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1 Introduction

The four-graviton scattering amplitude in type II string theory in D dimensions has an

analytic part that possesses a low-energy expansion of the form

Aanalytic
D (s, t, u;VD) =



3σ−1
3 +

∞∑

p,q=0

E (D)

(p,q)(VD)σ
p
2σ

q
3



 ℓ6DR
4, (1.1)
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where ℓD is theD-dimensional Planck length, s, t, u are the standard Mandelstam variables,

and σk =
(
ℓ2D/4

)k
(sk+ tk+uk) dimensionless combinations of them. R4 denotes a specific

contraction of the four polarisations and momenta of the four graviton states using the

so-called t8t8 tensor [1, 2]. The most important objects in the above equation are the

functions E (D)

(p,q)(VD) that depend on the moduli VD ∈ E11−D/K(E11−D), where E11−D

is the Cremmer-Julia symmetry group in D dimensions [3] and K(E11−D) its maximal

compact subgroup. The functions E (D)

(p,q)(VD) must be invariant under the discrete U-duality

group E11−D(Z) [4, 5]. Moreover, the functions have to satisfy differential constraints from

supersymmetry [6–14] that can also be understood representation-theoretically [15–17].

The differential equations include Poisson-type equations of the form [9, 18]

(

∆−
3(11−D)(D − 8)

D − 2

)

E (D)

(0,0) = 6πδD,8, (1.2a)

(

∆−
5(12−D)(D − 7)

D − 2

)

E (D)

(1,0) = 40ζ(2)δD,7 + 7E (4)

(0,0)δD,4, (1.2b)

(

∆−
6(14−D)(D − 6)

D − 2

)

E (D)

(0,1) = −
(
E (D)

(0,0)

)2
+ 40ζ(3)δD,6 +

55

3
E (5)

(0,0)δD,5 +
85

2π
E (4)

(1,0)δD,4

(1.2c)

for the first three functions E (D)

(0,0), E
(D)

(1,0) and E (D)

(0,1) that are associated with R4, ∇4R4 and

∇6R4 type corrections to the supergravity action, respectively, and are of 1
2 -,

1
4 - and

1
8 -

BPS-type, respectively.

Our interest here lies in the dimension-dependent source terms in (1.2c) for the ∇6R4

coefficient E (D)

(0,1) that we will determine by a new method in this paper. The source terms

are related to perturbative divergences in supergravity. This is most clearly visible in the

string perturbation expansion of the function E (D)

(0,1) itself. The result given in [18] for the

non-analytic part is1

E (D)

(0,1) =

(
4π2

27
log2 g8 +

2π

9

(π

2
+ E

(8),an
(0,0)

)

log g8

)

δD,8

+ 5ζ(3) log g6δD,6 +
20

9
E (5)

(0,0) log g5δD,5 +
5

π
E (4)

(1,0) log g4δD,4 + . . . . (1.3)

The term in δD,6 is related to a three-loop ultraviolet logarithmic divergence of the super-

gravity four-graviton scattering [19] and its value agrees with the field theory result of [20]

as shown in [18, 21]. The terms in δD,5 and δD,4 are related to form factor divergences

in supergravity. The precise coefficients in (1.2c) have only appeared recently in [18] and

we will present here an independent derivation of these coefficients based on the tensorial

differential equations of [10–12].

There is a deep connection between constraints from supersymmetry and the Fourier

modes of the functions E (D)

(p,q) [16, 17]. The Fourier modes arise in perturbative expansions

of the type (1.3) where one exploits the periodicity of E (D)

(p,q) under discrete (Peccei-Quinn

1We have denoted the D-dimensional string coupling by gD. When it is clear from the context which

dimension we are in, we will often omit the subscript.
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type) shift symmetries of some axionic moduli. The non-zero Fourier modes in such expan-

sions contain the non-perturbative corrections to the scattering process as they arise from

instantons in string theory [5]. For the BPS-type correction terms in (1.2), only specific

supersymmetric instantons can contribute and this puts restrictions on the structure of the

Fourier expansion. Mathematically, this is reflected in the so-called wave-front set of the

E11−D(Z) invariant functions E
(D)

(p,q). The wave-front set is a union of nilpotent orbits of the

group E11−D acting on its Lie algebra (see for example [22–24]). As Fourier modes can be

associated with nilpotent orbits, the structure of the wave-front set captures the structure

of the Fourier expansion and the correction terms R4, ∇4R4 and ∇6R4 can be associated

with points on the Hasse diagram of nilpotent orbits [10, 17]. An important point that

we will bring out in our discussion is that only so-called special nilpotent orbits are of

relevance [17, 24]. This will be discussed in detail for the case of SO(5, 5) which is the

Cremmer-Julia group in D = 6 dimensions. We analyse carefully the Fourier expansion

of certain Eisenstein series on this group that arise in the derivation of the logarithmic

divergences in (1.2) and (1.3), presenting among other things the Fourier modes of the

spinor Eisenstein series.

This article is structured as follows. In section 2 we review Eisenstein series on sym-

metric space G/K as these are our main tools for constructing the correction terms E (D)

(p,q).

We also introduce tensorial differential operators that are needed for writing the supersym-

metry constraints on the correction functions and Fourier modes in the subsequent sections.

In section 3, we present and solve the supersymmetry constraints in the case of E (6)

(0,1) that

is related to the three-loop divergence in D = 6 supergravity. Section 4 contains a new

method for finding the divergent terms in other dimensions and derives the coefficients

in (1.2c) and (1.3) from a particular ‘adjoint’ Eisenstein series on E8(8). Section 5 then

analyses in detail the Fourier expansions of various Eisenstein series on SO(5, 5) in con-

nection to the supersymmetric corrections. Two supplementary appendices contain details

on the adjoint E8(8) series and on the Fourier expansion of the spinor series of SO(5, 5).

2 Eisenstein series and tensorial differential operators

In this paper, functions on the moduli space of string theory in D space-time dimensions

play a central role. The moduli space is a symmetric space G/K with G = E11−D the

Cremmer-Julia symmetry group in D-dimensional ungauged maximal supergravity and K

its maximal compact subgroup. On this space, we will define Eisenstein series invariant

under U-duality E11−D(Z) and tensorial differential operators that help to express the

constraints from supersymmetry on functions on this space.

2.1 Brief reminder of Eisenstein series

We will use the following convention for Eisenstein series on a split real Lie group G, i.e.

functions defined on the Riemannian symmetric space G/K, which are invariant under

the arithmetic subgroup G(Z). Following the normalisation of Langlands [25], one can

define an Eisenstein series for almost all (complex) weights λ of G by the formula (see

– 3 –
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also [15, 18, 26] where also the other statements can be found)

E(λ,V) =
∑

γ∈B(Z)\G(Z)

e〈λ+ρ|H(γV)〉 (2.1)

where V ∈ G is parametrised by the moduli of the theory in G/K.2 The discrete subgroup

G(Z) acts on G by left multiplication V 7→ γV and the function H(V) picks out the

logarithm of the Cartan torus part a in the Iwasawa decomposition V = nak of an element

V ∈ G. Therefore H(V) belongs to the Cartan subalgebra h of G and can be paired

canonically with the weight λ ∈ h∗. The element ρ ∈ h∗ in (2.1) denotes the Weyl vector

(half the sum of the positive roots). The series is absolutely convergent for

〈Re(λ)|α〉 > 〈ρ|α〉 for all α > 0 , (2.2)

for all positive roots, and extends to a meromorphic function of the weight λ over h∗ [25].

The function E(λ,V) is G(Z) invariant and satisfies the Laplace eigenvalue equation

∆E(λ,V) =
1

2

(
〈λ|λ〉 − 〈ρ|ρ〉

)
E(λ,V). (2.3)

in terms of the standard bilinear form 〈·|·〉 on h∗ which is normalised such that long roots

α have length 〈α|α〉 = 2.

For the particular series arising in this work it will be convenient to parametrise λ as

λ = 2ω − ρ. (2.4)

The advantage of this notation is that for maximal parabolic Eisenstein series the weight

ω ∈ h∗ thus defined is proportional to a fundamental weight of G. More precisely, we

expand ω on the basis of fundamental weights Λi (i = 1, . . . , rank(G)) as

ω =

dim h∗
∑

i=1

siΛi. (2.5)

A maximal parabolic Eisenstein series then has only one non-zero si. Using (2.5) we denote

the Eisenstein E(λ,V) alternatively by a labelled Dynkin diagram using the numbering

conventions of Bourbaki (identical to those of the LiE program [27]). For example, for

SO(5, 5) of Cartan type D5 we will write

E[

s4s1 s2 s3 s5

] (2.6)

and will always suppress the dependence on the coset representative V ∈ G. An example

of a maximal parabolic Eisenstein series for E8(8) then would be

E[

0

s 0 0 0 0 0 0

]. (2.7)

2The Eisenstein series is by construction spherical meaning that E(λ,Vk) = E(λ,V) for all k ∈ K and

can therefore be viewed as a function of the moduli in G/K.
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This is defined for almost all complex s (by analytic continuation). The value s = 3
2

corresponds to the R4 function (1.2a) and s = 5
2 to the D4R4 correction (1.2b) [15, 28].

We will also sometimes refer to a maximal parabolic Eisenstein series by the represen-

tation the relevant fundamental weight Λi corresponds to. In this terminology

E[

0
s 0 0

0

] (2.8)

will be called a vector Eisenstein series of SO(5, 5) (for any s) and

E[

0

0 0 0 0 0 0 s

] (2.9)

an adjoint Eisenstein series of E8(8) (for any s).

We must warn the reader that in this paper we will always consider the Eisenstein series

in the Langlands normalisation (2.1), whereas one often finds the lattice sum normalisation

that differs by a factor of 2ζ(2s) in the literature.

2.2 Functional relations and constant term formulas

Eisenstein series satisfy almost everywhere the functional relation

E(λ,V) = M(w, λ)E(wλ,V), (2.10)

where w is an element of the Weyl group W = W(G) and the intertwining coefficient

(sometimes also called reflection coefficient) is given by

M(w, λ) =
∏

α>0
wα<0

ξ(〈λ| α〉)

ξ(〈λ| α〉+ 1)
, (2.11)

where the product is over all positive roots α that are mapped to negative roots by the

Weyl word w. The completed Riemann zeta function

ξ(s) = π−s/2Γ(s/2)ζ(s) (2.12)

has simple poles at s = 0 and s = 1 with residues −1 and +1, respectively, and vanishes

nowhere on the real line. It satisfies the functional relation ξ(s) = ξ(1− s).

Of use to us will also be constant term formulas that express the integration over

some of the variables in the unipotent part U of a parabolic subgroup P = LU ⊂ G in

terms of automorphic functions on the Levi part L. In physical terms, the constant term

formula expresses the result of averaging out certain axionic moduli and thus projecting

to the zero-instanton charge sector for instantons charged under these axions. A parabolic

subgroup is the product of an abelian subgroup GL(1)×n and the semi-simple component

of the Levi subgroup. The constant term formula projects onto the perturbative part in the

moduli parametrizing this abelian subgroup GL(1)×n, which are generically combinations

of the string coupling constant and the radii of the compactification torus. We will label

maximal parabolic subgroups (corresponding to n = 1) by Pi = LiUi, where i denotes the

node of the Dynkin diagram of G that has to be removed to obtain the Dynkin diagram

– 5 –
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of the Levi subgroup Li (more precisely that of the semi-simple part Gi := [Li, Li] of

Li = GL(1) × [Li, Li] where [Li, Li] denotes the commutator subgroup). For a maximal

parabolic subgroup Pi the constant formula can be written as [15, 26, 29]

∫

U1
i

E(λ, uV)du =
∑

w∈Wi\W

M(w, λ)e〈(wλ+ρ)‖i |H(V)〉EGi((wλ)⊥i ,Vi). (2.13)

Let us explain the notation in this formula. The integration domain is U1
i := Ui(Z)\Ui =

(G(Z) ∩ Ui)\Ui which is the fundamental domain of the discrete shifts in the unipotent

group Ui(R) to restrict the integration to a single period. In the simplest case of a one-

dimensional unipotent and in a convenient normalisation one has U1
i = Z\R = [0, 1), the

unit interval giving rise to the notational superscript 1. Since we are averaging over the Ui

dependence, the result of the integral can only depend on the variables parametrising Li =

GL(1)×Gi. The dependence on the two factors is separated on the right-hand side, where

the dependence on Vi ∈ Gi is via an Eisenstein series on the group Gi and the dependence

on the GL(1) Cartan torus factor is written in terms of the exponential prefactor. A given

weight λ of G can be decomposed into a component parallel to the fundamental weight Λi

(by orthogonal projection) and remaining components orthogonal to it:

λ = λ‖i + λ⊥i , λ‖i =
〈Λi|λ〉

〈Λi|Λi〉
Λi . (2.14)

When λ‖i is contracted with an element of the Cartan torus it picks out only the component

along the GL(1) factor in the Levi subgroup Li and therefore the exponential prefactor

stands for some power of a variable on GL(1) whose normalisation we will choose to give

it an easy physical interpretation. The component λ⊥i is then a combination only of the

simple roots of the subgroup Gi ⊂ G and can therefore be used to define an Eisenstein

series on the group Gi. The sum in (2.13) is over the quotient of the Weyl groups of G and

Gi and the (numerical) coefficient M(w, λ) is precisely the intertwiner defined in (2.11) and

hence given by a quotient of completed Riemann zeta functions (2.12). In keeping with

our notation we will typically suppress the moduli dependence in the Eisenstein series and

label the weight λ in terms of its Dynkin diagram representation as in (2.6). (There exists

a different constant term formula when U is the maximal unipotent N [25] but we will not

need it here.)

As an example for (2.13), we can consider the following constant term integral for the

vector Eisenstein series of SO(5, 5)

∫

U1
1

E[

0
s 0 0

0

] = g−2s + g2s−8 ξ(2s− 4)ξ(2s− 7)

ξ(2s)ξ(2s− 3)
+ g−1 ξ(2s− 1)

ξ(2s)
E[

s−1
20 0

0

] , (2.15)

where g denotes a coordinate on the GL(1)-part of the Levi subgroup L1 = GL(1) ×

SO(4, 4) of the maximal parabolic P1 associated with the first (left-most) node of the

SO(5, 5) diagram. SO(5, 5) is the Cremmer-Julia group in D = 6 space-time dimensions

and the constant term formula above corresponds to a string perturbative expansion since

it preserves the (chirality preserving) T-duality group SO(4, 4,Z) in D = 6 and that is why

– 6 –
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we have labelled the expansion parameter by the six-dimensional string coupling g = g6.

