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Zusammenfassung

Wird in der Industrie eine neue Komponente entwi
kelt, so spielen Com-

putersimulationenmittlerweile eine wi
htige Rolle. Immer s
hnellere und im-

mer genauere Simulationsmodelle werden gewüns
ht, damit Zeit und Kosten

gespart werden können. Mit Hilfe von Modellordnungsreduktion (MOR)

kann man aus groÿen, mit der Finite Elemente Methode erstellten Mod-

ellen kleine und genaue Modelle erhalten, die dann in kurzer Zeit simuliert

werden können. Immer häu�ger wird au
h gefordert, die Variation von Pa-

rametern im groÿen Finite Elemente Modell auf die kleinen reduzierten Mod-

elle zu übertragen. Diese Parameter bes
hreiben beispielsweise vers
hiedene

Randbedingungen, die im Modell abgebildet werden, genauso wie Änderun-

gen in der Geometrie (z.B. Variation von Längen). Mit Hilfe von Methoden

aus der parametris
hen Modellordnungsreduktion (pMOR) können diese Pa-

rameterabhängigkeiten au
h im reduzierten Modell erhalten und zur Simu-

lation von unters
hiedli
hen Szenarien genutzt werden.

Anstatt die heute übli
hen Verfahren zur pMOR zu benutzen, werden in

dieser Arbeit die parametris
hen Modelle, die eine spezielle Parameterab-

hängigkeit zeigen, in bilineare Modelle umges
hrieben. Nun können au
h

Verfahren zur bilinearen Modellordnungsreduktion angewandt werden, ins-

besondere Verfahren zur H2-optimalen Reduktion. Ziel dieser H2-optimalen

Verfahren ist es, den Fehler zwis
hen dem Ausgangsmodell und dem re-

duzierten Modell in der H2-Norm zu minimieren. Wir verwenden zum einen

den sogenannten Bilinear Interpolatory Rational Krylov Algorithm (BIRKA)

von Benner und Breiten [12℄. Auÿerdem entwi
keln wir neue bilineare H2-

optimale Algorithmen, die auf Optimierungsverfahren auf Grassmann-Man-

nigfaltigkeiten beruhen.

Die theoretis
hen Grundlagen der thermis
hen Modellierung werden erklärt

und auf die erstelltenModelle von Elektromotoren angewandt. Parametris
he

ix



x ZUSAMMENFASSUNG

Modelle können aus den Finite Elemente Modellen dur
h eine Analyse der

Glei
hungen abgeleitet werden. Die Parameter sind einerseits Gröÿen, die

das thermis
he Verhalten während des Betriebs erklären und andererseits

Gröÿen, die Variationen in der Geometrie des Motors bes
hreiben. Diese

Parameter sollen in den reduzierten Modellen erhalten bleiben.

Während die neu entwi
kelten Algorithmen no
h ni
ht reif für die Reduktion

von groÿen Modellen sind, wird in der Arbeit gezeigt, dass die Reduktion mit

BIRKA zu guten reduzierten Modellen führt. Allerdings müssen dazu ver-

s
hiedene Na
hbesserungen an der Reduktionsmethodik vorgenommen wer-

den, beispielsweise müssen Methoden zur Stabilitätserhaltung angewandt

werden. In Modellen mit Variationen in der Geometrie, werden zusätzli
h

zum ursprüngli
henBIRKA na
h der Reduktion no
h Interpolationsverfahren

verwendet, um reduzierte Modelle mit der Parameterabhängigkeit des Orig-

inalmodells zu erhalten.



Summary

The design pro
ess of a new 
omponent in industry is nowadays al-

most always a

ompanied by 
omputer simulations. In order to save time

and money, fast and a

urate models for the simulation of the 
omponent

are required. Using Model Order Redu
tion (MOR) large models obtained

by Finite Element simulations 
an be redu
ed to small models possessing

the same behavior as the original. Often it is required to obtain redu
ed

models, where the dependen
e in one or several parameters (for example

the length or width of a part) of the original model is preserved. Using so


alled parametri
 Model Order Redu
tion (pMOR) the parameters in the

redu
ed model 
an be varied and the models 
an be used for fast simulation

of several s
enarios.

Instead of using the 
ommonly employed methods from pMOR, methods

from bilinear Model Order Redu
tion will be used within this work, as para-

metri
 models with a 
ertain form of parameter dependen
e 
an be rewritten

as bilinear models. We fo
us on methods from bilinear H2-optimal Model

Order Redu
tion, as their obje
tive is to minimize the error between the orig-

inal and the redu
ed model measured in the H2-norm. First, the Bilinear

Interpolatory Rational Krylov Algorithm (BIRKA) developed by Benner and

Breiten [12℄ is used. Se
ond, we derive new bilinear H2-optimal algorithms

based on optimization on Grassmann manifolds.

The foundations of thermal modeling and their appli
ation to thermal sim-

ulations of ele
tri
al motors using Finite Element software will be explained.

Parametri
 models suitable for pMOR 
an be derived from a Finite Element

software analyzing the underlying equations. Two 
lasses of parameters will

be 
onsidered: Constants in�uen
ing the thermal behavior of the model and


hanges in the geometry of the model.

Using the newly developed optimization algorithms for H2-optimal MOR,

xi



xii SUMMARY

we �nd that they are not yet ready for the redu
tion of large parametri


models as en
ountered in our thermal simulations. In 
ontrast, the BIRKA

performs well for the redu
tion of these models. However, several modi�
a-

tions on the redu
tion methods need to be performed to assure, for example,

the preservation of stability during the redu
tion. For the redu
tion of mod-

els with parameters resulting from 
hanges in the geometry, interpolation

pro
edures need to be applied after the redu
tion to transfer the parameter

dependen
e of the original to the redu
ed model.
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CHAPTER 1

Introdu
tion

1.1. Motivation

In industry, simulations are an important tool in the design pro
ess of

a new 
omponent. In order to save time and money, fast and a

urate

models for simulation are needed. Model Order Redu
tion (MOR) is a pow-

erful method to obtain small and a

urate models from large Finite Element

models. More and more often, Finite Element models are used, whi
h 
on-

tain several parameters. Su
h parameters 
an be lengths and heights as

well as physi
al behavior. These parametrized models will often be used to

�nd optimal designs by using optimization w.r.t. the given parameters. As

the Finite Element models are large, optimization runs 
an easily ex
eed the


omputation 
apa
ities. It is hen
e desirable to redu
e models while preserv-

ing the parameter dependen
y. This is the obje
tive of parametri
 Model

Order Redu
tion (pMOR). Re
ently, Benner and Breiten [11℄ presented a

method to rewrite linear parametri
 models into bilinear models. This allows

bilinear Model Order Redu
tion methods to be used for parametri
 Model

Order Redu
tion. The resulting redu
ed order model should be a good ap-

proximation of the original model. Within the framework of H2-optimal

Model Order Redu
tion, the error 
an be measured and minimized in the

H2-norm. In this work, we will examine bilinear H2-optimal methods for

the redu
tion of linear parametri
 systems, whi
h have been applied to and

further developed on thermal models of ele
tri
al motors.

1



2 1. INTRODUCTION

1.2. Dissertation overview

In Chapter 2, we review results from Linear Algebra, Di�erential Geom-

etry and Systems Theory. The 
on
epts will be stated for linear and bilinear

systems.

Chapter 3 provides the reader with the foundations of heat transfer mod-

eling. The underlying physi
al e�e
ts (heat 
ondu
tan
e, 
onve
tive heat

transfer, radiation) will be reviewed and the mode of operation and the

thermal modeling of an ele
tri
al motor will be des
ribed. Three di�erent

ele
tri
al motor models have been built and will be presented. Chapter 4

gives an overview over the equations that are solved during heat transfer

modeling, and the pro
edure to obtain parametri
 models by 
areful analysis

of these equations.

In Chapter 5, methods for Model Order Redu
tion (MOR) will be dis
ussed.

First, methods for linear MOR will be reviewed, followed by a dis
ussion

of methods for the redu
tion of parameter dependent models (parametri


MOR). It is possible to rewrite parametri
 models with a 
ertain parameter

dependen
y as bilinear models, and hen
e methods from bilinear MOR will

be 
onsidered. Of parti
ular interest are methods from the 
lass of H2-

optimal bilinear MOR, as their obje
tive is to minimize the error between

original and redu
ed model. First, we review existing methods and state the

Bilinear Interpolatory Rational Krylov Algorithm (BIRKA) [12℄. Se
ond,

we develop algorithms for the redu
tion of bilinear systems via optimization

on Grassmann manifolds. These methods are of interest, as they preserve

stability during the redu
tion pro
ess.

The obje
tive of Chapter 6 is the dis
ussion of several issues that were

en
ountered while applying BIRKA to thermal models. These issues are

examined, and strategies for their mitigation will be developed. Espe
ially

preservation of stability during the 
al
ulation is 
ru
ial. Results for BIRKA

and the new H2-optimal methods will be given in Chapters 7 and 8. Whereas

the new methods are not yet appli
able to large systems, BIRKA performs

well on bilinear systems that have been obtained from linear parametri
 sys-

tems. First, only physi
al parameters are 
onsidered. Se
ond, we present

results for systems with a parameter dependen
y resulting from 
hanges in

geometry, whi
h 
an only be rewritten partially as bilinear systems. For

su
h systems, parametri
 redu
ed order models 
an then be obtained by an

interpolation pro
edure.



1.3. THESIS CONTRIBUTIONS 3

1.3. Thesis 
ontributions

The main 
ontributions of this thesis are:

• One obje
tive of this thesis is MOR of thermal ele
tri
al motor

models. Hen
e, it is shown how matri
es suitable for pMOR 
an

be obtained from Comsol

R©
, a Finite Element Software. To do so,

the equations whi
h are solved by the Software are used to theo-

reti
ally re
onstru
t the dependen
e in parameters of the model

(
f. Chapter 4).

• In 
ontrast to other works about pMOR, in this thesis the redu
-

tion of the parametri
 models is done using BIRKA [12℄. Several

issues where en
ountered when the algorithm was applied: One


lass of parameters leads to a non-singular sti�ness matrix, in sev-

eral 
ases there is the need to s
ale other system matri
es to ful�ll

a Krone
ker produ
t approximation and in addition, BIRKA does

not preserve stability. All these issues have been resolved, and we

show results for the redu
tion of a motor model from n = 41, 199

degrees of freedom to a redu
ed order of r = 300. This has been

done for 13 physi
al parameters.

• In addition, models with geometri
al variations are 
onsidered.

After the redu
tion with BIRKA, several interpolation strategies

between the redu
ed order models obtained in several parameter

points have been 
ompared.

• Finally, we develop new H2-optimal bilinear methods for MOR

using optimization on Grassmann manifolds. These methods 
an

preserve stability for symmetri
 systems matri
es, and their appli-


ability to small models will be proved.





CHAPTER 2

Mathemati
al prerequisites

2.1. Linear Algebra 5

2.2. Di�erential geometry 8

2.3. Systems theory 10

In this �rst theoreti
al 
hapter, some results from di�erent areas of

mathemati
s are reviewed. First, general results from Linear Algebra will be

presented, followed by a 
loser look on some de�nitions from Di�erential

Geometry. The last se
tion provides the reader with an introdu
tion to

linear and bilinear systems theory.

2.1. Linear Algebra

Within this se
tion we review the de
omposition of matri
es, the prop-

erties of the Krone
ker produ
t and provide the reader with basi
 knowledge

on matrix pertubation theory.

2.1.1. Matri
es and their de
ompositions. Most of the matri
es in

this work are symmetri
, whi
h is why we state the de�nition here.

De�nition 2.1.1. A matrix A ∈ Rn×n is 
alled symmetri
 if A = AT . A

symmetri
 matrix is positive (semi)de�nite, denoted by A > (≥)0, if xTAx >

(≥)0 for all ve
tors 0 6= x ∈ Rn. It is negative (semi)de�nite, denoted by

A < (≤)0, if xTAx < (≤)0 for all ve
tors 0 6= x ∈ Rn.

5



6 2. MATHEMATICAL PREREQUISITES

We will often refer to the following two matrix de
ompositions, the

eigenvalue and the singular value de
omposition.

De�nition 2.1.2 (Generalized eigenvalue de
omposition [38, Se
tion 7.7℄).

If A,B ∈ Cn×n , then the set of all matri
es of the form A− λB with λ ∈ C

is a pen
il. The generalized eigenvalues of A − λB are elements of the set

λ(A,B) de�ned as

λ(A,B) = {z ∈ C : det(A − zB) = 0}.

If λ ∈ λ(A,B) and 0 6= x ∈ Cn satis�es

Ax = λBx, (2.1)

then x is an eigenve
tor of A − λB. The problem of �nding nontrivial

solutions to (2.1) is the generalized eigenvalue problem. If B is nonsingular,

λ(A,B) = λ(B−1A) holds.

Theorem 2.1.3 (The singular value de
omposition (SVD) [38, Theorem

2.4.1℄). If A ∈ Rm×n, then there exist orthogonal matri
es U = [u1, . . . , um] ∈
R
m×m

and V = [v1, . . . , vn] ∈ R
n×n

su
h that

UTAV = diag(σ1, . . . , σp) ∈ R
m×n, (2.2)

with p = min (m, n) where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

The σj will be 
alled singular values. If it shall be 
lari�ed that they

result from a singular value de
omposition of the matrix A, we denote them

by σj(A). Let r be su
h that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

Then rk(A) = r and A 
an be de
omposed in the following way:

A =

r∑

i=1

σiuiv
T
i .

Using matri
es, we will write this de
omposition as follows:

A = UrΣrV
T
r , (2.3)

with Ur ∈ R
m×r

, Σr ∈ R
r×r

and Vr ∈ R
n×r

and refer to it as the 
ompa
t

singular value de
omposition.



2.1. LINEAR ALGEBRA 7

2.1.2. Properties of the Krone
ker produ
t. The following matrix

produ
t is referred to as the Krone
ker produ
t:

De�nition 2.1.4. For two matri
es A ∈ Cn×m and B ∈ Ck×l , the Krone
ker
produ
t is de�ned as:

A⊗ B =



a11B . . . a1mB
.

.

.

.

.

.

an1B anmB


 .

The Krone
ker produ
t has the following properties (see for example

[38℄, Se
tion 12.3):

(A⊗ B)T = AT ⊗ BT , with A ∈ Cn×m, B ∈ Ck×l ,

(A⊗ B)−1 = A−1 ⊗ B−1, with A ∈ Cn×m, B ∈ Ck×l ,

(A⊗ B)⊗ C = A⊗ (B ⊗ C), with A ∈ Cn×m, B ∈ Ck×l and C ∈ Cs×q,

(AC ⊗ BD) = (A ⊗B)(C ⊗D),

with A ∈ Cn×m, B ∈ Ck×l , C ∈ Cm×s and D ∈ Cl×q,

but in general A⊗B 6= B⊗A! In addition one obtaines (with A ∈ Cn×m, B ∈

C
k×l

):

rk(A⊗ B) = rk(A) · rk(B),

det(A⊗ B) = det(A)n · det(B)m for A ∈ Rm×m and B ∈ Rn×n,

tr(A⊗ B) = tr(A) · tr(B),

||A ⊗B||2 = ||A||2 · ||B||2.

If C = AXB for C ∈ Rn×m, A ∈ Rn×k , X ∈ Rk×l and B ∈ Rl×m then

one obtains for the Krone
ker produ
t and the ve
 operator:

ve
(C) = (BT ⊗ A) ve
(X). (2.4)

2.1.3. Matrix pertubation theory. The 
onne
tion between the eigen-

values of two matri
es will be needed within this work. The following results

have been established in the 
ontext of matrix pertubation theory, the re-

lation of the eigenvalues of a pertubed Matrix M + S and the unpertubed

matrix M will be examined.
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Theorem 2.1.5 (Bauer-Fike,[38, Theorem 7.2.2℄). If µ is an eigenvalue of

M + S ∈ Cn×n and X−1MX = diag(λ1, . . . , λn), then

min
i=1,...,n

|λi − µ| ≤ κ2(X)||S||2. (2.5)

Corollary 2.1.6. Let X−1MX = diag(λ1, . . . , λn), and M + S ∈ C
n×n

. For

every eigenvalue λ(M + S) an eigenvalue λi(M) exists su
h that |λi(M) −

λ(M + S)| ≤ κ2(X)||S||2.

The next results show the 
onne
tion between the eigenvalues of two

real symmetri
 matri
es A and B.

Proposition 2.1.7 (Weyl,[60, Theorem 4.8, Corollary 4.9℄). Let A,B ∈

R
n×n

be two symmetri
 matri
es. Let λi(A) and λi(B) for i = 1, . . . , n be

the eigenvalues of A and B with λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ · · · ≥

λn(B). Then it holds:

λi(A+ B) ∈ [λi(A) + λn(B), λi(A) + λ1(B)] for i = 1, . . . , n. (2.6)

Corollary 2.1.8 ([60, Corollary 4.10℄). Under the assumptions of Proposi-

tion 2.1.7 it holds

|λi(A +B)− λi(A)| ≤ ||B||2 for i = 1, . . . , n. (2.7)

2.2. Di�erential geometry

In Se
tion 5.5.4, several algorithms based on optimization on manifolds

will be derived. For a more detailed presentation of this topi
, we refer to

[1℄ and [30℄. Let Or denote the set of the orthogonal matri
es in R
r×r .

De�nition 2.2.1 (Stiefel manifold [1, Se
tion 3.3.2℄). For r ≤ n, the Stiefel

manifold is de�ned as the set of all n × r orthonormal matri
es:

St(r, n) := {X ∈ Rn×r |XTX = Ir}.

Clearly, St(r, n) ⊂ Rn×r . It 
an be shown that St(r, n) is a 
ompa
t

submanifold of R
n×r

(
f. [1, Se
tion 3.3.2℄). The tangent spa
e of a Stiefel

manifold at X ∈ St(r, n) is de�ned as follows (
f. [1, Example 3.5.2℄):

TXSt(r, n) = {Z ∈ R
n×r |XTZ + ZTX = 0}.

Heading for an algorithm for the gradient �ow, the gradient of a fun
tion

on the manifold has to be 
al
ulated. Therefore, we �rst have to provide

a 
on
ept of dire
tion and length of a tangent ve
tor. This leads to the
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de�nition of an inner produ
t on the tangent spa
e. For a Stiefel manifold,

the inner produ
t is de�ned as

〈ξ, η〉 = tr(ξTη) with ξ, η ∈ TXSt(r, n). (2.8)

The gradient in X of a fun
tion F on a Stiefel manifold is de�ned to be the

tangent ve
tor ∇F su
h that

tr(F TX Y ) = tr((∇F )
T (I −

1

2
XXT )Y ), (2.9)

holds for all tangent ve
tors Y ∈ TXSt(r, n). Here, FX is the matrix of all

partial derivatives of F with respe
t to X, i.e.:

(FX)i j =
∂F

∂Xi j
. (2.10)

Solving equation (2.9) leads to the following expression for the gradient:

∇F = FX − XF
T
XX. (2.11)

The Grassmann manifold Gr(r, n), r ≤ n, is de�ned as the set of all r -

dimensional subspa
es of R
n
. Following [30℄, it 
an be seen as a quotient

manifold in the following way: Two matri
es U1 and U2 in St(r, n) are equiv-

alent, if they span the same r -dimensional subspa
e. This holds if and only

if U1 = U2Q for an orthogonal matrix Q ∈ Rr×r . The equivalen
e 
lass [U]
of a point U ∈ St(r, n) 
an be de�ned as:

[U] = {UQ|Q ∈ Or} .

