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Highlights

• We consider 3 different strategy classes for the Iterated Prisoner’s Dilemma.
• With partner strategies, players ensure that mutual cooperation is a stable equilibrium.
• A player using a competitive strategy never obtains less than the co-player
• With a ZD strategy, a player can unilaterally enforce a linear relation between payoffs.
• We characterize these 3 classes within the space of memory-one strategies.
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1. Introduction

In a one-shot Prisoner’s Dilemma (PD) game, the two players have to
choose between C and D (to cooperate resp. to defect). Following the
notation in Rapoport and Chammah (1965), the payoff matrix is given by

C D

C R,R S,T

D T,S P,P

(1)

in which the four payoff variables represent the reward for mutual cooperation
R, the sucker’s payoff S, the temptation to defect T , and the punishment for
mutual defection P . Payoffs satisfy the inequalities T >R>P >S, such that
defection is a dominant strategy, but mutual cooperation is preferred over
mutual defection. In addition to these inequalities, we shall also assume that

2R > T + S, (2)

such that mutual cooperation is unanimously preferred from a group perspec-
tive.1 In such cases, experimental evidence suggests that many players want

1Whereas this additional constraint is rather uncommon in economics, it is fairly com-
mon in psychology and in the evolutionary game theory literature (e.g., Rapoport and
Chammah, 1965; Axelrod, 1984). Inequality (2) rules out some additional complications
that arise when players need to coordinate on different actions to obtain the social op-
timum. The difficulties become more apparent in the repeated game. As part of our
analysis, we wish to characterize strategies which only depend on the decisions of the last
round (so-called memory-one strategies), and which enforce a fair and efficient outcome
(which will be referred to as partner strategies). When 2R < T +S, efficiency requires
players to alternate between cooperation and defection, and to establish an equilibrium
path (CD, DC, CD, DC,...). Now problems can arise when players observe a round with
mutual defection, since a memory-one player is unable to determine who of the two players
deviated from the equilibrium path (or in which stage of a possible punishment phase the
players are). These issues can be circumvented when players are allowed to have longer
memory (Mailath and Olszewski, 2011), or when the action space is rich (e.g., when the
action space is a convex set, see Barlo et al., 2009). Herein, we will neglect these addi-
tional complications by focusing on games that satisfy the constraint (2). However, we
note that inequality (2) is only used in proofs of results pertaining to partner strategies
(Lemma 2 and Proposition 1). All other results presented in this manuscript (Lemma 1
and the Propositions 2–6) are independent of this condition.
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to achieve conditional cooperation. They are willing to play C, provided the
co-player also plays C (see, e.g., Fehr and Fischbacher, 2003; Yamagishi et
al., 2005). However, short of a commitment device, this cannot be ensured.
Thus, players either have to trust their co-player, or else use their dominant
strategy.

The situation is different for an iterated PD game (IPD). Diverse ‘folk
theorems’ state that any feasible and individually rational outcome can be
sustained as an equilibrium if the probability δ of a further round is suffi-
ciently large. Such outcomes can be enforced in various ways, and under a
wide range of circumstances (see, e.g., Friedman, 1971; Aumann, 1981; Au-
mann and Shapley, 1994; Fudenberg and Maskin, 1986; Kalai, 1990; Myerson,
1991; Mailath and Olszewski, 2011). If subjects can make binding commit-
ments ahead of the game, then analogous results can be obtained even for
one-shot games (Kalai et al., 2010).

Experimental research has uncovered considerable heterogeneity in hu-
man social preferences (Colman, 1995; Kagel and Roth, 1997; Camerer, 2003),
and a similar variety can be found among the strategies that are played in the
IPD (Milinski and Wedekind, 1998; Dal Bó and Frèchette, 2011; Fudenberg
et al., 2012). Players who in the one-shot game would opt for conditional co-
operation should be willing to engage in ‘partner’ strategies. Such strategies
aim for an average payoff R per round, which necessarily provides the same
payoff R for the co-player; should the co-player not go along, however, then
the co-player’s payoff will be less than R. Thus, a partner strategy appeals to
the co-player’s self-interest in order to further the own self-interest. It is fair,
and provides an incentive for the co-player to also be fair. In contrast, some
players tend to view their co-player as a rival, rather than a partner. The
main purpose, for such competitive players, is to do better, or at least as well
as the other player. A preference for dominating the co-player is particularly
likely in the context of a game, which often has antagonistic connotations.

The aim of the present manuscript is two-fold: first, we are going to char-
acterize all memory-one strategies which are either competitive, or partner
strategies in the sense above. We emphasize that players using such strate-
gies can enforce their preferences against all comers, since we impose no
restrictions on the strategies used by the co-players. For partner strategies,
the corresponding results in the limiting case of an IPD without discount-
ing have been obtained within the last two years (Akin, 2013; Stewart and
Plotkin, 2013, 2014). Here, we are going to extend the theory by allowing
for discount factors δ ≤ 1 (which may either be interpreted as the constant
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continuation probability of having another round, or as the players’ common
discount rate on future payoff streams). The recent progress was stimulated
by the unexpected discovery of so-called zero-determinant (ZD) strategies,
a class of memory-one strategies enforcing a linear relationship between the
payoffs of the two players, irrespective of the co-player’s strategy (Press and
Dyson, 2012). In particular, ZD strategies can fix the co-player’s payoff to
an arbitrary value between P and R; or ensure that the own ‘surplus’ (over
the maximin value P ) is twice as large as the co-player’s surplus; etc. Also
for ZD strategies, we are going to extend the theory to the case when future
payoffs are discounted, and δ ≤ 1.

