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The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both
neural systems support spatial navigation, experimental and theoretical evidence indicate that theyplay different
roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are
sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human
aging affects these different neural representations, however, is still not well understood. In this paper, we com-
bined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural
computation and representation of space in humans.Wemanipulated the geometry and local landmarks of a vir-
tual environment and examined the effects onmemory performance and brain activity during spatial learning. In
younger adults, both behavior and brain activity in themedial-temporal lobewere consistent with predictions of
a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and
medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning wasmore
associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to al-
tered spatial representations and information processing in the hippocampal–striatal circuitry with advancing
adult age,whichmay contribute to spatial learning andmemory deficits associatedwith normal and pathological
aging.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Many daily activities require memory-guided navigation in space.
While human aging is associated with a deterioration of such abilities
(Moffat, 2009), the precise changes in neural and cognitive processes
are not well understood. The present study investigated age-related dif-
ferences in the neural computations underlying spatial navigation.

Research on young animals has yieldedmuch insight into the neural
computations that underlie representations of space. Most strikingly,
past studies of hippocampal subfields CA1 and CA3 have identified
“place cells”, which signal the position of the animal in the local envi-
ronment (O'Keefe and Dostrovsky, 1971). Because the activity of these
cells is related to memory functions, they have been proposed to form
a so-called “cognitive map” (O'Keefe and Nadel, 1978), an allocentric
representation of space that is independent of egocentric reference
frames. While the computations that implement and update the repre-
sentations of locations include factors insensitive to external stimuli
nstitute, Princeton University,

).
(e.g., self-motion is used to perform path integration), place fields also
systematically respond to changes in the environment (Muller and
Kubie, 1987; O'Keefe and Burgess, 1996). Specifically, when the geo-
metric parameters (e.g., length, width or shape of surrounding bound-
aries) of a familiar environment are changed, place cells are tuned to
respond to the distance to the boundary (O'Keefe and Burgess, 1996).
This influence of environmental geometry on neural firing patterns
likely reflects the involvement of boundary-sensitive cells in the
subiculum (Lever et al., 2009) and entorhinal cortex (Solstad et al.,
2008). Place field activity has also been shown to relate directly to spatial
memory (O'Keefe and Speakman, 1987), suggesting that hippocampus-
dependent memory is influenced by spatial boundaries.

In humans, behavioral studies have shown that spatial learning also
shows similar sensitivity to boundaries, suggesting that the place field
changes affect memory (Hartley et al., 2004; Doeller and Burgess,
2008). In addition, hippocampal blood-oxygen level dependent (BOLD)
signals during both spatial navigation (Doeller et al., 2008) and spatial
imagination in younger adults (Bird et al., 2010) are sensitive to
boundary-related information, such that more boundary processing
is associated with greater hippocampal activity. Given the importance
of boundary information, and the known age-related decline in
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Table 1
Average characteristics of the younger and older participants. Standard deviations are in
parentheses.

Younger adults Older adults

Age* 28.1 (3.9) 67.2 (3.9)
Years of education 12.1 (1.0) 12.0 (1.4)
Handedness R: 26, L: 0 R: 21, L: 1
Health, self report (1 = very bad, 7 = very good) 6.1 (1.0) 5.6 (1.0)
Visual working memory (2-back), % correct* 83.7 (8.3) 77.6 (7.3)
Navigation experience, self report % yes 29.5 9.6
Average in scanner movement (x/y/z, in mm) 0.3/0.5/0.6 0.8/1.0/1.6

Note: * indicates a significant difference between age groups.

142 N.W. Schuck et al. / NeuroImage 117 (2015) 141–150
hippocampal function (e.g., Morcom et al., 2003), we investigated age-
related changes in the processing of boundary information in the hippo-
campal formation in younger and older adults.

Despite its crucial importance (Morris et al., 1982), the allocentric
“cognitive map” in the hippocampal formation described above is not
the only representation involved in spatial memory. Animal studies
employing hippocampal lesions and other techniques have shown
that navigation can also be based on associative learning processes
(Tolman et al., 1946; Blodgett and McCutchan, 1947; Restle, 1957)
that depend on the striatum (Packard and McGaugh, 1992; Devan
et al., 1996). Although some research has characterized these associa-
tions as response learning (Packard and McGaugh, 1996), the striatum
has also been shown to support response-independent navigation
based on learning locations relative to visual cues (Packard et al.,
1989; Packard and McGaugh, 1992; McDonald and White, 1994). In
line with these findings in rodents, Doeller et al. (2008) showed that
learning locations relative to a distinct visual cue (“landmark”) in
humans was associated with caudate activity and was consistent with
predictions of a reinforcement learning model (Doeller and Burgess,
2008). Accordingly, we also studied age-related changes in striatum-
based mechanisms of spatial memory, which in younger adults have
been shown to be sensitive to the presence of visual cues that signal
the target location in a particular direction and distance, rather than
allocentric representations of space that involve information about the
boundary.

