection term can be separated into
i~V du = i~udu + i~u⊥du. Here, only the part parallel to ~u contributes to the energy budget of
the fluid, whereas the perpendicular part i~u⊥du only describes virtual work. Analogously, there
is i~V u = i~uu + i~u⊥u. In this case, only the part parallel to the velocity ~u contributes to the
fluid’s kinetic energy that is given by κ = 1

2 i~uu. The perpendicular part describes a virtual work
performed by a force, for instance the Coriolis force, that acts perpendicularly to a particle’s
flow direction and thus changes its direction but does not contribute to the kinetic energy, i.e.
i~u⊥u = 0.

7.3.3 Differential forms mimic measurement devices

Recall that differential forms are linear operators that assign real numbers to manifolds with
finite length, area, or volume. Analogously, measurement devices assign measured values of the
fluid’s quantities of interest such as velocity, vorticity, or mass to finite curves, areas, or volumes.

For instance, a device that measures the fluid’s mass, assigns to a portion of fluid contained
in a volume its mass in [kg], similarly to ρ̃. Another device measures the mass-flux through the
boundary of this volume in [kg/s], similarly to ρ̃u. Different approaches that physically measure
these quantities (see e.g. Baker (2005)) share the fact that they measure over finite areas and
volumes, but not point-wise values, as these latter cannot be measured directly (Bossavit (2005)).
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The velocity of a real fluid is often measured by using the so-called velocimetry6, in which
the fluid is seeded with tracer particles that follow the fluid flow. The comparison of images
of these particles for different times, with possibly short (but nevertheless finite) time intervals,
enables to determine the fluid’s velocity field. Also the vorticity of the fluid can be measured
in such a way (Wallace (1986)). In case of measurements of the potentials, only their (finite)
difference between two distinct points can be measured by a measurement device. Analogously
in the integral equation (80), u assigns to a given oriented curve the fluid’s flow speed and
its direction, du assigns to an area its circulation and vorticity, and the potential difference is
determined between the boundaries of the curve (cf. Sect. 7.3.1 for the corresponding SI-units).

It seems thus justified to interpret the differential forms in the integral form of the split Euler’s
equations (80) as measurement devices. In contrast, as point-wise values cannot be measured
directly, there is no similar geometrical interpretation for the local form of these equations as
given in (86).

8 Conservation properties of the (split) covariant equations of

GFD

In this section, we investigate the n-dimensional covariant equations of GFD with respect to their
conservation of circulation, vorticity, and potential vorticity. The results are general to the extent
that they include all covariant equations introduced in this manuscript. The conservation of these
quantities is of outstanding importance in geophysical fluid dynamics. For instance, potential
vorticity conservation is the main reason for a splitting between balanced motion and waves.
Besides offering such useful insight in the properties of the fluid flow, the conservation of these
quantities is also of practical importance, for instance when constructing structure-preserving
discretizations of these equations.

8.1 The n-dimensional covariant vorticity equation

The relative vorticity 2-form ωr ∈ Ω2(M) results from an exterior derivation of the velocity
1-form u, i.e. ωr = du (cf. Sect. 5). Its time evolution is described by the covariant vorticity
equation which results from applying d on the local covariant momentum equation (86), i.e.

∂tdu+ di~V (du+ 2Ωrot) = −dd

[
1

2
i~V u

]
− d

[
1

ρ
dp

]
− ddΦAn =

dρ ∧ dp

ρ2
, (87)

where the rightmost equality follows from the fact that dd = 0. In case of baroclinic fluids, the
right-hand side of (87) is nonzero (cf. Remark 20). In case of barotropic and incompressible
fluids, the right-hand side is zero, as, according to Lemma (2), there follows d

[
(1/ρ)dp

]
=

dd(w + p/ρ) = 0.

To modify the second term on the left-hand side of (87), we consider for the absolute vorticity
2-form, defined as ωa := ωr+ωp with planetary vorticity 2-form ωp := 2Ωrot, a representation in a

local coordinate chart, i.e. ωa =
∑

i<j ωa|ijdx
i∧dxj. Then, with ~V =

∑
i V

i∂i and dxi(∂k) = δik,

6One distinguish between Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), see,
e.g., Holenberg et al. (2012). In PIV, different images of the fluid seeded with particles are compared to different
times to determine the fluid’s velocity. In PTV, the velocity follows from the recorded tracks of the fluid particles.
In both cases, measurements over too short time intervals are not possible, because in this case the differences in
the images would not be visible.
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there follows for 1 ≤ i < j ≤ n; k = 1, ..., n:

i~V ωa =
∑

k

∑

i<j

(
V kωa|ijdx

i(∂k) ∧ dxj − V kωa|ijdx
i ∧ dxj(∂k)

)

=
∑

i<j

ωa|ij

(
V idxj − V jdxi

)
, (88)

di~V ωa =
∑

i<j

(
∂i(V

iωa|ij) + ∂j(V
jωa|ij)

)
dxi ∧ dxj

=
∑

i<j

div2D(~V ωa|ij)dx
i ∧ dxj . (89)

Here, div2D denotes the divergence restricted to the 2-dimensional (xi, xj)-plane and

div2D(~V ωa|ij) are coefficients of a 2-form. The vorticity equation is valid for general ~V and

hence also for ~V = u♯ in case the closure condition of Eqn. (81) is enforced.

8.2 Kelvin Circulation theorem

The n-dimensional vorticity equation (87) describes the time evolution of the relative vorticity
ωr and of the absolute vorticity ωa in case ∂tΩrot = 0. However, in the form it is expressed in,
Eqn. (87) does not put a useful constraint on how vorticity changes with time.

In this section, we study therefore integral values of relative and planetary vorticity over an
area A given by the relative circulation Γr :=

∮
l(t) u =

∫
A du or by the planetary circulation

Γp :=
∫
A 2Ωrot, respectively. Then, the absolute circulation Γa := Γr+Γp is a conserved quantity

as stated in the following theorem.