The map

G : Gr(r, n)→ St(r, n)/Or

is a bije
tion. We will therefore 
onsider the Grassmann manifold as this

quotient manifold of St(r, n). A matrix U ∈ St(r, n) represents a whole

equivalen
e 
lass in Gr(r, n). The tangent spa
e of the Grassmann manifold


an be des
ribed as follows [30, Se
tion 2.5℄:

TXGr(r, n) = {Z ∈ R
n×r |XTZ = 0}. (2.12)

On a manifold, the shortest 
onne
tion between two points is 
alled a ge-

odesi
. Let X(0) = X and Ẋ(0) = H. Let H = WΣV T be the 
ompa
t

singular value de
omposition (
f. equation (2.3)) of H with W ∈ Rn×r ,
Σ, V ∈ Rr×r . The geodesi
 
an be des
ribed as [30, Se
tion 2.5.1℄:

X(t) =
[
XV W

] [cosΣt
sinΣt

]
V T . (2.13)
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For a Grassmann manifold, the inner produ
t is de�ned as

〈ξ, η〉 = tr(ξTη), with ξ, η ∈ TXGr(r, n). (2.14)

The gradient in X of a fun
tion F on the Grassmann manifold is de�ned to

be the tangent ve
tor ∇F su
h that

tr(F TX Y ) = tr((∇F )
T Y ), (2.15)

holds for all tangent ve
tors Y ∈ TXGr(r, n). Solving equation (2.15) leads

to the following expression for the gradient [30, Se
tion 2.5.3℄:

∇F = FX − XX
TFX . (2.16)

We will also need the following de�nition:

De�nition 2.2.2 ([1, De�nition 4.2.1℄). Given a fun
tion F on St(r, n) or

Gr(r, n), a sequen
e {ηk}, ηk ∈ TxkSt(r, n) or ηk ∈ TxkGr(r, n) is gradient-

related if, for any subsequen
e {xk}k∈K of {xk} that 
onverges to a non-


riti
al point of F , the 
orresponding subsequen
e {ηk}k∈K is bounded and

satis�es

lim
k→∞
sup
k∈K
〈∇F (xk), ηk〉 < 0. (2.17)

2.3. Systems theory

Many physi
al phenomena, 
hemi
al rea
tions, biologi
al pro
esses or

models for the fore
ast of �nan
ial pro
esses 
an be mathemati
ally de-

s
ribed by the same 
lass of systems, so 
alled dynami
al systems. External

in�uen
es that have a dire
t impa
t on the behavior of the system are 
alled

inputs. The behavior of the systems will be monitored within a 
ertain time

range and at 
ertain points, the system's outputs. The 
onne
tion between

the inputs and the outputs will often be measured and referred to as the

system's input-output-relationship. A dynami
al system 
an be des
ribed by

a di�erential equation. In this work, two kinds of dynami
al systems will be


onsidered: linear and bilinear systems.
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2.3.1. Linear Systems. In the following se
tion some basi
 knowledge

on linear dynami
al systems will be reviewed, su
h as stability, observability,


ontrollability, balan
ed systems, norms of systems and the input-output

relationship.

De�nition 2.3.1. A linear system Σlin of order n is a system of ordinary

di�erential equations of the following form:

Σlin :

{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,
(2.18)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. The input u(t) ∈ Rm 
an be

time-dependent just as the states x(t) ∈ Rn and the output y(t) ∈ Rp are.

The value of x(0) = x0 is 
alled initial value. The spa
e X 
ontaining all

states x(t) is 
alled state spa
e.

2.3.1.1. Stability. Systems with bounded solution traje
tories x(t) are

of spe
ial importan
e. This 
hara
teristi
 of a system is referred to as

stability. For linear systems (
.f. system (2.18)) with nonsingularE, stability

is de�ned as follows:

De�nition 2.3.2 (
.f. [63℄ Chapter 2.7,[5℄ Chapter 5.8,[61℄ Chapter 3.2.1).

The system

Eẋ(t) = Ax(t), E nonsingular,

is asymptoti
ally stable if

(i) For all x0 ∈ Rn the initial value problem Eẋ(t) = Ax(t), x(0) =

x0, has a solution and for every ε > 0 there exists a δ > 0 su
h

that ||x(t)||2 < ε for all t ≥ 0 and for all ||x(0)||2 < δ (Lyapunov

stability).

(ii) There exists δ > 0 su
h that x(t)→ 0 as t →∞ if ||x(0)||2 < δ.

Theorem 2.3.3 ([63℄ Corollary 2.11, [61℄ Theorem 3.7). The system

Eẋ(t) = Ax(t), E nonsingular,

is asymptoti
ally stable if and only if all the eigenvalues of λE−A lie in the

open left half-plane.

We will therefore speak of a stable system, if all the eigenvalues of

λE − A, E nonsingular, lie in the open left half-plane. In this 
ase, the

eigenvalues of the pen
il λE − A are those of the matrix E−1A.
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2.3.1.2. Controllability, Observability and Balan
ed Systems. During

the analysis of a linear system (2.18) one might ask how the system is

a�e
ted by the input u(t). The following two 
hara
terisations will be 
on-

sidered.

De�nition 2.3.4 ([5℄). x∗ ∈ Rn is rea
hable (from the origin x(0) = 0) if

there exist an admissible input fun
tion and te < ∞ su
h that x(te) = x∗

holds (and hen
e x(te) = x
∗
belongs to the state spa
e of a linear system

(2.18)).

De�nition 2.3.5 ([5, 46℄). A nonzero state x(0) = x0 is 
ontrollable if there

exists an admissible input fun
tion su
h that the system 
an be transformed

from x0 to any given end state x(te) within a �nite time [0, te ].

For linear 
ontinuous time systems the 
on
epts of 
ontrollability and

rea
hability 
oin
ide (
f. [5℄, Theorem 4.18). Hen
e, the following 
on
epts

will be developed for the 
ontrollability of a linear system. In the following


hapters we will need the 
on
ept of the 
ontrollability Gramian.

De�nition 2.3.6 ([61℄ Lemma 4.57). Consider a stable linear system (2.18)

with E nonsingular. The 
ontrollability Gramian 
an be de�ned as follows:

P =
1

2π

∫ ∞

−∞
(iωE − A)−1 BB∗ (iωE − A)−∗ dω. (2.19)

If one 
onsiders the eigenvalue de
omposition of P , the eigenvalues

measure the degree of 
ontrollability, whereas the eigenve
tors 
orrespond-

ing to the largest eigenvalues 
an be understood as the dire
tions in whi
h

the system is easy to 
ontrol.

Proposition 2.3.7 ([61℄ Corollary 4.58). Consider a stable linear system

(2.18) with E nonsingular. The 
ontrollability Gramian P (2.19) exists and

is the unique Hermitian solution to the following Lyapunov equation:

AXET + EXAT + BBT = 0. (2.20)

In addition, P is positive de�nite if and only if the system is 
ontrollable.

In pra
ti
e, we will often be able to measure the output y(t) of a linear

system (2.18). If the input u(t) and the output y(t) are known, we want

to re
onstru
t the states x(t). This leads to the 
on
ept of observability.

De�nition 2.3.8 ([46℄). A linear system (2.18) is 
ompletely observable, if

the initial state x0 
an be re
onstru
ted from the behavior of the input u(t)

and the output y(t) within a �nite time interval [0, te ].
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Again, we will need the 
on
ept of the systems observability Gramian.

De�nition 2.3.9. Consider a stable linear system (2.18) with E nonsingular.

The observability Gramian Q is de�ned as follows:

Q = ET Q̃E,

with

Q̃ =
1

2π

∫ ∞

−∞
(iωE − A)−∗ C∗C (iωE − A)−1 dω. (2.21)

The interpretation is similar to the 
ontrollability 
ase: If one 
onsiders

the eigenvalue de
omposition of Q, the eigenvalues measure the degree of

observability, whereas the largest eigenve
tors 
an be understood as the

dire
tions in whi
h the system is easy to observe.

Proposition 2.3.10 ([61℄ Corollary 4.58). Consider a stable linear system

(2.18) with E nonsingular. The matrix Q̃ (see De�nition 2.3.9) exists and

is the unique Hermitian solution to the following Lyapunov equation:

ATXE + ETXA+ CTC = 0. (2.22)

In addition, Q̃ and therefore also the observability Gramian Q is positive

de�nite if and only if the system is observable.

A balan
ed representation of a linear dynami
al system is a representa-

tion of the system in whi
h every state is �equally" rea
hable and observable.

This se
tion introdu
es the 
on
epts whi
h will be needed for the Balan
ed

Trun
ation Model Order Redu
tion in Se
tion 5.2.1. The reader should

note that there exist several other balan
ed representations beside the one

presented here. They 
an be found in the work by Guger
in and Antoulas

[40℄ and the referen
es therein.

De�nition 2.3.11 ([61, De�nition 7.5℄). The Hankel singular values, de-

noted by ςj , of a stable linear system (2.18) with E nonsingular are the

square-roots of the eigenvalues of PQ.

Proposition 2.3.12 ([61, Corollary 7.7℄). A stable linear system (2.18) with

E nonsingular is 
ontrollable and observable if and only if its Hankel singular

values are non-zero.

De�nition 2.3.13 ([61, De�nition 7.10℄). A stable linear system (2.18) with

E nonsingular is 
alled balan
ed, if the 
ontrollability and the observability

Gramians are equal and diagonal.
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Every stable, 
ontrollable and observable linear system with E nonsin-

gular 
an be transformed into a balan
ed representation. To do so, one


omputes the Cholesky fa
torization of the Gramians

P = RRT and Q̃ = LTL,

whi
h exists due to the positive de�niteness of P and Q̃ (
f. Propositions

2.3.7 and 2.3.10). Computing the QR de
omposition of the Cholesky fa
-

tors L and R leads to the following de
omposition with orthogonal matri
es

Qc and Qo :

RT = Qc R̃
T
and L = Qo L̃.

It is obvious that P = RRT = R̃R̃T and Q̃ = LTL = L̃T L̃. The Hankel

singular values 
an now be 
omputed via the singular values of L̃ER̃:

ς2j = λj (P E
T Q̃E︸ ︷︷ ︸
Q

) = λj(R̃R̃
TET L̃T L̃E) = λj(R̃

TET L̃T L̃ER̃) = σ2j (L̃ER̃),

with the singular value de
omposition

L̃ER̃ = UbΣV
T
b ,

and orthogonal Ub, Vb and Σ = diag(ς1, . . . , ςn). The matri
es of the linear

system 
an now be transformed to a balan
ed system representation:

W T
b ETb, W

T
b ATb, W

T
b B, CTb,

where

Wb = L̃
TUbΣ

−1/2, Tb = R̃VbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

The Gramian (as the observability and the 
ontrollability Gramian 
oin
ide


f. De�nition 2.3.13) of the balan
ed system is obtained from those of the

original system in the following way:

T−1b PT−Tb = Σ = W−1
b Q̃W−T

b = T Tb QTb.

2.3.1.3. Systems norms and spa
es and input-output relationship. As

the obje
tive is to approximate the given original models, one needs to be

able to quantify the di�eren
e between the original and the redu
ed system,

or generally speaking, between two dynami
al systems. To do so, several

di�erent spa
es and their norms, both in the time and in the frequen
y

domain, need to be 
onsidered.
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De�nition 2.3.14 ([5, Se
tion 5.1.2℄). Let f : I → Rn, with I ∈ {R,R−,

R+, [a, b]} be a ve
tor valued fun
tion. The Lebesgue spa
e L
n
2(I) is de�ned

as:

Ln2(I) =

{
f : I → Rn :

(∫

t∈I
||f (t)||22

) 1
2

<∞

}
. (2.23)

In our models, input and output will be 
onsidered as fun
tions in these

spa
es: u(t) ∈ Lm2 (I) and y(t) ∈ L
p
2(I) with t ∈ I (
f. the de�nition of

a linear system (2.18)). Usually, one is interested in a relationship between

input and output. As su
h a relationship in the time domain is des
ribed

by a 
onvolution whi
h is often di�
ult to 
al
ulate, the relation is often

examined in the frequen
y domain. There, it 
an easily be determined by a

produ
t of matri
es, as we will see in this se
tion. For the transformation

from time to frequen
y domain the Lapla
e transformation is used.

De�nition 2.3.15 ([18, Se
tion 15.2℄). The Lapla
e transform of a fun
tion

f : R+ → R is de�ned as

F (s) = L{f (t)}(s) =

∫ ∞

0

f (t)e−stdt, (2.24)

with

L{f ′(t)}(s) = sF (s)− f (0). (2.25)

For a ve
tor, the Lapla
e transform has to be seen element wise. We

transform the linear system (assuming x(0) = x0 = 0):

L{Eẋ(t)}(s) = L{Ax(t) + Bu(t)}(s)

⇒ EL{ẋ(t)}(s) = AL{x(t)}(s) + BL{u(t)}(s)

⇒ sEX(s) = AX(s) +BU(s)

⇒ X(s) = (sE − A)−1BU(s),

and Y (s) = CX(s). This leads to the following 
onne
tion between the

input and the output:

Y (s) = C(sE − A)−1BU(s).

De�nition 2.3.16. The transfer fun
tion H : C→ Cp×m of the linear system

(2.18) is de�ned as

H(s) := C(sE − A)−1B. (2.26)



16 2. MATHEMATICAL PREREQUISITES

Fun
tions in frequen
y domain will often be interpreted as fun
tions

of a 
omplex variable. A detailed des
ription of frequen
y domain spa
es

for linear systems 
an be found in [5℄. Here we use Hardy spa
es H2 and

H∞. The following system norms 
an then be established using the transfer

fun
tion H(s) and the 
orresponding Hardy spa
e norms:

De�nition 2.3.17 ([5, Se
tion 5.1.3℄). The H2 norm of a stable system is

de�ned as

||Σlin||H2 :=

(∫ ∞

−∞
tr(H∗(−iy)H(iy))dy

) 1
2

. (2.27)

The H∞ norm of a stable system is de�ned as

||Σlin||H∞ := sup
y∈R
(σmax(H(iy))) , (2.28)

with maximal singular value σmax.

Proposition 2.3.18 ([5℄). It holds:

||Σlin||H2 =
√
tr(B∗QB) =

√
tr(CPC∗), (2.29)

for the systems Gramians as de�ned in (2.21) and (2.19).

2.3.2. Bilinear Systems. The se
ond 
lass of dynami
al systems whi
h

will be 
onsidered in this thesis are bilinear systems. An overview and exam-

ples 
an be found in [49℄.

De�nition 2.3.19. A bilinear system of order n is a system of di�erential

equations of the following form:

Σbil :




Eẋ(t) = Ax(t) +

m∑

k=1

Nkuk(t)x(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

(2.30)

where E, A,Nk ∈ R
n×n

, B ∈ Rn×m, C ∈ Rp×n. The input u(t) ∈ Rm 
an be

time-dependent just as the states x(t) ∈ Rn and the output y(t) ∈ Rp are.

The value of x(0) = x0 is 
alled initial value.

In this se
tion, only systems with E 6= In, E nonsingular, will be 
on-

sidered.
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2.3.2.1. Volterra series representation. A 
onne
tion between the sys-

tems input and output 
an be established by using the following Volterra

series representation for the states of bilinear systems established by Mohler

[49℄. We will 
onsider systems with E nonsingular.

x(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

eE
−1A(τ1)E−1Nk1 ·

· eE
−1A(τ2−τ1)E−1Nk2e

E−1A(τ3−τ2) · · ·E−1Nki−1e
E−1A(τi−τi−1)E−1bki ·

· uk1(t − τ1) · · · uki (t − τi)dτ1 . . . dτi . (2.31)

The input-output relationship of the system 
an then be de�ned as:

y(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2 ,...,ki=1

CeE
−1A(τ1)E−1Nk1 ·

· eE
−1A(τ2−τ1)E−1Nk2e

E−1A(τ3−τ2) · · ·E−1Nki−1e
E−1A(τi−τi−1)E−1bki

· uk1(t − τ1) · · · uki (t − τi)dτ1 . . . dτi , · (2.32)

with 
olumns bki of B and Volterra kernels de�ned as:

h
(k1,...,ki )
i (τ1, . . . , τi) = Ce

E−1Aτ1E−1Nk1e
E−1A(τ2−τ1) · . . . (2.33)

. . . · E−1Nki−1e
E−1A(τi−τi−1)E−1bki ,

where i = 1, 2, . . . , ki = 1, . . . , m, and τi+1 ≥ τi ≥ 0. The input-output

relation 
an now be written as:

y(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

h
(k1,...,ki )
i (τ1, . . . , τi) (2.34)

·

(
i∏

j=1

ukj (t − τj)

)
dτ1 . . . dτi .

In pra
ti
e, the Volterra kernels h
(k1,...,ki )
i (τ1, . . . , τi) need to be exam-

ined in the frequen
y domain as well. Therefore we need a multivariate

Lapla
e transform:
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De�nition 2.3.20 ([24℄). Given a fun
tion f (t1, . . . , tn) de�ned on R
n
de�ne

its Lapla
e transform F (s1, . . . , sn) by:

F (s1, . . . , sn) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (t1, . . . , tn)exp

(
−

n∑

k=1

tksk

)
dt1 . . . dtn.

(2.35)

We 
an now transform the Volterra kernels.

De�nition 2.3.21. The i-th order transfer fun
tion of the Volterra kernel

h
(k1,...,ki )
i (τ1, . . . , τi)

= CeE
−1Aτ1E−1Nk1e

E−1A(τ2−τ1) . . . E−1Nki−1e
E−1A(τi−τi−1)E−1bki ,

is de�ned as

H
(k1,...,ki )
i (s1, . . . , si)

= C(siE − A)
−1Nk1(si−1E − A)

−1 . . . Nki−1(s1E − A)
−1bki . (2.36)

By taking N = [N1 . . . Nm], this de�nition 
an be rewritten simultane-

ously for all Nk by using Krone
ker produ
ts:

Hi(s1, . . . , si) =C(siE − A)
−1N[Im ⊗ (si−1E − A)

−1](Im ⊗ N) . . .

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−2 times

⊗(s2E − A)
−1)](Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i−2 times

⊗N)

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−1 times

⊗(s1E − A)
−1)](Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i−1 times

⊗B).

(2.37)

In addition, Bruni et al. [19℄ examined the 
onvergen
e of the Volterra

series and established the following result:

Proposition 2.3.22. If the Volterra series in (2.31) 
onverges, then it uni-

formly 
onverges to the solution of the bilinear system (2.30). For bounded

inputs the Volterra series (2.31) 
onverges on any �nite time interval [0, te ].

The 
onvergen
e of the Volterra series is 
onne
ted to the stability of

the system.
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2.3.2.2. Stability. The notion of stability for bilinear systems di�ers

from that for linear systems. For bounded inputs, the following de�nition of

stability applies:

De�nition 2.3.23 ([72, 59℄). The bilinear system (2.30) is 
alled bounded-

input-bounded-output (BIBO) stable, if for any bounded input, the output

is bounded on [0,∞). An input/output is 
alled bounded if it satis�es the

following 
ondition: ||u||∞ = maxjsupt∈[0,∞)|uj(t)| < M.

Siu and S
hetzen [59℄ 
ombined 
onvergen
e of the Volterra series with

BIBO stability. They showed the following su�
ient 
ondition for BIBO

stability.

Theorem 2.3.24 ([59℄). Let a bilinear system (2.30) with nonsingular E

be given, and let the pen
il A − λE be stable, i.e. there exist real s
alars

β,α ∈ R with β > 0 and 0 < α ≤ −maxi(Re(λi((A, E)))) su
h that

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0. (2.38)

Assume ||u(t)|| =
√∑m

k=1
|uk(t)|2 ≤ M uniformely on [0,∞) with M > 0

and denote Γ =
∑m

k=1
||E−1Nk ||2. Then the system is BIBO stable if Γ <

α
Mβ

.

The bilinear system is hen
e stable if the matri
es Nk are su�
iently

bounded.

2.3.2.3. Rea
hability, observability and balan
ed representation. As for

linear systems, the 
on
epts of rea
hability, observability and balan
ed rep-

resentation exist for bilinear systems. However, the 
on
epts need to be

generalized, whi
h will be done in the following se
tion.

De�nition 2.3.25 ([25, 56℄). A state x(te) of a bilinear system (2.30) is

rea
hable (from the origin x(0) = 0) if there exists an admissible input

fun
tion that maps the origin of the state spa
e into the state x(te) in a

�nite interval of time [0, te ].

De�nition 2.3.26 ([56℄). A bilinear system (2.30) is 
alled (span) rea
hable

if the spa
e of all rea
hable states X reach spans Rn.

For a bilinear system (2.30) with E 6= I nonsingular, the following

statements for rea
hability 
an be derived. Let

P1(t1) = e
E−1At1E−1B,

Pi(t1, . . . , ti) = e
E−1AtiE−1[N1Pi−1 N2Pi−1 . . . NmPi−1], i = 2, 3, . . .



20 2. MATHEMATICAL PREREQUISITES

De�nition 2.3.27 ([72℄). If it exists, the rea
hability Gramian is de�ned as

P =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

PiP
∗
i dt1 . . . dti . (2.39)

Zhang and Lam [72℄ established the following theorem for the existen
e

of the rea
hability Gramian:

Theorem 2.3.28 ([72℄). The rea
hability Gramian (2.39) exists, if

(i) the pen
il A− λE is stable, with

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0, (2.40)

where β > 0 and 0 < α ≤ −maxi(Re(λi(A, E)), β,α ∈ R.

(ii) Γ1 <
√
2α
β , with Γ21 = ||

∑m

k=1
E−1NkN

T
k E

−T ||2.

The 
onne
tion of P to the bilinear Lyapuonv equations and the rea
h-

ability of the system 
an now be established:

Theorem 2.3.29 ([72℄). Suppose A − λE is stable, and the rea
hability

Gramian P exists. Then

(i) P satis�es the following bilinear Lyapunov equation:

AXET + EXAT +

m∑

k=1

NkXN
T
k + BB

T = 0. (2.41)

(ii) The bilinear system (2.30) is rea
hable if and only if P is positive

de�nite.

Proposition 2.3.30 ([72℄). If (2.41) has a unique solution, then the solution

P is symmetri
.

For linear stable systems, it is known that if the Lyapuonv equation has

a unique solution it is the rea
hability (
ontrollability) Gramian. For bilinear

systems, however, it is possible that a unique solution to the Lyapunov

equation is not the rea
hability Gramian. Consider for example the following

bilinear system (
f. [72℄):

ẋ = −x + 2xu + u.