While age-related volumetric decline (Raz et al., 2005) and impair-
ments in memory functions suggest an impairment in hippocampus
as well as striatum-dependent cognitive functions (e.g., Newman
and Kaszniak, 2000; Morcom et al., 2003; Eppinger et al., 2013;
Schuck et al., 2013b), investigations of age effects on spatial navigation
have indicated a more nuanced pattern. Specifically, research has
shown that aging impairs more recent but not remote spatial memory
(Rosenbaum et al., 2012), and is associated with difficulties in
switching to an allocentric spatial strategy (Harris et al., 2012; Wiener
et al., 2013) as well as higher prevalence of egocentric strategies
(Rodgers et al., 2012). Importantly, several studies have shown that
extrahippocampal navigational strategies (Harris et al., 2012; Wiener
et al., 2013), including landmark-based learning (Schuck et al., 2013a),
seem to play a relatively larger role for spatial navigation in older adults.
In line with this picture, neuroimaging studies of spatial navigation
have found less hippocampal activation (Moffat et al., 2006) in older
adults, and other studies have suggested that hippocampal volume is
correlated with memory performance in old age (Konishi and Bohbot,
2013; Daugherty et al., 2014). In short, this evidence suggests that
hippocampus-dependent spatial memory abilities are more strongly
affected by age, potentially leading to older adults' heavier reliance on
striatum-based strategies (see also, Moffat et al., 2007).

On the other hand, very little is known about how aging affects land-
mark and boundary processes specifically. We therefore examined age-
related differences in behavioral and brain responses related to process-
ing boundary and landmark information, which are associated with
hippocampal and striatal representations, respectively. To this end, we
derived a computational model of boundary processing from a known
model of place cell firing (Burgess and O'Keefe, 1996). We then applied
this boundary model as well as a simple model of landmark processing
(Doeller et al., 2008) to behavioral data obtained from a virtual environ-
ment experiment. These models enabled us to extract quantitative pre-
dictions of hippocampus-related boundary processing and striatum-
dependent landmark processing based on behavioral data. We then
used these quantitative predictions to delineate brain activities related
to boundary and landmark processing, respectively.

Based on the known age-related changes in hippocampal place cells
(Barnes et al., 1997; Wilson et al., 2003), as well as our own previous
work (Schuck et al., 2013a), we expected greater differences between
age groups in hippocampus-based spatial memory than in striatal-
based spatial memory. With respect to the computational modeling
approach, we expected the hippocampus-based boundary model to ac-
count for younger adults' navigation better than that of older adults. In
contrast, we expected the striatum-based landmark model to account
for the behavior of older participants at least as well as that of the
young, if not better. At the neural level, we expected greater hippocam-
pal involvement in younger adults as well as an association between
hippocampal activity and the behavior predicted by the boundary
model. In older adults, we expected less hippocampal activity (Moffat
et al., 2006) during spatial navigation. We also expected a correlation
between caudate activity and landmark-based spatial memory. Finally,
in line with earlier findings (Rieckmann et al., 2010; Schuck, 2013),
we predicted that hippocampal function in older adults may actually
contribute to cognitive abilities that are related to the striatum in youn-
ger adults.

Materials and methods

Participants

Participants were recruited from the existing database at the Max
Planck Institute and were mostly local residents of Berlin-Wilmersdorf
or Berlin-Dahlem (older adults) or students of Free University Berlin
(younger adults). Potential participants were screened for health status
with a verbal self-report questionnaire. Participants who reported sub-
jective memory complaints or a history of neurological, cardiac or other
significant physical diseases (including severe diabetes) were not in-
cluded in the study. Twenty-eight younger (21–34 years, m = 28.1)
and 22 older (56–74 years,m=67.2)male adults completed the exper-
iment (see Table 1 for sample statistics).

The local institutional reviewboard approved the study and all partic-
ipants provided informed consent.We included onlymale adults in order
to avoid potential effects of sex on performance. One younger adult was
excluded because his mean performance was more than 3 SD from the
groupmean. Data from another young participant was excluded because
of extensive signal drop in the MRI volumes, resulting in an overall sam-
ple of 26 younger and 22 older participants. Sample statistics including
handedness, significant navigation experience (“Have you at any point
in your life completed/worked on navigation tasks on a regular basis
(sailing, airplane navigation, PC games, etc.)?” [yes/no]), health status
and visual working memory performance are provided in Table 1.

The performance levels of our young and old samples in a visual
working memory measure are comparable to previous studies (Li
et al., 2008). A linear regression including age and other potential covar-
iates (i.e., self rated navigation experience, visual-spatialworkingmem-
ory and prior experience with Joystick handling) as regressors showed
that none of these factors significantly accounted for navigation perfor-
mance (target distance in last trial) or the landmark/boundary bias
(difference in angle, see below) above the effect of age (all ps N .10).