The labelling of the SO(4, 4) Dynkin diagram is chosen such that the first node corresponds

to the vector representation of the T-duality group, noting that the RR moduli define a

Weyl spinor of negative chirality of Spin(4, 4). As is well-known [15, 28, 30], the above

Eisenstein series is related to the six-dimensional R4 correction by

E (6)

(0,0) = 2ζ(3)E[

03
2

0 0
0

] . (2.16)

For the particular value s = 3
2 , the middle term in the constant term formula (2.15) vanishes

due to the properties of the completed Riemann zeta function and one obtains therefore
∫

U1
1

E (6)

(0,0) = 2ζ(3)g−3 + 4ζ(2)g−1E[

1
0 0

0

] , (2.17)

corresponding to the correct tree-level and one-loop contributions to the 1
2 -BPS coupling

R4.3 Manipulations of this kind will be central for evaluating the supergravity divergences

in various dimensions that arise from poles in Eisenstein series.

2.3 Differential equations

Eisenstein series are eigenfunctions of all Casimir differential operators on G/K for almost

all values of the weight λ ∈ h∗. To define the differential operators on G/K it is convenient

to take a specific representation of the coset representative V ∈ G in terms of coordinates

Φ, as for example the one, Φ = (φ, σ), associated to the Iwasawa decomposition, such that

V(Φ) = V(φ, σ) = n(σ)a(φ)k. One can define in this way the symmetric space connection

Q and its vielbeins P from the components of the Maurer-Cartan form restricted to the

Lie algebra k of K and its orthogonal complement in g, i.e.

V(Φ)−1dV(Φ) = Qµ(Φ)dΦ
µ + Pµ(Φ)dΦ

µ , Q ∈ k , P ∈ g⊖ k . (2.18)

The group K defines the structure group of the symmetric space, and one can modify the

reference frame by arbitrary functions k(Φ) such that

Q → k(Φ)−1dk(Φ) + k(Φ)−1Qk(Φ) , P → k(Φ)−1Pk(Φ) . (2.19)

The Riemannian metric on the symmetric space G/K is defined for some appropriately

normalised G-invariant bilinear form

Gµν(Φ) = 〈Pµ(Φ), Pν(Φ)〉 , (2.20)

and permits to define the inverse vielbeins through its inverse

V µ ≡ GµνPν . (2.21)

One defines the covariant derivative in tangent frame D, as the differential operator act-

ing on any tensor function fRK
(Φ) on G/K in an arbitrary representation RK of K and

3As usual, the symmetry is made manifest in Einstein frame, explaining why the powers on the string

coupling are shifted from the string frame values g−2 and g0 for tree level and one-loop.
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transforming as fRK
→ πRK

(k−1)fRK
. The differential operator takes values in the K-

representation (g⊖ k)⊗RK and is defined by

DfRK
(Φ) ≡ V µ ⊗

(
∂µ + πRK

(Qµ)
)
fRK

(Φ) , (2.22)

where πRK
(X) is the Lie algebra element X ∈ k in the representation RK acting on fRK

(Φ).

In particular, for a function defined on G/K such as E (D)

(p,q), one defines recursively the nth

order differential operators

Df(Φ) = V µ∂µf(Φ)

D ⊗Df(Φ) = V µ ⊗
(

∂µ

(

V ν∂νf(Φ)
)

+ [Qµ, V
ν ]∂νf(Φ)

)

D ⊗D ⊗Df(Φ) = V µ ⊗ ∂µ

(

D ⊗Df(Φ)
)

+ V µ ⊗ [Qµ, V
ν ]⊗

(
∂νDf(Φ) + [Qν ,Df(Φ)]

)

+V µ ⊗ V ν ⊗
[
Qµ,

(
∂νDf(Φ) + [Qν ,Df(Φ)]

)]
(2.23)

which is valued in the nth tensor power of the Lie algebra component g⊖ k.

The differential operators can be written in an arbitrary representation R of g by

writing the coset element V µ in the representation R. Then powers of the differential

operator are mapped to powers in the representation R, such that one projects these

differential operators valued in the tensor algebra to the enveloping algebra of g associated

to this representation, and one writes then

DRf(Φ) = πR(V
µ)∂µf(Φ)

D 2
Rf(Φ) = πR(V

µ)
(

∂µ

(

DRf(Φ)
)

+ [πR(Qµ),DRf(Φ)]
)

D n+1
R f(Φ) = πR(V

µ)
(

∂µ

(

D n
R f(Φ)

)

+ [πR(Qµ),D
n
R f(Φ)]

)

, (2.24)

which defines a matrix of differential operators in an explicit matrix representation R.

Doing so one considers by construction the restriction of these differential operators to

specific irreducible representations of K, with the technical advantage that it becomes

relatively simple to compute the explicit form of these differential operators in specific

parabolic decompositions.

A generic character e2〈ω|H(V)〉 satisfies by construction tensorial differential equations

in some irreducible representations of K, depending polynomially on the weight vector ω.

For ω such that the bound (2.2) is satisfied, the associated Eisenstein series is absolutely

convergent, and it follows that it also satisfies the same tensorial differential equations

for almost all ω by analytic continuation. For some sub-classes of weight vectors ω, in

particular when the latter is proportional to a fundamental weight, i.e. ω = sΛi, the

generating character satisfies stronger differential equations that can often be rewritten as

characteristic equations in a given representation R, i.e.

Pω,R(DR)e
2〈ω|H(V)〉 = 0 , (2.25)

for a polynomial Pω,R(DR) in the covariant derivative DR that depends polynomially on

the weight vector ω (see [12] for some examples). Whenever this sub-class defines a domain

– 8 –
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intersecting with the domain of convergence of the corresponding Eisenstein series E(λ,V)

at λ = 2ω − ρ (2.2), it follows that the latter satisfies

Pω,R(DR)E(λ,V) = 0 . (2.26)

Because E(λ,V) is analytic in ω for almost all ω and the differential operator Pω,R(DR) is

analytic in ω, this equation is then satisfied in general for ω.

It may also happen that a generating character e2〈ω|H(V)〉 satisfies a stronger char-

acteristic equation for an isolated ω, for which the corresponding Eisenstein series is not

absolutely convergent. Then one cannot directly conclude that the Eisenstein series satisfies

itself this stronger characteristic equation. In particular, when the differential constraint

on the character is associated to a nilpotent orbit that is special in the sense of [31] the

corresponding Eisenstein series will also satisfy a weaker constraint associated with a larger

special orbit [24, 32].

Let us for this purpose consider the example of E7(7) Eisenstein series. It was computed

in [12] that

D 3
56e

2s〈Λ1|H(V)〉 =

(
s(2s− 17)

2
+ 6

)

D56e
2s〈Λ1|H(V)〉 ,

D 3
133e

2s〈Λ7|H(V)〉 = s(s− 9)D133e
2s〈Λ7|H(V)〉 , (2.27)

and because the corresponding Eisenstein series are respectively absolutely convergent for

s > 17
2 and s > 9, one concludes that for almost all s (i.e. away from the poles)

D 3
56E

[

0

s 0 0 0 0 0

] =

(
s(2s− 17)

2
+ 6

)

D56E[

0

s 0 0 0 0 0

] , (2.28a)

D 3
133E

[

0

0 0 0 0 0 s

] = s(s− 9)D133E[

0

0 0 0 0 0 s

] . (2.28b)

In type II string theory, the ∇4R4 threshold function is conjectured to be ζ(5)

E
[

0
5
2

0 0 0 0 0

]

[15], and must satisfy by supersymmetry [10, 11] the two equations

D 3
56E

[

0
5
2

0 0 0 0 0

] = −9D56E[

0
5
2

0 0 0 0 0

] , D 3
133E

[

0
5
2

0 0 0 0 0

] = −20D133E[

0
5
2

0 0 0 0 0

] .

(2.29)

The first equation is obviously satisfied by ζ(5)E
[

0
5
2

0 0 0 0 0

]

. For the second equation, one

has to use that, because of the Langlands functional identity (2.10)

ζ(5)E[

0
5
2

0 0 0 0 0

] =
8ζ(8)

15π
E[

0

0 0 0 0 0 4

] , (2.30)

this function is a special case of both the adjoint and the fundamental Eisenstein series.

From equation (2.28b) for the fundamental Eisenstein series one then sees that both su-

persymmetry constraints are fulfilled. Moreover, one can in this way understand that

this function admits a wave-front set associated to the next-to-minimal nilpotent orbit

of E7 [17].
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By supersymmetry, the type II string theory R4 threshold function must satisfy the

stronger differential equation [10]

D 2
56E

(4)

(0,0) = −
9

2
156E

(4)

(0,0) (2.31)

and the conjectured solution E (4)

(0,0) = 2ζ(3)E
[

0
3
2

0 0 0 0 0

]

[15, 28] indeed solves this con-

straint [10].

However, one must in general be careful when the Eisenstein series is outside the do-

main of absolute convergence. We will see in section 5.2 that even though the character

e3〈Λ2|H(V)〉 of the adjoint series of SO(5, 5) satisfies a certain stronger constraint the associ-

ated Eisenstein series (and its Fourier coefficients) do not. This also happens for the adjoint

series of E7(7) and the character e8〈Λ1|H(V)〉 that satisfies an additional quartic differential

equation in the [2, 0, 0, 0, 0, 0, 2] of SU(8), while the corresponding adjoint function at s = 4

violates this constraint. In appendix A we show the same for the adjoint E8(8) series.

3 Supersymmetry constraints on E(0,1)

It was shown in [12] that the ∇6R4 threshold function E (D)

(0,1) decomposes into the sum of

two distinct functions associated to two different supersymmetry invariants for D > 3.

The two invariants are distinguished by higher point R-symmetry violating couplings. One

function satisfies a homogeneous differential equation and is conjectured to be an Eisenstein

series, whereas the other satisfies an inhomogeneous equation as was first argued in [8].

For instance, in six dimensions, E5
∼= SO(5, 5) and K ∼= SO(5)×SO(5), and the threshold

function E(0,1) decomposes as

E(0,1) = F(0,1) +
4ζ(6)ξ(8)

27ξ(4)
Ê[

0
0 0 0

4

] . (3.1)

(The hat here denotes a regularised spinor Eisenstein series that will be defined in (3.6)

below.) The supersymmetry analysis only constrains the function appearing in the Wilso-

nian action, and one must consider possible anomalous corrections to the corresponding

differential equation whenever there are logarithmic divergences in the theory. It turns out

in particular that the four-graviton amplitude diverges at 3-loop in six dimensions [20],

and supersymmetry therefore only constrains the function F(0,1) to satisfy

∆F(0,1) = −

(

2ζ(3)E[

03
2

0 0
0

]

)2

+
70

3
c1ζ(3) , (3.2)

where c1 is a constant yet to be determined, and [12]

D3
16F(0,1) =

3

4
D16F(0,1) − 2ζ(3)2E[

03
2

0 0
0

]D16E[

03
2

0 0
0

] , (3.3a)

D3
10F(0,1) =

3

2
D10F(0,1) − 2ζ(3)2E[

03
2

0 0
0

]D10E[

03
2

0 0
0

] . (3.3b)

Here, D16 refers to the covariant derivative valued in the (chiral) spinor representation,

and D10 to the covariant derivative valued in the vector representation, according to the
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notation introduced in the preceding section. One can for example write D16 and D10 as

explicit matrices of differential operators as follows

D10 =

(

0 Dab̂

Dbâ 0

)

, D16 =
1

2
Dab̂γ

aγ b̂ , (3.4)

where Dab̂ is the covariant derivative as a (5,5) tensor of SO(5)×SO(5), and we label the

vector indices of the first factor by a (ranging from 1 to 5) and those of the second factor

by â. γa, γâ are the Spin(5, 5) gamma matrices in a (fixed) Majorana-Weyl representation

and SO(5) indices are raised and lowered with the flat metric.

It is important to note that equations (3.3) are invariant with respect to the exchange

of chirality, and read in SO(5)× SO(5) covariant notations

εabcdeεâb̂ĉd̂êDa
âDb

b̂Dc
ĉF(0,1) = 0 , (3.5a)

DaĉD
dĉDdb̂F(0,1) =

3

2
Dab̂F(0,1) − 2ζ(3)2E[

03
2

0 0
0

]Dab̂E
[

03
2

0 0
0

] . (3.5b)

On the other hand, one computes using4

Ê[

0
0 0 0

4

] = lim
ǫ→0

(

E[

0
0 0 0

4+ǫ

] −
ξ(3)

ξ(6)ξ(8)

1

2ǫ

)

(3.6)

that [12]

∆Ê[

0
0 0 0

4

] = 5
ξ(3)

ξ(6)ξ(8)
, (3.7a)

D[a
[âDb

b̂Dc]
ĉ] Ê[

0
0 0 0

4

] = −
1

12
εabcdeε

âb̂ĉd̂êDd
d̂D

e
êÊ[

0
0 0 0

4

] , (3.7b)

which is not invariant under the parity transformation in the T-duality group.

3.1 Solution using string perturbation theory

We will now construct the solution to the tensorial differential equation (3.3) using string

perturbation theory. At the end of the derivation we will argue that the differential equa-

tion (3.3) does not admit cusp form solutions, and the method provides the full non-

perturbative solution.

According to string perturbation theory, the function F(0,1) decomposes as

F(0,1) = e−6φ
∞∑

ℓ=0

e2ℓφF (ℓ)

(0,1) +
10ζ(3)

3
c2 φ+O

(
e−e−φ)

, (3.8)

where eφ = g is the string theory effective coupling constant in six dimensions, and the

additional term linear in φ must be added to take into account the non-analyticity of the

4The regularised function is only defined up to an arbitrary additional constant, which is associated to

the ambiguity in defining the separation between the local and the non-local components of the effective

action in the presence of logarithm terms.
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threshold function due to the 3-loop divergence [19]. To solve these equations in the string

perturbation theory limit, we need the explicit decomposition of these differential operators

acting on a function F of the dilaton φ and the SO(4, 4) scalar fields5

D10F =






1
2∂φ 0 0

0 D8a 0

0 0 −1
2∂φ




F , D16F =





1
4∂φ +D8 0

0 −1
4∂φ +D8c



F . (3.9)

Note that we use the embedding of SO(4, 4) as the T-duality group in string theory,

referring to the property that the 16 vector fields in six dimensions are associated to 8 NS

and 8 RR fields (respectively in the 8 and the 8c of Spin(4, 4)). One computes that the

second order differential operator defined as in (2.24) is

D 2
10F =






1
4∂

2
φ + ∂φ 0 0

0 D 2
8a +

1
4∂φ 0

0 0 1
4∂

2
φ + ∂φ




F ,

D 2
16F =






1
16∂

2
φ + 1

2∂φ + 1
2

(
∂φ+1

)
D8+D 2

8 0

0 1
16∂

2
φ + 1

2∂φ − 1
2

(
∂φ+1

)
D8c+D 2

8c




F , (3.10)

and finally

D 3
10F =






1
8∂

3
φ + ∂ 2

φ + 3
2∂φ − 1

4∆ 0 0

0 D 3
8a +

1
4∂φD8a 0

0 0 −1
8∂

3
φ − ∂ 2

φ − 3
2∂φ + 1

4∆




F , (3.11)

D 3
16F =






1
64∂

3
φ + 1

8∂
2
φ − 1

8∆+
(

3
16∂

2
φ + 11

8 ∂φ+
3
4

)
D8+

3
4

(
∂φ+2

)
D 2

8 +D 3
8 0

0 − 1
64∂

3
φ − 1

8∂
2
φ + 1

8∆+
(

3
16∂

2
φ + 11

8 ∂φ+
3
4

)
D8c−

3
4

(
∂φ+2

)
D 2

8c+D 3
8c




F .