This leads to the solution of the Lyapunov equation p = − 12 . But the

integrals p̃i =
∫
pip

T
i lead to p̃i = 2

i−2
, whi
h gives p =

∑∞
i=1
2i−2 whi
h

does not 
onverge � hen
e the rea
hability Gramian does not exist.

This behavior is summarized in the following theorem:
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Theorem 2.3.31 ([72℄). Suppose A− λE is stable.

• (2.41) has a positive (semi) de�nite solution X if and only if the

rea
hability Gramian (2.39) exists and 
onverges to a positive

semide�nite matrix X̂ satisfying (2.41).

• If (2.41) has a unique positive (semi) de�nite solution X, then

(2.39) 
onverges toX and thereforeX is the rea
hability Gramian.

For a bilinear system (2.30) with E nonsingular the following statements

for observability 
an be derived. Let

Q1(t1) = Ce
E−1At1 ,

Qi(t1, . . . , ti) = [Qi−1E
−1N1 Qi−1E

−1N2 . . . Qi−1E
−1Nm]

T eE
−1Ati , i = 2, 3, . . .

De�nition 2.3.32 ([72℄). If it exists, the observability Gramian is de�ned as

Q =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

Q∗i Qidt1 . . . dti . (2.42)

Zhang and Lam [72℄ established the following theorem for the existen
e

of the observability matrix:

Theorem 2.3.33 ([72℄). The observability matrix (2.42) exists, if

(i) the pen
il A− λE is stable, with

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0, (2.43)

where β > 0 and 0 < α ≤ −maxi(Re(λi(A, E)), β,α ∈ R.

(ii) Γ1 <
√
2α
β , with Γ21 = ||

∑m

k=1
E−1NkN

T
k E

−T ||2.

Theorem 2.3.34. Suppose A− λE is stable, and the observability Gramian

exists. Then

(i) E−TQE−1 satis�es the following bilinear Lyapunov equation:

ATY E + ET Y A+

m∑

k=1

NTk Y Nk + C
TC = 0. (2.44)

(ii) The bilinear system (2.30) is observable if and only if Q is positive

de�nite.
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Theorem 2.3.35 ([72℄). Suppose A− λE is stable.

• (2.44) has a positive (semi) de�nite solution Y if and only if the

observability Gramian (2.42) exists and 
onverges to a positive

semide�nite matrix Q̂ satisfying (2.44) for E−T Q̂E−1.

• If (2.44) has a unique positive (semi) de�nite solution Y , then

(2.42) 
onverges toQ = ET Y E andQ is the rea
hability Gramian.

A balan
ed representation of a bilinear system 
an be obtained in the

same way as in the linear 
ase. Assume the bilinear system is BIBO stable,

and the Gramians P and Q exist and are positive de�nite. They 
an be

de
omposed as

P = RRT and Q = LTL.

By using the singular value de
ompositon of

LER = UbΣV
T
b ,

one obtains

W T
b ETb, W

T
b ATb, W

T
b NkTb, W

T
b B, CTb,

where

Wb = L
TUbΣ

−1/2, Tb = RVbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

Details 
an be found in [42, 2℄ and the referen
es therein.

2.3.2.4. H2-norm of a bilinear system.

De�nition 2.3.36. The H2-norm of a bilinear system is de�ned as

||Σbil||
2
H2
= tr

(
∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2 ,...,ki=1

h
(k1,...,ki )
i (s1, . . . , si) ·

·(h
(k1,...,ki )
i (s1, . . . , si))

T ds1 . . . dsi
)
,

(2.45)

with Volterra kernels h
(k1,...,ki )
i (s1, . . . , si) de�ned in (2.33).

Zhang and Lam [72℄ showed, that the bilinear H2-norm satis�es the

same property as the linear norm:
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Theorem 2.3.37. For a bilinear system (2.30) if A − λE is stable and the

rea
hability Gramian P (or the observability Gramian Q) exists, then its

H2-norm 
an be 
omputed from

||Σbil||H2 =
√
tr(CPCT ) ( or =

√
tr(BTQB)), (2.46)

where P (or E−TQE−1) satis�es (2.41) (or (2.44)).

Benner and Breiten [12℄ showed that the bilinear H2-norm 
an equiv-

alently be written as:

Theorem 2.3.38 ([12℄). Let Σbil be a stable bilinear system. Then it holds

that

||Σbil||
2
H2
= vec(Ip)

T (C ⊗ C)·

·

(
−A⊗ E − E ⊗ A−

m∑

k=1

Nk ⊗ Nk

)−1
(B ⊗ B)vec(Im).

(2.47)
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The design of a new produ
t is a 
omplex pro
ess with many experts

involved. From the idea to the �nal 
on
ept, a 
lose 
ooperation between

design engineers, simulation experts, test engineers and manufa
turing spe-


ialists is required. After setting up a �rst design, this design is examined

by a team of simulation experts. Depending on the requirements, di�erent

analyses need to be 
ondu
ted. Several physi
al aspe
ts need to be taken

into a

ount, like me
hani
al deformations, �uid �ows, ele
tromagneti
 ef-

fe
ts and thermal analyses. Depending on the evaluation of the simulation

results, the design will be improved. A prototype of the optimized produ
t

is then fabri
ated and thoroughly tested in a series of experiments. Until

arriving at the �nal produ
t, all new designs will be simulated � hen
e sim-

ulation plays a major role. In the �nal stage of the produ
t development,

simulation and experiment should 
oin
ide. The main part is now designing

the manufa
turing pro
ess, whi
h also might involve 
hanges in the design,

whi
h again need to be examined by simulation and experiment. Finally, the

25
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new 
omponent is 
arefully designed, 
an be manufa
tured and the produ
-

tion 
an start!

As explained above, simulation is an important part of the produ
t design

pro
ess. Having the ability of simulating di�erent designs instead of building

them 
an save a lot of time and money. It is desirable to obtain models of

the produ
t that lead to a

urate results. The more 
omplex the models

get the longer the simulations take. This � in turn � shows the need for

small and a

urate models, whi
h 
an, for example, be obtained by Model

Order Redu
tion (
f. Chapter 5).

This work fo
uses on the thermal modeling of ele
tri
al motors. The under-

lying physi
al e�e
ts, the mode of operation of an ele
tri
al motor and the

model parametrization and 
reation will be the key aspe
ts of this 
hapter.

3.1. Thermal Modeling

For a thermal analysis, several physi
al e�e
ts have to be 
onsidered

and 
an be modeled based on the three main types of heat transfer: heat


ondu
tan
e, 
onve
tion and radiation. For a broad overview of heat and

mass transfer see for example the book of Baehr and Stephan [7℄.

3.1.1. Heat Condu
tan
e. Temperature gradients lead to energy trans-

fer by heat 
ondu
tan
e. The heat �ux q̇(x, t) (in W
m2

at time t and lo
ation

x) des
ribes the energy transfer in a 
ondu
tive material. The heat �ux

quanti�es the amount of heat whi
h �ows through a 
ertain area. Fourier's

law states the proportionality between heat �ux and the temperature gradi-

ent:

q̇ = −k · grad(T ). (3.1)

The 
onstant k is 
alled thermal 
ondu
tivity. Stri
tly speaking, it depends

on temperature, but in many appli
ations it is well approximated by a 
on-

stant. Thermal 
ondu
tivities are known for many materials: Metals usually

have high thermal 
ondu
tivities (10 WmK−10
3 W
mK ), while the thermal 
ondu
-

tivities of �bres and foams are small (10−2 WmK − 1
W
mK ). They 
an therefore

be used as insulators.

For two solids in 
onta
t, the heat leaving one body has to be absorbed by

the other. For the heat �ux, this leads to the following equation on the

interfa
e: (
k1
∂T1

∂n

)
I
=
(
k2
∂T2

∂n

)
I
,
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where T1 and T2 are the temperature on the �rst and se
ond solid, and
∂
∂n

is

the derivative in normal dire
tion. If the two materials are 
losely atta
hed

to ea
h other, the temperature on the interfa
e is the same:

(T1)I = (T2)I .

In some situations, the two surfa
es are not dire
tly 
onne
ted, but sepa-

rated by a small gap. This gap is �lled with air or an insulation material

and leads to a low thermal 
ondu
tan
e. This thermal resistan
e 
an be

modeled on the interfa
e by a thermal 
onta
t 
ondu
tan
e 
oe�
ient (or


onta
t heat transfer 
oe�
ient) hc leading to the following equation for

the �ux: (
k1
∂T1

∂n

)
I
= hc [(T1)I − (T2)I ].

T1

T2material 1

material 2

(T1)I = (T2)I

interface I
A

T1

T2material 1

material 2

interface I

(T1)I 6= (T2)I

B

Figure 3.1. Temperature on the interfa
e between two

solids in 
onta
t with ea
h other. A: no 
onta
t resis-

tan
e, B: 
onta
t resistan
e

3.1.2. Conve
tive Heat Transfer. In a �uid, heat is not only trans-

ferred by 
ondu
tion, but also by the movement of the mole
ules within

the �uid. These two e�e
ts are summarized as 
onve
tive heat transfer,

whi
h is often referred to as 
onve
tion. A spe
ial 
ase is the heat trans-

fer between a �uid and a solid. The 
hara
teristi
s of the �uid layer 
lose

to the solid have the greatest e�e
t on the heat transfer between the two

materials. Hen
e, the velo
ity and the temperature within this layer have

to be modeled and analyzed, whi
h is not a trivial task. The modeling of

heat transfer in 
ombined solid and �uid systems is often 
alled 
onjugate
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heat transfer modeling. For large and 
omplex models, a 
onjugate heat

transfer analysis 
an be too time 
onsuming, be
ause a �ne dis
retisation of

the boundary layer is required. Hen
e, a heat transfer 
oe�
ient h is intro-

du
ed, whi
h des
ribes the heat transfer between �uid and solid. It allows

an analysis of the heat transfer without expli
it treatment of the �uid. The

heat �ux on the boundary between �uid and solid is then modeled by the

following equation:

q̇I = h(Tsolid − Tfluid).

The values of the heat transfer 
oe�
ients h 
an be determined by mea-

surements or simulations of the �uid �ow. Di�erent �uids (air, water) and

di�erent types of 
onve
tion result in di�erent values for the heat transfer


oe�
ients. For
ed 
onve
tion o

urs whenever the �uid is for
ed to �ow

in a 
ertain dire
tion in 
ontrast to free (or natural) 
onve
tion. For free


onve
tion between air and a solid, the values of the heat transfer 
oef-

�
ients range from 5 W
m2K
− 25 W

m2K
, while for for
ed 
onve
tion in hot air

they range from 20 W
m2K

to 300 W
m2K

. The highest heat transfer 
oe�
ients


an be measured in boiling water or 
ondensating vapor, with values up to

105 W
m2K
− 106 W

m2K
.

3.1.3. Radiation. Every material emits energy to its environment by

ele
tromagneti
 waves. This type of energy transfer is 
alled thermal ra-

diation or heat radiation. The internal energy of a body is 
onverted into

ele
tromagneti
 waves and transmitted to its surroundings. Similarly, a body

simultaneously absorbs energy in the form of radiation and transforms it to

internal energy. If a heat �ux by radiation is modeled, it is done by the

following equation:

q̇ = ǫσ(T 4 − T 4s ),

where σ is the Stefan-Boltzmann 
onstant (5.67 · 10−8 W
m2K4

), and ǫ is the

emissivity � the ability of a body to emit radiation. Stri
tly speaking, this

material property is dependent on the temperature and the 
ondition of

the body's surfa
e. Typi
al values are 0.90 for wood at 293K or 0.049 for

aluminum at 443K. As the temperatures T of the material and Ts of the

surroundings are raised to the power of four, the e�e
t of the radiation is

large at high temperatures.
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3.2. The heat equation

The law of energy 
onservation for thermal systems 
an be stated in

terms of the �rst law of thermodynami
s [28, 62℄: The 
hange in internal

energy of a 
losed system is the sum of the heat supplied and the work

added to the system.

In this se
tion, Ġ will denote the amount of the quantity G supplied to the

system during a time dt. First, the expression for the heat supplied to the

system is derived. The governing equation for the heat �ux into a surfa
e

element dA, 
aused by the heat Q̇(x, t) (at time t and lo
ation x) is the

following [7℄:

dQ̇(x, t)

dA
= −q̇(x, t) · n. (3.2)

Integration over the surfa
e and using the Gauss theorem leads to the fol-

lowing equation for the heat:

Q̇(x, t) = −

∫

(A)

q̇(x, t) · ndA = −

∫

(V )

div(q̇(x, t))dV. (3.3)

The work added to the system 
an be des
ribed by a time dependent power

density S(x, t) per volume area (measured in

W
m3
). Integration leads to the

following expression for the work [7℄:

Ẇ =

∫

(V )

S(x, t)dV. (3.4)

The 
hange in internal energy U(x, t) 
an be stated using the spe
i�
 heat


apa
ity C. It spe
i�es the heat that must be supplied to in
rease the

temperature by dT . The 
hange in internal energy for this temperature


hange 
an then be 
al
ulated from the heat 
apa
ity and the mass of the

body [7℄:

dU(x, t) = mCdT (x, t) =

∫

(V )

ρdV · CdT (x, t). (3.5)

As heat 
ondu
tion in a solid body is 
onsidered, the 
hanges in volume

and density due to temperature and pressure 
hanges are small and 
an be

negle
ted, leading to:

dU(x, t)

dt
=

∫

(V )

ρC
∂T (x, t)

∂t
dV. (3.6)
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Using the law of energy 
onservation for thermal systems, the equations

(3.3),(3.6) and (3.4) result in:

∫

(V )

(
ρC
∂T (x, t)

∂t
+ div(q̇(x, t))− S(x, t)

)
dV = 0. (3.7)

This integral is equal to zero for any 
hosen region only when the integrand

is zero. Therefore the following equation 
an be derived:

ρC
∂T (x, t)

∂t
= −div(q̇(x, t)) + S(x, t). (3.8)

Using Fourier's law (3.1) the so 
alled heat equation is obtained:

ρC
∂T (x, t)

∂t
= k∆T (x, t) + S(x, t). (3.9)

3.3. Boundary and Interfa
e 
onditions

To determine the thermal behavior of a 
omponent, the temperature

�eld T (x, t) (dependent on lo
ation x and time t) has to be examined. The

temperature �eld T (x, t) within a domain Ω ⊂ R3 for times t ∈ [0, tend ] 
an

be 
al
ulated using the heat equation (3.9) with 
onstant material properties

ρ, C, k and a heat sour
e S. The derivation of the heat equation 
an be

found in Se
tion 3.2.

On interfa
es and outer surfa
es, now 
alled boundaries and denoted as

Γ ⊂ R2, di�erent 
onditions have to be spe
i�ed, depending on the situation

of interest. They are mathemati
ally formulated as follows:

• Diri
hlet boundary 
onditions:

T (x, t) = TD(t) on the boundary ΓD.

These 
onditions 
orrespond to �xed temperatures on surfa
es.

• Neumann boundary 
onditions:

−k
∂T (x, t)

∂n
= q̇N in ΓN ,

where q̇N is a given heat �ux on the boundary.

• Robin boundary 
onditions:

−k
∂T (x, t)

∂n
= h(T − T∞) in ΓR,

where h denotes the heat transfer 
oe�
ient de�ned in Se
tion

3.1.2. T∞ is the temperature of the surrounding domain.
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• Interfa
e 
onditions: A thermal resistan
e between two surfa
es


an be modeled on the interfa
e by a thermal 
onta
t 
ondu
tan
e


oe�
ient, as shown in Se
tion 3.1.1. The interfa
e I will be


onsidered as two surfa
es: I1 with temperature T1 and I2 with

temperature T2. The following equation applies:

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n

= hc
(
T (x, t) |I1 − T (x, t)|I2

)
.

3.4. Mode of operation of an ele
tri
al motor

An ele
tri
al motor 
onverts ele
tri
al energy into me
hani
al work,

whi
h is produ
ed by the intera
tion of an ele
tri
al 
urrent and a magneti


�eld. One part of the motor � the so 
alled stator � 
onsists of sev-

eral 
oils wound around an iron 
ore. When a voltage is applied, a 
urrent

is indu
ed in the 
oil. Inside the 
ounterpart � the so 
alled rotor � a

magneti
 �eld is generated either by a permanent magnet or by an ele
tro-

magnet. The intera
tion of this magneti
 �eld with the 
urrent in the stator

results in a rotation of the rotor.

A
tuating the motor with ele
tri
al 
urrents leads to an in
rease in tem-

perature in its di�erent 
omponents due to thermal losses. It is important

to analyze the in�uen
e of this temperature 
hange on the materials of the

motor, as it a�e
ts its life-span. This is done by 
arrying out a thermal

analysis.

rotor

stator

coil

magnets

Figure 3.2. Drawing of a sli
e through an ele
tri
al motor.
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(a) Drive unit and generator in one:

the Bos
h integrated motor genera-

tor.

(b) Generator for 
ommer
ial vehi-


les. The 
on�guration of the 
oils

is the same as for an ele
tri
al mo-

tor.

Figure 3.3. Two 
omponents manufa
tured by Robert

Bos
h GmbH illustrating the stru
ture of an ele
tri
al

motor. Photos by 
ourtesy of Robert Bos
h GmbH.

3.5. Thermal modeling of an ele
tri
al motor

The main heat sour
e in the ele
tri
al motor are thermal losses, result-

ing from the 
urrent in the 
oil of the stator and/or rotor. The motor has to

ful�ll various operational requirements and therefore di�erent 
urrent pro-

�les have to be 
onsidered. The temperature on 
ertain parts of the motor

(for example the �ange) should not ex
eed a spe
i�ed upper limit be
ause

these parts are in 
onta
t with other temperature sensitive 
omponents.

This upper limit is built into the model as a �xed temperature (Diri
hlet

boundary 
ondition, 
f. Se
tion 3.3).

The motor is surrounded by air, therefore 
onve
tion has to be 
onsidered.

The motor needs to work in a large temperature range (ar
ti
 winter, trop-

i
al summer), therefore di�erent ambient temperatures are examined in the

model. Varying the heat transfer 
oe�
ients represent di�erent 
ooling

strategies or di�erent intera
tion s
enarios of the motor with its environ-

ment (Robin boundary 
ondition, 
f. Se
tion 3.3).

Various parts of the motor are not dire
tly atta
hed to ea
h other and the

resulting thermal resistan
e has to be modeled by a 
onta
t heat transfer


oe�
ient. Varying this parameter, the small gap between the two mate-

rials 
an be 
onsidered as �lled with air or an insulation material (Interfa
e
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ondition, 
f. Se
tion 3.3). The motor is built from various materials su
h

as steel, 
opper and plasti
s. These materials have di�erent properties,

among others the density ρ, the spe
i�
 heat C and the thermal 
ondu
-

tivity k. Here, these material parameters will not be varied. As the motor

temperature remains relatively small, the e�e
t of radiation is not of great

importan
e, and will therefore be negle
ted.

The thermal analyses within this work have been 
ondu
ted using Comsol

Multiphysi
s

R©
, version 3.5a. This software provides the user with an en-

vironment for the modeling of dynami
al systems. In our 
ase, the heat

equation (3.9) on the ele
tri
al motor model is solved, using the boundary


onditions and interfa
e 
onditions as explained above.

Di�erent motor models have been examined. First, only one 
oil and parts

of the stator are 
onsidered. The resulting geometry, whi
h is provided with

the di�erent boundary and interfa
e 
onditions as well as heat sour
es and

material properties, 
an be seen in Figure 3.4.

Figure 3.4. The Comsol

R©
model simulates the heat

transfer in a stator sli
e, without the rotor.

Se
ond, a 
omplete motor is modeled. Details for this model are given

in the next 
hapter, as on top of the underlying physi
s, 
hanges in geometry

are in
orporated.
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The heat dissipation in a 
omponent 
an be determined by a Comsol

R©

simulation as explained in Chapter 3. Comsol

R©
is based on the Finite El-

ement Method. Having knowledge of the mathemati
al ba
kground allows

one to 
onstru
t parametrized models, whi
h 
an then be treated by Model

Order Redu
tion. In this Chapter, we fo
us on the parametrization of ther-

mal models. Two types of parameters will be 
onsidered: physi
al parame-

ters and parameters resulting from variations in geometry. The latter require

a detailed analysis of the underlying equations, whi
h will be the main subje
t

of this 
hapter.

4.1. Dis
retization of the heat equation

As given in Se
tion 3.3, the temperature �eld of a 
omponent 
an be

determined by solving the heat equation (3.9). This is done by a spatial

dis
retization using the Finite Element Method (
f. for example [16℄). To

do so, the domain on whi
h the equation is solved is divided into smaller

domains, so 
alled elements. On these elements, spe
ial basis fun
tions

ψj(x) will be 
onsidered. By using them, in
orporating the boundary and

interfa
e 
onditions and the weak formulation of the heat equation, one is

35
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able to dis
retize the equation.