Virtual reality task

The virtual reality task was programmed using UnrealEngine2
Runtime software (Epic Games; http://udn.epicgames.com/). The unit

http://udn.epicgames.com/
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for all coordinates is the virtual meter (1 vm = 62.5 Unreal Units).
Participants navigated in a first person viewwithin a 3-dimensional vir-
tual environment (VE) as shown in Fig. 1A. While participants were
lying in the MRI scanner, the VE was projected using a back projection
system with a set of mirrors. Navigation was controlled using a
MR-compatible joystick (NAtA Technology, Coquitlam, Canada). The
environment consisted of a grass plane surrounded by a circular stone-
wall (i.e., the boundary; diameter: 180 vm), a traffic cone (a landmark)
and distal orientation cues (landscape of mountains, clouds, and the
sun; projected at infinity, see Schuck et al. (2013a)). Walking speed
was constant and allowed the participant to cross the entire arena in
about 15 s. Coordinates of the present location within the VE were re-
corded every 100 ms.

Participants learned the locations of five everyday items in the VE
(see Fig. 1B). The used objects were randomized between participants
Fig. 1. Virtual reality task, computational models and analysis. (A) Feedback trial. First, a gray sc
task consisted inwalking from the start (x) to the remembered location of the current object (o
shown as feedback. (B) Trial structure. Table header shows condition names (number of trials),
tion and boundary radiuswere manipulated in separate transfer trials. (C) Images show the col
place cellfiring (see SupplementalMaterial). A place cell was established in a standard environm
the center of the place fields in radial directions in- and outwards, respectively. (D)Model based
transfer trials was compared to the corresponding model prediction. The analysis tested the pre
and a new set of objects was used in each run. The experiment was
structured into two runs and followed procedures from our previous re-
search (Schuck et al., 2013a). Each run included three trial types
(Fig. 1B): In encoding trials, participants were instructed to pick up an
object within the environment and remember the location of that ob-
ject. At the start of each encoding trial participants were positioned
close to the center of the environment and one object was placedwithin
the environment. Once participants felt confident about their knowl-
edge of the location, they could complete the trial by walking over the
object (mimicking the act of picking it up). In feedback trials, each object
was shown six times at its correct location (intermixed object order, see
below and Fig. 1B). A feedback trial started with a picture (cue) of one
object that was displayed on a gray background in front of the environ-
ment for 4 s and participants were instructed to navigate to the location
where they remembered the cued object being located. Once a
reenwas shown after which participants received a cue indicating the current object. The
) (dashed path, bird's eye view only for illustration). Finally, the correct object locationwas
dashed lines indicate a fixation cross screen. After encoding and feedback, landmark loca-
or-coded firing rate (receptive fields) of a simulated neuron according to the BVCmodel of
ent, and then simulatedwith a smaller and larger boundary. Themodel predicted shifts of
analysis. For each trial, the change of remembered location in a standard trial compared to
diction of small BOLD signals for trials with a large difference to themodel and vice versa.
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participant indicated per button-press that s/he had navigated to the
position of her/his choice (memory), the object appeared at its correct
location. Participants then saw how far theirmemory (current location)
was from the correct answer (object location) and could use this infor-
mation as feedback. Participants finally had to pick up the shown object
and the next trial started from this pickup location. The learning
(feedback phase) was followed by a transfer phase. In these trials, par-
ticipants started either in an environment with a larger or smaller
boundary (±20% of original size) or in an environment with the same
boundary size but a changed landmark location (31.7 vm from the orig-
inal location, landmark location remained the same throughout the
transfer phase). No feedback was given and the order of boundary and
landmark trials was randomized between runs and participants, with
two or three trials of one condition in a row separated by a fixation
screen. Overall each object appeared in each of the two conditions
once, resulting in ten transfer trials overall.

One run contained the smaller boundary condition, and one run
contained the larger boundary condition. Participants were instructed
about the general purpose of the experiment (learning and remember-
ing the locations of objects), but were naïve to the boundary/landmark
manipulations. All trials had a maximum search time of 120 s (mean
younger: 18.9 s, 1.1% timeouts; mean older: 21.5 s, 1.5% timeouts). Im-
mediately before the start of scanning, joystick-handling was practiced
outside as well as inside the MRI scanner. Additionally, the procedures
of the task were trained outside of the scanner using a regular joystick
in an unrelated VE and under the guidance of the experimenter for
about 15 min. Virtual reality technology has been used extensively in
previous research with humans (e.g., Moffat and Resnick, 2002;
Doeller et al., 2010; Etchamendy et al., 2011) as well as with animals
(Dombeck et al., 2010; Chen et al., 2013; Domnisoru et al., 2013;
Schmidt-Hieber and Häusser, 2013). This research has shown that de-
spite the differences between virtual and real spatial navigation
(e.g., proprioception), results are largely comparable.