Theorem 4 (Kelvin Circulation theorem). Let M be an n-manifold uniformly rotating with
Ωrot and let l ⊂ M be a smooth closed loop, i.e. a compact 1-manifold. Let the straight 1-form
u ∈ Ω1(M) solve the barotropic (or incompressible) Euler’s equations (80) and (81) on M and
let l(t) = ϕt(l) be the image of l at time t under the flow map ϕt of u. Then, the absolute
circulation Γa is constant in time, i.e.

d

dt
Γa = 0 . (90)

Proof. We first discuss the relative circulation Γr. Using the Lie derivative formula, there follows
for its total time derivative

d

dt
Γr =

d

dt

∮

ϕt(l)
u =

∮

l

d

dt
ϕ∗
tu =

∮

l
ϕ∗
t

[
∂u

∂t
+ L~uu

]
=

∮

ϕt(l)

[
∂u

∂t
+ L~uu

]
(91)

= −

∫

A
d

[
i~u (2Ωrot) +

1

ρ
dp− dκ+ dΦAn

]
, (92)

where A ∈M2 is a surface of the 2-dimensional submanifoldM2, whose boundary is the closed
contour l(t), i.e. ∂A = l∀t. From Eqn. (91) to (92) we apply the covariant momentum equa-
tion (45) (written in the form of Eqn. (42)) and use Stokes’ theorem. According to Lemma (2) for
barotropic and incompressible fluids, we substitute (1/ρ)dp = d(w + p/ρ). Because of dd = 0,
the change in relative circulation is then given by

d

dt
Γr = −

∫

A
di~u (2Ωrot) . (93)
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As it will be useful below, we represent the right-hand side of (93) in local coordinates, that is,
we use Ωrot =

∑
i<j Ωijdx

i ∧ dxj , ~u =
∑

i u
i∂i, and dxi(∂k) = δik for 1 ≤ i < j ≤ n; k = 1, ..., n.

Then, as

i~uΩrot =
∑

k

∑

i<j

(
ukΩijdx

i(∂k) ∧ dxj − ukΩijdx
i ∧ dxj(∂k)

)

=
∑

i<j

Ωij

(
uidxj − ujdxi

)
, (94)

di~uΩrot =
∑

i<j

Ωij

(
∂iu

idxi ∧ dxj − ∂ju
jdxj ∧ dxi

)

=
∑

i<j

Ωij

(
∂iu

i + ∂ju
j
)
dxi ∧ dxj , (95)

we find the following representation of the change in relative circulation:

−

∫

A
di~u (2Ωrot) = −

∑

1≤i<j≤n

2Ωij

(
∂iu

i + ∂ju
j
) ∫

A
dxidxj

= −
∑

1≤i<j≤n

2Ωij
dAij

dt
=

d

dt
Γr. (96)

In Eqn. (96), we applied the identity
(
∂iu

i + ∂ju
j
)
= 1

Aij

dAij

dt (see Pedlosky (1979), Section 2)

where Aij :=
∫
A dxidxj is a differential area element in the (xi, xj)-plane (i.e. Aij := Pij(A)

results from the projection Pij :M
2 ⊃ A 7→ Aij ⊂ R

2).

On the other hand, the total derivative of the absolute circulation Γa, consisting of the sum
of Γr and the circulation Γp :=

∫
A 2Ωrot, is given by

d

dt
Γa =

d

dt
Γr +

d

dt

∫

A
2Ωrot =

d

dt
Γr +

∑

1≤i<j≤n

2Ωij
d

dt

∫

A
dxidxj

=
d

dt
Γr +

∑

1≤i<j≤n

2Ωij
d

dt
Aij = 0 . (97)

The fact that the total derivative of Γa in (97) is zero follows immediately from Eqn. (96). Hence,
the absolute circulation Γa is conserved.

Remark 20. In case of baroclinic fluids, there follows from Eqn. (92) with −d
[
1
ρdp

]
= dρ∧dp

ρ2
:

d

dt
Γr = −

∑

1≤i<j≤n

2Ωij
dAij

dt
+

∫

A

dρ ∧ dp

ρ2
. (98)

The second term on the right-hand side of (98) describes the influence of the fluid’s baroclinicity,
i.e. dρ∧dp

ρ2
6= 0, on the relative circulation. The latter usually also depends on a friction term

which will be, however, not further discussed here (cf. Pedlosky (1979) for more details).

8.3 Conservation of potential vorticity

By the conservation of absolute circulation Γa, we found a useful constraint on the evolution of
the fluid flow. However, as Γa is a scalar whereas the vorticity itself is a 2-form, the former does
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not provide the full information about the time evolution of vorticity. For instance, Kelvin’s cir-
culation theorem puts a constraint on the circulation around a closed curve but, being nonlocal,
it does not describe the evolution of an individual fluid element.

A combination of the vorticity equation (87) with Kelvin’s circulation theorem provides the
desired local conservative quantity, namely the potential vorticity, as introduced in the following
Definition.

Definition 8 (Potential vorticity). Let M be a uniformly rotating n-manifold, let the 2-form
ωa = (du + 2Ωrot) ∈ Ω2(M) describe the fluid’s absolute vorticity, and let λ ∈ Ω0(M) be a
function describing a scalar fluid property which is conserved, i.e. (d/dt)λ = 0. The potential
vorticity (PV) onM is defined by the scalar function

PV :=
ωa ∧ dλ

ρ̃|3D
∈ Ω0(M) , (99)

in which ρ̃|3D denotes the twisted density form ρ̃ that is restricted to the 3-dimensional volume

spanned by ωa and dλ, i.e. ρ̃|3D := ρµ̃|3D with µ|3D := ωa

||ωa||
∧ dλ

||dλ|| .

The potential vorticity of Definition 8 can be constructed on the basis of Kelvin’s circulation
theorem and is therefore conserved, as stated in the following theorem.

Theorem 5 (Conservation of potential vorticity). Under the assumptions of Theorem 4 and in
case (i) the fluid is barotropic or (ii) λ = λ(ρ, p) is a function of ρ and p, the potential vorticity
(PV) of Definition 8 is conserved, i.e.

d

dt
PV = 0 , (100)

and is invariant under changing orientation.

Proof. The proof of Theorem 5 relies essentially on the fact that the absolute circulation Γa of a
barotropic or incompressible flow is conserved. Its time derivative including the baroclinic term
(cf. Eqn. (98)) is given by

d

dt

∫

A
ωa =

∫

A

dρ ∧ dp

ρ2
. (101)

Out of this integral conservation law, we construct the locally conserved PV (cf. Pedlosky
(1979)).