The nature of our results is somewhat different from usual treatments of
repeated games. Our article does not focus on equilibrium behavior (in par-
ticular, we do not aim to explore which payoffs rational players can achieve).
Instead, we define some interesting properties that a player’s strategy may
have (e.g., being competitive); and then we are going to characterize all
memory-one strategies that have the respective property (independent of
whether such a strategy can be sustained as an equilibrium). Thereby, we do
not make any assumptions on the behaviors of the co-players (e.g., we do not
require them to play best responses, or to follow a predefined equilibrium
path). Nevertheless, there are natural connections between several of the
described strategy classes and equilibrium behavior, and in that case we will
discuss these connections in detail.

In the discussion, we will briefly review the previous development, and
in particular the relevant findings in evolutionary game theory (Stewart and
Plotkin, 2012, 2013, 2014; Adami and Hintze, 2013; Hilbe et al., 2013,a; Akin,
2013; Szolnoki and Perc, 2014a,b; Wu and Rong, 2014). In a nutshell, these
findings say that in the context of populations of adapting players, partner
strategies do well, whereas competitive strategies fare poorly.

2. A fundamental lemma on mean distributions

We consider the standard setup of an IPD with perfect monitoring. In
each round, the two players choose whether to cooperate or to defect. That
is, they choose an action from their respective action set Ai = {C,D}, with
i ∈ {I, II}. The outcome of a given round t can then be described by an
action profile at ∈ A=AI×AII . After each round, both players observe the
chosen action profile, and they receive the respective payoffs as specified in
the payoff matrix (1). The round t history is a vector ht = (a0, a1, . . . , at−1) ∈
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At, and the set of possible histories is the union H = ∪∞
t=0A

t, with the initial
history A0 being defined as the null set A0 = {∅}. A strategy for player i is
a rule that tells the player how to act after any possible history; that is, a
strategy is a map σi : H → ∆(Ai), where ∆(Ai) denotes the set of probability
distributions over the action set Ai.2

For given strategies of the two players, let va(t) denote the probability
that the resulting action profile played in round t is a ∈ {CC,CD,DC,DD}.
For convenience, we use the following vector notation:

v(t) =
(
vCC(t), vCD(t), vDC(t), vDD(t)

)

gI =
(
R, S, T, P

)

gII =
(
R, T, S, P

)
(3)

Using this notation, we can write the players’ expected payoffs in round t as
πI(t) = gI · v(t) and πII(t) = gII · v(t). For a discount factor δ < 1, the
expected payoffs of the repeated game can then be defined by the Abelian
means

πI = (1− δ)
∞∑

t=0

δtπI(t) = gI · v, (4)

and similarly πII = gII · v, where v =
(
vCC , vCD, vDC , vDD

)
refers to the

(Abelian) mean distribution

v = (1− δ)
∞∑

t=0

δtv(t). (5)

In the limiting case δ = 1, the payoff per round is given by the Cesaro mean

πI = lim
τ→∞

1

τ + 1

τ∑

t=0

πI(t) (6)

(if this limit exists), and a similar expression for πII .3 A theorem by Frobe-
nius states that if the Cesaro mean exists, it is the limit of the Abelian mean,
for δ ↗ 1.

2Strictly speaking, this means that we are considering behavior strategies, see Sec-
tion 2.1.3 of Mailath and Samuelson (2006).

3This definition of payoffs for δ=1 is common in evolutionary game theory (e.g. Sig-
mund, 2010), whereas the equilibrium literature usually takes the lim inf of average payoffs
to ensure that payoffs are always defined. Obviously, if the limit in (6) exists, the two def-
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In the following, we will sometimes focus on players who only take the
decisions in the previous round into account.

Definition 1. A strategy σ is a memory-one strategy if σ(ht) = σ(h̃t′) for
all histories ht = (a0, . . . , at−1) and h̃t′ = (ã0, . . . , ãt

′−1) with t, t′ ≥ 1 and
at−1 = ãt

′−1.

For rounds t ≥ 1, the move of a memory-one player is therefore solely
determined by the action profile played in the previous round (in partic-
ular, we note that such players do not condition their behavior on the
round number, as sometimes considered in models of bounded recall, e.g.
Mailath and Olszewski, 2011). Such memory-one strategies can be writ-
ten as a 5-tuple p = (pCC , pCD, pDC , pDD; p0). The element p0 denotes
the probability to cooperate in the initial round. The continuation vector
p̃ := (pCC , pCD, pDC , pDD) denotes the conditional probabilities to cooperate
in rounds t≥ 1, depending on the outcome of the previous round (slightly
abusing notation, we let the first letter in the subscript refer to the player’s
own action in the previous round, and the second letter to the co-player’s
action. Using this convention, we ensure that the interpretation of a memory-
one strategy does not depend on whether the player acts as player I or as
player II, see Nowak and Sigmund, 1995). Examples of memory-one strate-
gies include AllD = (0, 0, 0, 0; 0), Tit For Tat (1, 0, 1, 0; 1), or Win-Stay,
Lose-Shift (1, 0, 0, 1; 1), see Sigmund (2010) for a comprehensive discussion.