Image acquisition

We used a 3 Tesla Siemens Magnetom Trio (Siemens, Erlangen,
Germany) research-dedicated MRI scanner to acquire all the data. At
the start and end of functional scanning, T1-weighted structural images
were acquiredwith anMP-RAGEpulse sequencewith a resolutionof 1mm3

(TR = 2500 ms, TE = 4.77 ms, TI = 1100 ms, acquisition matrix =
256 × 256 × 192, FOV = 256 mm, flip angle = 7°, bandwidth =
140 Hz/Px). Functional data were acquired using a T2*-weighted
echo-planar imaging (EPI) pulse sequence (3 × 3 × 3 mm voxels, slice
thickness = 2.5 mm, distance factor = 20%, TR = 2400 ms, TE =
30 ms, image matrix = 72 × 72, FOV = 216 mm, flip angle = 80°, 43
axial slices, GRAPPA parallel imaging, acceleration factor: 2, interleaved
acquisition). To reduce signal drop-out in medial temporal areas, EPI
slices were acquired that were rotated about −30° relative to the
anterior–posterior commissure axis. The EPI sequence provided cov-
erage of most brain areas (~45,000 voxels, some loss in superior pari-
etal cortex and cerebellum caused by slice tilt, see Supplemental
Material, Figure S2). The task was split into two functional runs,
which lasted between 10 and 40 min, depending on the time it took
of each participant to replace/collect all objects. Between the two func-
tional runs, field maps for distortion correction were acquired using an
EPI sequence (TEs = 4.92 and 7.38 ms, TR = 488 ms, matrix size
64× 52, 43 slices, voxel size=4× 4× 3mm). To allow for equilibration
effects, the task started after four volumes.

Behavioral analysis

All behavioral analyses were done using R (R Development Core
Team, 2011). We analyzed object location memory during the feedback
phase by calculating the Euclidean distance between the remembered
and the correct locations. A baseline (dashed line in Fig. 2A) was
calculated by simulating 105 uniformly distributed points. For the data
from the transfer phase, we computed the vector that connected the re-
membered locations in the last trial before the transfer and the remem-
bered location for the same object during the landmark and boundary
transfer conditions. Then, we compared the angle of these vectors to
the angle predicted by the different models (see below).

Boundary model and landmark models

Themain goal of themodels was to provide quantitative predictions
of the expected behavior resulting from boundary and landmark sensi-
tivity. The presented boundary model is derived from a model that was
proposed to account for the behavior of place cells under conditions of
changed geometry (Boundary Vector Cell (BVC) Model, O'Keefe and
Burgess, 1996). Importantly, previous research has indicated that the
modeled changes in place cell firing directly affect memorized locations
(O'Keefe and Speakman, 1987; Hartley et al., 2004). In addition, it has
been shown that boundary processing is related to greater hippocampal
activity (Bird et al., 2010), suggesting that greater sensitivity to the
boundary should be related to greater hippocampal activation. Hence
the BVCmodel provides a useful tool to bridge the gap between insights
on the cellular, behavioral and BOLD signal levels.

Using an adapted BVC model (see Supplementary material, Fig. S1),
our simulations showed that, under conditions of changed geometry,
previously established place fields changed their location such that the
distances to nearby boundaries are approximately equal to those in
the unchanged, familiar environment (Fig. 1C), consistent with the ex-
perimental results (Muller and Kubie, 1987; O'Keefe and Burgess,
1996). Hence, the central prediction is that the center of place fields
should shift radially inwards for smaller environments and radially out-
wards for larger environments. Based on these results, we formulated a
simpler model that captures the basic prediction (inward and outward
shifts depending on boundary changes). We will call this the simplified
geometric model (SGM) of boundary processing and test its predictions
on the level of behavior and neuroimaging. This model corresponds to a
simple geometric transformation of each point p to ~pm according to the
change in radius Δr in a radial direction:

~pm ¼ 1� Δr
r2

pj j
� �

p: ð1Þ

In addition to the radial angles of the shifts, this model predicts that
the size of the shift of a remembered location is zero if the remembered
location is in the center of the environment and the size of the shift cor-
responds to the change of the radiusΔr if the place field is exactly at the
edge of the environment. However, we do not see a firm justification for
this assumption and hence proceeded to test only the predicted direc-
tion of the shift of remembered locations, but not the predicted size of
the shift.

To quantify the behavior that would result from processing the
landmark instead of the boundary cues, we calculated behavioral
predictions for the landmark transfer trials as well. In particular,
we assumed that landmark processing would result in shifting the
remembered location in the same direction as the landmark was
shifted (Doeller et al., 2008; Schuck et al., 2013a). This means that
if the landmark in the transfer condition is shifted by a translation
vector vLM, the predicted remembered locations are shifted by the
same vector.

To compare the model and empirical data from the transfer condi-
tions, we first calculated the expected memory changes under both
models as described above. As mentioned, each model makes a predic-
tion of a memorized object location, which we term ~pm. In comparison
to the same objects' original location (p), the models thus predict a
direction in which the memory of an object location is shifted following
our experimental manipulations of the boundary or landmark. Mathe-
matically, this direction is the angle of the vector that connects the
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Fig. 2. Behavioral results. (A) Mean distance error across all objects and participants within each age group. Both age groups showed memory after the initial encoding (compared to
chance baseline) and improved over the course of feedback trials. (B) Panel B shows themean difference between performance andmodel predictions for two age groups and conditions.
(C) Change of remembered locations before and after the boundary manipulations. Each arrow starts at the remembered location in the last feedback trial and points to the remembered
location after the boundarymanipulation. Compare to the place cell model predictions shown in Fig. 1C. The largely overlapping and unorganized arrows that represent older adults' data
reflect the complete lack of boundary processing in this age group (see panel B). Error bars represent ±1 SEM. Stars indicate significance at p b .05.
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original location p (the drop location in the last feedback trial) and the
predicted transfer location ~pm. These direction changes are then com-
pared to the observed direction changes, which can be measured as
the angle of the vector that connects the original memory location p
to the observedmemory locations for the same object in the transfer tri-
als, ~po . Thus comparing the model's predicted angle of change (γm) to
the observed angle (γo) can be achieved by taking the difference be-
tween the angles of the vectors (p−~pm) and (p−~po):