To this end, we build surfaces of constant λ such that the right-hand side of Eqn. (101)
vanishes. Recall that, since λ is conserved by the fluid flow, surfaces of constant λ remain
composed of the same fluid particles. We choose A to lie initially in a surface of constant λ. Then,
A remains composed of the same fluid particles, and thus it is a material surface and conserved
for all t. The 1-form dλ ∈ Ω1(M) can be seen as measure of how closely stacked the levels of
constant λ are and it carries similar information as the gradient ∇λ (cf. Marsden and Hughes
(1983)). In case of barotropy (Condition (i)) the right-hand side of Eqn. (101) vanishes as
dρ ∧ dp = 0. In case of Condition (ii), i.e. λ = λ(ρ, p) and hence dλ = ∂pλdp + ∂ρλdρ, there
follows dρ ∧ dp = 1

∂pλ
dρ ∧ dλ. Therefore, the integral on the right-hand side of (101) is zero,

too, as dλ is perpendicular to the surface A.
Hence, under Conditions (i) or (ii) and with ωa =

∑
i<j ωa|ijdx

i ∧ dxj , there follows for
1 ≤ i < j ≤ n:

d

dt

∫

δA
ωa =

d

dt


∑

i<j

ωa|ij

∫

δA
dxidxj


 =

∑

i<j

d

dt

[
ωa|ijδAij

]
= 0 , (102)
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where ωa|ij denotes the mean value of the coefficient function ωa|ij on the differential surface
element δAij :=

∫
δA dxidxj in the (xi, xj)-plane. Considering in the following each (xi, xj)-plane

individually, we intend to find a local expression of the rightmost term in (102). For the vorticity
ωa|ij , against which ωa|ij is converging in case of infinitesimal δA, such local expression is given
by the local vorticity equation (87). Hence, we only have to further specify the term δAij . This
can be done by using the following constraints:

1. from the continuity equation (as in (45), (60), or (80)), there follows (d/dt)ρ̃ = 0,

2. as (d/dt)λ = 0 per definition, there follows that the difference ∆λ between constant λ is
conserved, i.e. (d/dt)∆λ = 0.

Using the twisted density form ρ̃, the n-dimensional mass of a portion of fluid is given, in Or,
by

δm =

∫

δV
ρ̃ =

∫

δV
ρdx1...dxn = ρ

∫

δAij

dxidxj
∫

δlk

dxk
∫

δV n−3

dx1...d̂xid̂xj d̂xk...dxn

= ρδAijδlkδV
n−3
\ijk , (103)

where δV n−3
\ijk denotes the (n− 3)-volume complement to the 3-volume µ|3D of Definition 8.

In case of (d/dt)δV n−3
\ijk = 0, variations in δAij and δlk compensate such that (d/dt)δm = 0.

Then, as δlk can be expressed as ∆λ = |dλ|kδlk, there follows for Eqn. (102) with 1 ≤ i < j ≤ n;
k = 1, ..., n, and i, j 6= k:

0 =
d

dt

[
ωa|ijδAij

]
=

δm

∆λδV n−3
\ijk︸ ︷︷ ︸

=c

d

dt

[
ωa|ij

|dλ|k
ρ

]

= c
d

dt

[
ωa|ijdx

i ∧ dxj ∧ |dλ|kdx
k

ρdxi ∧ dxj ∧ dxk

]
, (104)

using relation (103) and the local value ωa|ij. Because of ωa =
∑

i<j ωa|ijdx
i ∧ dxj , dλ =∑

k |dλ|kdx
k, and ρ̃|3D = ρdxi ∧ dxj ∧ dxk, Eqn. (104) becomes

d

dt

[
ωa ∧ dλ

ρ̃|3D

]
= 0 , (105)

which proves that the quantity PV of Eqn. (99) is conserved. We use the twisted n-form ρ̃;
its negative density in −Or is compensated by the negative representative (cf. discussion in
Sect. 7.3), leaving relation (103), the remaining proof, and hence also the potential vorticity (99),
independent of ambient orientation.

Remark 21. In caseM⊂ R3, the PV of Definition 8 agrees with the PV usually used in vector
calculus, namely

d

dt

[
ωa ∧ dλ

ρ̃|3D

]
=

d

dt

[
~ωa · ∇λ

ρ

]
= 0 . (106)

Regarding the middle term in Eqn. (104), we can substitute ωa|ij = ~ωa ·~n with unit normal ~n to
the surface Aij , |dλ|k = |∇λ|, and hence ~ωa · ∇λ as ∇λ = ~n · |∇λ|. Then, equality (106) follows
immediately.
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9 Examples and Discussion of Part 2

In this last section of Part 2 we illustrate and discuss the conservation properties, introduced in
Sect. 8 for general n-dimensional covariant equations of GFD, on quasi-2-dimensional covariant
shallow-water equations and compare the results to literature.

Moreover, we study in Sect. 9.2 how the prognostic variables and the form of the split
covariant equations (80) and of the vector-invariant equations (36) behave under changes in
metric and orientation. In case of the split covariant equations, the prognostic variables are
given by straight and twisted differential forms. Here, we illustrate why the prognostic variables,
the corresponding integrals, and hence the topological part of the split covariant equations are
independent of metric and orientation, as stated in Sect. 7. In contrast, the description of the
prognostic variables by vector fields requires both metric and orientation. We show how in the
latter case changes in these structures influence the prognostic variables and the form of the
vector-invariant equations.

9.1 Split shallow-water equations and their PV conservation

In order to illustrate the results of Section 8, we introduce the potential vorticity in case of the
shallow-water equations, which are quasi-2-dimensional equations. Because of its independence
of dimension, the covariant momentum equation (80) covers also the shallow-water case. In two
dimensions, Eqn. (80) can be simplified to the split covariant shallow-water equations (cf. Bauer
(2013)):

∂tu+i~V (ωr + fdS) + d
(
g(h+ b)) + κ

)
= 0 , ∂th̃+ d(h̃u) = 0 ,

h̃ = ⋆̃h, (̃hu) = ⋆̃(hu), u♯ = ~V ,
(107)

where h is the layer depth and b the bottom height.
Applying d on the topological momentum equation (107) leads to the 2-dimensional covariant

vorticity equation, similar in the form to Eqn. (87), in which the baroclinic term is zero as
shallow-water equations are trivially barotropic. Applying further representation (89), the 2-
dimensional vorticity equation is given by

∂tζrdS = −div2D(ζa~V )dS = −d ⋆
(
(ζr + f)~V ♭

)
, (108)

using ωr = ζrdS, ωa = ζadS with coefficient functions ζr, ζa := (ζr + f) and area element
dS := dx1 ∧ dx2. Last equality in (108) follows from Corollary 4 while ωp reduces in two
dimensions to the Coriolis parameter f = 2Ω sinϕ (cf. Sect. 5.3.2).