When both players apply a memory-one strategy, the resulting mean
distribution v can be calculated explicitly (Nowak and Sigmund, 1995): if
player I uses the memory-one strategy p = (pCC , pCD, pDC , pDD; p0) against
a player II with memory-one strategy q = (qCC , qCD, qDC , qDD; q0), then

v = (1− δ)v(0) · (I4 − δM)−1, (7)

where v(0) =
(
p0q0, p0(1− q0), (1− p0)q0, (1− p0)(1− q0)

)
is the initial

distribution, I4 is the 4× 4 identity matrix, and M is the transition matrix

initions coincide. In the evolutionary literature, the strategy space is typically restricted
(for example to memory-one strategies), which often guarantees the existence of the limit.
Here, we have chosen the definition (6) to be consistent with the previous literature on ZD
strategies in repeated games without discounting, e.g. Press and Dyson (2012) and Akin
(2013).
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of the Markov chain,

M =

⎛

⎜⎜⎝

pCCqCC pCC(1− qCC) (1− pCC)qCC (1− pCC)(1− qCC)
pCDqDC pCD(1− qDC) (1− pCD)qDC (1− pCD)(1− qDC)
pDCqCD pDC(1− qCD) (1− pDC)qCD (1− pDC)(1− qCD)
pDDqDD pDD(1− qDD) (1− pDD)qDD (1− pDD)(1− qDD)

⎞

⎟⎟⎠ .

(8)
But even if only one of the players is using a memory-one strategy p, there is
still a powerful relationship between p and the resulting mean distribution v.

Lemma 1. Suppose player I applies a memory-one strategy p, and let the
strategy of player II be arbitrary, but fixed.

(i) In the case with discounting (δ<1), let v denote the mean distribution
of the repeated game. Then

(δpCC−1)vCC+(δpCD−1)vCD+δpDCvDC+δpDDvDD = −(1−δ)p0, (9)

or in vector notation, (δp̃−g0) ·v = −(1− δ)p0, where g0 = (1, 1, 0, 0).
(ii) In the case without discounting, we have

lim
τ→∞

1

τ + 1

τ∑

t=0

(p̃− g0) · v(t) = 0. (10)

In particular, if the Cesaro mean distribution v exists, (p̃− g0) · v=0.

Proof. Suppose δ < 1, and let qI(t) denote the probability that player I
cooperates in round t. Then qI(t) = g0 · v(t) and qI(t + 1) = p̃ · v(t). It
follows that w(t) := δqI(t+ 1)− qI(t) is given by

w(t) = (δp̃− g0) · v(t). (11)

Multiplying each w(t) by (1− δ)δt and summing up over t = 0, . . . , τ yields

(1− δ)
∑τ

t=0 δ
tw(t) = (1− δ)

(
δqI(1)− qI(0) + δ2qI(2)− δqI(1) . . .

)

= (1− δ)δτ+1qI(τ + 1)− (1− δ)qI(0) → −(1− δ)p0.
(12)

On the other hand, due to Eq. (11),

(1− δ)
τ∑

t=0

δtw(t) = (1− δ)
∑τ

t=0 δ
t(δp̃− g0) · v(t) → (δp̃− g0) · v (13)
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As both limits need to coincide, we have confirmed Eq. (9). For the case
without discounting, an analogous calculation as in Eq. (12) yields

1

τ + 1

τ∑

t=0

w(t) → 0, (14)

whereas Eq. (13) becomes

1

τ + 1

τ∑

t=0

w(t) =
1

τ + 1

τ∑

t=0

(p̃− g0) · v(t). (15)

It follows that the limit of 1
τ+1

∑τ
t=0(p̃ − g0). · v(t) for τ → ∞ exists and

equals zero.

It is worthwhile to stress the generality of Lemma 1: it neither makes
any assumption on the strategy used by the co-player, nor does it depend on
the specific payoff constraints of a prisoner’s dilemma. In the limiting case
δ = 1, Lemma 1 allows a geometric interpretation: the mean distribution v
(if it exists) is orthogonal to p̃− g0 (see Akin, 2013).

3. Partner strategies and competitive strategies

Definition 2. A player’s strategy is nice, if the player is never the first
to defect. A player’s strategy is cautious if the player is never the first to
cooperate.

For memory-one strategies, nice strategies fulfill p0 = pCC = 1, and cau-
tious strategies p0 = pDD = 0. As an example, the strategy TFT (1, 0, 1, 0; 1)
is nice, whereas the defector’s strategy AllD (0, 0, 0, 0; 0) is cautious.

Lemma 2. If 2R > T + S, then payoffs satisfy πI + πII ≥ 2R if and only
if πI = πII =R (which for δ < 1 holds if and only if both players are nice).
Similarly, if 2P < T + S, then πI + πII ≤ 2P if and only if πI = πII = P
(which for δ < 1 is equivalent to both players being cautious).

Proof. Due to Eq. (4), πI + πII = (gI + gII) · v = (2R, T + S, T + S, 2P ) · v.
As 2R > T +S, the inequality πI+πII ≥ 2R implies vCC = 1. For δ < 1, this
requires both players to cooperate in every round (if δ = 1, it only requires
the players to cooperate in almost every round). Similarly, for a prisoner’s
dilemma with 2P < T + S, the inequality πI + πII ≤ 2P implies vDD = 1.
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Figure 1: Schematic representation of partner strategies, competitive strategies, submissive
strategies and requiting strategies. The grey-shaded area depicts the set of possible payoff
pairs when player I adopts a strategy of the respective strategy class. The white dot
represents the payoff that player I gets against a co-player using the same strategy.

Definition 3.