γm−γO ¼ tan−1 p−~pmð Þ− tan−1 p−~poð Þ: ð2Þ

fMRI analyses

Imaging data was preprocessed and analyzed using SPM8. Function-
al volumes were distortion corrected utilizing field maps (Jezzard and
Balaban, 1995) and spatially realigned using SPM's Unwarp routine
(Andersson et al., 2001). Motion correction was done using 2nd degree
interpolation, quality of 0.9 and FWHM of 4 mm. Table 1 lists the aver-
age maximum displacement during scanning for younger and older
adults. All analyses used SPM's implicit masking and considered only
voxels present in all subjects. Fig. S2 in the Supplementary material
shows the brain coverage for the second-level analyses.

Next, the mean of the realigned and corrected volumes were co-
registered with the structural scan (reference: mean image, source:
anatomical, cost function: normalized mutual information). Anatomical
scans were then segmented using the New Segment procedure
(Ashburner and Friston, 2005) using a regularization parameter of 4.
We used DARTEL to generate a study specific template (Ashburner
and Friston, 2009) to avoid a bias towards younger participants' brain
morphology. Supplemental Table S1 summarizes the preprocessing
steps and parameters (Poldrack et al., 2008). Fig. S2 shows the covered
area of the brain. Control analyses indicated that changed brain cover-
age did not affect our results (see Fig. S2). Images were spatially
smoothed with an 8 mm Gaussian kernel. Anatomical ROIs were
based on the Automated Anatomical Labeling atlas (Tzourio-Mazoyer
et al., 2002). The centroid coordinates of the left and right hippocampi
were [−24,−22,−8] and [28,−22,−10], respectively. Centroid coor-
dinates of the left and right caudate nuclei were [−12, 8, 8] and [12, 8,
8], respectively (see Fig. 3).

We analyzed the data from the feedback phase using SPM8.We used
a design matrix that included regressors for the display of a cue, the pe-
riod between the cue display and the button press (replace), the



Fig. 3. Brain activations in regions of interest during cue display. Barplots show the % signal change for cue-related activity in the hippocampal and caudate nucleus anatomical masks
(based on AAL labels, see brain maps above bars). Error bars represent ±SEM. Activations of other regions can be found in the Supplemental Table S2 and Fig. S3.
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feedback display until feedback collection, the gray screen between
blocks (ITI) and the motion parameters that resulted from motion cor-
rection. For themodel-based analysis, we determined themismatch be-
tween the model and the behavior for each object (see above, Eq. (2),
one value for each object that was applied to each occurrence of this ob-
ject) and used these as parametric modulators (see Fig. 1D). Given the
role of reinforcement processes in landmark-dependent learning
(Doeller and Burgess, 2008), the parametric modulators for the land-
markmodelwere applied to the feedback regressor, while the boundary
model modulators were applied to the replace regressor. Hence this
analysis tested the hypothesis of larger brain activity for objects that
have less mismatch to the model predictions.

Individual contrasts were submitted to second-level ANOVA and
between-group t-tests. The ANOVA included a covariate that reflects
the performance difference between the landmark and boundary trans-
fer trials (as shown in Fig. 2B). This covariate was centered separately
with respect to the corresponding age group mean. The key results are
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fied otherwise, a voxel-level threshold of p b .001 was usedwith the ap-
propriate cluster level correction as computed by the AFNI program
3dClustSim (k = 19).

We also conducted a performance-group analysis by splitting youn-
ger and older adults based on their respective group's median perfor-
mance in the feedback phase. Then, we extracted contrast estimates of
the boundary and landmark models in a (para)hippocampal and a stri-
atum ROI separately for high and low performing younger and older
adults. The ROIs were defined based on a low threshold (p b .005,
k = 20) group analysis that compared the effect of boundary and land-
mark regressors (same as in Fig. 4, only the threshold was lower): the
hippocampus ROI was an 8 mm sphere around the hippocampal peak
of activation in younger adults (Fig. 5A) and the striatal ROI was an
8 mm sphere centered on the striatum peak in the analysis of older
adults (Fig. 5B). Because the model-based analysis was agnostic to
inter-individual differences in overall performance level (a purely
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threshold was set to p b .005, cluster size 20 voxels. At this less conservative threshold
older adults showed an association between landmark model based behavior and Puta-
men activity. In younger adults, the effect of the boundarymodel remained essentially un-
changed. Panels C and D: Mean contrast estimates for a (para-)hippocampal ROI (8 mm
sphere around peak of activation in younger adults, see blue circle) and a striatal ROI
(8 mm sphere, striatum peak in analysis of older adults, see blue circle) for the boundary
and landmark models. The age groups are further split up by learning success, whereby a
“+” denotes participants that have above median learning (error in trial 1 minus error in
trial 6), whereas a “−” denotes the corresponding low performance group. Error bars in-
dicate +/- S.E.M.
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within-subjects analysis forwhich all parametric regressors are normal-
ized within subjects), a median split on between-subject performance
differences provides unique information about the potential relations
between the performance level and brain correlates (c.f., Chowdhury
et al., 2013; Nagel et al., 2009).
Results