We recall that the square notation is a short-hand notation for the definition (2.24), ex-

plaining the additional lower order differential operator contributions associated with the

terms involving the connection. By construction

∆D5F = trD 2
10F =

1

2
trD 2

16F =
(

∆D4 +
1

2
∂ 2
φ + 4∂φ

)

F . (3.12)

To solve these differential equations, we will make use of the particular solutions

D 3
8 E

[

0
s 0

0

] =
(
s(s− 3) + 3

2

)
D8E[

0
s 0

0

] ,

D 2
8cE

[

0
s 0

0

] =
s(s− 3)

4
E[

0
s 0

0

] ,

D 2
8aE

[

0
s 0

0

] =
s(s− 3)

4
E[

0
s 0

0

] ,

D 2
8 E

[

0
0 0

s

] =
s(s− 3)

4
E[

0
0 0

s

] ,

D 3
8cE

[

0
0 0

s

] =
(
s(s− 3) + 3

2

)
D8cE

[

0
0 0

s

] ,

D 2
8aE

[

0
0 0

s

] =
s(s− 3)

4
E[

0
0 0

s

] ,

(3.13)

and equivalently for E[

s
0 0

0

].

5Here 1
4
∂φ +D8 is understood to be 1

4
∂φ18 +D8. We will never write explicitly the identity matrices in

the following.
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We will now analyse the differential equations order by order in string perturbation

theory, i.e. for the various F (ℓ)

(0,1). Using equation (2.17) with g = eφ, one can now compute

(

D 3
10 −

3

2
D10

)
2ζ(3)2

3
e−6φ = 3ζ(3)2






1 0 0

0 0 0

0 0 −1




 e−6φ = −2ζ(3)2e−3φD10e

−3φ ,

(

D 3
16 −

3

4
D16

)
2ζ(3)2

3
e−6φ =

3

2
ζ(3)2

(

1 0

0 −1

)

e−6φ = −2ζ(3)2e−3φD16e
−3φ , (3.14)

such that

F (0)

(0,1) =
2ζ(3)2

3
. (3.15)

Similarly, one computes that

(

D 3
10 −

3

2
D10

)
4ζ(2)ζ(3)

3
e−4φE[

0
1 0

0

] = 4ζ(2)ζ(3)






2 0 0

0 −D8a 0

0 0 −2




 e−4φE[

0
1 0

0

]

= −4ζ(2)ζ(3)D10e
−4φE[

0
1 0

0

] ,

(

D 3
16 −

3

4
D16

)
4ζ(2)ζ(3)

3
e−4φE[

0
1 0

0

] = 4ζ(2)ζ(3)

(

1−D8 0

0 −1−D8c

)

e−4φE[

0
1 0

0

]

= −4ζ(2)ζ(3)D16e
−4φE[

0
1 0

0

] , (3.16)

such that

F (1)

(0,1) =
4ζ(2)ζ(3)

3
E[

0
1 0

0

] . (3.17)

Note moreover that there is no homogeneous solution to these differential equations with

the corresponding factor of the dilaton, such that these solutions are unique at these orders.

The 2-loop contribution satisfies the more complicated equations

(

D 3
10 −

3

2
D10

)

e−2φF (2)

(0,1) =






3
2 − 1

4∆ 0 0

0 D 3
8a − 2D8a 0

0 0 −3
2 + 1

4∆




 e−2φF (2)

(0,1)

= −D10

(

2ζ(2)e−φE[

0
1 0

0

]

)2

=






1 0 0

0 −D8a 0

0 0 −1






(

2ζ(2)e−φE[

0
1 0

0

]

)2

(3.18)

and

(

D 3
16 −

3

4
D16

)

e−2φF (2)

(0,1) =

(
3
4 − 1

8∆+D 3
8 − 2D8 0

0 −3
4 + 1

8∆+D 3
8c − 2D8c

)

e−2φF (2)

(0,1)

= −D16

(

2ζ(2)e−φE[

0
1 0

0

]

)2

=

(
1
2 −D8 0

0 −1
2 −D8c

)(

2ζ(2)e−φE[

0
1 0

0

]

)2

, (3.19)
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from which one deduces that

∆F (2)

(0,1) = 6F (2)

(0,1) −

(

4ζ(2)E[

0
1 0

0

]

)2

,
(
D 3

8i − 2D8i

)
F (2)

(0,1) = −D8i

(

2ζ(2)E[

0
1 0

0

]

)2

,

(3.20)

where 8i stands for the three fundamental representations of Spin(4, 4), the vector and

the two Weyl spinor representations. It is important to note that this tensorial equation is

triality invariant since

E[

0
0 0

1

] = E[

0
1 0

0

] = E[

1
0 0

0

] . (3.21)

This property is crucial in the conjecture proposed in [18] that the function F(0,1) is triality

related to the genus two ∇6R4 threshold function in five dimensions. The differential

equation for F (2)

(0,1) admits an SO(4, 4,Z) invariant homogeneous solution, such that the

differential equation only determines the correct function up to

F (2)

(0,1) = F (2)

(0,1) part +
8π6ζ(5)2

496125ζ(7)
c3E[

0
0 3

0

] . (3.22)

Let us now derive the 3-loop contribution. One cannot disentangle the φ independent

function F (3)

(0,1) from the logarithm term linear in φ in the differential equation, so we

consider
(

D 3
10 −

3

2
D10

)(

F (3)

(0,1) +
10ζ(3)

3
c2 φ

)

=






5ζ(3)
2 c2 −

1
4∆ 0 0

0 D 3
8a −

3
2D8a 0

0 0 −5ζ(3)
2 c2 +

1
4∆




F (3)

(0,1) = 0

(

D 3
16 −

3

4
D16

)(

F (3)

(0,1) +
10ζ(3)

3
c2 φ

)

=

(

−5ζ(3)
8 c2 −

1
8∆+ 3

2D
2
8 +D 3

8 0

0 5ζ(3)
8 c2 +

1
8∆− 3

2D
2
8c +D 3

8c

)

F (3)

(0,1) = 0 , (3.23)

such that

D 3
8aF

(3)

(0,1) =
3

2
D8aF

(3)

(0,1) , D 2
8 F

(3)

(0,1) =
5ζ(3)

4
c2 , D 2

8cF
(3)

(0,1) =
5ζ(3)

4
c2 . (3.24)

These differential equations are solved by the regularised Eisenstein series

Ê[

3
0 0

0

] = lim
ǫ→0

(

E[

3+ǫ
0 0

0

] −
ξ(3)

ξ(4)ξ(6)

1

2ǫ

)

, (3.25)

which by construction (3.13) satisfies

D 3
8aÊ

[

3
0 0

0

] =
3

2
D8aÊ

[

3
0 0

0

] , D 2
8 Ê

[

3
0 0

0

] =
3

8

ξ(3)

ξ(4)ξ(6)
, D 2

8cÊ
[

3
0 0

0

] =
3

8

ξ(3)

ξ(4)ξ(6)
.

(3.26)
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Assuming that there is no cusp form satisfying these differential equations, one can argue

that this is the unique SO(4, 4,Z) solution with a sufficiently fast fall-off at the boundary

of moduli space. To show this we use the property that the differential equations deter-

mine the eigenvalues of all the Casimir operators. It follows that the general solution on

the maximal torus (i.e. the infinitesimal quasi-character fixed by the weight λ in (2.1)) is

uniquely determined up to Weyl reflections, and so is the general Eisenstein series solution.

The spectral decomposition of automorphic forms is into a continuous part (given by Eisen-

stein series) and a discrete part (corresponding to cusp forms and residues of Eisenstein

series) [33]. One can verify that there is no residual spectrum for the weight λ defined

by the above tensorial differential equations. Therefore the assumption on the absence of

cusp forms implies that the SO(4, 4,Z) Eisenstein series solution is the unique solution.

The existence of a cusp form satisfying these differential equations would not affect our

conclusions as the cusp form would not contribute to the perturbative series on which we

base our analysis.

As we will discuss in the following, comparison with higher dimensional string theory

computations allow to determine F (3)

(0,1) to be

F (3)

(0,1) =
4ζ(6)

27
Ê[

3
0 0

0

] , (3.27)

such that c2 = 1. Using this function, one computes that

∆

(
4ζ(6)

27
Ê[

3
0 0

0

] +
10ζ(3)

3
φ

)

=
70ζ(3)

3
, (3.28)

and therefore c1 = 1.

By arguments similar to above, there is no solution to the differential equation at higher

order in string perturbation theory. This establishes the expected non-renormalisation

theorem that the function E(0,1) is exact at 3-loop in perturbation theory. Combining these

results one deduces that

E(0,1) =
2ζ(3)2

3
e−6φ + e−4φ

(
4ζ(2)ζ(3)

3
E[

0
1 0

0

] +
16ζ(8)

189
E[

0
4 0

0

]

)

+ e−2φF (2)

(0,1)

+
4ζ(6)

27

(

Ê[

3
0 0

0

] + Ê[

0
0 0

3

]

)

+ 5ζ(3)φ+O
(
e−e−φ)

, (3.29)

in perfect agreement with [18].

We would like now to argue that the differential equation (3.3) does not admit cusp

form solutions, and therefore determines the complete non-perturbative function uniquely.

Cusp forms are square integrable functions E on the modular domain FG
∼= G(Z)\G/K

and eigenfunctions of the Laplace operator. Due to their cuspidal nature they have strictly

negative Laplace eigenvalue since
∫

FG

dµ E∆E = −

∫

FG

dµ |∇E|2 < 0 . (3.30)

Therefore, there can be no cusp form solution to equation (3.3).
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Let us summarise what we have achieved through this computation. Consistency

with higher dimensional results permits to determine that the 3-loop contribution F (3)

(0,1)

is equal to 4ζ(6)
27 Ê

[

3
0 0

0

]

+ c2
10ζ(3)

3 φ, and we have shown that the tensorial differential

equation (3.3) is strong enough to determine c2 and the anomalous source term in the

Laplace equation, i.e. c1.

3.2 Alternative derivation of non-analytic terms

We will now argue that one can alternatively use the regularised Eisenstein series Ê
[

0
0 7

2
0

0

]

to probe these properties, although the latter does not appear in the complete threshold

function F (3)

(0,1). The adjoint Eisenstein series satisfies in general that

D 3
16E

[

0
0 s 0

0

] =
2s(2s− 7) + 3

4
D16E[

0
0 s 0

0

] , D 3
10E

[

0
0 s 0

0

] =
s(2s− 7) + 3

2
D10E[

0
0 s 0

0

] ,

∆E[

0
0 s 0

0

] = 2s(2s− 7)E[

0
0 s 0

0

] , (3.31)

such that the regularised Eisenstein series with the normalisation 4ξ(5)ζ(6)ξ(8)
27ξ(2)ξ(4) Ê

[

0
0 7

2
0

0

]

is

a homogeneous solution to equation (3.3) that reproduces precisely the anomalous term

in (3.2). Therefore, the ‘regular’ function6

FR
(0,1) = F(0,1) −

4ξ(5)ζ(6)ξ(8)

27ξ(2)ξ(4)
Ê[

0
0 7

2
0

0

] , (3.32)

defines a particular solution to (3.3) that is a solution to the Laplace equation

∆FR
(0,1) = −

(

2ζ(3)E[

03
2

0 0
0

]

)2

. (3.33)

By construction, the 3-loop contribution to F(0,1) is the corresponding constant term of the

regularised Eisenstein series Ê
[

0
0 7

2
0

0

]

, as well as the non-analytic term linear in φ associated

to the logarithmic ultra-violet divergence. So instead of computing explicitly the solution

to the tensorial differential equation (3.3), one could have instead used the property that

the regularised Eisenstein series Ê
[

0
0 7

2
0

0

]

is the unique automorphic homogeneous solution

to this differential equation, and use the Langlands constant term formula to derive the

solution (3.28). This computation can easily be generalised to arbitrary dimensions, and

this is the approach we shall expand on and follow in the next section to derive the non-

analytic components of E(0,1) in dimensions four and five.

4 Divergent pieces across various dimensions

Our strategy for determining the coefficients in (1.2c) outlined at the end of the preceding

section can also be stated as follows. We decompose the complete threshold function as

E (D)

(0,1) = F (D) R

(0,1) +H(D)

(0,1), (4.1)

6We call this function regular because the absence of anomalous term on the right-hand side of (3.33)

suggests that it lies in a continuous family of functions that would be regular at this point.
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where F (D) R

(0,1) is a particular (regular) automorphic solution of the non-anomalous inhomo-

geneous equation
(

∆−
6(14−D)(D − 6)

D − 2

)

F (D) R

(0,1) = −
(
E (D)

(0,0)

)2
, (4.2)

and the tensor equation associated to the adjoint Eisenstein series with s = 11
2 , 6,

9
2 and

7
2 in dimension D = 3, 4, 5 and 6, respectively [12]. It is very important that we choose

F (D) R

(0,1) such that it does not include any three-loop contribution in string perturbation

theory. We can always do this because the three-loop contribution is generally the solution

to a homogeneous equation. In fact the anomalous contribution is always associated to

the three-loop contribution: in six dimensions through the 3-loop ultraviolet divergence,

in five dimension through the 2-loop divergence of the 1-loop R4 type form factor, and in

four dimensions through the 1-loop divergence of the 2-loop ∇4R4 type form factor.

From this definition it follows that H(D)

(0,1) is a solution to the anomalous (almost)

homogeneous equation
(

∆−
6(14−D)(D − 6)

D − 2

)

H(D)

(0,1) = βDEAd,s=
(6−D)(1+D)

4

, (4.3)

where EAd,s is the adjoint Eisenstein series of E11−D for D ≤ 6 (which is 1 at D = 6), and

βD is the corresponding numerical coefficient, which will be determined in the sequel. Such

a right-hand side must be considered whenever power-counting a priori allows for a form

factor or a genuine amplitude logarithmic divergence in supergravity and the occurrence of

the adjoint Eisenstein series is fixed by the differential equations of [12]. Supersymmetry

Ward identities moreover imply that such a correction can only occur if the two functions

satisfy to compatible differential equations and in particular if the Laplace eigenvalues are

identical. Investigation gives that this only occurs for D = 6, 5, 4. H(D)

(0,1) is the sum of two

respective solutions to the two tensorial differential equations associated to the two distinct

∇6R4 type invariants [12]. Up to cusp forms, the automorphic solution (with appropriate

fall off at the boundary of moduli space) to these differential equations is unique, and the

T-duality invariant solution is also unique at a given order in string perturbation theory.