(i) A partner strategy for player I is a nice strategy such that, irrespective
of the co-player’s strategy,

πI < R ⇒ πII < R. (16)

(ii) A competitive strategy for player I is a strategy such that, irrespective
of the co-player’s strategy,

πI ≥ πII . (17)

Figure 1 gives a schematic illustration of these two strategy classes. The
definition of partner strategies implies that these strategies are best replies to
themselves, and thus they are Nash equilibria. Even more, because condition
(16) is equivalent to (πII ≥ R) ⇒ (πI ≥ R), we can conclude due to Lemma 2
that (πII ≥ R) ⇒ (πI = πII = R). Thus, no matter which best reply the
co-player applies, a player with a partner strategy will always obtain the
mutual cooperation payoff R.

On the other hand, players with a competitive strategy always obtain at
least the co-player’s payoff. It is easy to see that for δ < 1 a competitive
strategy needs to be cautious (otherwise the focal player would be outcom-
peted by an AllD-player). In the limiting case δ = 1, competitiveness is
closely related to the concept of being unbeatable, as introduced by Duersch
et al. (2012). A strategy for player I is unbeatable, if against any co-player
and for any number of rounds, the payoff differential

∑τ
t=0

(
πII(t)−πI(t)

)
is

bounded from above (in particular, if the average payoffs per round converge
to πI and πII , then πI ≥ πII).
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Proposition 1. For a player I with a nice memory-one strategy p, the fol-
lowing are equivalent:

(i) p is a partner strategy;
(ii) If the co-player uses either AllD or the strategy (0, 1, 1, 1; 0), then πII<

R;
(iii) The two inequalities B1 < 0 and B2 < 0 hold, with

B1 = δ(T −R)pDD − δ(R− P )(1− pCD) + (1− δ)(T − R)

B2 = δ(T −R)pDC − δ(R− S)(1− pCD) + (1− δ)(T −R).
(18)

Proof. (i) ⇒ (ii) Assume to the contrary that πII ≥ R. Then the definition
of partner strategies implies that πI = πII = R. Since all players use
memory-one strategies, this would require that everyone cooperates
after mutual cooperation, which is neither true for AllD = (0, 0, 0, 0; 0)
nor for the strategy (0, 1, 1, 1; 0).

(ii) ⇒ (iii) Against a player using a nice memory-one strategy p (with
p0 = pCC = 1), the payoff of an AllD co-player is given by

π̂II =
(1− δ)T + δP − δPpCD + δTpDD

1 + δ(pDD − pCD)
. (19)

We note that this payoff is also defined when δ = 1, because pCD < 1
(otherwise p would satisfy p0 = pCC = pCD = 1, and player I would
always cooperate. In that case, an AllD co-player would receive T > R,
which is ruled out by (ii)). Elementary algebra yields

B1 =
(
1 + δ(pDD − pCD)

)(
π̂II −R

)
, (20)

In particular, B1 has the same sign as π̂II − R. On the other hand, if
the co-player uses the strategy (0,1,1,1;0), the co-player’s payoff is

π̃II =
(1− δ)T + δS + δ

(
(1− δ)R− S

)
pCD + δ(T + δR)pDC

1 + δ2(pDC − pCD) + δpDC
, (21)

and
B2 =

(
1 + δ2(pDC − pCD) + δpDC

)(
π̃II −R

)
. (22)

Therefore, B2 has the same sign as π̃II −R.
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(iii) ⇒ (i) Suppose that B1 < 0 and B2 < 0, and that πII ≥ R. We
need to show that πII = πI = R. As πII − R = (gII − R1) · v, with
1 = (1, 1, 1, 1), we note that πII ≥ R is equivalent to

(T −R)vCD − (R− S)vDC − (R− P )vDD ≥ 0. (23)

Using the linear equations 1 · v = 1 and (δp̃ − g0) · v = −(1 − δ)
(Lemma 1 with p0 = pCC = 1, since the memory-one strategy is nice),
we calculate vCD as a function of vDC and vDD:

vCD =

(
1− (1− pDC)δ)

)
vDC +

(
1− (1− pDD)δ

)
vDD

(1− pCD)δ
. (24)

The denominator of vCD is positive, as B1 < 0 implies pCD < 1. Plug-
ging (24) into (23) and multiplying both sides with (1 − pCD)δ shows
that πII ≥ R if and only if

B2vDC + B1vDD ≥ 0, (25)

with B1 and B2 as defined in (18). Thus, the assumptions B1 < 0 and
B2 < 0 indicate that vDC = vDD = 0, and by (24) that vCD = 0. We
conclude that vCC = 1, and therefore πI = πII = R, i.e., p is a partner
strategy.

For example, TFT is a partner strategy if and only if δ> T−R
T−P and δ> T−R

R−S ,

whereas WSLS is a partner strategy if and only if δ> T−R
R−P and δ> T−R

T−S , which
is a sharper condition. In analogy to the definition of partner strategies, one
may define a mild partner strategy for player I as a nice strategy such that
πI≤R implies πII≤R, irrespective of the co-player’s strategy.4 For memory-
one strategies, the characterization of mild partner strategies is analogous
to the characterization of partner strategies (only the strict inequalities in
Proposition 1 need to be replaced by weak inequalities).

4Equivalently, one may define mild partner strategies as nice strategies such that πII >
R implies πI >R. We note that if the premise was true and πII >R, then total payoffs
would exceed 2R, which is ruled out by Lemma 2. We conclude that mild partner strategies
enforce πII ≤ R. That is, mild partner strategies are exactly those nice strategies that
support mutual cooperation in a Nash equilibrium.
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Proposition 1 also provides an interesting connection to the folk theorems.
The existence of an equilibrium with individually rational payoffs (πI , πII) in
the IPD is typically shown by applying trigger strategies – any deviation from
the equilibrium path is punished with relentless defection (as for example in
Friedman, 1971).5 The following Corollary states that trigger strategies are,
in some sense, the most effective means to enforce a cooperative equilibrium
in the IPD.