Remark 22. From Eqn. (108) there follows that in case of nonrotating fluids, i.e. when f = 0,
the relative vorticity is conserved under the advection of ~V (or in the nonlinear case of ~V =
u♯). This can be seen as the relation div2D(~V ζr)dS = L~V ζrdS leads to ∂tωr + L~V ωr = 0 and

hence to d
dtωr = 0. Similarly, also the absolute vorticity is conserved as ∂tf = 0 leads to

∂t(ζr + f)dS+d ⋆
(
(ζr + f)~V ♭

)
= 0. In both cases, the equations are in flux form, similar to the

continuity equation (107).

Remark 23. In two dimensions, there exists the operator identity iu♯ = ⋆u and hence also diu♯ =
d ⋆ u. Therefore, the covariant shallow-water equations (107) and the vorticity equation (108)
agree with the corresponding covariant equations introduced by Cotter and Thuburn (2014).

PV conservation in 2D shallow-water For the shallow-water equations which are trivially
barotropic, every conservative fluid property can be used to define the PV; for instance, we
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set λ = x3
h which is conserved by the flow, i.e. d

dt
x3
h = 0 (cf. Pedlosky (1979)). Setting

ωa = (ζr + f)dS and as dλ = ∂
∂x3

(
x3
h

)
dx3 = 1

hdx
3, the potential vorticity q := (ζr+f)

h is
conserved by the shallow-water equations (107) because it follows from Definition (8) by

d

dt

(
ωa ∧ dλ

ρ̃|3D

)
=

d

dt

(
(ζr + f)

h

dS ∧ dx3

ρµ̃|3D

)
=

1

ρ

d

dt

(
(ζr + f)

h

)
= 0 , (109)

using the fact that ρ is constant and µ|3D = dS ∧ dx3. This allows us to formulate the identity
of 2-forms (ζr + f)dS = qhdS. As ∂tf = 0, we use latter identity in Eqn. (108) when describing
the absolute vorticity (cf. Remark 22). There follows with ~u = u♯:

∂t(qh)dS + d ⋆
(
(qh)u

)
=

∂q

∂t
h+ q

∂h

∂t
+ L~u(qhdS) = 0 , (110)

∂q

∂t
hdS + q

∂h

∂t
dS + h~u · dqdS + q~u · dhdS + qhL~udS = 0 , (111)

h
( ∂q

∂t
+ ~u · dq

︸ ︷︷ ︸
d
dt
q=0

)
dS + q

( ∂h

∂t
+ ~u · dh+ hdiv~u

︸ ︷︷ ︸
=0

)
dS = 0 , (112)

where the expression in brackets on the right vanishes because it corresponds to the continuity
equation (107). This shows that the potential vorticity q is conserved. In case q is constant,
there is ∂tq = 0, and hence q remains constant.

9.2 Dependency of covariant and vector-invariant equations on metric and
orientation

In order to illustrate the dependency of the prognostic variables, either described by differential
forms or by vector fields, on metric and orientation, we consider quantities of interest such as
mass, mass-flux, or circulation. These quantities usually consist of integrals of the prognostic
variables over finite lines, areas, or volumes and hence correspond to physical measurements
of properties of the fluid (cf. Sect. 7.3.3). Such physically based fluid properties, such as the
mass-flux given in [kg/s], do not depend on the chosen structure of metric and orientation.

Under this constraint on the invariance of the quantities of interest under changing metric and
orientation, we study how such changes influences both covariant and vector-invariant equations
and the corresponding prognostic variables.

9.2.1 Dependency of differential forms and covariant equations on metric and ori-
entation

After the elaborated discussion in Sect. 7 on the split Euler’s equations of GFD, in particular
about the metric and orientation independent nature of the topological equations, a further
discussion on this subject might seem redundant. However, as the representation of integrals
over differential forms in local coordinates relies on metric-dependent Lebesque measures (cf.
Eqn. (15)), we want to illustrate that this dependency is compensated by the transformation
properties of differential forms.

To see this, we note that for an orientation preserving diffeomorphism ϕ : M → N with
oriented n-manifolds M and N the global change-of-variable formula for every compact ω ∈
Ωn(N ) is given by ∫

M
ϕ∗ω =

∫

N
ω . (113)
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This follows from a generalization of the change-of-variable formula in Rn via the partition of
unity; i.e. for an orientation preserving diffeomorphism ϕ : U → V for U and V as open subsets
of Rn, there follows for ω ∈ Ωn(V ):

∫
U ϕ∗ω =

∫
V ω. The latter equation follows when using

y ∈ U , x = ϕ(y) ∈ V , ωx = f(x)dx1∧...∧dxn for x ∈ V with coordinate function f : V → R with
compact support, and when applying the pull-back Ωn(M) ∋ ϕ∗ω = f(ϕ(y))J(ϕ)ydy

1 ∧ ...∧ dyn

for y ∈ U with Jacobian determinant J(ϕ)y = det
(∂ϕi

∂yj
(y)
)
. Then,

∫

U
ϕ∗ω =

∫

U
f(ϕ(y))J(ϕ)ydy

1...dyn (114)

=

∫

V
ω =

∫

V=ϕ(U)
f(x)dx1...dxn =

∫

U
f(ϕ(y))J(ϕ)ydy

1...dyn , (115)

using Eqn. (15) to represent the integral of ω as one in Rn. Eqn. (115) is the usual change-
of-variable formula of Rn. It describes how the Lebesque measure has to change under the
isomorphism ϕ, i.e. from dx1...dxn to J(ϕ)ydy

1...dyn, in order to keep the integral value invari-
ant. As the calculation in (114) and (115) shows, the transformation property of the n-form ω
compensates this change in measure, making the integral over ω invariant under orientation pre-
serving isomorphisms, such as the overlap functions of the coordinates charts or the isomorphism
L (defined in the next subsection) mapping uniquely between two distinct metric structures.

As the global change-of-variable formula is valid for any k-form integrated over a k-dimen-
sional manifold, there follows the stated independency of the topological equation (80) in integral
form of changes in the metric structure, whereas their independency of orientation is a conse-
quence of using straight and twisted k-forms (cf. Sect. 7.3).

9.2.2 Dependency of vector proxies and vector-invariant equations on metric and
orientation

In case of vector-invariant equations that apply vector fields to describe the quantities of interest,
we first have to define integrals over these vector fields to calculate the corresponding quantities
of interest. These integral representations will allow us to study how the vector proxy fields and
the vector-invariant equations behave under changes of metric and orientation.