This implies that the general T-duality invariant solution to the differential equations

relevant at 3-loop is necessarily the string theory limit of the fully automorphic solution.

We can therefore assume without loss of generality that H(D)

(0,1) is the sum of two regularised

Eisenstein series solving the two relevant tensorial differential equations, i.e. an adjoint

Einsenstein series with s = 11
2 , 6,

9
2 and 7

2 in dimension 3, 4, 5 and 6, respectively and a

series in the fundamental representation associated to the last Dynkin node in the E11−D

convention with s = 14−D
2 , which define the same function in three dimensions.

Note that in general the adjoint Eisenstein series admits an expansion in the perturba-

tive string theory limit that is incompatible with string perturbation theory. There is for

example always a term that would formally contribute to a −1
2 -loop correction. One can

easily understand this in type IIB supergravity in ten dimensions, where one can define

F (10) R

(0,1) such that it does not include a 3-loop contribution, in which case

H(10)

(0,1) =
4ζ(6)ξ(8)

27ξ(7)
E[4](Ω) =

4ζ(6)ξ(8)

27ξ(7)
Ω 4
2 +

4ζ(6)

27
Ω−3
2 +O

(
e−2πΩ2

)
, (4.4)
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where the first factor is a spurious −1
2 -loop contribution. These spurious contributions all

occur at negative order, and one understands that they are precisely compensated by the

particular solution F (D) R

(0,1) .

4.1 Three-loop divergence in D = 6

The following (formal) Eisenstein series are the two automorphic homogeneous solutions

to the two respective tensorial differential equations (3.5b) and (3.7b)

E[

0
0 0 0

4

] and E[

0
0 7

2
0

0

] . (4.5)

Both of them are singular and need to be regularised.7 A combination that provides a

regular limit is

H(6)

(0,1) = a lim
ǫ→0

(

E[

0
0 0 0

4−ǫ

] +
ξ(5)

ξ(2)
E[

0
0 7

2
+ǫ 0

0

]

)

, (4.6)

with a some constant that will be determined in the sequel. The relative coefficient here

was chosen to yield a finite limit although this requirement is not forced on us. We will see

in the following that it is indeed determined to match the three-loop amplitude threshold

functions in ten dimensions. The string perturbation limits of the two series are given by

(g = eφ is the effective string coupling in D = 6)

∫

U1
1

E[

0
0 0 0

4−ǫ

] = g−4+ǫE[

0
4−ǫ 0

0

] + g−ǫ ξ(4− 2ǫ)

ξ(8− 2ǫ)
E[

0
0 0

3−ǫ

] , (4.7a)

∫

U1
1

E[

0
0 7

2
+ǫ 0

0

] = g−7−2ǫE[

7
2
+ǫ

0 0
0

] + g−2 ξ(5 + 2ǫ)

ξ(7 + 2ǫ)
E[

0
0 3+ǫ

0

]

+ g2ǫ
ξ(2 + 2ǫ)ξ(4 + 2ǫ)ξ(7 + 4ǫ)

ξ(5 + 2ǫ)ξ(7 + 2ǫ)ξ(8 + 4ǫ)
E[

3+ǫ
0 0

0

] . (4.7b)

The poles at ǫ → 0 are contained in the last terms in both lines (corresponding to three

loops after the Weyl rescaling by g4). The singular terms are explicitly given by

E[

0
0 0

3−ǫ

] = −
1

2ǫ
·

ξ(3)

ξ(4)ξ(6)
+O(ǫ0) , (4.8a)

E[

3+ǫ
0 0

0

] =
1

2ǫ
·

ξ(3)

ξ(4)ξ(6)
+O(ǫ0) . (4.8b)

Note that these two functions are indeed related by T-duality parity. Demanding T-

duality invariance therefore fixes the relative coefficient between the two Eisenstein series,

as anticipated in (4.6). From this one can see that the combination given in (4.6) is regular.

The non-analytic term in g can be deduced from this to be

H(6)

(0,1) → a
ξ(3)

ξ(6)ξ(8)
lim
ǫ→0

−g−ǫ + g2ǫ

2ǫ
+ . . . =

3

2
a

ξ(3)

ξ(6)ξ(8)
log g + . . . , (4.9)

7In the next section we will confirm by an analysis of their Fourier coefficients that they contribute to

the two different ∇6R4 invariants.
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where the adjoint series contributes twice the amount of the spinor series (due to the g2ǫ

in (4.7b)). We note that the perturbative limit of the series E
[

0
0 7

2
+ǫ 0

0

]

also contains a term

with g−7 that is formally at loop order L = −1/2. This does not matter for determining the

logarithmic divergence since this term is cancelled by a corresponding contribution from

the particular solution F (6) R

(0,1) , as discussed in the introduction to this section.

The value of the coefficient a can be fixed by comparison with the ten-dimensional

three-loop correction in the decompactification limit [8, 34, 35]. In a first step, one decom-

pactifies the three-loop terms in (4.7) to D = 7 to obtain

∫

U1
4

E[

0
0 0

3−ǫ

] = v3−ǫE[0 0 3−ǫ] + vǫ
ξ(3− 2ǫ)

ξ(6− 2ǫ)
E[2−ǫ 0 0], (4.10a)

∫

U1
4

E[

3+ǫ
0 0

0

] = v3+ǫE[3+ǫ 0 0] + v−ǫ ξ(3 + 2ǫ)

ξ(6 + 2ǫ)
E[0 0 2+ǫ]. (4.10b)

Here, v is related to the radius of the decompactifying circle from D = 6 to D = 7 measured

in seven-dimensional Planck units. Diagrammatically, the expansion above uses the node

in the lower right corner of the D4 Dynkin diagram, i.e. the vector representation node in

the string theory convention. The series above are still divergent in the second term but

we are interested in the first terms that decompactify nicely to give

H(6)

(0,1) → a
ξ(4)

ξ(8)
v3 (E[0 0 3] + E[3 0 0]) + . . . (4.11)

The combinations that decompactifies correctly to D = 10 is in our conventions [19]

4ζ(6)

27
(E[0 0 3] + E[3 0 0]) (4.12)

and therefore

a =
4ζ(6)ξ(8)

27ξ(4)
. (4.13)

Putting this together with (4.9) means

H(6)

(0,1) → 5ζ(3) log g + . . . (4.14)

which is indeed consistent with the explicit 3-loop divergence computed in [20], as exhibited

in [18] through the analysis displayed in [19]. This suffices to determine the value of the

anomalous term in (1.2c) by acting with the SO(5, 5) Laplacian on the three-loop terms

contained in (4.6). Acting with the Laplace operator (3.12) on the three-loop terms in

H(6)

(0,1) proceeds through the introduction of regularised SO(4, 4) Eisenstein series by

E[

0
0 0

3−ǫ

] = −
1

2ǫ
·

ξ(3)

ξ(4)ξ(6)
+ Ê[

0
0 0

3

] +O(ǫ), (4.15a)

E[

3+ǫ
0 0

0

] =
1

2ǫ
·

ξ(3)

ξ(4)ξ(6)
+ Ê[

3
0 0

0

] +O(ǫ). (4.15b)
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Then

∆D4Ê
[

0
0 0

3

] =
3ξ(3)

ξ(4)ξ(6)
. (4.16)

and the other SO(4, 4) series works similarly. Acting with the SO(5, 5) Laplacian (3.12)

(with g = eφ) thus yields

∆D5H
(6)

(0,1) = ∆D5

[

5ζ(3) log g +
4ζ(6)

27

(

Ê[

0
0 0

3

] + Ê[

3
0 0

0

]

)]

= 20ζ(3) +
4ζ(6)

27ξ(4)

6ξ(3)

ξ(6)

= 40ζ(3). (4.17)

This confirms the coefficient in (1.2c). The final function giving rise to the divergent term

in D = 6 is then

H(6)

(0,1) =
4ζ(6)ξ(8)

27ξ(4)
lim
ǫ→0

(

E[

0
0 0 0

4−ǫ

] +
ξ(5)

ξ(2)
E[

0
0 7

2
+ǫ 0

0

]

)

=
4ζ(6)ξ(8)

27ξ(4)

(

Ê[

0
0 0 0

4

] +
ξ(5)

ξ(2)
Ê[

0
0 7

2
0

0

]

)

. (4.18)

4.2 Adjoint Eisenstein series of E8(8) and ∇6R4 in three dimensions

Even though the ∇6R4 threshold function is regular in three dimensions, it is convenient to

start our analysis at D = 3, because there is a unique ∇6R4 supersymmetry invariant [12].

The exact threshold function must satisfy the fourth order differential equation

(
DΓi[jk

rD
)(
DΓlpq]rD

)
E (3)

(0,1) = 150δi[j
(
DΓklpq]D

)
E (3)

(0,1) + δi[j
(
DΓklpq]D

) (
E (3)

(0,0)

)2
, (4.19)

consistently with the inhomogeneous equation [15]

∆E (3)

(0,1) = −198E (3)

(0,1) −
(
E (3)

(0,0)

)2
. (4.20)

The tensorial equation (4.19) implies that the wave-front set is associated to the 1
8 -BPS

nilpotent orbit corresponding to extremal black holes in four dimensions (see for exam-

ple [36]). We compute in appendix A that the automorphic solution to the homogeneous

equation
(
DΓi[jk

rD
)(
DΓlpq]rD

)
H(3)

(0,1) = 150δi[j
(
DΓklpq]D

)
H(3)

(0,1) , (4.21)

is proportional to the E8(8) Eisenstein series

E[

0

0 0 0 0 0 0 11
2

] . (4.22)

This is in some sense the ancestor of all three-loop terms in higher dimensions. For this

‘adjoint’ E8(8) series the Laplace eigenvalue is

∆E[

0

0 0 0 0 0 0 s

] = 2s(2s− 29)E[

0

0 0 0 0 0 0 s

]. (4.23)

The function is regular at s = 11
2 .
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We can perform the decompactification of this function from D = 3 to D = 6 by

computing the constant term in the parabolic subgroup associated to the 6th node of E8(8)

with Levi factor L6 = GL(1)× Spin(5, 5)× SL(3). For arbitrary s the result is

∫

U1
6

E[

0

0 0 0 0 0 0 s

]=v3
ξ(2s−11)ξ(2s−12)ξ(2s−13)

ξ(2s)ξ(2s− 5)ξ(2s− 9)
E[

0
0 s−11

2
0

0

]+v(2s+1)/4 ξ(2s−3)

ξ(2s)
E[

0
0 0 0

s−3
2

]

+ v(15−s)/2 ξ(2s− 18)ξ(2s− 19)ξ(2s− 20)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)
E[

s−9
0 0 0

0

] + . . . ,

(4.24)

where we have only listed the SL(3)-singlet contributions. The GL(1) parameter v here

is related to the volume of the decompactifying three-torus. The last term in (4.24) is

subdominant for s → 11
2 and the first term can be rewritten according to the functional

relation

E[

0
0 s 0

0

] =
ξ(2s− 4)ξ(2s− 5)ξ(2s− 6)ξ(4s− 7)

ξ(2s)ξ(2s− 1)ξ(2s− 2)ξ(4s− 6)
E[

0
0 7

2
−s 0

0

] . (4.25)

Then the dominant pieces become

v3
ξ(2s− 15)ξ(2s− 16)ξ(2s− 17)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)
E[

0
0 9−s 0

0

] + v(2s+1)/4 ξ(2s− 3)

ξ(2s)
E[

0
0 0 0

s−3
2

]

(4.26)

that tend to

v3
ξ(8)

ξ(11)

(
ξ(5)

ξ(2)
Ê[

0
0 7

2
0

0

] + Ê[

0
0 0 0

4

]

)

(4.27)

for s → 11
2 . This is precisely the combination appearing in the ansatz (4.6) in six dimen-

sions. From this we conclude that the D = 3 ancestor of the correct D = 6 three-loop

divergence is given by

H(3)

(0,1) = a
ξ(11)

ξ(8)
E[

0

0 0 0 0 0 0 11
2

] =
4ζ(6)ξ(11)

27ξ(4)
︸ ︷︷ ︸

=:b

E[

0

0 0 0 0 0 0 11
2

]. (4.28)

Here, we have defined the normalisation constant b. We will now use this finite adjoint E8

function to determine the remaining terms in (1.2c) and (1.3).

4.3 Form factor divergence in D = 5

We consider the decompactification limit of the general adjoint E8(8) function from D = 3

to D = 5. The Levi subgroup in this case is L7 = GL(1)× SL(2)× E6(6). One has

∫

U1
7

E[

0

0 0 0 0 0 0 s

] = v4
ξ(2s−12)ξ(2s−11)

ξ(2s)ξ(2s− 5)
E[

s−9
2

0 0 0 0 0

]+v(2s+1)/3 ξ(2s−2)

ξ(2s)
E[

0

0 0 0 0 s−1

] + . . . ,

(4.29)

where we have focussed on the pieces that are relevant for the discussion. These are in

particular singlets under the SL(2) group of the decompactifying two-torus whose size is
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related to the parameter v. The first term in the above expression is clearly divergent for

s → 11
2 since ξ(0) diverges and the adjoint E6(6) function is regular at s = 1. We leave the

divergence implicit in the second term in (4.29).

We will be interested in the string perturbation limit of the individual terms. For the

adjoint E6(6) series one finds from (2.13)
∫

U1
1

E[

s

0 0 0 0 0

] = g−2sE[

0
0 0 0

s

] + g−4 ξ(2s− 4)

ξ(2s)
E[

0
0 s−1 0

0

]

+ g2s−11 ξ(2s− 7)ξ(2s− 5)ξ(4s− 11)

ξ(2s)ξ(2s− 2)ξ(4s− 10)
E[

0
0 0 s−3

2 0

], (4.30)

where these are now functions on the symmetric space SO(5, 5)/(SO(5)× SO(5)) param-

etrised by the NS moduli in five dimensions, with the standard D5 labelling and g is the

five-dimensional string coupling. According to (4.29) we need this expression in the limit

s → 1 + ǫ. In this limit the last term disappears and we are left with (recalling the ξ

prefactors from (4.29))

ξ(2)ξ(2ǫ)

ξ(6)ξ(11)

(

g−2−2ǫE[

0
0 0 0

1

] + g−4 ξ(3)

ξ(2)
+O(ǫ)

)

. (4.31)

The string perturbation expansion of the fundamental E6(6) series in (4.29) is
∫

U1
1

E[

0

0 0 0 0 s

] = g−8(6−s)/3 ξ(2s− 11)ξ(2s− 8)

ξ(2s)ξ(2s− 3)
+ g−(15−2s)/3 ξ(2s− 5)

ξ(2s)
E[

0
0 0 0

s−3
2

]

+ gsE[

0
s 0 0

0

], (4.32)

which exhibits the expected pole when s → 9
2 (which is the right value after taking into

account the shift from above). More precisely, for s = 9
2 + ǫ we have the terms (recalling

the finite ξ(9)/ξ(11) from (4.29))

g−4+8ǫ/3 ξ(3)ξ(1 + 2ǫ)

ξ(6)ξ(11)
+ g−2+2ǫ/3 ξ(4)

ξ(11)
E[

0
0 0 0

3+ǫ

] (4.33)

= g−4+8ǫ/3 ξ(3)ξ(1 + 2ǫ)

ξ(6)ξ(11)
+ g−2+2ǫ/3 ξ(2)ξ(1 + 2ǫ)

ξ(6)ξ(11)
E[

1−ǫ
0 0 0

0

], (4.34)

where we have used a functional equation in the second step.