Age differences in spatial memory and sensitivity to boundary and
landmark changes

Data from 26 younger (21–34, m = 28.1) and 22 older (56–74,
m = 67.2) male participants were analyzed (see Table 1 for sample
statistics). Fig. 2A shows the mean distance between the remembered
and the correct target locations as a function of trial (average across
all objects). Younger adults performed significantly better than older
adults, F(1, 46) = 163.2, p b .001. Moreover, both age groups improved
over the course of the feedback trials, i.e. there was a linear trend of
trial: F(5, 230) = 32.63, p b .001. There was also a significant age
group × trial interaction, reflecting a larger reduction of distance error
in younger than in older adults, F(5, 230) = 4.61, p = .037.

To analyze the sensitivity of each participant to boundary and land-
mark information, we calculated the difference between the angle pre-
dicted by the SGM (the simplified geometric model which captures the
influence of boundary cues) and the observed angle (i.e., the angle of the
vector connecting the remembered location before and after the
boundary change) as well as the angle difference for the landmark
transfer trials (Doeller et al., 2008). An ANOVA of these model fits re-
vealed a main effect of age group, F(1, 46) = 14.4, p b .001 as well as
an age group by model (Landmark vs. Boundary) interaction, F(1,
46)= 53.9, p b .001. Fig. 2B shows thematch between the participants'
behavior in the transfer trials and the predictions of the boundary and
landmark models (difference between the predicted and observed an-
gles, see Boundary model and landmark models). As can be seen, youn-
ger adults showed behavior that was consistent with the boundary
model (compared to the chance baseline of 90°), t(25) = −13.6, p =
b .001. Younger adults also showed behavior consistent with landmark
processing, t(25)=−5.3, p b .001, but this effectwas smaller compared
to boundary processing, t(25) =−3.6, p= .005. In contrast, older par-
ticipants showed stronger indications of landmark as compared to
boundary processing, t(21) = 7.2, p b .001 (comparing the fits of the
Landmark and Boundary models). Hence, compared to younger adults
their behavior was less consistent with the boundary model,
t(37.93) = 7.94, p b .001, but did not differ with respect to the predic-
tion of the landmark model, t(45.82) = −1.67, p = .102. Fig. 2C
illustrates the age differences in memory representations by showing
the remembered locations during the boundary transfer condition (ar-
rowhead) relative to the corresponding remembered locations before
the boundary change (arrow tail). As can be seen, only younger but
not older adults were sensitive to boundary change and shifted their re-
membered response locations radially in- or outwards depending on
the direction of the boundary change (i.e., a smaller or larger boundary,
respectively).
Age differences in hippocampal and striatal contributions

We first investigated task-related activations in the regions of inter-
est, by contrasting brain activity during cue display against baseline
(inter-trial interval) within anatomical ROIs of the hippocampus and
the caudate (see fMRI analysis for details; masks based on AAL, see
Tzourio-Mazoyer et al., 2002). Among younger adults, comparing on-
task cue processing with baseline showed greater activation in the hip-
pocampusROI, but not in the caudate ROI. In older adults, caudate nuclei
as well as hippocampi were positively activated during cue processing
(see Fig. 3), resulting in a significant ROI by age group interaction (Inter-
action Age × Area: F(1, 44)=8.3, p= .006, main effect Area: F(1, 44)=
16.9, p b .001, Interaction Age × Laterality: F(1, 44) = 15.9, p b .001; all
other effects n.s.). The results of a corresponding whole-brain analysis
are reported in the Supplementary information (Table S2 and Fig. S3).

To test our main hypothesis and investigate age-related effects on
boundary and landmark processing, we performed model-based analy-
ses, in which we fitted one general linear model containing predictions
of the boundary model and the landmark model to fMRI signal varia-
tions as described above. For each type of prediction (boundary or land-
mark), we included a separate parametric regressor that reflected
degree of match between the model predictions and the observed be-
havior for each object on a trial-by-trial basis (Fig. 1D). An ANOVA
with factors model (boundary vs. landmark) and age group (younger
vs. older) revealed a significant interaction between these factors (see
Fig. 4A) in bilateral (para)hippocampus (peaks at MNI coordinates
21/−38/−3, and −24/−45/−9), bilateral occipital cortex (45/76/3,
−21/86/17, 13/80/5), calcarine gyrus (17/−59/15) andmiddle tempo-
ral gyrus (−64/−18/3). Tests for themain effects of age andmodel did
not show any significant activation. A follow up t-test that directly com-
pared the effect of the boundary regressor between the age groups re-
vealed a single peak in the right posterior parahippocampal gyrus,
extending into the hippocampus (21/−42/−3, Fig. 4B). With respect
to the landmark model, we observed greater association of landmark
model predictions with BOLD activity in the right hippocampus
(21/−39/−3, Fig. 4C) in older compared to younger adults. All results
were cluster corrected.
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To further investigate the role of the striatum in landmark based
processing, we applied a more lenient threshold to the analysis of the
landmark regressor (p b .005, cluster size = 19, see Figs. 5A/B). This
analysis showed additional activity for older adults in the thalamus
and putamen (MNI:−27/−18/0, see Fig. 5B), whereas a corresponding
control analysis for the boundarymodel did not show such a pattern (no
younger adults' boundary related activity in the striatum and overall
more focal brain activation patterns).