Classical integral representation

We regard in the following classical integral representations of 1-, 2- and 3-forms on oriented
3-manifolds M ⊂ R3 (cf. Jänich (2001)). Eqn. (115) illustrates how the integral of a compact
3-form 3ρ over a volume V ⊂M can be represented by the classical notion of a Lebesque integral
in R3 over the component function ρ : R3 → R (denoted as proxy field of 3ρ in the following),
i.e. ∫

V

3ρ =

∫

V
ρdV, (116)

with dV indicating the Lebesque measure (cf. Eqn. (15)).

We proceed by introducing for 1- and 2-forms their representations as classical line and
surface integrals, respectively. To this end, we first define parameter representations of curves
and surfaces embedded in R3. In order to define surface integrals, we map the two parameters
(u, v) ∈ G ⊂ R2 by the three orientation preserving coordinate functions xi : G→ R

3; (u, v) 7→
xi(u, v), i = 1, 2, 3, in short ~x(u, v), to a surface A in R3. ~x is here the inverse of the coordinate
chart (U, φ), i.e. φ−1 = (x1, x2, x3). The canonical basis ( ∂

∂u ,
∂
∂v ) of TpA for every p = ~x(u, v) in
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U ⊂ A under this coordinate chart is given in R3 by the vectors ∂~x
∂u and ∂~x

∂v .
7 This follows, if one

regards the tangent vectors as derivatives acting on a function f 7→ ∂
∂uk(φ(p))

f ◦φ−1|φ(p), k = 1, 2,

(cf. Remark 1), hence f 7→ ∂
∂ufx

i|φ(p),
∂
∂vfx

i|φ(p), i = 1, 2, 3. Based on these tangent vectors we

define the area element d~a as vector-valued 2-form by d~a :=
(
∂~x
∂u ×

∂~x
∂v

)
du ∧ dv ∈ Ω2(U,R3).

These definitions allow us to represent the integral of a compact 2-form 2u ∈ Ω2(U) over a
surface A by a classical surface integral of the vector proxy field ~F = (2u)♯ (cf. Remark 4) over
A, i.e. ∫

A

2u =

∫

A

~F · d~a =

∫

A

~F · ~ηda, (117)

where ~η := d~a/||d~a|| is the unit vector field normal to surface A. The rightmost term in
Eqn. (117) can be seen as classical integral of the function ~x 7→ ~F (~x) · ~η(~x) with Lebesque
measure da := ||d~a||.

Analogously, we introduce line integrals by mapping the parameter t ∈ I ⊂ R by the orien-
tation preserving coordinate functions ~x := (x1, x2, x3) : I → R

3; t 7→ ~x(t), to a 1-dimensional
curve S ⊂ R3. At every point p of U ⊂ S the tangent vector ∂

∂t ∈ TpS is given in R3 by the vec-

tor ∂~x
∂t . The latter tangent vectors allow us to define the line element d~s as vector-valued 1-form

d~s := ∂~x
∂t dt ∈ Ω1(U,R3). Then, we can represent the integral of a compact 1-form 1u ∈ Ω1(U)

along a curve S by a classical line integral of the vector proxy field ~u = (1u)♯ (cf. Sect. 2.1.5)
along S, i.e. ∫

S

1u =

∫

S
~u · d~s =

∫

S
~u · ~τds , (118)

where ~τ := d~s/||d~s|| is the unit vector field tangent to curve S. The rightmost term in Eqn. (118)
can be seen as classical integral of the function ~x 7→ ~u(~x)·~τ(~x) with Lebesque measure ds := ||d~s||.

According to Eqn. (113), integrals over 1-, 2-, and 3-forms and the corresponding integral
values on the left-hand side of Eqns. (118), (117), and (116), respectively, are invariant under
different metric structures. As the Lebesque measures ds, da, and dV on the respective right-
hand sides do depend on the metric (as they apply the norm, the inner and/or the cross product),
variations of the measures caused by changes in metric must be compensated by the vector proxy
fields in order to keep the integral values constant. We discuss this in more detail in the next
subsection.

Remark 24. Volume forms (non-vanishing n-forms) on n-dimensional manifolds (or submani-
folds) induce unique measures that can be defined without resorting to the Lebesque measure
on Rn. However, there exist an infinite number of such volume forms. A canonical choice can
nevertheless be made by applying a metric (cf. Sect. 2.1.2), as done above for the measures
ds, da and dV .

Metric dependency of classical integration

On Euclidean spaces (En,g) and on Riemannian manifolds (M,g), there exist different realiza-
tions of metric structures (cf. Sect. 2.1.4). These structures are isomorphic to each other, that
is, for two realizations of an inner product on En orM, there exists a unique linear map L and,
for every such pair of inner products, there exist such unique map (Bossavit (2005)). Similarly
to the definition of orientation by equivalence classes of frames (cf. Sec. 7.1), these maps L link
between frames of same and opposite orientations.

7In Fig. 2, for instance, the local coordinate system (x1, x2, x3) at point ~x = ~x(λ, ϕ, r) is spanned by the
tangent vectors ∂~x

∂λ
= x1, ∂~x

∂ϕ
= x2 and ∂~x

∂r
= x3.



A new hierarchically-structured n-dimensional covariant form of equations of GFD 53

In more detail, given a topological 3-manifoldM⊂ R3 equipped with two distinct structures
{·, Or} := (M,g, Or) and {◦̃, Õr} := (M, g̃, Õr) that are connected by the invertible map
L : U ⊂ M → V ⊂ M such that ~u ◦̃~v = L~u · L~v ∀~u,~v ∈ U , a direct frame {~u,~v, ~w} ∈ U
on the structure {·, Or} is mapped by L to the frame {L~u,L~v, L~w} ∈ V on {◦̃, Õr}. The
orientations are related by Õr = sign(det(L))Or. The volume that is spanned by the frame
{~u,~v, ~w} is given by ∆V (~u,~v, ~w) := det(~u,~v, ~w), and that spanned by {L~u,L~v, L~w} is given
by det(L~u,L~v, L~w) = det(L) det(~u,~v, ~w) using properties of the product of squared matrices.

Setting ∆̃V (~u,~v, ~w) := det(L~u,L~v, L~w), the change in volume is given by

∆̃V (~u,~v, ~w) = det(L)∆V (~u,~v, ~w) . (119)

If we assume, in agreement with the definition of integrals over differential forms by Eqn. (15),
that these volumes converge against the corresponding Lebesque measures, i.e. lim∆→0∆V →
dy1...dy3 and lim∆→0 ∆̃V → dx1...dx3 for xi ∈ V, yi ∈ U, i = 1, 2, 3, then Eqn. (119) agrees with
the transformation formula (115), which, in turn, describes the transformation behavior of the
Lebesque measure dV of Eqn. (116).