We collect all the relevant terms from above and find for s = 11
2 + ǫ (ignoring the v4

that only indicates the decompactification)

1

2ǫ

ξ(2)

ξ(11)ξ(6)

(

−g−2−2ǫE[

0
0 0 0

1+ǫ

] − g−4 ξ(3)

ξ(2)
+ g−4+8ǫ/3 ξ(3)

ξ(2)
+ g−2+2ǫ/3E[

1−ǫ
0 0 0

0

]

)

→
4ξ(3)

3ξ(11)ξ(6)
log g

(

g−4 + g−2 ξ(2)

ξ(3)
E[

1
0 0 0

0

]

)

. (4.35)

Here, we have used that E
[

0
0 0 0

1

]

= E
[

1
0 0 0

0

]

(for this particular value of s = 1) as required

by T-duality. Multiplying by the normalisation b from (4.28) one has then as for the

logarithmic term in g:

20

9
(2ζ(3)) log g

(

g−4 + g−2 ξ(2)

ξ(3)
E[

1
0 0 0

0

]

)

=
20

9
E (5)

(0,0) log g , (4.36)
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where we have used that the E6(6) Eisenstein series appearing in the R4 corrections has

the string perturbation expansion

∫

U1
1

E[

0
3
2

0 0 0 0

] = g−3 + g−2 ξ(2)

ξ(3)
E[

1
0 0 0

0

] (4.37)

and E (5)

(0,0) = 2ζ(3)E
[

0
3
2

0 0 0 0

]

. The coefficient in (4.36) matches the claimed coefficient

in (1.3).

The next task is to determine the coefficient in the Laplace equation. This one gets

by acting with the Laplacian on the regularised series. To this end we note the following

functional relations

E[

s−9
2

0 0 0 0 0

] =
ξ(2s− 19)ξ(2s− 17)ξ(2s− 16)ξ(4s− 29)

ξ(2s− 12)ξ(2s− 11)ξ(2s− 9)ξ(4s− 28)
E[

10−s

0 0 0 0 0

] . (4.38)

This absorbs the pole in the first term in (4.29), leading to

v4
ξ(2s− 19)ξ(2s− 17)ξ(2s− 16)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)
E[

10−s

0 0 0 0 0

] + v(2s+1)/3 ξ(2s− 2)

ξ(2s)
E[

0

0 0 0 0 s−1

] .

(4.39)

Both Eisenstein series are singular and need to be regularised. The Laplace eigenvalues for

s = 11
2 + ǫ are

∆E[ 9
2
−ǫ

0 0 0 0 0

] = 2(1 + ǫ)(2ǫ− 9)E[ 9
2
−ǫ

0 0 0 0 0

] , (4.40)

∆E[

0

0 0 0 0 9
2
+ǫ

] =

(
8

3
ǫ2 + 8ǫ− 18

)

E[

0

0 0 0 0 9
2
+ǫ

] . (4.41)

and from the analysis of the poles above we know that we can define the regularised series

(denoted with a hat) by

ξ(8)ξ(9)

ξ(2)ξ(11)
E[ 9

2
−ǫ

0 0 0 0 0

] = −
1

2ǫ

ξ(3)

ξ(6)ξ(11)
E[

0
3
2

0 0 0 0

] +
ξ(8)ξ(9)

ξ(2)ξ(11)
Ê[ 9

2
0 0 0 0 0

] +O(ǫ), (4.42)

ξ(9)

ξ(11)
E[

0

0 0 0 0 9
2
+ǫ

] =
1

2ǫ

ξ(3)

ξ(6)ξ(11)
E[

0
3
2

0 0 0 0

] +
ξ(9)

ξ(11)
Ê[

0

0 0 0 0 9
2

] +O(ǫ). (4.43)

Therefore we find the anomalous term in the Laplace equation for E (5)

(0,1) to be

(∆ + 18)E (5)

(0,1) = b lim
ǫ→0

1

2ǫ

(

−2(1 + ǫ)(2ǫ− 9) +

(
8

3
ǫ2 + 8ǫ− 18

))
ξ(3)

2ζ(3)ξ(6)ξ(11)
E (5)

(0,0)

= b
11ξ(3)

2ζ(3)ξ(6)ξ(11)
E (5)

(0,0) =
55

3
E (5)

(0,0). (4.44)

Here, we have used the normalisation b from (4.28). This matches the claimed coefficient

in (1.2c).
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4.4 Form factor divergence in D = 4

We need to consider the decompactification of the adjoint E8(8) series to D = 4. The Levi

subgroup is now L8 = GL(1)×E7(7). The constant term formula (2.13) leads to a number

of terms of which we only display the ones relevant for the derivation of the form factor

divergence:

∫

U1
8

E[

0

0 0 0 0 0 0 s

] = r6
ξ(2s− 17)ξ(2s− 19)ξ(2s− 22)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)
E[

0
23
2
−s 0 0 0 0 0

]

+ r(2s+1)/2 ξ(2s− 1)

ξ(2s)
E[

0

0 0 0 0 0 s−1
2

] + . . . . (4.45)

Both coefficients are regular but the two Eisenstein series diverge at s = 11
2 . The parameter

r here is related to size of the decompactifying circle.

Next, we require the string perturbation limit of the two Eisenstein series on

E7(7)/(SU(8)/Z2). For the adjoint E7(7) series one has

∫

U1
1

E[

0
23
2
−s 0 0 0 0 0

] = g−4(s−3) ξ(2s− 6)ξ(2s− 9)ξ(2s− 11)ξ(4s− 28)

ξ(2s− 17)ξ(2s− 19)ξ(2s− 22)ξ(4s− 29)

+ g−8 ξ(2s− 11)ξ(2s− 14)

ξ(2s− 19)ξ(2s− 22)
E[

0
15−2s s−11

2
0 0

0

] (4.46)

+ g5−2s ξ(2s− 7)ξ(2s− 9)ξ(2s− 11)ξ(4s− 28)

ξ(2s− 17)ξ(2s− 19)ξ(2s− 22)ξ(4s− 29)
E[

0
0 0 0 0

s−7
2

] + . . . .

We have chosen a representative that brings out the divergence at s = 11
2 + ǫ explicitly

through the factor ξ(2s − 11) = ξ(2ǫ) = − 1
2ǫ + . . .. For s = 11

2 + ǫ one then has (after

reinstating the prefactor from (4.45) and not exhibiting the r dependence)

ξ(2s− 17)ξ(2s− 19)ξ(2s− 22)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)

∫

U1
1

E[

0
23
2
−s 0 0 0 0 0

] (4.47)

→ −
1

2ǫ

ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

] +
ξ(5)

ξ(6)ξ(11)
log g

(

2g−10 + g−6 ξ(4)

ξ(5)
E[

0
0 0 0 0

2

]

)

+ . . . ,

where we have used the string perturbative expansion

∫

U1
1

E[

0
5
2

0 0 0 0 0

] = g−10 + g−8 ξ(4)ξ(8)

ξ(2)ξ(5)
E[

0
4 0 0 0

0

] + g−6 ξ(4)

ξ(5)
E[

0
0 0 0 0

2

]. (4.48)

For the fundamental E7(7) series one finds the perturbative string expansion

∫

U1
1

E[

0

0 0 0 0 0 s−1
2

] = g1−2s ξ(2s− 6)ξ(2s− 10)

ξ(2s− 1)ξ(2s− 5)
E[

011
2
−s 0 0 0

0

]

+ g2s−19 ξ(2s− 10)ξ(2s− 14)ξ(2s− 18)

ξ(2s− 1)ξ(2s− 5)ξ(2s− 19)
E[

019
2
−s 0 0 0

0

]

+ g−6 ξ(2s− 10)ξ(2s− 12)ξ(2s− 14)

ξ(2s− 1)ξ(2s− 5)ξ(2s− 9)
E[

15
2
−s

0 0 0 0
0

]. (4.49)
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This expansion is exact and we have again chosen a form that brings out the divergence

explicitly through the prefactor ξ(2s− 10) = ξ(2ǫ) = + 1
2ǫ + . . . for s = 11

2 + ǫ. Reinstating

the prefactor from (4.45) one then obtains for the 1
ǫ and log g terms

ξ(2s− 1)

ξ(2s)

∫

U1
1

E[

0

0 0 0 0 0 s−1
2

] (4.50)

→
1

2ǫ

ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

] +
ξ(5)

ξ(6)ξ(11)
log g

(

−g−10 + g−8 ξ(4)ξ(8)

ξ(2)ξ(5)
E[

0
4 0 0 0

0

]

)

.

Putting (4.47) and (4.50) together we see that the divergence indeed cancels out and

the log g terms are

ξ(5)

ξ(6)ξ(11)
log g

(

g−10 + g−8 ξ(4)ξ(8)

ξ(2)ξ(5)
E[

0
4 0 0 0

0

] + g−6 ξ(4)

ξ(5)
E[

0
0 0 0 0

2

]

)

=
ξ(5)

ξ(6)ξ(11)
log g E[

0
5
2

0 0 0 0 0

]. (4.51)

The reassembly of the full adjoint E7(7) series was only done at the level of the string

perturbative terms but will hold fully. Multiplying in the normalisation b from (4.28) the

final result is8

ξ(5)

ξ(6)ξ(11)
b log g E[

0
5
2

0 0 0 0 0

] =
5

π
ζ(5) log g E[

0
5
2

0 0 0 0 0

] =
5

π
log g E (4)

(1,0). (4.52)

This confirms the relevant term in (1.3).

We now turn to the computation of the anomalous term in the Laplace equation. We

define regularisations (denoted by hats) of the series appearing in (4.45) in accordance with

the pole analysis at s = 11
2 + ǫ by

ξ(8)ξ(9)ξ(12)

ξ(2)ξ(6)ξ(11)
E[

0

6−ǫ 0 0 0 0 0

]=−
1

2ǫ

ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

]+
ξ(8)ξ(9)ξ(12)

ξ(2)ξ(6)ξ(11)
Ê[

0

6 0 0 0 0 0

]+O(ǫ),

(4.53)

ξ(10)

ξ(11)
E[

0

0 0 0 0 0 5+ǫ

]=
1

2ǫ

ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

] +
ξ(10)

ξ(11)
Ê[

0

0 0 0 0 0 5

] +O(ǫ). (4.54)

Here we have kept the prefactors as they appear in the combination (4.45). Using now

∆E[

0

6−ǫ 0 0 0 0 0

] =
(
4ǫ2 − 14ǫ− 60

)
E[

0

6−ǫ 0 0 0 0 0

], (4.55)

∆E[

0

0 0 0 0 0 5+ǫ

] =
(
3ǫ2 + 3ǫ− 60

)
E[

0

0 0 0 0 0 5+ǫ

], (4.56)

one deduces

ξ(8)ξ(9)ξ(12)

ξ(2)ξ(6)ξ(11)
(∆ + 60) Ê[

0

6 0 0 0 0 0

] =
7ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

], (4.57)

ξ(10)

ξ(11)
(∆ + 60) Ê[

0

0 0 0 0 0 5

] =
3ξ(5)

2ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

]. (4.58)

8Recall that E(4)

(1,0) = ζ(5)E
[

0
5
2

0 0 0 0 0

]

without a factor of 2.
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The anomalous term in the Laplace equation of E (4)

(0,1) is therefore

(∆ + 60) E (4)

(0,1) = b

(

7 +
3

2

)
ξ(5)

ξ(6)ξ(11)
E[

0
5
2

0 0 0 0 0

] =
85

2π
E (4)

(1,0) , (4.59)

thus confirming (1.2c).

5 Fourier expansions and Whittaker vectors for SO(5, 5)

The Fourier coefficients of the functions E (D)

(p,q) are constrained by supersymmetry [10, 16, 17].

This can be rephrased in terms of nilpotent orbits [17] and constraints on degenerate

Whittaker vectors [37, 38]. In this section we will investigate these issues for the case of

D = 6 where the Cremmer-Julia group is SO(5, 5).

5.1 Fourier modes

Given a U-duality invariant function f(VD) on G/K, as for example E (D)

(p,q), one defines the

(abelian) Fourier coefficients in some (abelian) unipotent subgroup U ⊂ G by

F~mU
(VD) =

∫

U1

f(uVD)ψ~mU
(u)du. (5.1)

Here we have used the following notation.

• U1 = U(Z)\U where U(Z) = U ∩G(Z) denotes the U-duality shifts contained in the

chosen unipotent U . In an appropriate normalisation the integral is nothing but an

integral over [0, 1]dim(U).

• The unipotent subgroup U corresponds to a choice of subset of moduli in D dimen-

sion. All these moduli must be axionic, i.e., have shift symmetries, and their shift

symmetries must close on U . If U is abelian then all shifts commute but more general

cases are possible, for example in the presence of NS5-branes [39, 40].

• As for abelian U all shifts commute we can diagonalise them simultaneously and

denote the corresponding eigenvalues by ~mU ∈ Zdim(U). Similarly, we can parametrise

any element u ∈ U by u = exp(~χU · ~tU ) where ~tU denotes a basis of appropriately

normalised generators of the unipotent group U . The character ψ~mU
(u) appearing in

the formula above then is nothing but

ψ~mU
(u) = exp (2πi~mU · ~χU ) , (5.2)

i.e. a collection of phases associated with the axionic moduli ~χU that are physically

defined modulo an integral shift.

• If U is non-abelian, then only the abelianised part is captured by the integral (5.1).

When U is non-abelian the derived series of U defined by U (k) = [U (k−1), U (k−1)]

(with U (0) = U) is non-trivial for 0 ≤ k ≤ n for some n > 0. One can then define

similar non-abelian Fourier coefficients for each of the U (k) for k > 0.
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The integers ~mU correspond physically to instanton charges and the Fourier coefficients

arrange themselves on orbits of the action on U of the (reductive) Levi subgroup L asso-

ciated with the unipotent U . The case ~mU = 0 corresponds to ψ~mU
= 1 and therefore

the zero mode Fourier integral reduces to the constant term integral (2.13) discussed in

section 2.