∫

Ω

ψj(x)ρC
∂T (x, t)

∂t
dx +

∫

Ω

∇ψj(x) · k∇T (x, t)dx

+

∫

ΓR

ψj (x)hT (x, t)ds

+

∫

I1

ψj(x)hcT (x, t)ds −

∫

I2

ψj (x)hcT (x, t)ds

=

∫

Ω

ψj(x)S(x, t)dx +

∫

ΓN

ψj(x)(−q̇N)ds +

∫

ΓR

ψj (x)hT∞ds.

(4.1)

The material parameters ρ, C and k are taken as 
onstant. With �nite

element basis fun
tions ψk(x) the temperature is approximated as follows,

T (x, t) ≈

N∑

k=1

Tk(t)ψk(x).

By plugging this into equation (4.1), the following dis
retized equation is

obtained:

EṪ (t) = (A+ hN1 + hcN2)T (t) + B ·



S(t)

hT∞
q̇N
TD


 , (4.2)

where the entries of the matri
es are given as:

Ekj = ρC

∫

Ω

ψk(x)ψj (x)dx,

Akj = k

∫

Ω

∇ψk(x) · ∇ψj(x)dx,

(N1)kj =

∫

ΓR

ψk(x)ψj (x)dx,

(N2)kj =

∫

I1

ψk(x)ψj (x)dx −

∫

I2

ψk(x)ψj (x)dx,
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Bj1 =

∫

Ω

ψj (x)dx,

Bj2 = −

∫

ΓN

ψj (x)ds,

Bj3 =

∫

ΓR

ψj (x)ds.

The entries of the fourth 
olumn Bj4 are obtained from an elimination of

the 
orresponding Diri
hlet boundary nodes after the dis
retization. As∫
ψk(x)ψj (x)dx =

∫
ψj (x)ψk(x)dx and

∫
∇ψk(x)·∇ψj(x)dx =

∫
∇ψj (x)·

∇ψk(x)dx , the matri
es E, A and Nk for the 
onsidered 
lass of systems

are symmetri
 and E is in addition positive de�nite.

4.2. Physi
al parametrization

In the dis
retized form of the heat equation (4.2), two types of physi
al

parameters appear: Heat transfer 
oe�
ients h resulting from 
onve
tion

(
f. Se
tion 3.1.2) and given as Robin boundary 
onditions (
f. Se
tion

3.3), and the 
onta
t heat transfer 
oe�
ients hc , resulting from heat 
on-

du
tion (
f. Se
tion 3.1.1) on the interfa
e of two model parts (
f. Se
tion

3.3).

4.3. Geometri
 variations

For a 
hange in geometry, Comsol

R©
3.5a uses the so 
alled �moving

mesh" [51℄. The mesh 
an be deformed, moved and s
aled using transfor-

mations given by the user, or � in the 
ase where the physi
al pro
esses

transform the model � are 
al
ulated by Comsol

R©
. The underlying equa-

tions are those of an arbitrary Lagrangian-Eulerian (ALE) framework. It

basi
ally transforms the mesh from a referen
e frame to a material or spa-

tial frame. A more detailed des
ription of this framework 
an be found in

[29℄ and the referen
es therein. In our spe
ial 
ase, we will in
orporate

s
aling fun
tions in order to s
ale the model, and just s
ale the mesh, not

deform or move it (often 
alled �mesh morphing").

4.3.1. Modeling of s
alings in the motor model. The model of an

ele
tri
al motor requires essentially two di�erent s
aling fun
tions. The

�rst one is a simple linear s
aling, whi
h is used to s
ale the model in z-

dire
tion. The se
ond one is the nonlinear s
aling of an annulus. The inner
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radius is kept 
onstant and the outer radius is s
aled. It will be used for

the s
aling of housing and stator. The two di�erent s
alings are illustrated

in Figures 4.1 and 4.2a, whereas Figure 4.2b gives an idea how a 
omplete

s
aling of the housing would look like. The s
alings 
an be des
ribed via the

following fun
tions:

De�nition 4.3.1. Let Ω = [0, a] × [0, b] ∈ R2 and µ ≥ 0. A linear s
aling

fun
tion to in
rease the size of the re
tangle Ω in x-dire
tion is de�ned as

follows:

Gµ : Ω→ Ωs ⊂ R
2,

(
x

y

)
7→

(
(1 + µ)x

y

)
. (4.3)

De�nition 4.3.2. Let Ω be an annulus with inner radius R. Let γ ≥ 1. The

annulus s
aling fun
tion will be de�ned as follows:

Fγ : Ω→ Ωs ⊂ R
2,

(
x

y

)
7→

[
γ + (1− γ)

R√
x2 + y 2

](
x

y

)
. (4.4)

These s
aling fun
tions need to be inserted in the Comsol

R©
model to

s
ale the modeled motor parts.

Gµ,ν

x

y

(0,0)

Ω

z

y

(0,0)

Ωs

Figure 4.1. Simple linear s
aling of a re
tangle.

The variation of the height of the stator, rotor and housing will be

modeled by a linear s
aling de�ned by a linear fun
tion Gθ. The �ange

will also 
hange the height, it is modeled by a fun
tion Gµ. The stator

and housing will be s
aled using nonlinear fun
tions Fγ and Fη, respe
tively.

This is shown in Figure 4.3. For the modeling of geometri
 variations, the

stator will in addition be simpli�ed as a hollow 
ylinder. In 
ontrast to our

�rst model (
f. Figure 3.4) the 
oils will be modeled as 
uboids within the

stator. This 
an be seen in Figure 4.4, a top view of the Comsol model.
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y

x
(0, 0) R rold rnew

(a) S
aling of an annulus R

- rold to the annulus R - rnew

z

x y

(b) S
aling of the housing

both in z and x, y -dire
tion

Figure 4.2. Two s
alings needed for the geometry varia-

tion of an ele
tri
al motor

housing

flange

bearing

rotor stator

bearing

shaft

x

zFγ

Fη

Gθ

Gµ

Figure 4.3. Rotationally symmetri
 sli
e through the


omplex Comsol motor model showing the di�erent s
al-

ing fun
tions
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4.3.2. Parametrized system formulation. Using the weak formulation

of the heat equation as given in equation (4.1), it is possible to obtain a

parametrized model depending on the di�erent s
alings. Moosmann [50℄

showed in his thesis, that s
alings 
an be in
orporated in the model by

transforming the basis fun
tions from an uns
aled to a s
aled element and

additionally use substitution in the integrals. We will basi
ally use this ap-

proa
h for the s
aling of our models. First, we state that for the de�ned

linear s
alings (4.3) it holds:

ψ = ψs ◦ Gµ. (4.5)

However, for the nonlinear s
aling Fγ given in equation (4.4) this is not true

anymore. To over
ome this di�
ulty, we will need to 
onsider only the s
al-

ing of the �nite element mesh. In our Comsol

R©
model, we use triangular

mesh elements in the s
aled annuli. Hen
e we need to s
ale triangles as

illustrated in Figure 4.5.

coils

Figure 4.4. Model parametrized in geometry, top view.

Simpli�ed modeling of the stator with 
oils.
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R

rnew

rold

A

B

C

Figure 4.5. S
aling of a triangular mesh element in the annulus.

Knowing how the verti
es of the triangles will be s
aled using the non-

linear fun
tion Fγ (
f. equation (4.4)), it is possible to 
al
ulate linear

fun
tions Gγ,j for the s
aling of the mesh in the annuli in the following way:

The verti
es of the triangle (xA,j , yA,j ), (xB,j , yB,j ) and (xC,j , yC,j ) lie on 
ir-


les with radii rA,j ,rB,j and rC,j . Using the s
aling fun
tion Fγ leads to the

following s
aling of the vertex A, whi
h 
an be 
al
ulated for B and C in

the same way:

(
xA,j
yA,j

)
7→

(
γ +

(1− γ)R

rA,j

)

︸ ︷︷ ︸
=:DA,j (γ)

(
xA,j
yA,j

)
.

We are now able to 
al
ulate a linear fun
tion Gγ,j that maps the verti
es of a

triangle Tj = ((xA,j , yA,j), (xB,j , yB,j ), (xC,j , yC,j )) to the verti
es of the s
aled

triangle T sj = (DA,j(γ)(xA,j , yA,j ), DB,j(γ)(xB,j , xB,j ), DC,j(γ)(xC,j , xC,j)):

Gγ,j : Tj → T
s
j ⊂ R

2

(
x

y

)
7→

(
γK1,j +K2,j
γK3,j +K4,j

)
+

(
γK5,j +K6,j γK7,j +K8,j
γK9,j +K10,j γK11,j +K12,j

)(
x

y

)
,

with 
onstants K1,j to K12,j depending on the vertex 
oordiantes (xA,j , yA,j ),

(xB,j , yB,j ), (xC,j , yC,j) and the radii rA,j , rB,j , rC,j , R. The reader should note,

that for every triangular mesh element a di�erent s
aling fun
tion Gγ,j is

needed, as it depends on the verti
es. For later 
al
ulations, we state here
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the Ja
obian matrix of the inverse fun
tions and the Ja
obian determinant

of the fun
tions Gγ,j :

(
JGγ,j

)−1
=

1

det JGγ,j

(
γK11,j +K12,j −γK9,j −K10,j
−γK7,j −K8,j γK5,j +K6,j

)
, (4.6a)

det JGγ,j = γ
2(K5,jK11,j −K9,jK7,j) +K6,jK12,j −K10,jK8,j (4.6b)

+ γ(K5,jK12,j +K6,jK11,j −K9,jK8,j −K10,jK7,j)

= γ2d2,j + γd1,j + d0,j

=: dj(γ).

For the linear s
aling (
f. equation (4.3)) the 
orresponding inverse Ja
obian

and determinant are given by:

(
JGµ
)−1
=

(
1
1+µ 0

0 1

)
, (4.7a)

det JGµ = 1 + µ. (4.7b)

In most of the motor parts, both s
alings need to be in
orporated. For

example, the stator is s
aled linearly in z and nonlinearly in x, y -dire
tion.

Hen
e a fun
tion in R
3
will be used:

Gγ,θ,j ((x, y , z))

=



γK1,j +K2,j
γK3,j +K4,j

0


+



γK5,j +K6,j γK7,j +K8,j 0

γK9,j +K10,j γK11,j +K12,j 0

0 0 1 + θ





x

y

z


 .

The 
orresponding inverse Ja
obian and Ja
obian determinant are:

(
JGγ,θ,j

)−1
=




γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ




det JGγ,j = (1 + θ)dj (γ),

with dj(γ) as given in (4.6b). Let x = (x, y , z) and x
s = (x s , y s , z s) be

s
aled 
oordinates. Using the weak formulation of the heat equation (4.1),
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the equation (4.5) and substitution, one obtains for one entry of the s
aled

matrix Es with a linear fun
tion G:

Eskl = ρCp

∫

Ωs

ψsk(x
s)ψsl (x

s)dxs (4.8)

= ρCp

∫

Ωs

(ψk ◦ G
−1)(xs )(ψl ◦ G

−1)(xs)dxs

= ρCp

∫

G−1(Ωs)
ψk(G

−1(G(x)))ψl (G
−1(G(x)))| det JG(x)|dx

= ρCp

∫

Ω

ψl(x)ψk(x)| det JG(x)|dx.

Considering the fun
tion Gγ,θ,j one obtains | det JGγ,θ,j (x)| = (1 + θ)dj (γ),

depending on the mesh element Tj . However, as for all j every dj(γ) is a

polynomial of degree two in γ, the matrix Es 
an be written as

Es = (1 + θ)(γ2E2 + γE1 + E0).

For the matrix A the 
al
ulation of a dependen
y in the parameter for one

entry of the s
aled matrix As is more 
ompli
ated:

Askl = λ

∫

Ωs

∇ψsk(x
s)∇ψsl (x

s)dxs (4.9)

= λ

∫

Ωs

∇
(
(ψk ◦ G

−1)(xs )
)
∇
(
(ψl ◦ G

−1)(xs)
)
dxs

= λ

∫

Ωs

∇ψk(G
−1(xs))JG−1(x

s)∇ψl(G
−1(xs))JG−1(x

s)dxs

= λ

∫

Ω=G−1(Ωs )
∇ψk(x)JG−1(G(x))∇ψl (x)JG−1(G(x))| det JG(x)|dx.

For the fun
tions Gγ,θ,j , the 
al
ulation of the integral (4.9) needs to be

done in the mesh elements on whi
h the basis fun
tions ψsk and ψsl are

supported, i.e.

Askl = λ

∫

T s
1
∪···∪T s

end

∇ψsk(x
s)∇ψsl (x

s)dxs

= λ
∑

j

∫

T s
j

∇ψsk(x
s)∇ψsl (x

s)dxs .
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The integral on one mesh element leads to (using equation (4.9)):

Askl j

=

∫

T s
j

∇ψsk(x
s)∇ψsl (x

s)dxs

=λ

∫

Tj=G−1γ,θ,j (T
s
j
)

∇ψk(x)JG−1
γ,θ,j
(Gγ,θ,j (x))∇ψl(x)JG−1

γ,θ,j
(Gγ,θ,j (x))| det JGγ,θ,j (x)|dx

=λ

∫

Tj

[
∂1ψl(x) ∂2ψl(x) ∂3ψl(x)

]



γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ




·



[
∂1ψk(x) ∂2ψk(x) ∂3ψk(x)

]



γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ







T

· |(1 + θ)dj(γ)|dx

=
1 + θ

dj(γ)
· γ2
∫

Tj
ϕ0kl(x)dx +

1 + θ

dj(γ)
· γ

∫

Tj
ϕ1kl (x)dx

+
1 + θ

dj(γ)

∫

Tj
ϕ2kl(x)dx +

dj(γ)

1 + θ

∫

Tj
ϕ3kl (x)dx,

with fun
tions ϕikl depending on the derivatives ∂1ψk , ∂1ψl , ∂2ψk , ∂2ψl ,

∂3ψk , ∂3ψl and the 
onstants Ki ,j . One matrix entry Askl , 
onsidered as a

fun
tion of γ depends on di�erent dj(γ) and Ki ,j .

For a di�erent matrix entry Asgh and a di�erent mesh element Tĵ one

obtains:

Asgh =
1 + θ

dĵ(γ)
· γ2
∫

T
ĵ

ϕ0gh(x)dx+
1 + θ

dĵ(γ)
· γ

∫

T
ĵ

ϕ1gh(x)dx

+
1 + θ

dĵ(γ)

∫

T
ĵ

ϕ2gh(x)dx+
dĵ (γ)

1 + θ

∫

T
ĵ

ϕ3gh(x)dx,

with di�erent denominators dj(γ) and dĵ(γ). Hen
e it is not possible to �nd

an easy a�ne dependen
y in the parameter γ like for the matrix E. We
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state now the dis
retized heat equation with a parametrization in geometry.

For the ease of presentation, we only 
onsider 
hanges in two parameters γ

(resulting originally from a nonlinear s
aling (4.4)) and θ (resulting from a

linear s
aling (4.3)):

E(γ, θ) = (1 + θ)(γ2E2 + γE1 + E0), (4.10)

A(γ, θ) = (1 + θ)A1(γ) +
1

1 + θ
A2(γ). (4.11)

The matri
es N1 and N2 (
f. equation (4.2)) have the same dependen
y in

the parameters as E. The 
al
ulation of the parameter dependen
y for the

matri
es B resulting from the right hand side of equation (4.1) 
an be exe-


uted by using substitution and equation (4.5) for the integral

∫
Γ
ψsk(x

s)dxs .

For the di�erent 
olumns of B however, it is important to note that only

those boundaries or parts of the model that will be a�e
ted by the s
aling

will a
tually 
hange. If for example only the height of the stator 
hanges,

the Diri
hlet boundary 
ondition on top of the �ange will not be a�e
ted.

Assuming that θ 
hanges the height of the stator and γ s
ales it in x, y -

dire
tion, the 
orresponding s
alings will be as follows:

Bh(γ, θ) = (1 + θ)(γ2Bh,2 + γBh,1 + Bh,0), (4.12)

BT0(γ) = (γ2BT0,2 + γBT0,1 +BT0,0), (4.13)

BS(γ, θ) = (1 + θ)(γ2BS,2 + γBS,1 + BS,0), (4.14)

where Bh refers to the outer surfa
e of the housing with a Robin bound-

ary 
ondition, BT0 refers to a Diri
hlet boundary 
ondition on the �ange,

whereas BS models the heat sour
e in the 
oils and B = [Bh BT0 BS].

For the two additional s
alings of �ange (original linear s
aling with pa-

rameter µ) and housing (original nonlinear s
aling with parameter ν), the

generalization is straightforward.

Figure 4.6 shows results of a simulation of the parametrized model for

t = 600s without any s
alings. After the dis
retization one obtains a system

with n = 71, 978 degrees of freedom. It is obvious, that the 
oils in the

stator are the main heat sour
es. The temperature on the �ange remains

�xed at T0 = 348.15K, whereas intera
tion between the model and the

environment is given by 
onve
tion.

To simplify the analysis of the geometry variations, it is 
onvenient to

have a model with the same physi
al behavior and the same s
aling fun
tions

but with fewer degrees of freedom. Therefore a simpli�ed model was built.
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It 
onsists of rotor, stator, housing and �ange. The geometry 
an be seen

in Figure 4.7. A result of a simulation of the heat �ux with s
aling of the

stator in z- and x, y -dire
tion is shown in Figure 4.8.

Figure 4.6. Simulation of large model � no s
aling fun
-

tion was applied.
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flange

rotor

stator

housing

Figure 4.7. Simpli�ed motor model.

In this 
hapter we have shown that it is possible to obtain parametrized

models by an analysis of the underlying equations. By inserting s
aling

fun
tions into Comsol

R©
, the s
aling of an ele
tri
al motor model 
an be

analyzed, and these s
alings 
an be represented by parameters. First, linear

s
alings have been 
onsidered (
f. equation (4.3)). Inserting them in the

�nite element dis
retization of the heat equation shows that these s
alings


an be 
onsidered as a�ne parameters (
f. the parameter θ in equations

(4.10) to (4.14)). Se
ond, nonlinear s
alings have been examined (
f. equa-

tion (4.4)). They 
an be 
onsidered as linear s
alings by using the s
aling

of the underlying mesh and hen
e a parameter dependen
y 
an be obtained

by inserting these linear s
alings into the �nite element dis
retization of the

heat equation.
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However these originally non-linear s
alings lead to a non-a�ne param-

eter dependen
y for the matrix A (
f. parameter γ in equation (4.11)).

Having derived the parameter dependen
y of our models, methods from

parametri
 Model Order Redu
tion (
f. Se
tion 5.3) 
an be applied to ob-

tain small redu
ed order models. In addition, several Comsol

R©
models for

the thermal analysis of ele
tri
al motors have been built and presented in

this 
hapter.

Figure 4.8. Simpli�ed motor model after the s
aling and

a short thermal simulation
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Model Order Redu
tion (MOR) is a powerful method to redu
e the

dimension of large dynami
al systems and therefore the simulation time

signi�
antly while guaranteeing a very good approximation of the original

output. The simulation of a linear system

Σlin :

{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,
(2.18)

where E, A ∈ Rn×n , B ∈ Rn×m, C ∈ Rp×n, u(t) ∈ Rm, x(t) ∈ Rn and

y(t) ∈ Rp requires a large amount of time if the number of degrees of

freedom n is large. The main idea of proje
tion based MOR is to �nd

matri
es that proje
t the system onto a low-dimensional subspa
e and by

that obtain a redu
ed model:

Σ̂lin :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = x̂0
(5.1)

49
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with Ê, Â ∈ Rr×r , B̂ ∈ Rr×m, Ĉ ∈ Rp×r , u(t) ∈ Rm, x̂(t) ∈ Rr and

ŷ(t) ∈ Rp, where r ≪ n. A redu
ed order model is extremely useful,

when not only one, but a large number of simulations needs to be done

with di�erent input s
enarios (e.g. in optimization, parameter studies or

feedba
k 
ontrol) as it redu
es the simulation time signi�
antly.

In this 
hapter, the theory of MOR is reviewed. First, methods for MOR of

linear systems are stated (
f. Se
tion 5.2), followed by a short introdu
tion

to parametri
 Model Order Redu
tion (pMOR), in Se
tion 5.3. A 
ertain


lass of linear parametri
 systems 
an be reformulated as bilinear systems

(
f. Se
tion 5.3.2) and hen
e redu
ed using bilinearModel Order Redu
tion.

Methods for bilinear MOR will be reviewed (
f. Se
tions 5.4 and 5.5),

and a new bilinear H2-optimal redu
tion method, based on optimization on

Grassmann manifolds is derived in Se
tion 5.5.4.

5.1. Proje
tion-based MOR and the error system

The following two de�nitions state the main properties of a proje
tor.

De�nition 5.1.1. A proje
tor is a matrix P ∈ Rn×n with P2 = P. P is the

proje
tion onto a subspa
e V ⊂ Rn if range(P) = V. P is an orthogonal

proje
tor (or Galerkin proje
tion) if P = PT , otherwise an oblique proje
tor

(or Petrov-Galerkin proje
tion).