Corollary 1. For a given prisoner’s dilemma and a given continuation prob-
ability δ, there exists a memory-one partner strategy if and only if the trigger
strategy Grim = (1, 0, 0, 0; 1) is a partner strategy.

Proof. The two quantities B1 and B2 in Proposition 1 are minimal for pCD=
pDC = pDD = 0. Thus, if there is a memory-one strategy that meets the
inequalities B1 < 0 and B2 < 0, then the corresponding inequalities are also
met by Grim.

From Corollary 1, we may also conclude that partner strategies exist if
and only if δ > T−R

T−P (this condition for the existence of fully cooperative
equilibria has been previously derived by Roth and Murnighan, 1978; Stahl,
1991).
Let us next give a characterization of competitive memory-one strategies:

Proposition 2. Suppose player I applies the memory-one strategy p. Then
the following are equivalent:

(i) p is competitive.

(ii) If the co-player uses either AllD or the strategy (0, 0, 0, 1; 0), then πI≥
πII .

(iii) The entries of p satisfy p0 = pP = 0 and δ(pCD + pDC) ≤ 1.

Proof. (i) ⇒ (ii) Follows immediately from the definition, a competitive
strategy yields πI ≥ πII against any co-player.

5For arbitrary stage games, trigger strategies support all outcomes that Pareto domi-
nate a Nash equilibrium of the stage game. To support any individually rational outcome
in a perfect equilibrium, players may have to use “stick and carrot” strategies instead,
which punish deviations only for a finite number of rounds, see Fudenberg and Maskin
(1986).
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(ii) ⇒ (iii) If player II applies AllD, then an explicit calculation of payoffs
yields

πI − πII = −
(T − S)

(
(1− δ)p0 + δpDD

)

1 + δ(pDD − pCD)
, (26)

and thus πI ≥ πII implies p0 = pDD = 0. Similarly, if player II applies
the strategy (0, 0, 0, 1; 0), we obtain (using p0 = pDD = 0):

πI − πII =
δ
(
T − S

)(
1− δ(pCD + pDC)

)

1 + δ
(
1− (1 + δ)pCD + δpDC

) . (27)

This is non-negative if and only if δ(pCD + pDC) ≤ 1.

(iii) ⇒ (i) By Lemma 1 and as pDD = p0 = 0,

δpDCvDC = (1− δpCC)vCC + (1− δpCD)vCD. (28)

Using the inequality δpDC ≤ 1− δpCD, this leads to

(1− δpCD)vDC ≥ (1− δpCC)vCC + (1− δpCD)vCD, (29)

or equivalently (1− δpCD)(vDC − vCD) ≥ (1− δpCC)vCC . This implies
vDC ≥ vCD. As a consequence, πI−πII = (gI−gII) ·v = (T−S)(vDC−
vCD) ≥ 0.

Figure 2 shows the space of partner strategies (and the space of com-
petitive strategies) as subsets of the nice memory-one strategies (cautious
memory-one strategies), respectively. One can also define the dual proper-
ties, and derive the corresponding characterizations: a strategy for player I
is said to be submissive if payoffs always satisfy πI ≤ πII , irrespective of the
strategy of player II; and a cautious strategy for player I is said to be requit-
ing if πI > P implies πII > P (see Figure 1 for a schematic representation of
these strategy classes). The corresponding characterizations are:

Proposition 3. Suppose player I applies the memory-one strategy p. Then
the following are equivalent:

(i) p is submissive;
(ii) If the co-player uses either AllC or the strategy (0, 1, 1, 1; 1), then πI≤

πII ;

13
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Figure 2: The space of partner strategies, competitive strategies, submissive strategies and
requiting strategies. Each grey block represents the set of strategies that fulfill the respec-
tive constraints in Propositions 1–4. For this representation, the continuation probability
was set to δ = 2/3, using the payoff values in Axelrod (1984), i.e. T = 5, R = 3, P = 1,
S = 0. The depicted pure strategies are: TFT =(1,0,1,0;1), Grim=(1,0,0,0;1), Win-stay
lose-shift: WSLS=(1,0,0,1;1), AllC=(1,1,1,1;1), AllD=(0,0,0,0;0) and suspicious Tit For
Tat: sTFT=(1,0,1,0;0).

(iii) The entries of p satisfy p0 = pCC = 1 and δ(1−pCD)+ δ(1−pDC) ≤ 1.

Proposition 4. Suppose the game payoffs satisfy 2P < T + S. Then, for a
player I with a cautious memory-one strategy p, the following are equivalent:

(i) p is requiting;

(ii) If the co-player uses either AllC or the strategy (0, 0, 0, 1; 1), then πII>
P ;

(iii) The two inequalities B1 > 0 and B2 > 0 hold, with

B1 = δ(R− P )pDC + δ(P − S)pCC − (P − S),

B2 = δ(T − P )pDC + δ(P − S)pCD − (P − S).
(30)

4. ZD-strategies

The previous results have highlighted how Lemma 1 can be used to char-
acterize several interesting strategy classes within the space of memory-one
strategies (for example, the strategies that allow a player to outcompete the
opponent, or the strategies that provide incentives to reach the social opti-
mum). In the following, we present another application of Lemma 1: there
are strategies with which a player can unilaterally enforce a linear relation-
ship between the players’ payoffs.
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Definition 4. A memory-one strategy p is said to be a ZD strategy if there
exist constants α, β, γ such that

δp̃ = αgI + βgII +
(
γ − (1− δ)p0

)
1+ g0. (31)

Proposition 5. Let δ<1, and suppose player I applies a memory-one strat-
egy p satisfying Eq. (31). Then, irrespective of the strategy of the co-player,

απI + βπII + γ = 0. (32)

The same relation holds for δ=1, provided that the payoffs πI and πII exist.6

Proof. This follows directly from Lemma 1, using the identities πI = gI · v,
πII = gII · v, and 1 = 1 · v.