5.2 Fourier modes of SO(5, 5) series

We consider the Fourier modes in an expansion corresponding to decompactification to

type IIB. At the level of Lie algebras this means that we are looking at the decomposition

of so(5, 5) under Lie (L2) = gl(1)⊕ sl(2)⊕ sl(4) where sl(4) ∼= so(3, 3) describes the decom-

pactifying four-torus, gl(1) is related to its volume and sl(2) is the type IIB S-duality. The

relevant decomposition is

so(5, 5) ∼= 1(−2) ⊕ (2,6)(−1) ⊕
(
gl(1)⊕ sl(2)⊕ sl(4)

)(0)
⊕ (2,6)(1) ⊕ 1(2)

︸ ︷︷ ︸

Lie (U2)

(5.3)

The superscripts in this equation denote the gl(1) weight and the representations of sl(2)⊕

sl(4) are labelled by their dimension. As indicated, the Lie algebra of the non-abelian

unipotent subgroup U2 in this expansion consists of two pieces occurring at weights +1 and

+2 with respect to gl(1). The associated Heisenberg algebra is realised on the symmetric

space SO(5, 5)/(SO(5)× SO(5)) through the Killing vectors

κijα =
∂

∂aαij
−

1

4
εαβε

ijklaβkl
∂

∂b
, k5 =

∂

∂b
, (5.4)

satisfying

[κijα , κ
kl
β ] =

1

2
εαβε

ijklk5 . (5.5)

The indices i, j = 1, . . . , 4 here are fundamental sl(4) indices and an antisymmetric pair

[ij] corresponds to the vector of so(3, 3) ∼= sl(4). The index α = 1, 2 is a fundamental

sl(2) index. An abelian Fourier mode defined in (5.1) here is labelled by an SL(2,Z)

doublet Q = (p, q) = ~mU of SO(3, 3) vectors. The non-abelian Fourier mode associated

with the weight +2 singlet corresponds to a single integer N and we will write the most

general Fourier mode as FQ,N (V6). Note that this notation is not uniquely defined because

not all κijα can be diagonalised simultaneously when N 6= 0. A related discussion can be

found in [40]. For a purely abelian Fourier mode FQ,0, the action of the generators is

k5FQ,0(V6) = 0 and κijαFQ,0(V6) = 2πiQij
αFQ,0(V6). A non-abelian Fourier coefficient FQ,N

satisfies in general k5FQ,N (V6) = 2πiNFQ,N (V6). In physical terms, the Fourier modes

FQ,N correspond to fundamental and D1 strings wrapping the T 4 and define Qij
α whereas

the additional single integer N gives the number of Euclidean D3 branes wrapping T 4.

The space of vector doublet charges (p, q) ∈ Z12 stratifies under the action of SL(2,R)×

SO(3, 3) according to the number of linearly independent vectors spanned by p and q and

the sign of their norm. This stratification is isomorphic to the stratification of real nilpo-

tent orbits of SO(5, 5) of dimension smaller than 26, and is displayed in figure 1, where
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{0}

[0]

[+][−]

[0, 0]

[+, 0][−, 0]

[+,+][−,−] [+,−]

A1

(2A1)
′

(2A1)
′′

3A1

A2

(1, 1)

(12 ,
1
2)

(12 , 0)(0, 12)

(14 ,
1
4)

(14 , 0)(0, 14)

(14 , 0)(0, 14) (0, 0)

Figure 1. Closure diagram of the real nilpotent orbits of SO(5, 5) of dimension smaller than 26.

The second copy exhibits the fraction of supersymmetry charges of the two chiralities preserved by

the corresponding instanton. The total fraction of supercharges that are preserved is given by half

the sum of the two chiral pieces.

the number of +, −, 0 gives the number of linearly independent vectors whose norm is

respectively positive, negative or null.9

The algebraic constraints defining this stratification are displayed in table 1, where we

have also indicated the nilpotent SO(10,C) orbits that are intersected by the orbits of the

SO(3, 3) × SL(2) action on R12 and have labelled them both by their Bala-Carter type

and their weighted Dynkin diagram [41–43]. The qualifier ‘special’ or ‘not special’ refers

to Lusztig’s property of nilpotent orbits [31] and is related to whether they can arise as

wave-front sets of automorphic representations [24, 32]. The information of this table can

partially be extracted from [44, section 5.5.2]. The notation here is such that |p|2 = p · p

denotes the SO(3, 3)-norm of the vector p and (p · q)2 denotes the square of the SO(3, 3)

inner product. The wedge p ∧ q is a tensorial object, namely the outer product of the

two vectors.

The non-trivial (abelian) Fourier coefficients must fall into the topological closure of

one of the above classes. They correspond to space-time instantons that are defined in

the background of supersymmetric solutions in supergravity. These solutions are defined

in the Euclidean signature as solutions to the pseudo-Riemannian non-linear sigma model

over G/K∗ (for a non-compact real form K∗ of K) satisfying the energy momentum tensor

constraint

〈Pµ(Φ), Pν(Φ)〉dΦ
µ ⊗ dΦν = 0 . (5.6)

Such a spherically symmetric solution can be obtained for any representative p of the

nilpotent orbit restricted to the coset component g⊖ k∗, as [45]

V(Φ) = exp
(

−
p

r4

)

, (5.7)

and the corresponding solution preserves a given amount of supercharges depending of

the complex K(C) orbit of p, as is displayed in figure 1. The smaller the orbit is the

9In terms of signed partitions of 10 parametrising the nilpotent orbits of SO(5, 5), a + and a − correspond

respectively to a 3-box line with respectively + − + and − + −, whereas a 0 corresponds to a doublet of

2-box lines, the remaining being understood as being 1-box lines with the appropriate signs to neutralise

the partition, see e.g. [36].
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Condition on (p, q) ∈ Z12 ‘Dimension’ of part of nilpotent SO(10,C) orbit O

subspace Bala-Carter label weighted Dynkin dimC O

of O diagram of O

|p|2|q|2 − (p · q)2 6= 0 12 A2 (special)
[

0
0 2 0

0

]

26

|p|2|q|2 − (p · q)2 = 0 11 3A1 (not special)
[

0
1 0 1

0

]

24

|p|2 = |q|2 = (p · q)2 = 0 9 (2A1)
′′ (special)

[

1
0 0 0

1

]

20

p ∧ q = 0 7 (2A1)
′ (special)

[

0
2 0 0

0

]

16

|p|2 = |q|2 = p ∧ q = 0 6 A1 (special)
[

0
0 1 0

0

]

14

Table 1. Orbits of SO(3, 3,Z)× SL(2,Z) acting on the twelve charges (p, q) ∈ Z12 describing the

(abelian) Fourier coefficients associated to P2. The intersection with the complex nilpotent orbits

of SO(5, 5,C) ∼= SO(10,C) is also given.

stronger the constraints from supersymmetry are, and figure 1 encompasses all the BPS

orbits. The differential constraints satisfied by the BPS protected threshold functions are

themselves associated to harmonic superspace constructions of the associated linearised

supersymmetry invariant as superspace integrals of BPS protected integrands preserving

the same amount of supersymmetry, i.e. 1/2 BPS for R4, 1/4 for ∇4R4 and 1/8 BPS

for ∇6R4 [10].

For a generic adjoint Eisenstein series

E[

0
0 s 0

0

] (5.8)

the Fourier coefficients are restricted to the BPS orbits displayed in figure 1, and generi-

cally cover all of them non-trivially, but for special values of s for which they are further

restricted. The constraints on the Fourier modes follow from the tensorial differential

equations the corresponding function satisfy [10, 12]. One can check explicitly that these

differential equations are satisfied by the generating character of the series, but one must

be careful when the Eisenstein series is not absolutely convergent. Indeed we will see in

the next subsection, that although the adjoint Eisenstein series at s = 3
2 is generated by

a character satisfying the quartic constraint associated to the dimension 24 nilpotent or-

bit of type 3A1 in table 1, its Fourier modes do not satisfy the corresponding constraint

|p|2|q|2−(p, q)2 = 0. This nilpotent orbit is indeed not special, and so one understands this

property from the analysis of [24, 32], that states that the maximal orbits in a wave-front

set of an automorphic function are special. There are only two non-special nilpotent orbits

of SO(5, 5,C), as we display in figure 2.

From the tensorial differential equation one derives that

E[

0
0 s 0

0

] : |p|2|q|2 − (p, q)2 6= 0 (p, q) ∈ Z
12

E[

0
0 0 0

s

] : |p|2 = |q|2 = (p, q) = 0 (p, q) ∈ Z
12 ∩ O

9

E[

0
s 0 0

0

] : p ∧ q = 0 (p, q) ∈ Z
12 ∩ O

7

E[

03
2

0 0
0

] : |p|2 = p ∧ q = |q|2 = 0 (p, q) ∈ Z
12 ∩ O

6
(5.9)
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1

22

243
3·22

32

32 · 22

33 5

42
5·22

5 · 3

752

7 · 3

9

Figure 2. Closure diagram of the nilpotent orbits of SO(10,C) exhibiting the special orbits. The

labels on the nodes represent partitions of 10 and have to be completed by 1s as needed, such that

for example the label 3 corresponds to the partition 3 · 17. The two orbits in small font, 3 · 22 · 13

and 5 · 22 · 1, are not special. Removing them together with lines connected to them one obtains an

‘up-down’ symmetric diagram as required by the Spaltenstein map.

where O
n
is the dimension n algebraic variety in R12 of solutions to the corresponding

constraint. Here the value of s is understood to be generic, whereas the support of the

Fourier modes reduces at some specific values

E[

0
0 0 0

1

] = E[

1
0 0 0

0

] =
1

2

ζ(3)

ζ(2)
E[

03
2

0 0
0

]

E[

0
0 1

2
0

0

] ∝ E[

0
1 0 0

0

]

E[

0
0 1 0

0

] ∝ E[

0
0 0 0

2

] = E[

2
0 0 0

0

] (5.10)

where the differential equations degenerate. Strictly speaking the undisplayed coefficients

vanish as an artefact of Langlands normalisation, but we will see in the next subsection

that these relations are indeed satisfied in a suitable normalisation in which the coefficients

are finite. The value of N is never constrained. When N = 0, one can define the abelian

Fourier modes (p, q), and the reduction of a differential operator in a given representation

implies the same constraint as the corresponding algebraic equation. We will moreover

assume that the dimension of the algebraic variety that supports the non-abelian Fourier

modes is still correctly determined by the algebraic solution to the constraint to be half
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the dimension of the corresponding nilpotent orbit, even if the structure of the solution is

much more complicated in general for non-abelian Fourier modes.

Let us explain this in more detail in some examples. The vector Eisenstein series

satisfies in general

D 2
16E

[

0
s 0 0

0

] =
s(s− 4)

4
116E[

0
s 0 0

0

] , (5.11)

and using the 3-graded decompositions associated to (5.3)

16 ∼= 4(−1) ⊕ (2,4)(0) ⊕ 4(1) ,

10 ∼= 2(−1) ⊕ 6(0) ⊕ 2(1) , (5.12)

one computes that the restriction of (5.11) to the degree 2 component gives

1

6
εipklε

αβQjp
α Qkl

β FQ,0
[

0
s 0 0

0

] = 0 ⇒ q ∧ p = 0 . (5.13)

Similarly for the spinor Eisenstein series

D 2
10E

[

0
0 0 0

s

] =
s(s− 4)

4
110E[

0
0 0 0

s

] , (5.14)

one obtains the degree 2 component

1

3
εijklQ

ij
αQ

kl
β FQ,0

[

0
0 0 0

s

] = 0 ⇒

(

|q|2 (p, q)

(p, q) |p|2

)

= 0 . (5.15)

More generally Eisenstein series satisfy tensorial differential equations that are associated to

the algebraic constraints defining the corresponding nilpotent orbits. Because the maximal

degree component of these differential equations in a given parabolic gauge only involves

the axion fields, they become algebraic constraints in Fourier space that reproduce the

corresponding constraint. One can in this way understand the wave-front set from the

differential equations satisfied by the Eisenstein series [12]. Strictly speaking the reduction

of (5.14) to the algebraic constraint (5.15) on the Fourier modes (p, q) is only valid when

N = 0, whereas in general one gets a corresponding differential equation for the axion with

a right-hand-side linear in N that depends explicitly on the axion moduli. Nonetheless,

the constraint still makes sense for counting the lattice dimension, i.e. the dimension n of

the algebraic subvariety O
n
in the corresponding vector space of charges R12 such that the

Fourier modes are valued in Z12 ∩O
n
. We can see this explicitly in the perturbative string

theory limit, in which one decomposes instead the series in RR Fourier modes e2πi(p,a),

with the Spin(4, 4) Weyl spinor axion a. We compute in appendix B using the Poisson

summation formula that

E[

0
0 0 0

s

]= g−sE[

0
s 0

0

] + gs−4 ξ(2(s− 2))

ξ(2s)
E[

0
0 0

s-1

]

+
2

ξ(2s)

∑

p∈Z8

(p,p)=0



gcd(p)s−1
∑

n|gcd(p)

n2(2−s)




g−2

|Z(p)|
E[s-1 0 0](vp)Ks−2(2πg

−1|Z(p)|)e2πi(p,a)

(5.16)
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where vp is the SL(4) subgroup of SO(4, 4) that stabilises the null vector p, and |Z(p)|2 is

the SO(4, 4) moduli dependent invariant mass associated to the charge p. In this equation

one finds that the RR Fourier modes are constrained to be null vectors, and the three

extra integer sums come from the SL(4) Fourier modes of the Eisenstein series in the

fundamental representation, with total ‘lattice dimension’ 10, as for the ten-dimensional

lattice associated to the spinor Eisenstein series in the M-theory limit. In this case however,

we have a non-abelian decomposition for which each null vector p of Z8 defines a particular

Fourier decomposition of the corresponding SL(4) ⊂ SO(4, 4) moduli space. The graded

decomposition of the vector representation indeed implies that for a generic charge

Q10 =






0 p 0

0 Q8 p

0 0 0




 ∈ so(4, 4)⊕ 8(2) ⊂ so(5, 5) , (5.17)

one has the quadratic constraint

Q 2
10 =






0 Q8p (p, p)

0 Q 2
8 Q8p

0 0 0




 = 0 , (5.18)

such that the E[s-1 0 0](vp) must satisfy the quadratic differential equation associated to the

minimal nilpotent orbit

D 2
6 E[s-1 0 0] =

(s− 1)(s− 3)

4
16E[s-1 0 0] . (5.19)

For s = 1, the SL(4) Eisenstein series is a constant, and one gets back E
[

03
2

0 0
0

]

.

Let us now consider the inhomogeneous equations (3.2), (3.3). The Fourier modes of

E(0,0) of vanishing D3-brane charge are defined by doublets of proportional null vectors and

so its square involves the generic sum of doublets (pi, qi). One computes that the sum of

such doublets gives generically a doublet of linearly independent non-null vectors (p, q) of

opposite signature, that has a negative quartic SL(2)× SO(3, 3) invariant

|p|2|q|2 − (p, q)2 < 0 . (5.20)

This can easily be seen if we take

(p1, q1) = (p, 0) , (p2, q2) = (0, q) , (p, q) 6= 0 . (5.21)

This corresponds precisely to the structure of the Fourier modes of a generic function

E
[

0
0 s 0

0

]

, although its Fourier modes can have the two signs for |p|2|q|2− (p, q)2 in general.