De�nition 5.1.2. If V = [v1, . . . , vk ] is a basis of V, thenPV = V (V
T V )−1V T

is a proje
tor onto V. LetW be another k-dimensional subspa
e of Rn. The

proje
tor PVW = V (W
T V )−1W T

, proje
ts onto V along W.

Assume that the original state x(t) ∈ Rn approximately lies in a low-

dimensional subspa
e V with dim(V) = r ≪ n, hen
e x(t) 
an be approx-

imated by a linear 
ombination of basis ve
tors of V : x(t) ≈ V x̂(t), with

x̂(t) ∈ Rr . By inserting this into the original linear system, one obtains:

EV ˙̂x(t) = AV x̂(t) + Bu(t) + ε(t), (5.2)

y(t) ≈ CV x̂(t).

As EV ˙̂x(t) ∈ span(EV ), one 
an proje
t AV x̂(t) + Bu(t) onto EV along

a subspa
e W whi
h is orthogonal to the residual (i.e. W T ε(t) = 0 holds)
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and the redu
ed-order model 
an then be obtained:

Σ̂lin :





Ê︷ ︸︸ ︷
W TEV ˙̂x(t) =

Â︷ ︸︸ ︷
W TAV x̂(t) +

B̂︷ ︸︸ ︷
W TB u(t),

ŷ(t) = CV︸︷︷︸
Ĉ

x̂(t),
(5.3)

where Ê, Â ∈ Rr×r , B̂ ∈ Rr×m, Ĉ ∈ Rp×r and ŷ(t) ∈ Rp. Determining

suitable matri
es V and W is the main aim of proje
tive Model Order Re-

du
tion.

It remains to determine if the redu
ed order model is a good approximation

to the original. The outputs of the redu
ed model and the original model

will therefore be 
ompared:

y err(t) = y(t)− ŷ(t).

A

ordingly, one 
an derive the following error system:

Σerrlin :





[
E 0

0 Ê

] [
ẋ(t)
˙̂x(t)

]
=

[
A 0

0 Â

][
x(t)

x̂(t)

]
+

[
B

B̂

]
u(t),

y err(t) = Cx(t) − Ĉx̂(t) =
[
C −Ĉ

] [x(t)
x̂(t)

]
.

Let xerr(t) =

[
x(t)

x̂(t)

]
be the states of the error system. The transfer fun
tion

of the error system 
an be stated as:

Herr(s) =

Cerr︷ ︸︸ ︷[
C −Ĉ

]
(sEerr−Aerr)−1︷ ︸︸ ︷(

s

[
E 0

0 Ê

]
−

[
A 0

0 Â

])−1
Berr︷︸︸︷[
B

B̂

]

= C(sE − A)−1B − Ĉ(sÊ − Â)−1B̂

= H(s)− Ĥ(s).

In the frequen
y domain it holds

Y err(s) = Herr(s)U(s). (5.4)

It is now the obje
tive to minimize Y err(s), the error between the original

output fun
tion Y (s) and the redu
ed output Ŷ (s). By using Parseval's

theorem (
f. [5℄), one obtains that the L2-norms (
f. Se
tion 2.3.1.3)

of Y err(s) and U(s) in the frequen
y domain and y err(t) and u(t) in the
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time domain 
oin
ide. To quantify the Model Order Redu
tion error, it is

desirable to �nd an error bound of the following stru
ture:

||y err||Lp
2
≤ ǫ||uerr||Lm

2
.

By using the input-output relationship (5.4) in the frequen
y domain, the

ǫ 
an be given as the di�eren
e between the transfer fun
tions H(s) and

Ĥ(s), whi
h 
an be measured in the H∞-norm of the error system:

||Σerrlin ||H∞ = ||Σlin − Σ̂lin||H∞ = sup
y∈R

(
σmax(H(iy)− Ĥ(iy))

)
. (5.5)

For the error of the impulse response, the H2-norm 
an be used, and 
om-

putated in the following way:

||Σerrlin ||H2 = ||Σlin−Σ̂lin||H2 =
√
tr((Berr)∗QerrBerr) =

√
tr(CerrP err(Cerr)∗),

(5.6)

where P err and Qerr are the Gramians of the error system.

5.2. MOR of linear systems

In the following Se
tion, several methods for the redu
tion of linear

systems will be shortly reviewed. Numerous resear
hers have been working

on the redu
tion of this 
lass of systems in the last three de
ades. For a

detailed introdu
tion, we refer to the book of Antoulas [5℄ and the referen
es

therein. We assume that all linear systems we 
onsider throughout this

se
tion are rea
hable, observable and stable. In addition, the matrix E is

always invertible.

5.2.1. Balan
ed Trun
ation. Consider a stable, observable and 
on-

trollable linear system (
f. (2.18), Chapter 2.3.1.2). The basi
 idea of the

balan
ed trun
ation method is to eliminate the states in whi
h the system

is di�
ult to observe and di�
ult to rea
h. The following derivation of Bal-

an
ed Trun
ation follows basi
ally the dissertation of Stykel [61℄, whereas

we examine only systems with nonsingularE matrix. As the system is stable,

observable and 
ontrollable, the 
ontrollability (2.19) and the observability

Gramian (2.21) exist and are positive de�nite, they 
an be fa
torised by

using a Cholesky fa
torization: P = R̃T R̃ and Q = L̃L̃T with R̃ ∈ Rn×n and

L̃ ∈ Rn×n of full rank. The se
ond step 
onsists of 
al
ulating the singular
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value de
omposition of the produ
t:

L̃ER̃ =
[
U1 U2

] [Σ1 0

0 Σ2

][
V T1
V T2

]
,

with U1, V1 ∈ R
n×r

, U2, V2 ∈ R
n×(n−r)

having orthogonal 
olumns and Σ1 =

diag(ς1, . . . ςr ) andΣ2 = diag(ςr+1, . . . ςn) are matri
es 
ontaining the Hankel

singular values ordered in des
ending order. A balan
ed redu
ed realization


an now be 
omputed using

W = L̃TU1Σ
−1/2
1 ∈ Rn×r and V = R̃V1Σ

−1/2
1 ∈ Rn×r .

The redu
tion of the linear system is then performed using W and V as

proje
tions in the following way:

Ê = W TEV, Â = W TAV, B̂ = W TB, Ĉ = CV.

The quality of the approximation 
an be measured in theH∞-norm a

ording

to the following error bound:

Theorem 5.2.1 ([5℄). The H∞-norm of the error system is bounded by the

sum of negle
ted Hankel singular values:

||Σlin − Σ̂lin||H∞ ≤ 2(ςr+1 + · · ·+ ςn).

5.2.2. Krylov subspa
e methods. The main idea behind Krylov sub-

spa
e methods, whi
h are widely used for the redu
tion of linear systems,


onsists of 
omparing the summands of series expansions of the original

and redu
ed systems transfer fun
tions. Various authors 
ontributed to the

development of this te
hnique, for a deeper insight we refer to the book of

Antoulas [5℄ and the referen
es therein.

De�nition 5.2.2. The ℓ-th (blo
k) Krylov subspa
e for A ∈ Rn×n and B ∈
R
n×m

is de�ned as follows:

Kℓ(A,B) = span{B, AB, . . . , A
ℓ−1B}. (5.7)

De�nition 5.2.3 ([5, 31, 36℄). The moments of a transfer fun
tion H(s)

evaluated at s = s0 ∈ C are

mk(s0) = (−1)
k d

k

dsk
H(s)|s=s0 .

It holds

mk(s0) = C((s0E − A)
−1E)k (s0E − A)

−1B, k = 0, 1, . . . .
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The moments mk are the 
oe�
ients of a Laurent series expansion of

the transfer fun
tion H(s) around s0. Expanding at in�nity leads to the

de�nition of the so 
alled Markov parameters:

De�nition 5.2.4. The Markov parameters (also 
alled the moments at in-

�nity) of a system are de�ned as:

Mj = C(E
−1A)jE−1B, j = 0, 1, . . . .

The moments and Markov parameters of the original and the redu
ed

system 
an now be 
ompared. The obje
tive of the so 
alled �moment

mat
hing" methods is to �nd proje
tion matri
es su
h that a 
ertain number

of these moments are equal for the redu
ed and the original system without

the need of expli
itely 
al
ulating them. The following theorem shows how

to 
hoose the proje
tion matri
es in order to a
hieve moment mat
hing.

They are formulated for the 
ase in whi
h a mat
hing around s0 = 0 is

desired.

Theorem 5.2.5 ([58℄). If the 
olumns of the matri
es V and W used in

(5.3) form bases for the Krylov subspa
es Kℓ1(A
−1E, (E−1A)r1A−1B) and

Kℓ2(A
−TET , (E−TAT )r2A−TC), respe
tively, both with rank q, where q is a

multiple of m and p, then the �rst q−r1m +
q−r2
p moments and

r1
m +

r2
p Markov

parameters of the original and the redu
ed order system mat
h.

A redu
ed model 
al
ulated using the Krylov subspa
es above leads to

a good approximation of the original model, as long as a su�
ient number

of moments and Markov parameters is mat
hed. This guarantees that the

redu
ed transfer fun
tion is an approximation of the original one.

The 
al
ulation of the matri
es V and W 
an be done by using the

Arnoldi or the Lan
zos algorithm. They 
an be found in [5℄.

In the 
ase where a moment mat
hing around several di�erent points sk is


onsidered, the following theorem has been shown by Gallivan et al. [36℄:

Theorem 5.2.6 ([36℄). If

K⋃

k=1

KJk ((skE − A)
−1E, (skE − A)

−1B) ⊂ Im(V ),

and

K⋃

k=1

KLk ((skE − A)
−TET , (skE − A)

−TCT ) ⊂ Im(W ).
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where the points sk ∈ C are 
hosen su
h that the pen
ils skE − A are

invertible for all k ∈ {1, . . . , K}, then the Jk + Lk moments at sk of the

original linear system Σlin (2.18) and those of the redu
ed linear system Σ̂lin
mat
h, provided the matri
es sk Ê − Â are invertible.

Moment-mat
hing around points sk is nothing else than assuring that

the redu
ed transfer fun
tion interpolates the original transfer fun
tion at

points sk .

5.2.3. Rational Interpolation. First, we only 
onsider so 
alled single

input single output systems (SISO), i.e. systems with CT , B ∈ Rn. The

proje
tion matrix V is now obtained by

V = [(s1E − A)
−1B, . . . , (srE − A)

−1B], (5.8)

with distin
t parameters s1, . . . , sr . Let W be su
h that W T V = Ir . The

following interpolation 
onditions 
an be established:

Proposition 5.2.7 ([5℄, Proposition 11.6). The transfer fun
tion of the re-

du
ed system Σ̂lin as in (5.3) obtained by using V as given in (5.8) and W

withW TV = Ir , interpolates the transfer fun
tion of the original system Σlin
at the points sk , that is

H(sk) = C(skE − A)
−1B = Ĉ(sk Ê − Â)

−1B̂ = Ĥ(sk), k = 1, . . . , r.

Using the matrix V de�ned as in (5.8) would hen
e lead to a mat
hing

of one moment around ea
h interpolation point sk (
f. Theorem 5.2.6).

The interpolation 
onditions have been examined for two sided proje
tions

as well. It is possible to establish interpolation 
onditions for the derivatives:

Proposition 5.2.8 ([5℄). Let Σ̂lin as in (5.3) with

V = [(s0E − A)
−1B, (s0E − A)

−2B, . . . , (s0E − A)
−rB],

andW TV = Ir . It interpolates the transfer fun
tion of Σ at s0 together with

r − 1 derivatives at the same point:

(−1)k

k!

dk

dsk
H(s)|s=s0 = C(s0E − A)

−(k+1)B

= Ĉ(s0Ê − Â)
−(k+1)B̂ =

(−1)k

k!

dk

dsk
Ĥ(s)|s=s0 ,

where k = 1, 2, . . . , r − 1.
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Consider the following matri
es

V =
[
(s1E − A)

−1B . . . (srE − A)
−1B

]
, (5.9)

W =
[
(sr+1E − A)

−TCT . . . (s2rE − A)
−TCT

]
. (5.10)

Then the following proposition derives the interpolation 
onditions for a

system with two proje
tion matri
es:

Proposition 5.2.9 ([5℄). Assuming full rank V,W ∈ Rn×r given as in (5.9)

and (5.10), the transfer fun
tion of the proje
ted system Σ̂lin de�ned by

(5.3) interpolates the transfer fun
tion of Σlin at the points si , i = 1, . . . 2r .

Using Theorem 5.2.6, one obtains that V and W as de�ned in equa-

tions (5.9) and (5.10) lead to a mat
hing of 2 moments around ea
h point

sk .

For systems with multiple inputs and multiple outputs (MIMO) 
orrespond-

ing interpolation 
onditions � the so 
alled tangential interpolation 
ondi-

tions � have been examined by several resear
hers [35, 65, 43, 41℄. The

following theorem 
an be obtained:

Theorem 5.2.10 ([35, 65, 43, 41℄). Let V,W ∈ Rn×r be of full rank. Let

sk ∈ C, rk ∈ R
m×1

and lk ∈ R
1×p

be interpolation points and left and right

tangential dire
tions. Let the points sk be 
hosen su
h that skE − A is

non-singular. If for all k = 1, . . . , r it holds

(skE − A)
−1Brk ∈ span(V ),

(skE − A)
−TCT lTk ∈ span(W ),

the redu
ed system (W TEV,W TAV,W TB,CV ) satis�es:

lk Ĥ(sk) = lkH(sk), (5.11)

Ĥ(sk)rk = H(sk)rk , (5.12)

lkĤ
′(sk)rk = lkH

′(sk)rk , for all k = 1, . . . , r. (5.13)

It remains the task of 
hoosing interpolation points sk and interpolation

dire
tions rk , lk su
h that the obtained redu
ed model is a good approxima-

tion to the original one. This problem has been examined in the 
ontext

of H2-optimal Model Order Redu
tion, whi
h we will review in the next

se
tion.
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5.2.4. H2-optimal Model Order Redu
tion. The obje
tive of the H2-

optimal MOR is to �nd a redu
ed system (Ê, Â, B̂, Ĉ) su
h that the error

of the system examined in the H2-norm ||Σlin − Σ̂lin||H2 is minimized.

5.2.4.1. Interpolation-basedH2-optimality 
onditions. With the aim of

minimizing the H2-norm of the error system ||Σlin− Σ̂lin||H2 , the derivation

of this norm using the system Gramians representation (2.29) is 
onsidered,

following the derivation given by van Dooren et al. [64℄.

Let P err =

[
P11 P12
P T12 P22

]
and Qerr =

[
Q11 Q12
QT12 Q22

]
be the solutions of the

Lyapunov equations of the error system:

AerrP err (Eerr)
T
+ EerrP err (Aerr)

T
+ Berr (Berr)

T
= 0,

(Aerr)
T
QerrEerr + (Eerr)

T
QerrAerr + (Cerr)

T
Cerr = 0,

where

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, Eerr =

[
E 0

0 Ê

]
, Cerr =

[
C

−Ĉ

]
.

We aim at minimizing

J := ||Σlin − Σ̂lin||
2
H2
= tr(CerrP err (Cerr)

T
) = tr((Berr)

T
QerrBerr). (5.14)

We 
an rewrite J as:

J = tr(BTQ11B + 2B
TQ12B̂ + B̂

TQ22B̂)

= tr(CP11C
T − 2CP12Ĉ

T + ĈP22Ĉ
T ).

(5.15)

The gradient of a matrix valued fun
tion 
an be de�ned as follows:

De�nition 5.2.11 ([64℄). The gradient of a real s
alar fun
tion f (X) of a

matrix variable X ∈ Rn×m is the matrix ∇X f (X) ∈ R
n×m

de�ned by

[∇X f (X)]i j =
d

dXi j
f (X), i = 1, . . . , n, j = 1, . . . , m.

The 
al
ulation of the gradient with respe
t to ea
h of the system

matri
es leads to (
f. [64℄):

∇ÊJ = 2(Q22ÂP22 +Q
T
12AP12),

∇ÂJ = 2(Q22ÊP22 +Q
T
12EP12),

∇B̂J = 2(Q22B̂ +Q
T
12B),

∇ĈJ = 2(ĈP22 − CP12).
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For an optimal interpolation point, the gradient of the fun
tion J must be

zero. This leads to the following 
onditions:

Theorem 5.2.12 (Wilson 
onditions for systems with E 6= In, E nonsingu-

lar). If the redu
ed transfer fun
tion Ĥ(s) minimizes J , then the following

holds:

Q22ÂP22 +Q
T
12AP12 = 0,

Q22ÊP22 +Q
T
12EP12 = 0,

Q22B̂ +Q
T
12B = 0,

ĈP22 − CP12 = 0.

(5.16)

One dire
tly 
on
ludes that the following proposition holds:

Proposition 5.2.13 (
f. [64℄). For every stationary point of J where P22
and Q22 are invertible, we have the following identities:

Ê = W TEV, Â = W TAV, B̂ = W TB, Ĉ = CV,

with W := −Q12Q
−1
22 and V := P12P

−1
22 , P12, P22, Q12 and Q22 satisfy the

following Sylvester and Lyapunov equations:

AP12Ê
T + EP12Â

T + BB̂T = 0, (5.17)

ATQ12Ê + E
TQ12Â− C

T Ĉ = 0, (5.18)

ÂP22Ê
T + ÊP22Â

T + B̂B̂T = 0, (5.19)

ÂTQ22Ê + Ê
TQ22Â+ Ĉ

T Ĉ = 0. (5.20)

Remark 5.2.14. An H2-optimal redu
ed order model ful�lls the Wilson 
on-

ditions given in Theorem 5.2.12. A model ful�lling the Wilson 
onditions is

not ne
essarily to be H2-optimal!

If one wants to 
al
ulate an H2-optimal redu
ed order model, one might

think of iteratively solving the Sylvester equations (5.17) and (5.18) starting

from a (randomly) 
hosen redu
ed order model and updating V and W (and

hen
e the redu
ed model) in every step.

It is possible to establish the equivalen
e between these Wilson 
ondi-

tions for H2-optimality and re
ently obtained interpolation 
onditions (
f.

for example [43℄). They have been �rst derived for the SISO 
ase by

Guger
in and 
oworkers [41℄ and then independently generalized to the
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MIMO 
ase not only by Guger
in but also by Van Dooren and 
owork-

ers [64℄, as well as Bunse-Gerstner and 
oworkers [21℄. As a �rst derivation

of interpolation 
onditions was done by Meier and Luenberger in 1976 [48℄,

we will refer to these 
onditions as the Meier-Luenberger 
onditions.

Theorem 5.2.15 (Meier-Luenberger 
onditions). Given a linear stable sys-

tem with transfer fun
tion H(s), if Ĥ(s) is the best stable approximation

of H with respe
t to the H2-norm, then the following 
onditions hold (for

k = 1, . . . , r ):

C̃Tk Ĥ(−λ̂k) = C̃
T
k H(−λ̂k), (5.21)

Ĥ(−λ̂k)B̃k = H(−λ̂k)B̃k , (5.22)

C̃Tk Ĥ
′(−λ̂k)B̃k = C̃

T
k H

′(−λ̂k)B̃k , (5.23)

with C̃ = ĈX and B̃ = B̂T Y , where Y, X are the left and right eigenve
tors

of Â − λÊ and have been 
al
ulated su
h that Y ∗ÂX = diag(λ̂1, . . . , λ̂r )

and Y ∗ÊX = Ir .

The 
onne
tion between Theorems 5.2.10 and 5.2.15 
an now be seen:

If

(−λ̂kE − A)
−1BB̃k ∈ span(V ),

and

(−λ̂kE − A)
−TCT C̃Tk ∈ span(W ),

hold for the proje
tions V and W , the 
onditions (5.21) � (5.23) are sat-

is�ed. This leads to Algorithm 1, widely known as IRKA (Interpolatory

Rational Krylov Algorithm) [41, 6℄. It has also been derived in a slightly dif-

ferent version as MIRIam (MIMO IterativeRational InterpolationAlgorithm)

by Bunse-Gerstner and 
oworkers [43, 21℄.

5.2.4.2. H2-optimal models via optimization on manifolds. Another

approa
h has been developed by Yan and Lam in 1999 [69℄. They as-

sume that the redu
ed order model (5.3) has been generated by a one sided

proje
tion U = V = W and, hen
e, J 
an be per
eived as a fun
tion of U

[69℄:

J (U) = tr(BBT (Q11 + UQ22U
T + 2Q12U

T )) (5.24)

= tr(CTC(P11 + UP22U
T − 2P12U

T )), (5.25)

where J (U) 
oin
ides with J as given in equation (5.15) by inserting B̂ =

UTB and Ĉ = CU. Yan and Lam [69℄ have shown that minimizing J (U)
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Algorithm 1 IRKA as given in [6℄.

Input: Initial sele
tion of interpolation points σ1, . . . , σr and initial left

and right tangential dire
tions l1, . . . , lr ∈ R
1×p

and q1, . . . , qr ∈ R
m×1

.

Output: Redu
ed order model Ê = W TEV , Â = W TAV , B̂ = W TB,

Ĉ = CV .