To derive the metric dependency of the line and area measures ds and da, we exploit the fact
that in R3 the volume of {~u,~v, ~w} on {·, Or} can also be represented by ∆V (~u,~v, ~w) = (~u×~v)· ~w.

A similar representation also exists on {◦̃, Õr} by ∆̃V (~u,~v, ~w) = (~u×̃~v) ◦̃ ~w. As the relation
between the inner products · and ◦̃ is given by definition, these volume representations allow
us to determine the “new” cross product on the structure {◦̃, Õr}, as given in the following
proposition (cf. also Bossavit (2005)).

Proposition 1. Given a direct frame {~u,~v, ~w} and an isomorphism L connecting the structures
{·, Or} and {◦̃, Õr} on M⊂ R3, there are following changes in the

1. norm: |̃|~u|̃| = ||L~u||,

2. cross product: L(~u×̃~v) = L~u× L~v, or alternatively: (~u×̃~v) = det(L)
LaL (~u× ~v),

where La denotes the adjoint operator of L.

Proof. By the definition of a norm ||~u|| := (~u · ~u)
1
2 , there follows |̃|~u|̃| = (~u ◦̃ ~u)

1
2 = (L~u · L~u)

1
2 =

||L~u||. With ∆̃V (~u,~v, ~w) = (~u×̃~v) ◦̃ ~w, the change in the cross product follows from

∆̃V (~u,~v, ~w) = (~u×̃~v) ◦̃ ~w = L(~u×̃~v) · L~w

= det(L~u,L~v, L~w) = (L~u× L~v) · L~w ,
(120)

when comparing the rightmost terms in Eqn. (120) for any L~w. Using this identity, the change
in the alternative form of the cross product is given by

∆̃V (~u,~v, ~w) = (L~u× L~v) · L~w = L(~u×̃~v) · L~w = LaL(~u×̃~v) · ~w

= det(L)∆V (~u,~v, ~w) = det(L)(~u× ~v) · ~w .
(121)

when comparing the rightmost terms in Eqn. (121) for any ~w.

Given, in {·, Or}, the area element by the vector-valued 2-form d~a :=
(
∂~x
∂u ×

∂~x
∂v

)
du ∧ dv of

Eqn. (117) and the line element by the vector-valued 1-form d~s := ∂~x
∂t dt of Eqn. (118), then the

line and area measures in {◦̃, Õr} are given by

d̃~s = d~s , d̃~a =
|det(L)|

LaL
d~a . (122)
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This follows from Proposition 1 and from the fact that in the definition of d~s no metric is
involved. The use of the absolute value |det(L)| assures that d̃~a and d~a point in the same
direction for all L.

The volume of {~u,~v, ~w} is a vector product of the vectorial area ∆~a = ~u× ~v and the length
∆~s = ~w, i.e. ∆V = ∆~a · ∆~s. Analogously, the volume element is given by dV = d~a ∧ d~s =((

∂~x
∂u ×

∂~x
∂v

)
· ∂~x∂t

)
du ∧ dv ∧ dt. The integral over any compact function f : Rn → R, given by

∫

V
f d̃V =

∫

A

∫

S
f d̃~a ◦̃ d̃~s =(LaL)

∫

A

∫

S
f d̃~a · d̃~s

= |det(L)|

∫

A

∫

S
fd~a · d~s = |det(L)|

∫

V
fdV,

(123)

fulfills the transformation property of Eqn. (115) for all isomorphisms L, also for orientation-

reversing ones, if and only if d̃~s = d~s. This fact underpins the invariance of d~s under changing
metric.

Transformation properties of proxy fields and differential operators

We study now how the changes in the Lebesque measures influence the integrands – given in
Eqn. (116) by the proxy ρ, and in (117) and (118) by the vector proxies ~F and ~u, respectively
– in order to keep the corresponding integral values invariant under changes in metric and
orientation.

Given the vector fields ~X, ~̃X ∈ X (M) on the (by L connected) structures {·, Or} and {◦̃, Õr},
respectively, the value of the line integral over some fixed curve S, denoted with l(S), is inde-
pendent of the chosen structure and given by

l(S) =

∫

S

~X · d~s =

∫

S

~̃X ◦̃ d̃~s . (124)

This invariance of l(S) under changing structures is only fulfilled if the vector fields transform
like

~̃X =
1

(LaL)
~X . (125)

This requirement follows from
∫
S
~̃X ◦̃ d̃~s =

∫
S
~̃X · (LaL)d̃~s =

∫
S
~X · d~s, where the change in line

measure d̃~s = d~s of (122) has been used.

Analogously, the value of the area integral of the flux vector fields ~F , ~̃F ∈ X (M) over some
fixed area A, denoted with φ(A), is independent of the chosen structure, i.e.

φ(A) =

∫

A

~F · d~a =

∫

A

~̃F ◦̃ d̃~a . (126)

In order to keep the flux φ(A) invariant under changing structures, the flux vector fields must
transform like

~̃F =
1

|det(L)|
~F . (127)

This follows from
∫
A
~̃F ◦̃ d̃~a =

∫
A
~̃F · (LaL)d̃~a =

∫
A
~̃F · |det(L)|d~a =

∫
A
~F · d~a, where the change

in area measure d̃~a = | det(L)|
LaL d~a of (122) has been used.

Finally, also the value for the volume integral of the density functions ρ, ρ̃ ∈ Ω0(M) over
some fixed volume V , denoted with m(V ), is independent of the chosen structure, i.e.

m(V ) =

∫

V
ρdV =

∫

V
ρ̃ d̃V . (128)
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In order to keep m(V ) constant under changing structures, the density functions must transform
like

ρ̃ =
1

|det(L)|
ρ , (129)

which follows from
∫
V ρ̃d̃V =|det(L)|

∫
V ρ̃dV =

∫
V ρdV according to Eqn. (123).