To see this one uses the property that the ‘fundamental’ representations are all 3-graded

in this decomposition (5.12) such that the positive degree generator in (5.3) to the third

power vanishes automatically in all these representations without any further restriction.

Note that the real SO(5, 5) nilpotent orbit associated to instanton charges of negative

quartic invariant corresponds to a complex Sp(4,C)×Sp(4,C) orbit of a non-BPS solution

through the Kostant-Sekiguchi correspondence [43]. Nonetheless, a given representative
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does not need to lie in the intersection of the respective orbits that are related by the

Kostant-Sekiguchi isomorphism. This additional restriction only applies when one requires

moreover the corresponding black hole solution to be regular in seven dimensions [36], but

should not apply to the space-time instanton as such.

One can also check the representation of the Fourier modes in the parabolic subgroup

associated to the decompactification to eight dimensions

so(5, 5) ∼= 3(−4) ⊕ (2⊗ 2⊗ 3)(−2) ⊕
(
gl1 ⊕ sl2 ⊕ sl2 ⊕ sl3

)(0)
⊕ (2⊗ 2⊗ 3)(2) ⊕ 3

(4)
, (5.22)

with

16 ∼= 2(−3) ⊕ (2⊗ 3)(−1) ⊕ (2⊗ 3)(1) ⊕ 2(3) ,

10 ∼= 3
(−2)

⊕ (2⊗ 2)(0) ⊕ 3(2) . (5.23)

The Fourier modes give a triplet of SO(2, 2) vectors pi associated to the effective Euclidean

1-brane coupled to the 6 vector fields along T 2, and a conjugate triplet of singlets qi

associated to the effective Euclidean 2-brane coupled to the 3 tensor fields.10 For the

function E
[

0
0 s 0

0

]

, the condition that the differential operator in the spinor representation

reduces to the third order implies

εijkpi ∧ pj ∧ pk = 0 , (5.24)

such that only two of the vectors are linearly independent. The counting of the number of

modes here works as follows. There are two vectors (4 + 4) plus a third depending on the

two others (+2) and the three weight 2 components (+3), and we get back a 13 dimensional

lattice of Fourier modes.

For the function E
[

0
0 0 0

s

]

, we moreover require the vector representation differential

operator to reduce at second order, such that all the scalar products vanish

(pi, pj) = 0 , (5.25)

getting therefore three more constraints (since p3 is already assumed to be a linear combi-

nation of p1 and p2), recovering the 10 dimensional lattice of Fourier modes.

The minimal representation corresponds to the restriction in which all pi are propor-

tional and null, and moreover piq
i = 0, such that one gets a 3 + 1 + 1 + 2 = 7 dimensional

lattice of Fourier modes as required. The generic sum of two such vectors gives a doublet

of linearly independent vectors, but cannot give three linearly independent vectors, such

that one gets back that the source term (3.2), (3.3) indeed sources generic Fourier modes

of a function of type E
[

0
0 s 0

0

]

, and is consistent with it in the sense that it does not source

more generic Fourier modes.

10By effective Euclidean p-brane we mean any Euclidean p + k-brane that wrap p directions of the

decompactified T 2 and k directions in the other T 2.
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5.3 Whittaker vectors of SO(5, 5) series

In this section we analyse the degenerate Whittaker vectors of some maximal parabolic

SO(5, 5) Eisenstein series. Whittaker vectors are special cases of Fourier coefficients when

the unipotent is taken to be maximal unipotent N of all unipotent elements in a Borel sub-

group. There is a close connection between Whittaker vectors and Fourier modes associated

to nilpotent orbits [23, 38].

The number of instanton charges that label Whittaker vectors is equal to the real

rank of the group. For SO(5, 5) we therefore have five instanton charges ~mN that can be

arranged on the Dynkin diagram of SO(5, 5). When some of the charges vanish, Whittaker

vectors are called degenerate and a general formalism for determining degenerate Whittaker

vectors was presented in [37]. We will write a Whittaker vector as

W[

s4s1 s2 s3 s5

]

(
[

m4m1 m2 m3 m5

]

)

=

∫

N(Z)\N(R)

E[

s4s1 s2 s3 s5

]ψ[

m4m1 m2 m3 m5

] , (5.26)

with ψ
[

m4m1 m2 m3 m5

]

defined as in (5.2). The Whittaker function types can be labelled by the

same labels as the (complex) nilpotent orbits and we will refer to them by these names. The

wave-front set of an Eisenstein series will be the largest complex orbit with non-vanishing

Whittaker vectors, which is unique [32, 46].11 In the following we will always evaluate the

Whittaker vectors at the origin of moduli space, i.e. the identity of the Cartan subgroup.

5.3.1 SO(5, 5) vector series

The series

E[

0
s 0 0

0

] =
ξ(2s− 6)ξ(2s− 4)

ξ(2s)ξ(2s− 3)
E[

0
4−s 0 0

0

] (5.27)

can have Fourier coefficients at most associated with the orbit of type (2A1)
′ since it can be

functionally realised on the coset P1\SO(5, 5) of dimension 8. The functional dimension of

an automorphic realisation is half the dimension of the maximal nilpotent orbit contributing

to the Fourier coefficients and therefore inspection of table 1 shows that there can be no

Fourier coefficients beyond the orbit (2A1)
′.

The Whittaker vectors corresponding to the (2A1)
′ orbit can be represented by in-

stanton charges with Dynkin diagram
[

m
0 0 0

n

]

for m,n ∈ Z. By contrast, the instanton

charges for the (2A1)
′′ orbit are for example of the type

[

0
m 0 n

0

]

. One can check that the

associated Whittaker vectors vanish for all values of s in (5.27). For a generic s in (5.27),

the Whittaker vector can be evaluated with the help of [37] to be

W[

0
s 0 0

0

]

(
[

m
0 0 0

n

]

)

=
ξ(2s− 3)

ξ(2s)
W[

s−3
2

] ([m])W[

s−3
2

] ([n]) , (5.28)

where we have placed ourselves at the origin in moduli space for simplicity. Here, the

function

W[s]([n]) =
2

ξ(2s)
|n|s−

1
2




∑

k|n

k1−2s



Ks−1/2(2π|n|) (5.29)

11i.e. the closure of this orbit includes all the orbits for which the Whittaker vectors do not vanish.
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is the Whittaker function for the SL(2) series E[s] at the origin of moduli space. It vanishes

linearly for s → 0 (and s → 1
2) due to the ξ(2s) denominator. Inspecting (5.28) then shows

that the whole Whittaker vector for the SO(5, 5) vector series vanishes for s → 3
2 .

Performing a similar calculation for the smaller A1 orbit shows that the associated

Whittaker vector never vanishes (as a function of s 6= 0) confirming the reduction of the

Fourier coefficients already mentioned above.

5.3.2 SO(5, 5) adjoint series

The adjoint Eisenstein series of SO(5, 5)

E[

0
0 s 0

0

] =
ξ(2s− 6)ξ(2s− 5)ξ(2s− 4)ξ(4s− 7)

ξ(2s)ξ(2s− 2)ξ(2s− 1)ξ(4s− 6)
E[

0
0 7

2
−s 0

0

] (5.30)

can be realised as a function on the space P2\SO(5, 5) of dimension 13. The maximal

nilpotent orbit supported by this function for generic s is therefore the orbit of dimension

26, labelled type A2 in table 1.

For special values of s one has reductions of the orbit type. As indicated in (5.30), the

adjoint series has a functional relation that relates s ↔ 7
2 − s. In Langlands normalisation,

one can use the Langlands constant term formula to show that E
[

0
0 s 0

0

]

has simple zeroes

at s = 1
2 , s = 1 and s = 3

2 . Inspecting the prefactor in the functional relation one concludes

that there has to be a simple pole for s = 2, s = 5
2 and s = 3. These have to be taken into

account when discussing the simplifications in the Whittaker vectors.

Performing this analysis here implies that the degenerate Whittaker vector of type A2

takes the value

W[

0
0 s 0

0

]

(
[

0
1 1 0

0

]

)

=
ξ(2s− 3)ξ(2s− 4)

ξ(2s)ξ(2s− 2)
W[s−1/2 s−2] ([1 1]) , (5.31)

for unit charges. Let us discuss various limits of this formula.

• In the limit s → 1
2 , the SL(3) = A2 Eisenstein series becomes of minimal type [40]

and the corresponding Whittaker vector vanishes linearly as does the prefactor. This

means that the suitably normalised adjoint SO(5, 5) Eisenstein series has no A2

Whittaker vectors for s = 1
2 . This is consistent with the fact that it is related to a

different Eisenstein series through

E[

0
0 s 0

0

] =
ξ(2s− 2)

ξ(2s)
E[

03
2
−s 0 s−1

2 0

]. (5.32)

This shows that in the limit s → 1
2 the suitably normalised adjoint series is propor-

tional to the vector series at s = 1 and therefore has Whittaker vectors of type (2A1)
′

(and smaller).

• In the limit s → 1, the prefactor in (5.31) vanishes linearly and so does the Whittaker

vector on the right-hand side, giving a total vanishing up to quadratic order. In view

of the linear vanishing of the Eisenstein series in this limit this means that the adjoint

SO(5, 5) series has no A2 Whittaker vectors in the limit s → 1. Turning to the 3A1
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Whittaker vectors shows that they also vanish in this limit. Further analysis shows

that there is an effective reduction to type (2A1)
′′ for the Fourier coefficients. The

adjoint series indeed satisfies the functional relation

E[

0
0 s 0

0

] =
ξ(2s− 4)ξ(2s− 3)ξ(4s− 7)

ξ(2s)ξ(2s− 1)ξ(4s− 6)
E[

4−2s
0 0 s−1

0

], (5.33)

showing that at s = 1 there is a relation to the chiral spinor series that will be

discussed below.

• In the limit s → 3
2 , the SL(3) = A2 Eisenstein series becomes of minimal type [40]

and the corresponding Whittaker vector vanishes linearly as above. But in this case

the prefactor remains finite. As the whole Eisenstein series vanishes for s → 3
2 , there

is in fact no simplification in the degenerate Whittaker vector if one removes the

overall vanishing by suitable normalising ξ factor. If one performs a similar analysis

for the 3A1 type Whittaker vectors one also concludes that there is no simplification

in this limit. Therefore, the suitably normalised s = 3
2 adjoint Eisenstein series has

Whittaker vectors of all types up to A2 and indeed is of the same type as the generic

adjoint Eisenstein series.

However, the s = 3
2 adjoint function differs from the generic case in that the Eisenstein

series E
[

0
0 3

2
0

0

]

is square integrable according to Langlands’ criterion [25, section 5].

This is similar to what happens for the minimal series (for D ≤ 6) and the next-

to-minimal series (for D ≤ 4) [17] and signals that it belongs to a small unitary

representation. The generating character of the adjoint Eisenstein series at s = 3
2

does satisfy to an additional quartic differential constraint associated to the 3A1

nilpotent orbit, and by Langlands formula all its non-vanishing constant terms (in

e〈wλ+ρ,H(V)〉) do as well, although its Fourier modes violate this constraint as we have

just exhibited. Moreover, the Laplace eigenvalue is −12 and thus outside the range

of the associated continuous (degenerate) principal series of solutions to (3.31) with

s = 7
4 + ir (r ∈ R) that has Laplace eigenvalues given by −49

4 − 4r2. It therefore is

part of the discrete spectrum of the Laplace operator.12

Note that the Whittaker vector only spans the Fourier modes associated to the non-

BPS real nilpotent orbit of SO(5, 5). The notation A2 means that a representative of the

nilpotent orbit can be defined as a linear combination of the simple roots of a subalgebra

sl3 ⊂ so(5, 5). In this case one can indeed realise a representative of the nilpotent orbit of

dimension 26 as a linear combination of the two simple roots of sl3 through the embedding

SL(3) ⊂ SO(1, 1)× SL(3)× SO(2, 2) ⊂ SO(3, 3)× SO(2, 2) ⊂ SO(5, 5) , (5.34)

so that the Levi subgroup of the real stabilizer of the corresponding nilpotent orbit is

SO(1, 1) × SO(2, 2). One straightforwardly works out that this is also the stabilizer of a

doublet of linearly independent non-null vectors of opposite signature in SL(2)×SO(3, 3).

12An analogous phenomenon happens for the adjoint E7(7) series at s = 4 that was mentioned at the end

of section 2.3.
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However, a doublet of linearly independent non-null vectors of the same signature is sta-

bilized by SO(2) × SO(3, 1), which is the centralizer subgroup of SU(2, 1) in SO(5, 5),

through the embedding

SU(2, 1) ⊂ SO(2)× SU(2, 1)× SO(1, 3) ⊂ SO(4, 2)× SO(1, 3) ⊂ SO(5, 5) . (5.35)

Nonetheless, it seems clear that the adjoint Eisenstein series should have non-zero modes

in all these three real orbits, as expected from the discussion in [47].

5.3.3 SO(5, 5) spinor series

The chiral spinor series

E[

s
0 0 0

0

] =
ξ(2s− 5)ξ(2s− 7)

ξ(2s)ξ(2s− 2)
E[

0
0 0 0

4−s

] (5.36)

is related to the anti-chiral spinor series as shown. It can be realised through functions

on the space P4\SO(5, 5) of dimension 10. Referring back to table 1 we conclude that at

most the type (2A1)
′′ orbit can appear in the Fourier coefficients. The series E

[

s
0 0 0

0

]

has

simple zeroes for s = 1
2 and s = 3

2 .

The type (2A1)
′′ Whittaker vector is

W[

s
0 0 0

0

]

(
[

0
n 0 m

0

]

)

=
ξ(2s− 3)ξ(2s− 3)

ξ(2s)ξ(2s− 2)
W[

s−3
2

] ([n])W[

s−3
2

] ([m]) (5.37)

Note that this formula is perfectly consistent with (5.16), identifying the Whittaker vector

of the SL(4) function

W[s−1 0 0] ([0,n,0]) =
ξ(2s− 3)

ξ(2s− 2)
W[

s−3
2

] ([n]) , (5.38)

one is left with a remaining factor of ξ(2s−3)
ξ(2s) W[

s−3
2

] ([gcd(p)]) for the integral null vector p

that matches precisely (5.16).

We again discuss various limiting values of (5.37) for s.

• In the limit s → 1
2 , the prefactor in (5.37) vanishes linearly but the two SL(2)

Whittaker functions remain finite. This is in agreement with the linear vanishing of

the whole Eisenstein series and means that a suitably normalised version does not

exhibit any simplifications in this limit.

• In the limit s → 1, the prefactor vanishes linearly and the two Whittaker functions

in (5.37) remain finite, implying an overall linear vanishing of the (2A1)
′′ Whittaker

function (5.37) for the SO(5, 5) chiral spinor series (since the Eisenstein series itself

is regular at this value). Indeed, there is a functional relation

E[

s
0 0 0

0

] =
ξ(2s− 4)

ξ(2s)
E[

05
2
−s 0 0

s−1

], (5.39)

showing that in the limit s → 1, the chiral spinor series will have the same behaviour

as the vector series (5.27) at s = 3
2 . We already showed in section 5.3.1 above that

in this case one has a reduction to the minimal A1 orbit.
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• In the limit s → 3
2 , the prefactor in (5.37) diverges linearly whereas the two Whittaker

vectors each vanish linearly, giving a linearly vanishing result in agreement with the

behaviour of the chiral spinor series (5.36) at s = 3
2 . This implies that there is no

simplification in the Fourier coefficients for s → 3
2 .