1: V = [(σ1E − A)
−1Bq1, . . . , (σrE − A)

−1Bqr ]

2: W = [(σ1E − A)
−TCT l1, . . . , (σrE − A)

−TCT lr ]
3: while not 
onverged do

4: Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV

5: Compute Y ∗ÂX = diag(λ1, . . . , λr ) and Y
∗ÊX = Ir , where Y

∗
and

X are the left and right eigenve
tors of λÊ − Â.

6: Set σk ← −λk and l
∗
k ← eTk Y

∗B̂ qk ← ĈXek
7: V = [(σ1E − A)

−1Bq1, . . . , (σrE − A)
−1Bqr ]

8: W = [(σ1E − A)
−TCT l1, . . . , (σrE − A)

−TCT lr ]
9: end while


an be seen as the following minimization problem on the Stiefel manifold

St(r, n) := {X ∈ Rn×r , r ≤ n|XTX = Ir}:

Minimize J (U) over U ∈ St(r, n) (5.26)

subje
t to the stability of the redu
ed system.

Using tools from di�erential geometry, they derived an iterative gradient

�ow algorithm 
al
ulating a new proje
tion matrix U in every step until

a minimum of J (U) is rea
hed. This method has re
ently been further

developed by Xu and Zeng [68℄. For a deeper insight in the used theory,

the reader is referred to [69, 68℄ or Se
tion 5.5.4, where the 
orresponding

theory will be derived for bilinear systems.

5.3. Parametri
 Model Order Redu
tion (pMOR)

In appli
ations, parameters are often in
orporated in the linear models,

for example geometri
 variations or physi
al e�e
ts (
f. Se
tion 4). Hen
e,

it is desirable to �nd methods to redu
e these models, keeping their pa-

rameter dependen
y. An overview of methods for parametri
 model order

redu
tion 
an be found in [13℄. A parametri
 model is de�ned as follows:
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De�nition 5.3.1. A linear parametri
 system of order n is a matrix di�er-

ential equation of the following form:

Σlin (p) :

{
E(p)ẋ(t, p) = A(p)x(t, p) + B(p)u(t),

y(t, p) = C(p)x(t, p),
(5.27)

where E(p), A(p) ∈ Rn×n , B(p) ∈ Rn×m, C(p) ∈ Rp×n. The system depends

on p = (p1, . . . , pd ) ∈ Ω ⊂ Rd � a set of parameters in a (usually bounded)

domain Ω. It holds u(t) ∈ Rm, x(t, p) ∈ Rn and y(t, p) ∈ Rp.

The aim of parametri
 Model Order Redu
tion (pMOR) is to redu
e

the system (5.27) while preserving the dependen
y on the parameters:

Σ̂lin (p) :

{
Ê(p) ˙̂x(t, p) = Â(p)x̂(t, p) + B̂(p)u(t),

ŷ(t, p) = Ĉ(p)x̂(t, p),
(5.28)

with Ê(p), Â(p) ∈ Rr×r , B̂(p) ∈ Rr×m, Ĉ(p) ∈ Rp×r , u(t) ∈ Rm, x̂(t, p) ∈
R
r
and ŷ(t, p) ∈ Rp .

For the one/two parameter 
ase, early methods were developed by Weile

et al. [67℄ using moment mat
hing. These methods were transferred to the

multiparameter 
ase by Daniel et. al [27℄, Farle et al. [32℄ and Feng et

al. [33℄. After a multivariate Taylor series expansion around the param-

eter points and frequen
ies, proje
tion matri
es are then 
al
ulated using

moment mat
hing. However, as the number of parameters in
reases, the

order of the model in
reases as well whi
h leads to large redu
ed orders.

In addition to this approa
h, several other interpolation methods for pMOR

have been proposed. Baur et al. [9℄ extend the statements in Se
tions 5.2.3

and 5.2.4 to parametri
 systems. Baur and Benner propose to interpolate

the systems transfer fun
tion [10℄. Other methods interpolate the redu
ed

system's matri
es. These methods have been developed independently by

Panzer et al. [53℄ and Amsallem et al. [3℄. Re
ent resear
h by Geuss et al.

[37℄ showed that both methods 
an be seen within the same interpolation

framework. These two interpolation methods will be reviewed within this

se
tion.

Prior to stating the theory of the interpolation methods, we want to

draw attention to a spe
ial 
lass of linear parametri
 systems, having the

following spe
ial parameter dependen
y (whi
h we present for E(p), it is
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valid for all other matri
es as well):

E(p) = E0 +

M∑

j=1

fj(p)Ej . (5.29)

This is 
alled an a�ne parameter dependen
y and is 
onvenient in pra
ti
e,

as parameters and matri
es are independent. The system matri
es 
an be

redu
ed as follows:

Ê(p) = W TE(p)V = W TE0V +

M∑

j=1

fj(p)W
TEjV. (5.30)

The bene�t of an a�ne parameter dependen
y is that the matri
es Ej 
an

be redu
ed a priori. For a new parameter pnew = (p
1
new, . . . , p

d
new), only the

fun
tions fj need to be evaluated and the redu
ed matrix E(pnew) 
an be

easily 
al
ulated.

Instead of using interpolation to obtain redu
ed order models, it is also pos-

sible to establish proje
tions V and W that are valid in the whole parameter

domain Ω. Often, this is done by 
on
atenating the proje
tions obtained

for the redu
tion in several parameter points:

V = [V (p1), . . . , V (pK)], W = [W (p1), . . . ,W (pK)].

Certainly, there might be linearly dependent 
olumns in di�erent V (pi), V (pj )

or W (pi), W (pj ), whi
h 
an be eliminated, while �nding an orthogonal basis

of the overall subspa
e by means of an SVD. After the SVD-step one obtains

V ∈ Rn×r
V
all
with r ≤ r Vall ≤ rK and W ∈ Rn×r

W
all
with r ≤ rWall ≤ rK depending

on the signi�
an
e of the sampling points p1, . . . , pK . Hen
e the order of

the redu
ed model for a parameter pnew might in
rease. If rWall and r
V
all are

di�erent, for example rWall ≥ r Vall, one 
an 
hoose rall = r Vall, taking only the

�rst rall 
olumns of W . If rWall is mu
h larger than r Vall, a one-sided proje
tion

setting V = W 
an be tried, as using only the �rst rall 
olumns of W 
an

lead to a loss of information. In addition, the original model needs to be

assembled in the new point pnew prior to the redu
tion (
f. (5.29)) whi
h is

then performed in the following way:

Ê(pnew) = W
TE(pnew)V, Â(pnew) = W

TA(pnew)V,

B̂(pnew) = W
TB(pnew), Ĉ(pnew) = C(pnew)V.
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In the 
ase where the parameter dependen
y is a�ne (as given in equation

(5.29)), it is not ne
essary to assemble the matri
es in the new point pnew,

only the fun
tions fj need to be evaluated (
f. (5.30)). Hen
e this method

will often be used when an a�ne parameter dependen
y is given.

5.3.1. Parametri
 MOR via interpolation of the systems matri
es.

In this work, we will fo
us on the works, where the parametri
 redu
ed

order models will be interpolated. As re
ently noted by Geuss et al. [37℄,

the present known methods [53, 3℄ for the interpolation of redu
ed order

models 
an be seen within a general framework. We are going to follow

Geuss' presentation. It basi
ally 
onsists of four steps:

(1) Sample the parameter spa
e and obtain models in points p1, . . . , pK :

Σlin (pj ) with E(pj ), A(pj ), B(pj ), C(pj ) for j = 1, . . . , K.

(2) Cal
ulate redu
ed order models using te
hniques from linear MOR

(
f. Se
tion 5.2) in points p1, . . . , pK :

Σ̂lin (pj ) with Ê(pj ), Â(pj ), B̂(pj ), Ĉ(pj ) for j = 1, . . . , K,

using proje
tion matri
es V (pj) and W (pj).

(3) Adjust the redu
ed order bases.

(4) Choose the interpolation manifold and the interpolation method

to obtain a redu
ed system Σ̂lin (pnew).

5.3.1.1. Adjusting the redu
ed order bases. The subspa
es Vj and Wj
spanned by the 
olumns of matri
es V (pj ) ∈ R

n×r
and W (pj ) ∈ R

n×r
need

to be adjusted, as the di�erent redu
ed models Σ̂lin (pj) do not lie in the

same state spa
e. Hen
e, one needs to transform the models into the same


oordinate system by using matri
es Mj ∈ R
r×r

and Tj ∈ R
r×r

prior to the

interpolation:

E j = M
T
j Ê(pj )Tj ,

Aj = M
T
j Â(pj )Tj ,

Bj = M
T
j B̂(pj ),

C j = Ĉ(pj )Tj , for j = 1, . . . , K.
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First, we will 
onsider the subspa
es Vj . After 
hoosing a referen
e

subspa
e RV ∈ R
n×r

, state transformations Tj 
an be 
al
ulated su
h

that the redu
ed states 
an be transferred to the referen
e subspa
e, i.e.

x̂(t, pj ) = Tjx(t, pj) holds. There are three main approa
hes for the 
hoi
e

of the referen
e subspa
e:

• Single referen
e subspa
e:

This �rst method has been developed by Amsallem et al. [3℄. One

of the bases V (pj0) is 
hosen as referen
e:

RV = V (pj0 ).

It is not 
lear for whi
h j0 ∈ {1, . . . , K} the best interpolated

redu
ed order models will be obtained. A good guess might be

the j0 
losest to the interpolation point.

• Non-weighted SVD:

Following Panzer et al. [53℄, �rst an SVD of all given redu
ed

order bases V (p1) to V (pK) needs to be 
al
ulated:

UΣZT = [V (p1), . . . , V (pK)].

The referen
e subspa
e will then be 
hosen as: RV = U(:, 1 : r ),

the �rst r 
olumns of U.

• Weighted SVD [53℄: The referen
e subspa
e will now be 
al
u-

lated as:

UΣZT = [ω1(p)V (p1), . . . , ωK(p)V (pK)],

with RV = U(:, 1 : r ), where ωj(p) are parameter dependent

weights. A

ordingly, a new referen
e subspa
e needs to be 
al-


ulated for every new parameter. Using this approa
h, subspa
es

where the 
orresponding pj lie near the interpolation point will be

�automati
ally" favoured.

Amsallem et al. [3℄ and Geuss et al. [37℄ noted that the matrix Tj 
an

be 
al
ulated under the assumption, that the ve
tors of V (pj ) = V (pj )Tj
and RV are in good 
orrelation. They make use of the so 
alled Modal

Assuran
e Criterion (MAC):

MAC(u, w) =
|uTw |2

(uTu)(wTw)
,

with ve
tors w, u ∈ Rn. Details 
an be found in [37, 3℄ and the referen
es

therein. In our 
ase, we want the ve
tors v ij , the i-th 
olumn of V (pj ), and
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RlV , the l-th 
olumn of R, to be in good 
orrelation. They are normalized

and hen
e the MAC redu
es to:

MAC(v ij , R
l
V ) = |v

i
j , R

l
V |
2.

A

ording to Geuss [37℄, there are two possibilities for the ful�llment of the

MACs.

• Strong ful�llment:

Assuming good 
orrelation for the 
orresponding ve
tors, i.e.

MAC(v kj , R
k
V ) = |v

k
j , R

k
V |
2 = 1, k = 1, . . . , r,

and no 
orrelation between the non 
orresponding ve
tors, i.e.

MAC(v ij , R
l
V ) = |v

i
j , R

l
V |
2 = 0, i 6= l , i , l = 1, . . . , r,

one obtains:

T Tj V (pj )
TRV = Ir .

Hen
e one 
an 
hoose Tj as:

Tj = (R
T
V V (pj ))

−1.

Obtained by a di�erent derivation, Panzer et al. [53℄ use the same

matri
es Tj for the transformation.

• Weak ful�llment:

This approa
h has been developed by Amsallem et al. [3℄. Instead

of �nding a 
orrelation for the whole matrix, only the diagonal

elements will be 
onsidered. They shall be maximized, given by

the following equation:

Tj = argmax
Tj

tr
(
T Tj V (pj )

TRV
)
.

A solution to this problem 
an be obtained by using the SVD of

V (pj )
TRV = UjΣjZ

T
j for orthogonal matri
es Tj :

Tj = arg max
Tj∈Or

tr
(
T Tj UjΣjZ

T
j

)

= arg max
Tj∈Or

tr
(
ZTj T

T
j UjΣj

)
,

where Tj = UjZ
T
j solves the problem.
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We have now given the explanations for the adjustment of the right redu
ed

order bases. For the adjustment of the left redu
ed order bases Geuss et

al. [37℄ propose to use the dual systems of the redu
ed order systems and

pro
eed as for the right redu
ed order bases. Considering the approa
hes

given by Panzer and Amsallem and 
oworkers [53, 3℄, they 
an be in
orpo-

rated in this framework as well. The following transformation matri
es Mj
have been proposed:

• A strong ful�llment of the MACs leads to the 
hoi
e

Mj = (R
T
WW (pj))

−1,

with RW obtained by using one of the three given possibilities

given for RV and using W instead of V .

• A weak ful�llment of the MACs leads to

Mj = arg max
Mj∈Or

tr
(
MTj W (pj)

TRW
)

= UjZ
T
j ,

by using the SVD of W (pj )
TRW .

• Panzer et al. [53℄ propose to use RW = RV and hen
e obtain

Mj = (R
T
VW (pj ))

−1
.

• In the approa
h by Amsallem et al. [3℄ an adjustment of the

left subspa
es is not given. However, the obtained redu
ed order

models 
an be multiplied by Ê(pj )
−1

whi
h will lead to the 
hoi
e

Mj = Ê(pj )
−T =

(
V (pj )

T (E(pj ))
T W (pj )

)−1
,

where the referen
e subspa
e is given by RW = E(pj )V (pj ).

Manifold R
q1×q2

Nonsingular matri
es

ExpX(Γ) X + Γ exp(Γ)X

LogX(Y ) Y − X log(Y X−1)

Table 5.1. Exponential and logarithm mappings for dif-

ferent manifolds.
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5.3.1.2. Choosing the interpolation manifold. After the adjustment of

the bases, it remains to interpolate the transformed matri
es E j , Aj , Bj , and

Cj . Amsallem et al. [3℄ propose to interpolate on tangential spa
es of a


ertain matrix manifoldM. For a referen
e point X ∈ M, the exponential

mapping

ExpX : TXM→M (5.31)

and the logarithm mapping

LogX :M⊃ UX → TXM (5.32)

de�ne the 
onne
tion between a manifold and a tangential spa
e. In our


ase, two di�erent manifolds will be 
onsidered. The �rst is the manifold

of the real matri
es with k rows and l 
olumns: Rk×l . The se
ond is the

one of nonsingular matri
es in R
k×k

. The de�nitions for the exponential and

the logarithm mapping 
an be found in Table 5.1. The maps exp and log

are the matrix exponential and logarithm, respe
tively. After 
hoosing one

referen
e model from all the transformed redu
ed models, the remaining

models will be interpolated in the tangential spa
e with respe
t to the refer-

en
e model. Hen
e, for a �xed referen
e matrix A(pℓ0 ), the other matri
es

need to be mapped to the tangential spa
e T
A(pℓ0

)
M by the logarithm map-

ping: Γj = LogA(pℓ0 )
(A(pj )). The obtained Γj will now be interpolated using

a suitable interpolation method whi
h leads to the matrix Γnew ⊂ TA(pℓ0 )
M

for a parameter sample pnew. This matrix is transformed to the manifoldM

using the exponential mapping and gives A(pnew).

In 
ontrast to Amsallem et al. [3℄, Panzer et al. [53℄ however simply inter-

polate the matri
es without mapping the matri
es on tangential manifolds.

In Chapter 8, we are going to 
ompare di�erent approa
hes using this frame-

work and apply them to our bilinear systems (
f. Se
tion 8.2):

• We follow Amsallem et al. [3℄: Use a �xed referen
e subspa
e and

obtain Tj by a weak ful�llment of the MACs and Mj by inversion

of Ê(pj ).

• As given by Panzer et al. [53℄, we use a referen
e subspa
e given

by a (weighted) SVD of all underlying matri
es V (pj ), and obtain

Tj = (R
T
V V (pj ))

−1
and Mj = (R

T
VW (pj ))

−1
.

5.3.2. Parametri
 systems as bilinear systems. For parametri
 models

with a spe
ial a�ne parameter dependen
y, it is possible to transform them
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into bilinear models. This transformation was originally given by Breiten and

Benner in [11℄.

Consider the following a�ne parametri
 system:

Σlin (p) :




Eẋ(t, p) =

(
A+

m∑

k=1

f (pk)Ak

)
x(t, p) + B̃ũ(t),

y(t, p) = Cx(t, p),

(5.33)

with E, A,Ai ∈ R
n×n

, C ∈ Rp×n, B̃ ∈ Rn×m̃. De�ne Nk = Ak for k =

1, . . . , m and Nk = 0 for k = m+1, . . . , m+m̃. In addition let m := m+m̃,

and let the �rst m 
olumns of the new B be zero. For the 
olumns m + 1

to m use the matrix B̃. Finally, set u(t) =
[
f (p1) . . . f (pm) ũ(t)

]T
.

The steps above result in a bilinear system:

Σbil :




Eẋ(t) = Ax(t) +

m∑

k=1

Nkuk(t)x(t) + Bu(t),

y(t) = Cx(t).

(5.34)

The transformation of su
h parametri
 models results in bilinear models,

where all parameters 
an be seen as inputs. Bilinear Model Order Redu
tion

needs to be applied for the redu
tion, whi
h is now �parameter free", as in


ontrast to the methods for parametri
 model order redu
tion whi
h have

been dis
ussed in the previous se
tions, there is no interpolation pro
edure

needed to obtain parametri
 redu
ed order models, as it is not ne
essary

to 
onsider the newly obtained inputs in the redu
tion pro
ess. The linear

parametri
 models given by a physi
al parametrization (
f. equation (4.2))

of the ele
tri
al motor model have exa
tly the stru
ture of (5.33) and hen
e

bilinear model order redu
tion methods 
an be applied to obtain a parametri


redu
ed order model.

However, 
onstant inputs uk (as resulting from parametri
 systems) are not

Lm2 fun
tions (as the integrals

∫∞
−∞ u

2
kdω do not exist) and hen
e stri
tly

speaking not admissible input fun
tions. During the redu
tion, the system

is redu
ed without �knowing" anything about the inputs. A good redu
ed

order model 
an hen
e be 
al
ulated using bilinear redu
tion methods. In

addition, the 
ondition for BIBO-Stability (
f. Theorem 2.3.24) 
an be

ful�lled for 
onstant inputs as well.
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5.4. Bilinear Model Order Redu
tion

The redu
tion of bilinear systems as given by equation (2.30) (or (5.34))

obtained attention within the last 20 years. The methods developed for lin-

ear systems 
an often be transferred to bilinear systems.

Throughout this Se
tion, we assume the bilinear systems (2.30) to be

rea
hable, observable and BIBO stable. In addition, we assume the existen
e

of the Gramians of the system, and only systems with E nonsingular will be


onsidered.

5.4.1. The error system. As in the linear 
ase, we need to quantify

the quality of the approximation. Hen
e, the error between the original and

the redu
ed order model needs to be measured. The error system is de�ned

as follows:

Σerrbil :





[
E 0
0 Ê

] [
ẋ(t)
˙̂x(t)

]
=
[
A 0
0 Â

] [
x(t)
x̂(t)

]
+

m∑

k=1

[
Nk 0

0 N̂k

] [
x(t)
x̂(t)

]
uk +

[
B
B̂

]
u(t),

y(t)− ŷ(t) =
[
C −Ĉ

] [x(t)
x̂(t)

]
.

(5.35)

The rea
hability Gramian of the error system P err =
[
P11 P12
PT
12
P22

]
satis�es the

following generalized Lyapunov equation:

[
A
Â

] [ P11 P12
PT
12
P22

] [
ET

ÊT

]
+
[
E
Ê

] [ P11 P12
PT
12
P22

] [
AT

ÂT

]

+

m∑

k=1

[
Nk
N̂k

] [
P11 P12
PT
12
P22

] [
NT
k

N̂T
k

]
+
[
B
B̂

]
[ BT B̂T ] = 0.

(5.36)

Using the observability Gramian Qerr =
[
Q11 Q12
QT
12
Q22

]
one obtains that

Y err =
[
Y11 Y12
Y T
12
Y22

]
=
[
E−T

Ê−T

] [ Q11 Q12
QT
12
Q22

] [
E−1

Ê−1

]
, (5.37)
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satis�es the following Lyapunov equation:

[
AT

ÂT

] [ Y11 Y12
Y T
12
Y22

] [
E
Ê

]
+
[
ET

ÊT

] [ Y11 Y12
Y T
12
Y22

] [
A
Â

]

+

m∑

k=1

[
NT
k

N̂T
k

] [
Y11 Y12
Y T
12
Y22

] [
Nk
N̂k

]
+ [ C −Ĉ ]

[
CT

−ĈT
]
= 0.