In the following, let δ < 1. We proceed with a slightly different represen-
tation of ZD strategies, using the parameter transformation α = φχ, β = −φ,
and γ = φκ(1−χ).7 Under this transformation, ZD strategies take the form

δp̃ = φ
[
(1− χ)(κ1− gI) + (gI − gII)

]
− (1− δ)p01+ g0, (33)

and the enforced payoff relationship according to (32) becomes

πII − κ = χ(πI − κ). (34)

Eq. (34) implies that the payoffs lie on a line segment intersecting the diagonal
at some value κ (the payoff for the ZD-strategy against itself) and having a
slope χ (see Fig. 3).

Players cannot use ZD strategies to enforce arbitrary payoff relationships
of the form (34): since the entries of the continuation vector p̃ correspond

6If δ = 1, and the payoffs πI and πII according to Eq. (6) do not exist, one can derive
a slightly weaker result. In that case, it follows from Eq. (10) that

lim
τ→∞

1

τ + 1

τ∑

t=0

(
απI(t) + βπII(t) + γ

)
= 0.

7For δ < 1, the proof of Proposition 6 shows that ZD strategies require φ > 0 and
χ < 1 (and hence β < 0 and α + β < 0). This allows us to conclude that the given
parameter transformation is in fact bijective: the inverse is given by χ = −α/β, φ = −β,
and κ = −γ/(α+ β).
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Figure 3: Characteristic payoff relations for ZD strategies, equalizer strategies, extortion
strategies and generous strategies. The grey-shaded area represents the set of feasible
payoffs. In each graph, the strategy of player I was fixed, whereas for the strategy of
player II we sampled 1,000 random memory-one strategies. The resulting payoffs were
drawn as black dots. For general ZD-strategies, these dots are on a line (intersecting the
diagonal at κ, and having slope χ). Equalizer strategies have the additional property that
the slope χ is zero, i.e. the payoff of co-player II is fixed to κ, independent of the co-player’s
strategy. Extortion strategies are ZD-strategies with κ = P and 0 < χ < 1, and generous
strategies fulfill κ = R and 0 < χ < 1. For this figure, we have used the payoff values
in Axelrod (1984), T = 5, R = 3, P = 1, S = 0, and continuation probability δ = 4/5.
For the strategy of player I we have used: (i) ZD-strategy p = (0.85, 0.725, 0.1, 0.35; 0.1);
(ii) Equalizer strategy p = (0.875, 0.375, 0.375, 0.125; 0.5); (iii) Extortion strategy p =
(1, 0.125, 0.75, 0; 0); (iv) Generous strategy p = (1, 0.125, 0.75, 0; 1).

to conditional probabilities (and hence need to be in the unit interval), the
parameters κ, χ and φ need to obey certain restrictions. This gives rise to
the following definition.

Definition 5. For a given δ, we call a payoff relationship (κ,χ) ∈ R2 enforce-
able if there are φ ∈ R and p0 ∈ [0, 1] such that each entry of the continuation
vector p̃ according to Eq. (33) is in [0,1]. We refer to the set of all enforceable
payoff relationships as Eδ.

Proposition 6.

(i) The set of enforceable payoff relationships is monotonically increasing
in the discount factor: if δ′ ≤ δ′′, then Eδ′ ⊆ Eδ′′.

(ii) There is a δ < 1 such that (κ,χ) ∈ Eδ if and only if −1<χ<1 and

max

{
P,

S − Tχ

1− χ

}
≤ κ ≤ min

{
R,

T − Sχ

1− χ

}
, (35)

with at least one inequality in (35) being strict.
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Proof. (i) According to the definition, (κ,χ) ∈ Eδ if and only if one can
find φ ∈ R and p0 ∈ [0, 1], such that the corresponding continuation
vector p̃ according to Eq. (33) satisfies 0 ≤ δp̃ ≤ δ1, or equivalently,

(1− δ)(1− p0) ≤ φ(1− χ)(R− κ) ≤ 1− (1− δ)p0 (36a)

(1− δ)(1− p0) ≤ φ
[
(1− χ)(S − κ) + T − S

]
≤ 1− (1− δ)p0 (36b)

(1− δ)p0 ≤ φ
[
(1− χ)(κ− T ) + T − S

]
≤ δ + (1− δ)p0 (36c)

(1− δ)p0 ≤ φ(1− χ)(κ− P ) ≤ δ + (1− δ)p0 (36d)

We note that in (36a)–(36d), the left hand side is monotonically de-
creasing in δ, whereas the right hand side is monotonically increasing
in δ. In particular, if the conditions (36) are satisfied for some δ′ ≤ 1
they are also satisfied for any δ′′ ≥ δ′.

(ii) (⇒) Suppose (κ,χ) ∈ Eδ, and therefore the conditions (36) hold for
appropriate parameters φ and p0. Summing up the first inequality
in (36a) and the first inequality in (36d) shows

1− δ ≤ φ(1− χ)(R− P ). (37)

Similarly, by taking the inequalities in (36b) and (36c), we get

1− δ ≤ φ(1 + χ)(T − S). (38)

In particular, 0 < φ(1−χ) and 0<φ(1 + χ), and therefore φ > 0
and −1<χ<1. Moreover, the conditions (36) imply

0 ≤ φ(1− χ)(R− κ)

0 ≤ φ
[
(1− χ)(S − κ) + T − S

]

0 ≤ φ
[
(1− χ)(κ− T ) + T − S

]

0 ≤ φ(1− χ)(κ− P ).