Finally, we investigated the link between overall performance
level and the recruitment of hippocampal and striatal activity in re-
lation to the landmark and boundarymodels. To this end, we extract-
ed contrast estimates of the boundary and landmark models in a
(para)hippocampal and a striatum ROI separately for high and low
performing younger and older adults (see fMRI analyses, and Fig. 5,
panels C and D). We found that only high performing younger adults
showed a positive contrast in the (para)hippocampus ROI, whereas the
low-performing younger adults did not. Interestingly, for the landmark
model, high-performing older adults showed additional activation in
the hippocampus ROI in addition to the striatal activation, whereas
low-performing older adults only showed activation in the striatum
ROI. Hence, among older adults, additional hippocampus function for
landmark learning was related to superior learning performance.

In summary, the above reported analyses showed greater activity in
the hippocampus during cue display and an association between
parahippocampus activity and the predictions of the boundary model.
We also found greater activity in the caudate during cue processing in
older adults. Interestingly, themodel-based analyses revealed an associ-
ation between higher hippocampus activity and landmark processing in
older adults, consistentwith the hypothesis that the hippocampus is in-
volved in processing landmark but not boundary information in this age
group.

Discussion

The present study investigated the effects of aging on the neural
computations and representations underlying spatial navigation in
human males. Based on data from studies with animals and younger
adults, we distinguished between two processes: a hippocampal pro-
cess that is sensitive to the distance to boundaries, and a caudate
nucleus-based process that is sensitive to landmarks (Packard et al.,
1989; Doeller and Burgess, 2008; Doeller et al., 2008). Using computa-
tional modeling, we derived quantitative predictions for spatial memo-
ry performance that reflect the influence of the landmark and boundary
aspects of the environment (Doeller et al., 2008) and using a model-
based fMRI approach, we looked for brain areas in which the BOLD ac-
tivity was greater when memory performance was more consistent
with boundary processing or landmark processing.

Our model-based analyses showed that activity in the hippocampal
formation in younger but not older adults was correlated with bound-
ary processing. Older adults, in contrast, showed no indications of
boundary-based spatial learning. Their spatial memory was, however,
sensitive to landmark information and the model-based analysis re-
vealed a link between older adults' behavior, predictions derived from
the landmark model, and activity in the right hippocampus.

These results are significant from several perspectives. First, this is
the first model-based fMRI study informed by animal and computation-
al models of hippocampal place-cell functioning. The results from the
younger participants are consistent with existing data from animal
(O'Keefe and Burgess, 1996) and human (Hartley et al., 2004; Bird
et al., 2010) research, but they strengthen and specify the role of bound-
ary information in (para) hippocampal neural computations and mem-
ory performance in humans (Bird et al., 2010).

Second, these findings are the first demonstration of age-related
impairments in the specific computations (boundary vs. landmark pro-
cessing) and resulting representations (allocentric representations vs.
representations reliant on discriminative cues/landmarks) during spatial
navigation. Our analyses allowed us to relate adult age differences in
spatial learning to the computational functions of hippocampal and
striatal circuitry. By demonstrating differences in spatial representations
between older and younger adults, we went beyond the results of
previous studies utilizing VE tasks, which showed that older adults
form degraded configural representations relative to younger adults
(i.e., forming and using a cognitive map, see Iaria et al., 2009). It is im-
portant to keep in mind that our results are based only on male partic-
ipants. While this approach avoided issues of gender effects in spatial
navigation, it potentially limited the external validity to male humans.
While replicating our own previous report of asymmetric age differ-
ences for landmark- and boundary-related learning (Schuck et al.,
2013a), we also extended those results by using quantitative models
and investigating the underlying neural mechanisms.