(5.38)

The H2-norm of the error system will now be used to measure the error

between the original and the redu
ed order model. Using the error system

Gramians this 
an be done in the following way:

||Σerrbil ||H2 = ||Σbil − Σ̂bil||H2 =

√
tr
(
[ C −Ĉ ]P err

[
CT

−ĈT
])

=

√
tr
(
[ BT B̂T ]Qerr

[
B
B̂

])
.

(5.39)

In addition, using the de�nition of the H2-norm given by Benner and Breiten

as in (2.47), the norm of the 
orresponding error system 
an hen
e be given

as:

J = ||Σerrbil||
2
H2

= vec(I2p)
T ([ C −Ĉ ]⊗ [ C −Ĉ ])

×

(
−
[
A
Â

]
⊗
[
E
Ê

]
−
[
E
Ê

]
⊗
[
A
Â

]
−

m∑

k=1

[
Nk
N̂k

]
⊗
[
Nk
N̂k

])−1

×
([
B
B̂

]
⊗
[
B
B̂

])
vec(I2m).

(5.40)

5.4.2. Bilinear Balan
ed Trun
ation. Already in 1993, Al-Baiyat and

Bettayeb [2℄ applied balan
ing methods to spe
ial (so 
alled k-power) bilin-

ear systems. Re
ent results have been obtained by Hartmann et al. [42℄.

As given in Se
tion 2.3.2.3, the bilinear Gramians 
an be de
omposed as

P = RRT and Q = LTL.

By using the singular value de
ompositon of

LER = UbΣV
T
b ,

one obtains

W T
b ETb, W

T
b ATb, W

T
b NkTb, W

T
b B, CTb,
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where

Wb = L
TUbΣ

−1/2, Tb = RVbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

If the Hankel singular values given by Σ = diag(ς1, . . . , ςn) show a de
ay and

ςd+1 ≪ ςd holds, one 
an approximate the original model by using

W = LTU1Σ
−1/2
1 , T = RV1Σ

−1/2
1 ,

with

LER =
[
U1 U2

] [Σ1 0

0 Σ2

][
V T1
V T2

]
,

U1, V1 ∈ R
n×r

, U2, V2 ∈ R
n×(n−r)

having orthogonal 
olumns and Σ1 =

diag(ς1, . . . ςd), Σ2 = diag(ςd+1, . . . ςn).

5.4.3. Bilinear Krylov Subspa
e Methods. Model Order Redu
tion

for bilinear systems via Krylov subspa
es has been examined by several re-

sear
hers su
h as Philipps [54℄, Condon and Ivanov [23℄, Breiten and Damm

[17℄, Bai and Skoogh [8℄, and Lin and 
oworkers [45℄. Moment mat
hing


an be a
hieved by series expansions of the multivariate transfer fun
tions

as given in (2.37). For ease of presentation, we assume E = In throughout

the following se
tion. A multimoment 
an be de�ned as:

De�nition 5.4.1 ([45℄,[34℄). Let Σbil be a bilinear system as given in (2.30).

For nonnegative integers m1, . . . , mi , a multimoment H
(m1,...,mi )
i (s1, . . . , si)

of the transfer fun
tion Hi(s1, . . . , si) as given in (2.37) is de�ned as

H
(m1,...,mi )
i (s1, . . . , si) =(−1)

iC(si In − A)
−miN[Im ⊗ (si−1In − A)

−mi−1N] . . .

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−2 times

⊗(s2In − A)
−m2N]

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−1 times

⊗(s1In − A)
−m1B],

(5.41)

where N = [N1 . . . Nm].

To ensure moment mat
hing, Krylov subspa
es (
f. 5.2.2) need to be

built. Often (see f.e. [8, 45, 17℄), the following Krylov subspa
es are used

for moment mat
hing around s = 0:



72 5. MODEL ORDER REDUCTION

span(V (1)) = Kq(A
−1, A−1B),

span(V (i)) =

m⋃

k=1

Kq(A
−1, A−1NkV

(i−1)),

span(V ) = span

(
r⋃

i=1

span(V (i))

)
.

Moment mat
hing in points other than the origin 
an be guaranteed by the

following result given by Flagg [34℄:

Theorem 5.4.2 ([34℄, Subsystem Interpolation). Let {ξj}
k
j=1, {ζj}

k
j=1 ⊂ C

and ve
tors cT ∈ Cp and b ∈ Cm be given. De�ne bj = 1j ⊗ b and N
⊕T =[

NT1 , . . . , N
T
m

]
where 1j is a 
olumn of mj−1 ones. To 
onstru
t a redu
ed

order system that mat
hes all the multimoments H
(l1 ,...,lj )

j (ξ1, . . . , ξj )bj and

cH
(l1,...,lj )

j (ζj , . . . , ζ1) for j = 1, . . . , k and l1, . . . , lj = 1, . . . , q, 
onstru
t the

matri
es V and W as follows:

span(V (1)) = Kq{(ξ1I − A)
−1, (ξ1I − A)

−1Bb},

span(W (1)) = Kq{(ζ1I − A)
−∗, (ζ1I − A)

−∗C∗c∗},

span(V (j)) = Kq{(ξj I − A)
−1, (ξj I − A)

−1
N(Im ⊗ V

(j−1))} for j = 2, . . . , k,

span(W (j)) = Kq{(ζj I − A)
−∗, (ζj I − A)

−∗
N
⊕T (Im ⊗W

(j−1))} for j = 2, . . . , k,

span(V ) = span{

k⋃

j=1

span(V (j))},

span(W ) = span{

k⋃

j=1

span(W (j))}.

Provided W̃ T = (W T V )−1W T
is de�ned, the redu
ed system Â = W̃ TAV ,

N̂k = W̃
TNkV , Ĉ = CV and B̂ = W̃ TB satis�es:

H
(l1,...,lj )

j (ξ1, . . . , ξj)bj = Ĥ
(l1,...,lj )(ξ1, . . . , ξj)bj

and

cH
(l1,...,lj )

j (ζ1, . . . , ζj) = cĤ
(l1,...,lj )(ζ1, . . . , ζj)

for j = 1, . . . , k and l1, . . . , lk = 1, . . . , q.
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Using this moment mat
hing of multimoments would involve a strategy

for �nding points {ξj}
k
j=1, {ζj}

k
j=1 ⊂ C and ve
tors cT ∈ Cp and b ∈ Cm

su
h that the redu
ed model delivers a good approximation to the original

model. The advantage of this approa
h is that it does not depend on the


onvergen
e of the underlying Volterra series, whi
h might not be known

a priori (
f. the de�nition of BIBO stability and the 
onvergen
e of the

Volterra series given in Se
tion 2.3.2). In addition to the moment mat
hing

approa
h, one might think of the interpolation of the multivariate trans-

fer fun
tions Hi(s1, . . . , si), or � in other words � the interpolation of

the Volterra series. This approa
h has been examined by Flagg [34℄ in his

dissertation and resulted in a derivation of interpolation 
onditions for the

Volterra series representation of a bilinear system. Flagg was able to es-

tablish a 
onne
tion between Volterra series interpolation and the results


on
erning the H2-optimal 
onditions for bilinear systems re
ently derived

by Zhang and Lam [72℄ and Benner and Breiten [12℄.

5.5. H2 - optimal bilinear Model Order Redu
tion

As in the linear 
ase, one is interested in H2-optimal bilinear MOR.

Within this se
tion, ne
essary H2-optimality 
onditions for bilinear systems

are obtained by deriving the H2-norm (5.39) of the error system (5.35).

First, the bilinear Wilson 
onditions originally obtained by Zhang and Lam

[72℄ will be derived. Using a di�erent approa
h, Benner and Breiten [12℄

obtained the Bilinear Interpolatory Rational Krylov Algorithm (BIRKA), a

generalization to bilinear systems of the linear IRKA (Algorithm 1). In addi-

tion, we will derive a new H2-optimal algorithm relying on optimization on

Grassmann manifolds, whi
h is a generalization of the methods given in the

linear 
ase by Yan and Lam [69℄ and Xu and Zeng [68℄.

As the Finite Element Dis
retisation of industrial models leads to systems

with E 6= In, we need to in
orporate E in our derivation. We 
an not simply

invert the matrix E as due to their large dimension, the inversion would be

numeri
ally expensive or even impossible. Hen
e, we will derive optimality


onditions for systems with E 6= In, E nonsingular, whi
h have not been

stated elsewhere. All systems will be assumed to be rea
hable, observable,

BIBO stable and the Gramians shall exist.
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5.5.1. Wilson 
onditions for bilinear systems. De�ning

C =
[
CT

−ĈT
]
[ C −Ĉ ], the norm of the error system 
an be given as:

J = ||Σerrbil ||
2
H2
= tr

(
[ C −Ĉ ]P err

[
CT

−ĈT
])
= tr (P errC) . (5.42)

By di�erentiating the norm (5.42) and using the Lyapunov equations (5.36)

and (5.38) we obtain the following 
onditions (for a detailed derivation see

Appendix A.1):

Ê = −Y −122 Y
T
12EP12P

−1
22 , (5.43)

Â = −Y −122 Y
T
12AP12P

−1
22 , (5.44)

N̂k = −Y −122 Y
T
12NkP12P

−1
22 , for k = 1, . . . , m, (5.45)

B̂ = −Y −122 Y
T
12B, (5.46)

Ĉ = CP12P
−1
22 , (5.47)

with Yi j as given in (5.37) and Pi j as in (5.36). This leads to the following

theorem:

Theorem 5.5.1 ([72℄). If the redu
ed system Σ̂bil, whi
h is rea
hable and

observable, is an H2-optimal redu
ed order model for the system Σbil and

the rea
hability and observability Gramians P err and Qerr exist, then there

exist matri
es W,V ∈ Rn×r su
h that

Ê = W TEV, Â = W TAV, N̂k = W
TNkV, B̂ = W

TB, Ĉ = CV. (5.48)

They 
an be obtained by equations (5.43) to (5.44) as W := −Y12Y
−1
22 and

V := P12P
−1
22 .

Remark 5.5.2. Inserting the observability Gramian Qerr in the equations

leads to the proje
tions for the system multiplied by E−1:

Ê = −Y −122 Y
T
12EP12P

−1
22

= −ÊQ−122 Ê
T Ê−TQT12E

−1EP12P
−1
22 ,

⇒ Ir = −Q
−1
22Q

T
12P12P

−1
22 ,

Â = −Y −122 Y
T
12AP12P

−1
22

= −ÊQ−122 Ê
T Ê−TQT12E

−1AP12P
−1
22 ,

⇒ Ê−1Â = −Q−122Q
T
12E

−1AP12P
−1
22 ,

with analogue 
al
ulations for Nk ,B and C.
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5.5.2. The optimality 
onditions derived by Benner and Breiten. As

in the 
ase of the Wilson 
onditions, Benner and Breiten dedu
e the opti-

mality 
onditions by di�erentiating the H2-norm of the error system (5.40).

In 
ontrast to their derivation, we need to 
onsider E 6= In, E nonsingular.

The obtained redu
ed system 
an be written as (Â, N̂k , B̂, Ĉ) after multi-

plying with Ê−1 from the left, and hen
e we will assume Ê = Ir . In addition,

we assume that Â is diagonalizable.

It is possible to rewrite the representation of the H2-norm as given in (5.40)

by using:

Â = SΛS−1, B̃T = S−1B̂, C̃ = ĈS, ÑTk = S
−1(N̂)kS,

whi
h leads to:

J = ||Σerrbil||
2
H2

= vec(I2p)
T ([ C −C̃ ]⊗ [ C −C̃ ])

×

(
−
[
A
Λ

]
⊗
[
E
Ir

]
−
[
E
Ir

]
⊗
[
A
Λ

]
−

m∑

k=1

[
Nk

Ñk
T

]
⊗
[
Nk

Ñk
T

])−1

×
([

B
B̃T

]
⊗
[
B
B̃T

])
vec(I2m).

(5.49)

Derivations with respe
t to the eigenvalues of the redu
ed system

Λ = diag(λ̂1, . . . , λ̂r ) and the matri
es Ñk , B̃, and C̃ lead to the follow-

ing optimality 
onditions (their derivation 
an be found in Appendix A.2):

vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

(eie
T
i ⊗ E)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
i ⊗ Ir)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im),

(5.50)
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vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

(eie
T
j ⊗ N)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
j ⊗ N̂)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im),

(5.51)

vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

· (eje
T
i ⊗ B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

· (eje
T
i ⊗ B̂)vec(Im), (5.52)

vec(Ip)
T (eie

T
j ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

· (B̃T ⊗ B)vec(Im)

= vec(Ip)
T (eie

T
j ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

· (B̃T ⊗ B̂)vec(Im). (5.53)

The following theorem shows the 
onne
tion between an optimal redu
ed

order model and the 
onditions (5.50) � (5.53).
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Theorem 5.5.3 ([12℄). Let Σbil denote a BIBO stable bilinear system. As-

sume that Σ̂bil is a redu
ed bilinear system of order r that minimizes the

H2-norm of the error system among all other bilinear systems of dimension

r . Then, Σ̂bil ful�lls the 
onditions (5.50) � (5.53).

5.5.3. Algorithms resulting from the H2-optimality 
onditions. Now

it is possible to obtain two di�erent algorithms for the 
al
ulation of bilinear

optimal redu
ed order models. First, as seen in the 
ontext of the Wilson


onditions, optimal models 
an be obtained by using W = −Y12Y
−1
22 and

V = P12P
−1
22 (
f. Theorem 5.5.1). Hen
e it holds span(Y12) ⊂ W and

span(P12) ⊂ V . It is su�
ient to determine Y12 and P12 whi
h 
an be done

by solving Sylvester equations obtained by splitting the equations (5.36) and

(5.38). This leads to the following algorithm (for a more detailed insight

we refer to the derivation of Benner and Breiten [12℄):

Algorithm 2 Generalized Sylvester iteration (
f. [12℄).

Input: E, A,Nk , B, C, Ê, Â, N̂k , B̂, Ĉ

Output: Êopt, Âopt, N̂optk , B̂optĈopt

1: while not 
onverged do

2: Solve

AXÊT + EXÂT +

m∑

k=1

NkXN̂k + BB̂
T = 0 (5.54)

3: Solve

AT Y Ê + ET Y Â+

m∑

k=1

NkY N̂k − C
T Ĉ = 0 (5.55)

4: V = orth(X), W = orth(Y ) % orth 
omputes an orthonormal basis

5: Ê = W TEV , Â = W TAV , N̂k = W
TNkV , B̂ = W

TB,

6: end while

7: Êopt = Ê, Âopt = Â, N̂optk = N̂k , B̂
opt = B̂, Ĉopt = Ĉ
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Theorem 5.5.4 ([12℄). If Algorithm 2 
onverges, then Êopt, Âopt, N̂optk , B̂opt

and Ĉopt ful�ll the Wilson optimality 
onditions (5.43)-(5.47).

Proof. The proof of this Theorem 
an be found in the Appendix A.3.

�

As we derived the optimality 
onditions a

ording to Breiten and Benner

[12℄ by using redu
ed systems assuming Ê = Ir , we obtain for the solution

of the bilinear Sylvester equations (5.54) and (5.55):

vec(X) =

(
−Ir ⊗ A− Â⊗ E −

m∑

k=1

N̂k ⊗ Nk

)−1
vec(BB̂T )

=

(
−SS−1 ⊗ A− SΛS−1 ⊗ E −

m∑

k=1

SÑTk S
−1 ⊗ Nk

)−1
(B̂ ⊗ B)vec(Im)

=

(
(S ⊗ In)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

ÑTk ⊗ Nk

)
(
S−1 ⊗ In

)
)−1

(B̂ ⊗ B)vec(Im)

= (S ⊗ In)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

ÑTk ⊗Nk

)−1
(B̃T ⊗ B)vec(Im)

︸ ︷︷ ︸
vec(V )

,

and

vec(Y ) =

(
ITr ⊗ A

T + ÂT ⊗ ET +

m∑

k=1

N̂Tk ⊗ N
T
k

)−1
(ĈT ⊗ CT )vec(Ip)

=

(
S−TST ⊗ AT + S−TΛST ⊗ ET +

m∑

k=1

S−T ÑkS
T ⊗ NTk

)−1
(ĈT ⊗ CT )vec(Ip)

=
(
−S−T ⊗ In

)
(
−Ir ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗ N
T
k

)−1 (
ST ⊗ In

)
(ĈT ⊗ CT )vec(Ip)

=
(
−S−T ⊗ In

)
(
−Ir ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗ N
T
k

)−1
(C̃T ⊗ CT )vec(Ip)

︸ ︷︷ ︸
vec(W )

,

This leads to the fa
t that span(X) ⊂ V and span(Y ) ⊂ W . Instead of

solving the Sylvester equations as given in (5.54) and (5.55), we 
an use the

ve
torized form of the Sylvester equations to 
al
ulate an optimal redu
ed

model, whi
h leads to Algorithm 3.
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Algorithm 3 Bilinear IRKA for systems with E 6= I, E nonsingular (
f. [12℄).

Input: E, A,Nk , B, C, Â, N̂k , B̂, Ĉ

Output: Âopt, N̂optk , B̂opt, Ĉopt

1: while not 
onverged do

2: Â = SΛS−1, B̃T = S−1B̂, C̃ = ĈS ÑTk = S
−1N̂kS

3: vec(V ) =
(
−Ir ⊗ A− Λ⊗ E −

∑m

k=1
Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

4: vec(W ) =
(
−Ir ⊗ A

T − Λ⊗ ET −
∑m

k=1
Ñk ⊗ N

T
k

)−1
(C̃T ⊗CT )vec(Ip)

5: V = orth(V ), W = orth(W ) % orth 
omputes an orthonormal basis

6: Â = (W TEV )−1W TAV , N̂k = (W TEV )−1W TNkV , B̂ =

(W TEV )−1W TB, Ĉ = CV

7: end while

8: Âopt = Â, N̂optk = N̂k , B̂
opt = B̂, Ĉopt = Ĉ

The 
onvergen
e of Algorithm 3 will be measured in terms of the 
hange

in the eigenvalues of the redu
ed system. In every iteration the 
hange in

the eigenvalues between the last two iterations is 
he
ked. If it is su�
iently

small, the algorithm stops and returns the �nal redu
ed order model.

5.5.4. H2-optimal MOR by using methods from di�erential geome-

try. We will establish a new result for the derivation of H2-optimal bilinear

redu
ed order models. For ease of presentation we will assume E = In. As a

system with E invertible is equivalent to the system multiplied by E−1, this
is possible. In addition, a generalization to systems with E 6= In should be

possible.

5.5.4.1. The minimization problem. As in the pre
eding se
tions we

are going to minimize the H2-norm of the error system. However, we use

a di�erent approa
h, whi
h was originally given for linear systems by Yan

and Lam in 1999 [69℄. It is based on minimizing the norm on the Stiefel

manifold. This approa
h was re
ently transferred to Grassmann manifolds

by Xu and Zeng [68℄. We will now develop the methods for the bilinear


ase. In 
ontrast to the methods in the previous se
tions, these methods

dire
tly preserve the BIBO stability of the model. Hen
e there is no need

for stabilization methods that 
an be used for example to stabilize redu
ed

order models obtained by BIRKA see Se
tion 6.2.
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First, the obje
tive fun
tion for the minimization has to be found. We

de�ne the following fun
tion:

J (W, V ) = J (W TAV,W TN1V, . . . ,W
TNmV,W

TB,CV )

:= ||Σerrbil ||
2
H2

= tr(
[
C −Ĉ

]
P err

[
CT

−ĈT

]
)

= tr(CP11C
T − 2CP12Ĉ

T + ĈP22Ĉ
T )

= tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

= tr(CTC(P11 − 2P12V
T + V P22V

T )),

with P err as given in equation (5.36), where
[
E
Ê

]
= Inr . The reader should

note that P12 and P22 depend on the redu
ed model and hen
e are fun
tions

of V and W . The problem of �nding an H2-optimal redu
ed order model


an be stated as a minimization problem of the form:

Minimize J (W TAV,W TNkV,W
TB,CV ) with respe
t to

(W, V ) ∈ Rn×r × Rn×r subje
t to W TV = Ir and Σ̂bil is BIBO

stable.

(5.56)

If we use W T = V † = (V T V )−1V T or V T = W † = (W TW )−1W T
, the

matri
es W and V satisfy W T V = Ir if they have full rank. The following

modi�ed problem 
an therefore be 
onsidered:

Minimize J (V ) := J (V †AV, V †NkV, V
†B,CV ) over V ∈ Rn×r

subje
t to the BIBO stability of Σ̂bil redu
ed with V † and V .
(5.57)

This modi�ed problem is an approximation to the original problem (5.56).

It �nds redu
ed models in a subset of the redu
ed models that would be


onsidered while solving (5.56). It holds:

J (V ) = tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

= tr(CTC(P11 − 2P12V
T + V P22V

T )). (5.58)

De�ne U = V (V T V )−1/2. Let the rea
hability Gramian of the error system

obtained by redu
ing the original system with U be

P̃ err =

[
P11 P̃12
P̃ T12 P̃22

]
.
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Let the rea
hability Gramian of the system redu
ed with V and V † be P err.