(39)

Since φ > 0 and χ < 1, these conditions are equivalent to con-
dition (35). If none of the inequalities in (35) was strict, then
(36a) or (36b) would require p0=1, whereas (36c) or (36d) would
require p0=0.

(⇐) Conversely, let −1< χ< 1, and suppose max
{
P, S−Tχ

1−χ

}
≤ κ <

min
{
R, T−Sχ

1−χ

}
. Then the inequalities (39) hold for any choice of

φ > 0, with the first two inequalities being strict. In particular,
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Figure 4: Enforceable payoff relationships for players with a ZD strategy. The grey area
depicts all pairs (κ,χ) that are enforceable when the discount factor δ is sufficiently close to
one, as characterized in Proposition 6. The graph also depicts some particular subclasses
of ZD strategies: equalizer strategies (χ = 0), extortion strategies (κ = P , χ > 0), and
generous strategies (κ = R, χ > 0). The so-called fair strategies (with χ = 1) do only
exist in the limit of no discounting, δ = 1. For the illustration, we have taken the payoff
values in Axelrod (1984), i.e. T = 5, R = 3, P = 1, S = 0.

we can choose a φ sufficiently small such that each term on the
right hand’s side of (39) is bounded from above by 1/2. By setting
p0 = 0 and choosing a δ sufficiently close to one, it thus follows that
all inequalities in (36) can be satisfied. An analogous argument

holds when κ = min
{
R, T−Sχ

1−χ

}
, in which case one needs to set

p0 = 1.

The first part of Proposition 6 shows that a given linear payoff relation-
ship of the form (34) is easier to enforce when players are sufficiently patient.
As δ → 1, the limiting set of enforceable payoff relationships (κ,χ) is char-
acterized by Proposition 6(ii); Figure 4 provides an illustration.

There are various remarkable subclasses of ZD strategies (as depicted in
Fig. 3 and Fig. 4). For χ=0, we encounter so-called equalizer strategies (see
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Boerlijst et al., 1997; Press and Dyson, 2012). By Eq. (34), player I can
make use of such strategies to prescribe κ as payoff for player II. A player
can thus determine the opponent’s payoff (however, player I cannot fix the
own payoff, since this would require χ to be unbounded, which is ruled out by
Proposition 6). Press and Dyson (2012) also highlighted the class of extortion
strategies (with κ= P and 0< χ< 1). Extortion strategies guarantee that
the own ‘surplus’ over the minimax payoff P exceeds the opponent’s surplus
by a factor of χ−1. Moreover, since χ > 0, the payoffs of the two players
are positively related. Hence, to maximize the own payoff, player II needs
to maximize player I’s payoff: the best response against an extortioner is
to cooperate unconditionally. As a counterpart to extortioners, Stewart and
Plotkin (2012) defined the class of generous strategies, which satisfy Eq. (34)
with κ = R and 0 < χ < 1. Players using a generous strategy shoulder a
larger burden of the loss (with respect to the social optimum R) than their
co-player. Since χ > 0, they also ensure that the payoffs of the two players
are aligned, thereby motivating the co-player to cooperate. Finally, for games
without discounting it was noted that strategies with χ = 1 enforce πI = πII

(for δ = 1, TFT is an example of such a fair strategy, see Press and Dyson,
2012; Hilbe et al., 2014a). However, as Proposition 6 shows, fair strategies
cease to exist when future payoffs are discounted, and only approximately
fair strategies (with χ close to one) may be feasible.

ZD strategies can also be connected to the strategy classes discussed in
the previous section. Generous strategies, for example, are exactly the ZD
strategies which are submissive partner strategies (in particular it follows
that every generous strategy is a Nash equilibrium of the IPD). On the other
hand, for stage games with 2P < T + S (which ensures πI + πII ≥ 2P ),
extortion strategies are precisely those ZD strategies which are requiting and
competitive.

We note that herein, we have entirely focused on the repeated prisoners’
dilemma, due to the central role that this simple game situation takes in
the literature on the evolution of cooperation (Rapoport and Chammah,
1965; Trivers, 1971; Axelrod, 1984; Sigmund, 2010). However, the proofs of
Lemma 1 and Proposition 5 did not require any assumptions on the payoff
values (and in the proof of Proposition 6, we have only made use of the
assumptions R > P and T > S). Moreover, for δ = 1, it was recently shown
that similar results can also be obtained for stage games with 2 actions but
n ≥ 2 players (Hilbe et al., 2014a). Thus, while we believe that our results
are most intuitive in the context of a prisoner’s dilemma, the mathematics
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can be extended to more general strategic situations.