Third, and perhaps most striking, we found an association between
landmark processing and hippocampal activity in older adults. The
lack of evidence for a link between landmark-based navigation and
striatal activity seems surprising. At the same time, it is in line with
our previous report of an influence of the KIBRA gene on landmark pro-
cessing in older adults (Schuck et al., 2013a,b): because the KIBRA gene
is related to hippocampal processes (Schneider et al., 2010), this link
supports our current findings of a relation between neural processes
in the (para)hippocampus and landmark processes in older adults.
Moreover, at a more lenient threshold, older adults did show landmark
related activity in the striatum (see Fig. 5B). So the striatummay still be
playing a role in landmark based processing in older adults, but this ef-
fect seems weak and requires further investigation. On a more general
level, this finding supports the notion that the hippocampus plays an
important role in age-related effects on spatial navigation (Moffat
et al., 2006). It also suggests that the processes associated with hippo-
campal activity might be different between younger and older adults.
In short, our findings reflect age-related changes in the distribution of
spatial information processing across the brain and are potentially
linked to declines in memory functions that rely on hippocampal
(Moffat et al., 2006) and striatal (Eppinger et al., 2013) regions.

Despite the specificity of our findings from the model-based analy-
sis, mean-based analyses of activity during cue display showed that
older adults generally exhibited higher activation in a large cortical net-
work (Fig. S3), a common finding in fMRI studies of aging (Reuter-
Lorenz and Lustig, 2005). Moreover, our finding of altered brain-
behavior relationships in older adults is consistent with several studies
investigating brain activity patterns related to declarative and non-
declarative memory in older adults (Rieckmann et al., 2010). These
studies reported hippocampal activity in older adults during tasks that
primarily involve the striatum in younger adults. In particular, older
adults exhibited simultaneous hippocampus and caudate activation
during an implicit memory task that depends on the striatum in youn-
ger adults. Other studies investigating Huntington's patients
(Voermans et al., 2004) also reported hippocampal hyperactivation dur-
ing a memory task in patients vs. controls and lesion studies in animals
suggest that striatal lesions may also result in changes in hippocampus
depend memory or vice versa (for an overview, see Schuck, 2013). In
the current study, the phenomenon of hippocampal hyperactivation
was specifically related to spatial memory processes in older adults.

Two possible explanations, which are not mutually exclusive, can be
offered to account for this finding. First, the additional hippocampal ac-
tivity in older adultsmight be associatedwith bettermemory compared
to their same aged peers. (Voermans et al., 2004; Rieckmann et al.,
2010). This hypothesis predicts that better memory performance in a
task that is primarily striatum-dependent in younger adults should be
related to the additional recruitment of hippocampal activity in older
adults. This prediction has been supported for striatum-dependent im-
plicit learning (Rieckmann et al., 2010), and is also supported by our
current and previous (Schuck et al., 2013a) data, which show that
older adults' landmark-based spatial memory is less impaired than
boundary-based memory. Second, the changed brain activation



149N.W. Schuck et al. / NeuroImage 117 (2015) 141–150
patterns are also consistent with predictions from a computational ac-
count of aging based on declined dopamine modulation (Li et al.,
2001; Li and Sikström, 2002). This account predicts that impaired dopa-
mine functions in older adults lead to lower specificity of neural repre-
sentations (dedifferentiation) and is supported by animal (Schmolesky
et al., 2000) and human (Park et al., 2004) research. In support of this
hypothesis, an analysis of the neural correlates of the landmark model
with a more lenient threshold (p b .005, cluster size = 19) showed
that the activity for older adults extended into the thalamus and puta-
men (MNI: −27/−18/0, see Fig. 5B). A corresponding control analysis
for the boundarymodel did not show such a pattern (no younger adults'
boundary related activity in the striatum and overall more focal brain
activation patterns). Hence, our data suggest that neural representa-
tions during spatial navigationmight be less specific to either the hippo-
campal or striatal systems, but instead involve bothmemory systems in
older adults.

To further examine whether the additional recruitment of the
hippocampal activity could be beneficial, we investigated whether the
degree of dedifferentiation was related to performance. Specifically,
we extracted contrast estimates of the boundary and landmark models
in a (para)hippocampal and a striatum ROI separately for high and low
performing younger and older adults (see 2.6). As can be seen in Fig. 5
(panels C and D), performance was indeed related to the model-
predicted activation in these areas. For the boundary model, only the
high-performing younger adults showed a positive contrast in the
(para)hippocampus ROI, whereas the low-performing younger adults
did not. Interestingly, for the landmark model, high-performing older
adults showed additional activation in the hippocampus ROI, whereas
all older adults showed activation in the striatum ROI. Hence, among
older adults, additional hippocampus function for landmark learning
was related to superior learning performance. This finding is in line
with the notion of a compensatory mechanism, such that additional
hippocampal activity in older adults is related to carrying out ‘striatal’
functions and to enhanced landmark-based memory. Taken together,
brain activities involved in spatial learning were less specific (or
dedifferentiated) in older adults; at the same time, however, the addi-
tional recruitment of hippocampal activity helped performance.

In conclusion, the reported results showed that aging might change
the links between hippocampal activity and the performed spatial
memory function. Our study therefore offers a perspective on aging
that highlights the potential of qualitative changes in brain–cognition
links, rather than a sole focus on age-related impairments. Specifically,
we found that while older adults' (para)hippocampal activity was relat-
ed to landmark-based spatial memory, activity in the same area of
younger adults was indicative of processing boundary information. A
central challenge for future research is to better characterize such
changes in functional anatomy of spatial navigation and to provide in-
sight into the mechanisms that make such changes possible.
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