In sum, to keep the integral values unchanged, the proxy fields have to compensate variations
of the Lebesque measures caused by changes in metric and orientation. Hence, prognostic
variables described by these proxy fields depend on these structures, too. In contrast, using
straight and twisted differential forms to describe the prognostic variables (as in Eqns. (80)),
we achieve metric independent descriptions of the fluid’s quantities of interest. For instance,
the density proxy ρ in the continuity equation (24) is given in [kg/m3] (which follows from
Eqn. (129)), whereas the 3-form ρ̃ in Eqn. (80) is given (analogously to the corresponding
integral m(V )) in [kg] (cf. Sect. 7.3), hence metric (and orientation) independent. Similarly,
the vector proxy ρ~u in Eqn. (24) is given in [kg/s/m2] (which follows from Eqn. (127)), whereas
the 2-form ρ̃u in Eqn. (80) is given (analogously to the corresponding integral φ(A)) in [kg/s],
again metric (and orientation) independent.

Similarly to the proxy fields, the differential operators too transform with changing metric
and orientation, as stated in the following proposition.

Proposition 2. Let the topological manifold M ⊂ R3 be equipped with the structures {·, Or}
and {◦̃, Õr} that are connected by L. Then, for a given function ϕ ∈ C1(M) and a vector field
~X ∈ X (M) on any of these structures, the differential operators transform like

∇̃ϕ =
1

(LaL)
∇ϕ , (130)

∇̃× ~X =
1

det(L)
∇×(LaL ~X) , (131)

∇̃◦ ~X = ∇· ~X . (132)

Proof. As the gradient of the scalar field is a vector, the transformation rule (130) for the

gradient operator follows with ~̃X := ∇̃ϕ and ~X := ∇ϕ directly from Eqn. (125).

In order to prove the transformation rule (131) for the curl operator, we apply ∇̃× on the
vector field ~X . The resulting term can be reformulated like

∫

A
d̃~a ◦̃ (∇̃× ~X) =

∫

∂A
d̃~s ◦̃ ~X =

∫

∂A
d~s · LaL ~X =

∫

A
d~a ·

(
∇× (LaL ~X)

)
, (133)

or

∫

A
d̃~a ◦̃ (∇̃× ~X) =

∫

A
d~a · (∇̃× ~X) ·

{
+|det(L)| if Õr = Or,

−|det(L)| if Õr 6= Or.
(134)

In Eqn. (133) Stokes’ theorem has been applied twice while using (122). In Eqn. (134) the change
in area measure of Eqn. (122) has been used. The signs follow as, for a given inner oriented

of ∂A, d̃~a and d~a have to be parallel (+) if Õr = Or or antiparallel (−) if Õr 6= Or. This
eliminates the absolute value bars. Comparing the rightmost terms in Eqns. (133) and (134)
gives the transformation rule for the curl operator.

Analogously, the transformation rule (132) for the divergence operator can be proven. To

this end, we apply ∇̃◦ on the vector field ~X and reformulate like
∫

V
d̃V ∇̃◦ ~X =

∫

∂V
d̃~a ◦̃ ~X = |det(L)|

∫

∂V
d~a · ~X = |det(L)|

∫

V
dV ∇· ~X , (135)

or

∫

V
d̃V ∇̃◦ ~X = |det(L)|

∫

V
dV ∇̃◦ ~X . (136)
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In Eqn. (135) Gauss’ theorem has been applied twice while using (122). In Eqn. (136) the change
in volume measure (123) has been used. Comparing the rightmost terms in Eqns. (135) and
(136) gives the transformation rule for the divergence operator.

Transformation properties of the vector-invariant equations

Having the transformation rules for the proxy fields and the differential operators on hand,
we finally study how the vector-invariant momentum and continuity equations transform under
changing structures. To this end, we represent the vector-invariant momentum equation on
structure {◦̃, Õr} as follows:

∂

∂t
~̃u+ ∇̃×~̃ζ + ∇̃

(
h̃+ Φ̃A + κ̃

)
= 0 , (137)

using the enthalpy density h̃ := (ω̃ + p̃
ρ̃) of Eqn. (82). Applying the results obtained above, we

seek the corresponding form of this equation on structure {·, Or}. According to the discussion
in Sect. 7.3, the scalar fields h̃ = h, Φ̃A = ΦA, κ̃ = κ describing energy densities (in [J/kg])
remain unchanged on different structures. The gradients of these scalars and the velocity field

transform according to Eqn. (125). For the vorticity ~̃ζ, which can be seen as flux vector and

thus transforms according to Eqn. (127), it follows by Proposition 2: ∇̃×~̃ζ = 1
det(L)2

∇×(LaL~ζ).

In sum, we find

∂

∂t

1

(LaL)
~u+

1

det(L)2
∇×(LaL~ζ) +

1

(LaL)
∇
(
h+ΦA + κ

)
= 0 , (138)

⇒
∂

∂t
~u+∇×~ζ +∇

(
h+ΦA + κ

)
= 0 , (139)

where Eqn. (139) follows from Eqn. (138) multiplied by LaL, as (LaL)2

det(L)2 = I with identity matrix

I. The latter identity follows directly from the definition of the adjoint La of L by LaL = det(L)I.

The vector-invariant continuity equation on {◦̃, Õr} is

∂

∂t
ρ̃+ ∇̃◦ (̃ρ~u) = 0 . (140)

The density transforms like Eqn. (129) and the mass-flux density like (̃ρ~u) = 1
|det(L)|ρ~u, according

to Eqn. (127). As the divergence operator is invariant under changing structures (cf. Eqn. (132)),
the continuity equation on {·, Or} is given by

∂

∂t

1

|det(L)|
ρ+∇·

1

|det(L)|
(ρ~u) = 0⇔

∂

∂t
ρ+∇· (ρ~u) = 0 . (141)

These calculations show that in the vector-invariant equations the variations of proxy fields
and differential operators that are caused by changing structures compensate each other. Con-
sequently, on both structures {·, Or} and {◦̃, Õr}, the form of the momentum equations (139)
and (137) and of the continuity equations (141) and (140), respectively, remains the same. This
proves the form-invariance of the vector-invariant fluid equations under changing structures.
This invariance is also the reason why these equations are denoted as vector-invariant.
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9.3 Summary of Part 2

In this second part of the manuscript, we introduced n-dimensional covariant equations of GFD
by using an n-dimensional 2-form to describe the rotation of the n-manifold, and we provided for
these equations local coordinate representations. Based on these covariant Euler’s equations of
GFD, we additionally introduced hierarchically-structured covariant equations that are split into
metric-free and metric-dependent parts. This splitting has been enabled by the use of straight
and twisted differential forms, which make the equations invariant under changing orientation,
and of an additional auxiliary vector field. Similar formulations would not exist in terms of
vector calculus, which prevents us from a direct comparison of these covariant equations with
corresponding vector-invariant ones.