• In the limit s → 2 the Whittaker vector (5.37) remains finite and therefore there is

no simplification in the Fourier coefficients and the series is of type (2A1)
′′. This is

the case that is related to adjoint function at s = 1.

Let us also note that the (2A1)
′ type Whittaker vectors always vanish, consistently

with the analysis of the preceding section. In summary, the chiral spinor series (5.36)

always has Fourier coefficients attached to the orbits (2A1)
′′ and A1 (and, of course, the

trivial orbit) except for s = 1 when the Fourier coefficients reduce to just type A1.

5.4 Relation to supersymmetric invariants

Returning to the ∇6R4 threshold function discussed in this paper and given in (3.1),

we conclude therefore that the function E
[

0
0 0 0

4

]

appearing in E (6)

(0,1) only gets corrections

associated to 1
4 -BPS corrections. Although the adjoint Eisenstein series E

[

0
0 7

2
0

0

]

does

include constant terms inconsistent with perturbative string theory, its wave-front set is of

type A2, consistent with the property that the ∇6R4 threshold function gets corrections

associated to 1
8 -BPS instantons.

The ∇4R4 threshold function E (6)

(1,0) is given by a combination of a spinor and vector

function by [15, 18]

E (6)

(0,1) = ζ(5)Ê[

05
2

0 0
0

] +
8ζ(6)

45
Ê[

0
0 0 0

1

]. (5.40)

From the analysis of the Whittaker vectors and Fourier modes we now see that the two

functions have wave-front sets of types (2A1)
′ and (2A1)

′′, respectively, that correspond to

the two distinct supersymmetric 1
4 -BPS invariants [11]. The general pattern seems to be

that 1
4 -BPS corrections should be associated with all (special) 2A1-type orbits.
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A Adjoint E8(8) series as a lattice sum

In this appendix, we rewrite the adjoint Eisenstein series (2.9) as a sum over a 248-

dimensional lattice in the adjoint representation. For this we recall that the symmetric

tensor product of the 248 of E8(8) is

248⊗s 248 = 27000⊕ 3875⊕ 1. (A.1)
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The minimal representation-theoretic constraint to be imposed on a lattice sum is that

a charge Q ∈ Z248 ⊂ R248 satisfy the constraint that its square contain only the largest

representation 27000, as is necessary for a lattice sum to be automatically an eigenfunction

of the Laplacian [28].

Decomposing the adjoint 248 into 128 ⊕ 120 under the Spin(16) subgroup, one can

write moduli-dependent e8-valued charge VQV−1 (with V the 248-bein) in terms of a

Majorana-Weyl spinor XA (with A = 1, . . . , 128) and the antisymmetric tensor Λij = Λ[ij]

(with i, j = 1, . . . , 16) of so(16). The invariant mass is then given by XX = XAX
A.

The representation-theoretic constraint that Q ⊗ Q must have no component in the 1 ⊕

3875 reads

ΛikΛ
jk =

1

16
δji (XX) , ΛijΓ

jX =
1

16
Γi /ΛX , Λ[ijΛkl] = −

1

48
(XΓijklX) . (A.2)

By construction the derivative DA acts on these tensors in the adjoint representation of

e8(8), i.e.

DAXB =
1

4
/ΛAB , DAΛij =

1

4
Γij ABX

B . (A.3)

Using among other equations that

/ΛΓijkl /Λ = −48Λ[ijΛ
pqΓkl]pq −

3

2
(XΓ[ij

pqX)Γkl]pq −
1

2
(XΓijklX)−

1

48
(XΓpqrsX)Γijklpqrs ,

(A.4)

one computes that

∆(XX)−s = DADA(XX)−s = 2s(2s− 29)(XX)−s , (A.5)

and

(DΓijklD)(XX)−s = 2s(2s− 5)(XΓijklX)(XX)−s−1 , (A.6)

ΓklD(DΓijklD)(XX)−s = 2s(2s− 5)
(
−48(2s− 9)Λij + (s− 15)Γij/Λ

)
X(XX)−s−1 ,

(DΓijΓpqD)(DΓklpqD)(XX)−s = 8s(2s− 5)
(
96(2s− 9)(s− 7)ΛijΛ

kl

−
(
s(2s− 41) + 102

)
(XΓij

klX)

+2(2s− 21)(s− 22)δklij (XX)
)
(XX)−s−1 ,

(DΓi[jk
rD)(DΓlpq]rD)(XX)−s = −2s(2s− 5)

(
2s(2s− 29) + 48

)
δi[j

(
XΓklpq]X

)
(XX)−s−1 .

We give some indications of how one derives these relations. First, one straightforwardly

checks that

ΓklD(DΓijklD)(XX)−s = s
(
240a(s)Λij + b(s)Γij/Λ

)
X(XX)−s−1 , (A.7)

using representation theory and the 3875 constraint, but computing the explicit coefficients

a(s) and b(s) is rather cumbersome. To do so we use the property that the projector to

the
[

0
0 1 0 0 0 0

1

]

is defined as

(
ΓklD(DΓijklD) + ΓijD

(
14
5 ∆+ 336

))
(XX)−s = sa(s)

(
240Λij + Γij/Λ

)
X(XX)−s−1 .

(A.8)

– 39 –



J
H
E
P
0
8
(
2
0
1
5
)
1
0
2

This determines b(s). Using moreover the general identity

Γ[ij

(
ΓpqD(DΓkl]pqD) + Γkl]D

(
14
5 ∆+ 336

))
= −16(DΓijklD)

(
1
5∆+ 180

)
, (A.9)

one determines a(s). Once the second identity in (A.6) is known, it is straightforward to

compute the third one. The last one is more complicated to obtain, but one can nonetheless

straightforwardly check that (DΓi[jk
rD)(DΓlpq]rD)(XX)−s reduces to the product of a

tensor quartic in X times (XX)−s−2. There is a unique quartic tensor in the
[

0
1 0 0 0 1 0

0

]

,

and a unique quartic tensor in the
[

0
0 0 0 1 0 0

0

]

, and using the 3875 constraint, one obtains

that the former vanishes

(XΓi[jk
rX)(XΓlpq]rX) = −δi[j(XΓklpq]X)(XX) , (A.10)

such that

(DΓi[jk
rD)(DΓlpq]rD)(XX)−s = c(s)δi[j(XΓklpq]X)(XX)−s−1 , (A.11)

for a coefficient c(s). The latter is fixed using the projector to the
[

0
1 0 0 0 1 0

0

]

of the fourth

order differential operator,

D4
[

0
1 0 0 0 1 0

0

] =
(
DΓi[jk

rD
)(
DΓlpq]rD

)
+ δi[j

(
DΓklpq]D

)
(∆ + 48) . (A.12)

One finds in this way that the 1/2 BPS equation required for a R4 type invariant is

satisfied for s = 5
2 ,

(DΓijklD)(XX)−
5
2 = 0 , (A.13)

while the 1/4 BPS equation required for a ∇4R4 type invariant is satisfied for s = 9
2 ,

ΓklD(DΓijklD)(XX)−
9
2 = −168ΓijD(XX)−

9
2 , (A.14)

and the 1/8 BPS equation required for a ∇6R4 type invariant is satisfied for s = 11
2 ,

(DΓi[jk
rD)(DΓlpq]rD)(XX)−

11
2 = 150δi[j(DΓklpq]D)(XX)−

11
2 . (A.15)

For any s the function (XX)−s satisfies that the fourth derivative restricted to the
[

0
1 0 0 0 1 0

0

]

irreducible representation vanishes. For s = 5
2 , the second derivative restricted to the

[

0
0 0 0 1 0 0

0

]

vanishes, for s = 9
2 the third derivative restricted to the

[

0
0 1 0 0 0 0

1

]

vanishes,

and for s = 7 the fourth derivative restricted to the
[

0
0 2 0 0 0 0

0

]

vanishes.

By analytic continuation, the quartic constraint in the
[

0
1 0 0 0 1 0

0

]

is also satisfied by

the Eisenstein series

E[

0

0 0 0 0 0 0 s

] =
1

2ζ(2s)

∑

Q∈Z248

Q×Q|3875=0

(X(Q)X(Q))−s , (A.16)

for almost all s. The normalisation here expresses the fact that there is one E8(Z)
1
2 -BPS

orbit on Z248 for every k ∈ Z. The series only converges for s > 29, but it is defined for
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complex s by Langlands and all the values we consider here are regular. We know that the

quadratic constraint and the cubic constraint are indeed satisfied by the Eisenstein series

at s = 5
2 and s = 9

2 , respectively [17]. However, a more careful analysis exhibits that the

Eisenstein series does not satisfies the quartic constraint in the
[

0
0 2 0 0 0 0

0

]

at s = 7, and

the wave-front set does not reduce at this specific value. One understands mathematically

this property because the corresponding nilpotent orbit is not special in this last case. We

also note that the adjoint E8(8) series at s = 7 is square integrable and part of the discrete

spectrum of the Laplace operator, similar to the adjoint SO(5, 5) series analysed in detail

in section 5.3.2.

B Poisson summation for the SO(5, 5) spinor series

In the string perturbation theory limit, the function E
[

0
0 0 0

s

]

defined as a sum over pure

spinors in Z16 (integers points of an eleven-dimensional variety), decomposes as a sum over

chiral and antichiral spinors q and p of Spin(4, 4) that have a vanishing norm and satisfy

(qΓp) = 0. This gives the sum

E[

0
0 0 0

s

] = e−sφE[

0
s 0

0

] +
1

2ξ(2s)

∑

p∈Z8

(p,p)=0

∑

q∈Z8

(pΓq)=0

∫ ∞

0

dt

t1+s
e−

π
t

(
eφ|Z(q+/ap)|2+e−φ|Z(p)|2

)

(B.1)

where the lattice sum is divided by 2ζ(2s) to get the Langlands normalisation, and eφ = g

is the six-dimensional effective string coupling constant. One can always find an element

of Spin(4, 4,Z) to rotate the null spinor p to a preferred basis decomposing as

8a = 1(−2) ⊕ 6(0) ⊕ 1(2) , 8c = 4(−1) ⊕ 4
(1)

, 8 = 4
(−1)

⊕ 4(1) , (B.2)

with respect to SL(4) ⊂ Spin(4, 4), such that

p = (0, 0, np) , q = (0, q4) , (B.3)

where np ∈ Z, and q4 ∈ Z4. One can therefore use the Poisson summation formula to

exchange the sum over q with a sum over the dual spinor q̃ = (q̃4, 0). Note that the axion

decomposes as required for the Poisson formula to disentangle the axion dependence as

usual, because for a = (a4, ã4) one has /ap = (0, npa4) so that q + /ap indeed defines a four

vector of SL(4), and (p/aq̃) = gcd(p)(q̃4, a4). It remains to compute the determinant for the

quadratic term in q. By construction, the SL(4) factor vanishes and one gets the square

of the normalised mass square of p,
( |Z(p)|

np

)2
, such that

E[

0
0 0 0

s

] = e−sφE[

0
s 0

0

]+
e−2φ

2ξ(2s)

∑

p∈Z8

(p,p)=0

∑

q̃∈Z4

∫ ∞

0

dt

ts−1

n 2
p

|Z(p)|2
e−

π
t
e−φ|Z(p)|2−πte−φ|Z(q̃)|2+2πi(p/aq̃)

= e−sφE[

0
s 0

0

] + e(s−4)φ ξ(2(s− 2))

ξ(2s)
E[

0
0 0

s-1

]

+
e−2φ

ξ(2s)

∑

p∈Z8

(p,p)=0

∑

q̃∈Z4
∗

n 2
p

|Z(q̃)|s−2

|Z(p)|s
Ks−2(2πe

−φ|Z(pΓq̃)|)e2πi(p/aq̃) , (B.4)
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where we have

|Z(pΓq̃)| = |Z(p)||Z(q̃)| . (B.5)

At this point it is convenient to use triality, to define the equivalent decomposition

8a = 4
(−1)

⊕ 4(1) , 8c = 4(−1) ⊕ 4
(1)

, 8 = 1(−2) ⊕ 6(0) ⊕ 1(2), (B.6)

such that

p = (0, p4) , q̃ = (0, q̃′4) , (pΓq̃) = (0, 0, (p4q̃
′
4)) , (B.7)

and

|Z(q̃)|s−2

|Z(p)|s
= gcd(pΓq̃)s−1 |v(p4)|

−2(s−1)

|Z(pΓq̃)|
, (B.8)

where |v(p4)| is the invariant norm associated to the SL(4) subgroup stabilising (q̃Γp).

The sum can be replaced by the P3(Z)\SO(4, 4,Z) coset sum rotating p to the preferred

basis (B.2), the P1(Z)\SL(4,Z) coset sum rotating q̃4 to a preferred basis and the sum over

their respective relative integer greatest common divisors. In this basis, (pΓq̃) = (0, npq̃4),

the P1(Z)\SL(4,Z) coset element equivalently determines the direction of (pΓq̃) as a vector.

It follows by triality that one can rewrite this sum as the P1(Z)\SO(4, 4,Z) coset sum

rotating (pΓq̃) to the preferred basis (B.6) and the P1(Z)\SL(4,Z) coset sum rotating p4
to a preferred basis, together with the sum over their respective relative integer greatest

common divisors, keeping in mind that the greatest common divisor of p divides (pΓq̃).

The P1(Z)\SO(4, 4,Z) coset sum together with the sum over the (pΓq̃) greatest common

divisor then reduces to the sum over all integral null vectors (pΓq̃), while

∑

γ∈P1(Z)\SL(4,Z)

2
∑

np|gcd(pΓq̃)

n 2
p |v(p4)|

−2(s−1) =
∑

np|gcd(pΓq̃)

2n 2(2−s)
p E[s-1 0 0](v(pΓq̃)) , (B.9)

where the factor of 2 appears because the sum over np is then restricted to the positive

integers dividing (pΓq̃). Finally, one obtains after renaming (pΓq̃) as p for simplicity,

E[

0
0 0 0

s

] = e−sφE[

0
s 0

0

] + e(s−4)φ ξ(2(s− 2))

ξ(2s)
E[

0
0 0

s-1

]

+
2

ξ(2s)

∑

p∈Z8

(p,p)=0



gcd(p)s−1
∑

n|gcd(p)

n2(2−s)




e−2φ

|Z(p)|
E[s-1 0 0](vp)Ks−2(2πe

−φ|Z(p)|)e2πi(p,a)

(B.10)

where vp parametrizes the SL(4) ⊂ SO(5, 5) that stabilises p.
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