5. Discussion

The recent development began with the paper of Press and Dyson (2012)
introducing ZD strategies for repeated games without discounting. In this
context, Press and Dyson derived the linear relation (32). Their proof was
based on a neat formula for the payoffs achieved if both players use memory-
one strategies. This formula only involves vanishing determinants, which
explains the name ZD. Press and Dyson highlighted those ZD strategies that
fix the co-player’s payoff to a given value between P and R, as well as the
sinister properties of extortion strategies. They also stressed the fact that
more complex strategies (based on larger memories, for instance) are not able
to profit from their sophistication to gain the upper hand. The intriguing
aspects of ZD strategies raised considerable attention (see, e.g., Ball, 2012).
In the News section of the American Mathematical Society, it was stated
that ’the world of game theory is currently on fire.’ A more skeptical view
could be found among economists. The well-known folk theorem for repeated
games states that trigger strategies can induce a rational co-player to agree to
any feasible payoff pair above the minimax level P , by threatening to switch
to relentless defection otherwise (see Aumann, 1981; Kalai, 1990; Fudenberg
and Maskin, 1986, 1990). Seen from this angle, the progress consisted merely
in displaying memory-one strategies with a similar power to enforce specific
payoff pairs. However, there is a subtle difference: whereas the Folk theorems
are based on the assumption that players wish to maximize their payoffs, the
results presented herein are independent of such an assumption. Interpreted
in this way, we have explored how much control player I can exert on the
resulting payoffs without being sure about the motives of player II.

Memory-one strategies able to fix the co-player’s payoff had already been
derived in Boerlijst et al. (1997) and Sigmund (2010), based on an approach
different from that of Press and Dyson (2012). This method was used in
Hilbe et al. (2013) to provide another derivation of (32), not involving any
determinants. It was substantially extended by Akin (2013) to yield a general
equation for the mean distribution of memory-one strategies when δ = 1. In
this case, the mean distribution is understood in the sense of Cesaro, and need
not always exist. In Lemma 1, we have extended this approach to cover the
case δ < 1, from which Akin’s result for δ = 1 immediately follows. Lemma 1
offers a geometric tool for the investigation of memory-one strategies. The
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vector δp̃ consists of the conditional probabilities to play C in the next round
(δ is the probability that there is a next round), whereas g0 can be viewed
as ’conditional probability’ to play C in the current round. In the limit of
no discounting, Lemma 1 states that no matter which strategy player II is
using, the limiting distribution v (if it exists) is on a hyperplane orthogonal
to the difference of these two conditional probabilities. It was also Akin
(2013) who extended the investigations beyond the case of ZD-strategies, to
characterize partner strategies for δ = 1 (calling them ’good’ strategies, a
term we feel is too general).

In a comments article, Stewart and Plotkin (2012) introduced an example
of a generous strategy, and showed that in a round robin tournament con-
ducted after the fashion of Axelrod (1984), this generous strategy emerged as
winner. Stewart and Plotkin also asked whether ZD strategies were relevant
for evolutionary game theory. In this context, one considers a population
of players, each equipped with a strategy. The players are then allowed to
imitate other strategies, preferentially those with a higher payoff (see, e.g.,
Weibull, 1995; Samuelson, 1997; Hofbauer and Sigmund, 1998; Nowak, 2006;
Sandholm, 2010).

It is obvious that extortion strategies cannot spread too much in such
an evolutionary context; if they become too common, they are likely to en-
counter their own, which bides ill. If player I obtains twice the surplus of
II, and II twice the surplus of I, each surplus is zero. However, Hilbe et al.
(2013) showed that extortion strategies can pave the way for the emergence of
cooperative strategies, similar to TFT (which, for δ = 1, can be regarded as a
limiting case of an extortion strategy, Press and Dyson, 2012). This catalytic
role of extortion strategies has also been confirmed for games on networks, in
which players only interact within a small neighborhood (Szolnoki and Perc,
2014a,b; Wu and Rong, 2014). Overall, these studies confirm that extortion-
ate strategies have problems to succeed within a population. However, if the
games are played between members of two distinct populations - for instance,
between hosts organisms and their symbionts - then extortion strategies can
emerge in whichever population is slower to adapt (Hilbe et al., 2013). The
slower rate of evolution acts as a commitment device. In effect, the slowly
evolving organism becomes the Stackelberg leader in a sequential game, in
which the slow player learns to adopt extortion strategies, whereas the faster
evolving player learns to play the best response, and to cooperate uncondi-
tionally (Bergstrom and Lachman , 2003; Damore and Gore, 2011; Gokhale
and Traulsen, 2012).
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But even in a one-population setup, certain ZD strategies prove success-
ful: Stewart and Plotkin showed that evolutionary trajectories often visit
the vicinity of generous strategies. The dynamics leads ‘from extortion to
generosity’ (the title of Stewart and Plotkin, 2013). This is also confirmed,
by analytical means based on adaptive dynamics, by Hilbe et al. (2013a).
Remarkably, Stewart and Plotkin (2013, 2014) derived a characterization of
all memory-one strategies which are robust in an evolutionary sense, for given
population size N . This means that the replacement probability, as a resi-
dent strategy, is at most 1/N (which is the probability to be replaced if the
mutant is neutral). In the limit of weak selection, which roughly means that
the choice between two strategies is only marginally influenced by payoff (see
Nowak et al., 2004), all robust ZD strategies need to be generous (Stewart
and Plotkin, 2013). These predictions have also been tested in a recent be-
havior experiment, in which human subjects played against various computer
opponents (Hilbe et al., 2014). Although extortionate programs outcompeted
their human co-players in every game, generous programs received, on aver-
age, higher payoffs against the human subjects than extortionate programs.
Humans were hesitant to give in to extortion; although unconditional co-
operation would have been their best response in all treatments, they only
became more cooperative over time if their co-player was generous.

Intriguingly, if a player uses a generous strategy and the co-player does
not go along, then the focal player will always shoulder a larger part of the
loss (with respect to the mutual cooperation payoff R). Despite their forbear-
ance, generous strategies do very well - which is not the least of the surprises
offered by the Iterated Prisoner’s Dilemma game.
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