We discussed the new features coming alongside these new formulations and showed that
these covariant equations conserve absolute circulation and hence potential vorticity, conserva-
tion properties essential in geophysical fluid dynamics. Being independent of dimension, these
results are also valid for the covariant equations introduced in Part 1, as illustrated in Sect. 9.1
on the 2-dimensional split covariant shallow-water equations.

We provided a geometrical interpretation of the split covariant Euler’s equations of GFD; in
particular, we showed that the metric-independent character of the topological equations (80)
is also reflected by their units which do not contain metric terms. The fluid’s quantities of
interest such as velocity or mass, which result from integrals over differential forms describing the
prognostic variables, share this property. In contrast, in case of changing metric and orientation,
prognostic variables that are described by (vector) proxy fields, such as the density proxy ρ
or the velocity proxy field ~u, have to compensate changes in the Lebesque measures (which
are caused by changing dot- and cross products) in order to keep the integral values of the
quantities of interest invariant. We showed explicitly these transformation behaviors of proxy
fields, differential operators, and vector-invariant equations.

10 Conclusions and Outlook

We introduced to the best of our knowledge new n-dimensional covariant equations of geophys-
ical fluid dynamics (GFD) valid on rotating n-manifolds M. These equations, which apply
differential forms to describe the fluid’s prognostic variables, follow by solving the covariant
master balance law of Marsden and Hughes (1983). We additionally introduced hierarchically-
structured n-dimensional covariant equations of GFD that are split into topological and metric
parts. We proved that all introduced sets of covariant equations are well-defined, that they
conserve potential vorticity, and that Kelvin’s circulation theorem holds. Finally, we provided
local coordinate representations for these equations.

From the given discussions we conclude that differential forms are optimal descriptors for
forces in a fluid, but also for the other quantities of interest such as vorticity and mass. In
this context, the fluid’s velocity is described by a 1-form. By applying the Riemannian lift
♯ on the latter, the conventional description of a fluid’s velocity by a vector proxy field can
be obtained. In contrast to the 1-form, this proxy field does, however, depend on the metric
structure, as ♯ does. Therefore, the description using differential forms is optimal in the sense
that only those mathematical structures that are really required, i.e. a topological manifold, are
used. Furthermore, differential forms mimic measurement devices as they, too, assign to finite
volumes, and not to point values as in case of local equations, values for the fluid’s quantity of
interest (cf. Sect. 7.3.3).

In formulation (80), we obtained a hierarchical structure of the equations by splitting them
into topological and metric parts. This could be achieved by introducing additional (twisted)



58 Werner Bauer

differential forms in the continuity and an auxiliary velocity field in the momentum equation.
The use of straight forms in the latter, and twisted forms in the former equation considers the
geometrical properties of the fluid flow, namely the dimension of the fluid’s quantity of interest
(for instance, for the mass n and for the mass-flux (n − 1) dimensions) and whether these
quantities have to be inner or outer oriented. It is interesting to notice that the split covariant
shallow-water equations of Sect. 9.1 and the covariant Maxwell’s equations of Bossavit (2001,
2005) have very similar structure.

The new structure reveals moreover important geometrical features of the equations of GFD.
For instance, it illustrates how the metric-free momentum and continuity equations on an ori-
ented manifold (M, Or) geometrically interact and how these metric-free equations are connected
by the metric-dependent ones that apply g and Or. In particular, the use of twisted differen-
tial forms and of the twisted Hodge star operator, which all carry along information about the
manifold’s orientation, makes the form of the equations independent of the choice of orientation.

Comparable formulations would not exist in vector calculus. This prevents us from a direct
comparison of our covariant equations with corresponding vector-invariant ones. Hence, we
provided for both formulations corresponding representations on a rotating Cartesian coordinate
frame, one which is often used in GFD. These representations provided concrete formulas for
the differential operators in terms of vector calculus and exterior calculus for two and three
dimensions, and we could establish identities between these local coordinate representations. In
spite of these identities, we illustrated how vector fields and differential forms used to describe the
fluid’s quantities of interest behave differently under changing metric and orientation. Evaluating
these quantities by integrals over finite curves, surfaces or volumes, we have shown that vector
fields change their values with changing metric, while differential forms are invariant under such
changes.

Our further work, for which the current manuscript provides a profound basis, will mainly
aim at two directions. On the one hand, we will further study the split Euler’s equations with
respect to analytical conservation laws of the fluid flow, such as the conservation of energy, of
enstrophy including its higher moments, and of helicity. Subject of future work could be, in
addition, how these quantities behave on simplified sets of covariant fluid equations, such as
covariant vorticity or shallow-water equations that either descend from conventional or from our
split Euler’s equations of GFD, and how these simplified fluid equations expressed in either form
relate.

More important in terms of practical applicability will be, however, the other research di-
rection in which we develop a systematic discretization approach for the covariant equations of
GFD. This systematic discretization method is based on the hierarchical structure of the split
equations. In concrete, the approximation of the topological manifold by discrete meshes and of
the differential forms by suitable discrete differential forms (i.e. by constant, linear, or higher-
order finite element spaces) provides metric-free algebraic momentum and continuity equations.
Such equations exist on independent primal and dual meshes. A discrete Hodge star (e.g. a
diagonal matrix) connects these meshes, carries metric information, and closes the algebraic set
of equations. In Bauer (2013), we introduced this method for the split linear shallow-water
equations by using triangular and hexagonal meshes, piecewise constant differential forms, and
diagonal matrices as discrete Hodge star operator (cf. Desbrun et al. (2005a)); we thus derived
structure-preserving triangular and hexagonal C-grid discretizations.

An essential part of our discretization approach is its general character, i.e. in princi-
ple also linear and higher order finite element approximations for the differential forms (cf.
Bossavit (2002); Arnold (2013)) as well as non-diagonal matrices (cf. Bossavit (2001)) can be
used. The corresponding functional spaces and operators are provided by the methods of dis-
crete exterior calculus (DEC) (Desbrun et al. (2005a)) and of finite element exterior calculus
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(FEEC) (Arnold et al. (2006)). Studying first the nonlinear shallow-water equations, similarly
to Cotter and Thuburn (2014), and then extending these results to the full covariant equa-
tions, we aim in the long term at providing for the split covariant Euler’s equations of GFD
a systematic discretization approach that automatically results in reliable, structure-preserving
discretizations with the desired accuracy.
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