If P̃ err and P err are the unique solutions to the Lyapunov equations of the

respe
tive error systems, then one 
on
ludes that

P22 = (V
T V )−1/2P̃22(V

T V )−1/2 and P12 = P̃12(V
TV )−1/2.

This 
an be seen in the following Lemma.

Lemma 5.5.5. Using V and V † for the redu
tion or using U (one-sided)

respe
tively, and assuming that the 
orresponding Lyapunov equations of

the error systems have unique solutions, leads to the following 
onne
tion

between the systems Gramians: P22 = (V
TV )−1/2P̃22(V

T V )−1/2 and P12 =

P̃12(V
T V )−1/2, where the matri
es with ˜ 
orrespond to the system with

U.

Proof. If the original model has been redu
ed with U, one obtains

P̃ err =
[
P11 P̃12
P̃T
12
P̃22

]
,

the solution of the following Lyapunov equation:

[
A

(V TV )−
1
2 V TAV (V T V )−

1
2

][
P11 P̃12
P̃ T12 P̃22

] [
ET

(V T V )−
1
2 V TET V (V T V )−

1
2

]

+

[
E

(V T V )−
1
2 V TEV (V T V )−

1
2

][
P11 P̃12
P̃ T12 P̃22

] [
AT

(V TV )−
1
2 V TATV (V T V )−

1
2

]

+

m∑

k=1

[
Nk

(V TV )−
1
2 V TNkV (V

TV )−
1
2

] [
P11 P̃12
P̃ T12 P̃22

][
NTk

(V TV )−
1
2 V TNTk V (V

TV )−
1
2

]

+

[
B

(V TV )−
1
2 V TB

] [
BT BTV (V T V )−

1
2

]
= 0. (5.59)

If the redu
tion has been performed with V and V † = (V TV )−1V T , one ob-

tains:[
A

(V TV )−1V TAV

] [
P11 P12
P T12 P22

][
ET

V TET V (V T V )−1

]

+

[
E

(V TV )−1V TEV

] [
P11 P12
P T12 P22

][
AT

V TATV (V T V )−1

]

+

m∑

k=1

[
Nk

(V TV )−1V TNkV

][
P11 P12
P T12 P22

] [
NTk

V TNTk V (V
T V )−1

]

+

[
B

(V TV )−1V TB

] [
BT BT V (V T V )−1

]
= 0. (5.60)
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Multiplying equation (5.60) with

[
In

(V T V )
1
2

]
from the left and the right

yields:

[
A

(V T V )−
1
2 V TAV (V T V )−

1
2

][
In

(V T V )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
ET

(V TV )−
1
2 V TET V (V TV )−

1
2

]

+

[
E

(V T V )−
1
2 V TEV (V T V )−

1
2

][
In

(V T V )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
AT

(V TV )−
1
2 V TAT V (V TV )−

1
2

]

+

m∑

k=1

[
Nk

(V T V )−
1
2 V TNkV (V

TV )−
1
2

] [
In

(V TV )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
NTk

(V TV )−
1
2 V TNTk V (V

T V )−
1
2

]

+

[
B

(V T V )−
1
2 V TB

] [
BT BTV (V T V )−

1
2

]
= 0. (5.61)

Under the assumption that (5.61) and (5.59) hold, one obtains (as equation

(5.59) has a unique solution):

[
P11 P̃12
P̃ T12 P̃22

]
=

[
In

(V T V )
1
2

] [
P11 P12
P T12 P22

][
In

(V T V )
1
2

]
, (5.62)

whi
h leads to

P̃ T12 = (V
TV )

1
2 P T12,

and

P̃22 = (V
T V )

1
2 P22(V

TV )
1
2 .

�
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One 
an then show that the fun
tions J (V ) and J (U) are equal:

J (V ) =tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

=tr(CTCP11 − 2(V
TV )−1/2V TCTCP̃12 + (V

T V )−1/2V TCTCV (V TV )−1/2P̃22)

=J (U)

=J (UTAU,UTN1U, . . . , U
TNmU, U

TB,CU).

Hen
e the following minimization problem is equivalent to (5.57):

Minimize J (U) := J (UTAU,UTNkU,U
TB,CU) over U ∈ Rn×r

with UTU = Ir subje
t to the BIBO stability of Σ̂bil the redu
ed

bilinear system 
al
ulated with U.

As U is an element of the Stiefel manifold St(r, n) (
f. Se
tion 2.2) the

minimization problem 
an be stated on this manifold:

Minimize J (U) := J (UTAU,UTNkU,U
TB,CU) over U ∈

St(r, n) subje
t to the BIBO stability of Σ̂bil, the redu
ed bi-

linear system 
al
ulated with U.

(5.63)

Before we 
an state the minimization problem on the Grassmann manifold

(
f. Se
tion 2.2), we need the following Lemma:

Lemma 5.5.6. For an orthogonal matrixQ ∈ Rr×r it holds J (U) = J (UQ).

Proof. It holds (
f. (2.45)):

J (U) = ||Σerrbil ||
2
H2 = tr

(
∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

(herr)
(k1,...,ki )
i (s1, . . . , si)

· ((herr)
(k1,...,ki )
i (s1, . . . , si))

T ds1 . . . dsi

)
.

The Volterra kernels of the error system are:
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(herr)
(k1,...,ki )
i (s1, . . . , si)

=
[
C −Ĉ

]
e

([
A

Â

]
si

)
[
Nk1

N̂k1

]
e

([
A

Â

]
si−1

)
[
Nk2

N̂k2

]
. . .

. . .

[
Nki−1

N̂ki−1

]
e

([
A

Â

]
s1

)
[
bki
b̂ki

]

=
[
C −Ĉ

] [eAsiNk1eAsi−1Nk2 . . . Nki−1eAs1
eÂsi N̂k1e

Âsi−1 N̂k2 . . . N̂ki−1e
Âs1

] [
bki
b̂ki

]
.

The Volterra kernels 
oin
ide for UQ and U with QQT = QTQ = Ir be
ause
[
C −CUQ

]

·

[
eAsiNk1 . . . Nki−1e

As1

eQ
T UTAUQsiQTUTNk1UQ . . .Q

TUTNki−1UQe
QT UTAUQs1

]

·

[
bki

QTUT bki

]

=
[
C −CU

]

·

[
eAsiNk1 . . . Nki−1e

As1

QQT eU
TAUsiQQTUTNk1U . . .QQ

TUTNki−1UQQ
T eU

TAUs1

]

·

[
bki

QQTUT bki

]

=
[
C −CU

] [eAsiNk1 . . . Nki−1eAs1
eU
TAUsiUTNk1U . . . U

TNki−1Ue
UTAUs1

][
bki
UT bki

]
,

and we 
on
lude J (U) = J (UQ). �

We 
an now state the minimization problem on the Grassmann mani-

fold:

Minimize J (U) over [U] ∈ Gr(r, n) subje
t to the

BIBO stability of Σ̂bil redu
ed with U.
(5.64)

5.5.4.2. The bilinear fast gradient �ow algorithm. We will now 
al
u-

late the gradients ∇SJ and ∇GJ of the obje
tive fun
tion J (U) on the

Stiefel and the Grassmann manifolds. A minimum of the obje
tive fun
tion

J (U) needs to satisfy∇SJ = 0 or ∇GJ = 0, respe
tively. As shown before

(
f. Se
tion 2.2), the gradients need to satisfy the following equations:

∇SJ = JU − UJ
T
U U, (2.11)
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∇GJ = JU − UU
TJU . (2.16)

Hen
e, one needs the matrix of all partial derivatives of J with respe
t to

U, i.e.:

(JU)i j =
∂J

∂Ui j
. (5.65)

Let Ei j be the single-entry matrix having a one in entry (i , j) and zeros else-

where. We derive:

(JU)i j =
∂

∂Ui j
tr
(
CTC(P11 − 2P12U

T + UP22U
T )
)

(5.66)

= tr

(
CTC

(
Ei jP22U

T + U
∂P22

∂Ui j
UT + UP22E

T
ij − 2

∂P12

∂Ui j
UT − 2P12E

T
ij

))

= tr



∂P22

∂Ui j
UTCTCU

︸ ︷︷ ︸
(∗)

−2UTCTC
∂P12

∂Ui j︸ ︷︷ ︸
(+)

+2
(
CTCUP22 − C

TCP12
)
ETij


 .

By splitting the Lyapunov equations of the error system ((5.36) and (5.38)),

the following Lyapunov and Sylvester equations 
an be obtained:

AP11 + P11A
T +

m∑

k=1

NkP11N
T
k + BB

T = 0, (5.67)

ATQ11 +Q11A+

m∑

k=1

NTk Q11Nk + C
TC = 0, (5.68)

UTAUP22 + P22U
TATU +

m∑

k=1

UTNkUP22U
TNTk U + U

TBBTU = 0, (5.69)

UTATUQ22 +Q22U
TAU +

m∑

k=1

UTNTk UQ22U
TNkU + U

TCTCU = 0,

(5.70)

AP12 + P12U
TATU +

m∑

k=1

NkP12U
TNTk U + BB

TU = 0, (5.71)
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ATQ12 +Q12U
TAU +

m∑

k=1

NTk Q12U
TNkU − C

TCU = 0. (5.72)

Di�erentiating the equations (5.69) and (5.71) with respe
t to U leads to:

ETij AUP22 + U
TAEi jP22 + U

TAU
∂P22

∂Ui j
+
∂P22

∂Ui j
UTATU + P22E

T
ij A

TU + P22U
TATEi j

+

m∑

k=1

ETij NkUP22U
TNTk U +

m∑

k=1

UTNkEi jP22U
TNTk U +

m∑

k=1

UTNkU
∂P22

∂Ui j
UTNTk U

+

m∑

k=1

UTNkUP22E
T
ij N

T
k U +

m∑

k=1

UTNkUP22U
TNTk Ei j + E

T
ij BB

TU + UTBBTEi j = 0,

(5.73)

and

A
∂P12

∂Ui j
+
∂P12

∂Ui j
UTATU + P12E

T
ij A

TU + P12U
TATEi j +

m∑

k=1

Nk
∂P12

∂Ui j
UTNTk U

+

m∑

k=1

NkP12E
T
ij N

T
k U +

m∑

k=1

NkP12U
TNTk Ei j + BB

TEi j = 0. (5.74)

We de�ne

Z = P22E
T
ij A

TU + P22U
TATEi j +

m∑

k=1

ETij NkUP22U
TNTk U

+

m∑

k=1

UTNkEi jP22U
TNTk U + U

TBBTEi j .

For the next step, we use the following Lemma:

Lemma 5.5.7. Let P, X ∈ Rn×m andQ, Y ∈ Rn×m. Let A,Cj ∈ R
n×n

,B,Dj ∈

R
m×m

, j = 1, . . . , h. If P and Q satisfy

AP + PB +

h∑

j=1

CjPDj + X = 0 and A
TQ+QBT +

h∑

j=1

CTj PD
T
j + Y = 0,

then it holds

tr
(
Y TP

)
= tr

(
XTQ

)
.
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Proof.

tr(Y TP ) = tr((−ATQ−QBT −

h∑

j=1

CTj QD
T
j )
TP )

= −tr(PATQ)− tr(PQBT )−

h∑

j=1

tr(PCTj QD
T
j )

= −tr(PATQ)− tr(BTPQ)−

h∑

j=1

tr(DTj PC
T
j Q)

= tr((−AP − PB −

h∑

j=1

CjPDj)
TQ)

= tr(XTQ).

�

This Lemma together with equations (5.70) and (5.73) gives part (*)

of equation (5.66):

tr(UTCTCU
∂P22

∂Ui j
) = tr((Z + ZT )TQ22) = 2tr(ZQ22),

and together with equations (5.72) and (5.74), the lemma leads to part (+)

of equation (5.66):

tr(−UTCTC
∂P12

∂Ui j
) =tr((P12E

T
ij A

TU + P12U
TATEi j +

m∑

k=1

NkP12E
T
ij N

T
k U

+

m∑

k=1

NkP12U
TNTk Ei j + BB

TEi j)
TQ12).

Now the derivative JU 
an be 
al
ulated:

(JU)i j =2tr

(
ZQ22 + (C

TCUP22 − C
TCP12)E

T
ij

+ UTAEi jP
T
12Q12 + E

T
ij AUP

T
12Q12 + E

T
ij BB

TQ12

+

m∑

k=1

UTNkEi jP
T
12N

T
k Q12 +

m∑

k=1

ETij NkUP
T
12N

T
k Q12

)
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=2tr

(
P22E

T
ij A

TUQ22 + P22U
TATEi jQ22

+

m∑

k=1

ETij NkUP22U
TNTk UQ22 +

m∑

k=1

UTNkEi jP22U
TNTk UQ22

+UTBBTEi jQ22 + A
TUQT12P12E

T
ij + AUP

T
12Q12E

T
ij + BB

TQ12E
T
ij

+

m∑

k=1

NTk UQ
T
12NkP12E

T
ij +

m∑

k=1

NkUP
T
12N

T
k Q12E

T
ij

+(CTCP22 − C
TCP12)E

T
ij

)

=2tr

((
ATUQT12P12 + AUP

T
12Q12 + BB

TQ12 +BB
TUQ22

+

m∑

k=1

NTk UQ
T
12NkP12 +

m∑

k=1

NkUP
T
12N

T
k Q12

+CTCUP22 − C
TCP12 + A

TUQ22P22 + AUP22Q22

+

m∑

k=1

NkUP22U
TNTk UQ22 +

m∑

k=1

NTk UQ22U
TNkUP22

)
ETij

)
.

By de�ning

R = ATU(QT12P12 +Q22P22) + AU(P
T
12Q12 + P22Q22) + BB

T (Q12 + UQ22)

+ CTC(UP22 − P12) +

m∑

k=1

NTk U(Q
T
12NkP12 +Q22U

TNkUP22)

+

m∑

k=1

NkU(P
T
12N

T
k Q12 + P22U

TNTk UQ22), (5.75)

we obtain

JU = 2R. (5.76)

The gradient on the Stiefel manifold 
an now be determined:

∇SJ = JU − UJ
T
U U

= 2(R − URTU). (5.77)
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The gradient on the Grassmann manifold is:

∇GJ = JU − UU
TJU

= 2(R − UUTR). (5.78)

A minimum point of the fun
tion J (U) must satisfy the following 
onditions:

• On St(r, n): (R − URTU) = 0 and UTU = Ir .

• On Gr(r, n): (R − UUTR) = 0 and UTU = Ir .

Using the de�nition of R, one obtains the following lemma.

Lemma 5.5.8. It holds UTR = RTU (i.e. UTR is symmetri
), with R as

given in (5.75).

Proof. Using equations (5.69) to (5.72) one obtains:

UTR =

−(ATQ12)T︷ ︸︸ ︷

UT

(
−CTC + ATUQT12 +

m∑

k=1

NTk UQ
T
12Nk

)
P12

+

−Q22UTAU︷ ︸︸ ︷

UT

(
CTCU + ATUQT22 +

m∑

k=1

NTk UQ22U
TNkU

)
P22

+

(−AP12)T︷ ︸︸ ︷

UT

(
BBT + AUP T12 +

m∑

k=1

NkUP
T
12N

T
k

)
Q12

+

−P22UTAT U︷ ︸︸ ︷

UT

(
BBTU + AUP22 +

m∑

k=1

NkUP22U
TNTk U

)
Q22

= −QT12AP12 −Q22U
TAUP22 − P

T
12A

TQ12 − P22U
TATUQ22

= QT12

(
P12U

TATU +

m∑

k=1

NkP12U
TNTk U +BB

TU

)

+Q22

(
P22U

TATU +

m∑

k=1

UTNkUP22U
TNTk U + UBB

TU

)
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+ P T12

(
Q12U

TAU +

m∑

k=1

NTk Q12U
TNkU − C

TCU

)

+ P22

(
Q22U

TAU +

m∑

k=1

UTNTk UQ22U
TNkU + U

TCTCU

)

= RTU.

�

Using the previous shown lemma, the following theorem results:

Theorem 5.5.9. A minimum point U ∈ Rn×r of the fun
tion J (U) must

satisfy the 
onditions

(R − UUTR) = 0 and UTU = Ir , (5.79)

regardless of whether the minimization is performed on the Stiefel or the

Grassmann manifold.

It is now the obje
tive to �nd a zero of the gradient, i.e. a zero of

(R − UUTR) = 0. Following [69℄ and [68℄ this is done by using a gradient

�ow on the manifolds:

U̇ =
∂U

∂t
= U(t)U(t)TR(t)−R(t). (5.80)

Yan and Lam [69℄ propose to rewrite the equation (5.80) using the symmetry

of UTR with Γ = URT − RUT skew-symmetri
:

U̇ = ΓU. (5.81)

They then suggest the following iteration for updating U:

Uj+1 = exp (tjΓj)Uj . (5.82)

Xu and Zeng [68℄ �nd the new proje
tion matrix Uj+1 by using the geodesi


(i.e. the shortest 
onne
tion of two points) on the Grassmann manifold:

Uj+1 = UjVj cos(tjΣj )V
T
j +Wj sin(tjΣj )V

T
j , (5.83)

with −∇GJ (Uj) = WjΣjV
T
j (the SVD of −∇GJ (Uj )). In addition they

show that

exp (tΓ)U = UV cos(tΣ)V T +W sin(tΣ)V T , (5.84)
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whi
h is also true in the bilinear 
ase. Hen
e, the 
al
ulation of Uj+1 is the

same in both approa
hes.

Remark 5.5.10. As the 
al
ulations of Uj+1 using (5.82) or (5.83) lead to

the same updated matrix, the optimization Yan and Lam performed in [69℄

was already based on a geodesi
 on a Grassmann manifold, whi
h they were

probably not aware of. Hen
e from a present point of view, they were in

fa
t performing a redu
tion on a Grassmann manifold.

It now remains to 
hoose the time step tj su
h that a step in des
ent

dire
tion is performed, i.e. the 
ondition

J (Uj ) ≥ J (Uj+1), (5.85)

needs to be 
omplied. In the linear 
ase, Yan and Lam [69℄ propose two

di�erent time steps. One is based on the original matri
es and 
hosen a

priori, the other one is 
hosen in every step based on the original matri
es

and the 
orresponding matrix Uj . For linear systems and these time steps,

the 
ondition (5.85) is always satis�ed. It is now possible to state the

general optimization algorithm 4 for bilinear systems, inspired by the linear

algorithm given by Yan and Lam [69℄.

Algorithm 4 GFA for bilinear systems (bilGFA).

Input: (A,Nk , B, C), maxIt : maximal number of iterations.

Output: Redu
ed model (Â, N̂k , B̂, Ĉ).

1: Choose a matrix U0 ∈ R
n×r

su
h that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Rj by using equation (5.75).

5: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

6: Compute Γj = UjR
T
j − RjU

T
j .

7: Choose tj .

8: Set Uj+1 = exp(tjΓj)Uj .

9: end for

10: Cal
ulate the redu
ed model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.
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For bilinear systems, the 
al
ulation of adaptive time steps tj is not a

straight forward generalization and requires further investigation. However,


hoosing an appropriate time step 
an be done by using the Armijo step size

as proposed by Xu and Zeng [68℄. With

Uj (t) = UjVj cos(tΣj)V
T
j +Wj sin(tΣj )V

T
j ,

the Armijo stepsize is tA = δ
iγ where i is the smallest nonnegative integer

su
h that

J (Uj )− J (Uj(tA)) ≥ −ǫδ
iγ 〈∇J (Uj ),−∇J (Uj)〉 , (5.86)

holds for δ, ǫ ∈ (0, 1), γ > 0. As −ǫδiγ 〈∇J (Uj ),−∇J (Uj)〉 is positive, it is

obvious that

J (Uj) ≥ J (Uj (tA)) = J (Uj+1). (5.87)

We are now at the point where all steps have been taken to de�ne the

optimization algorithm for a bilinear model. It is a further development

of the linear fast gradient �ow algorithm (FGFA) established by Xu and

Zeng [68℄. We will therefore 
all it the bilinear fast gradient �ow algorithm

(bilFGFA). Its main steps 
an be found under Algorithm 5.

The algorithm ends when the maximal number of iterations maxIt is

rea
hed. However this does not mean that the obtained redu
ed system

(Â, N̂k , B̂, Ĉ) is an optimal model. Therefore, it is reasonable to 
he
k if the

gradient ∇J (U) 
onverges to zero. If it is su�
iently small, the algorithm

should stop.

5.5.4.3. Analysis of the 
onvergen
e behavior of the bilFGFA. Starting

from a BIBO stable original system, and redu
ing with bilFGFA, the resulting

redu
ed system is not known to be BIBO stable. For symmetri
 matri
es A

and Nk , we 
an prove the following result, whi
h ensures the BIBO stability

of the redu
ed system:

Proposition 5.5.11. Let ||u(t)||2 =
√∑m

k=1
|u(t)|2 ≤ M. Let (A,B,Nk , C)

be a bilinear system with

m∑

k=1

||Nk ||2 <
α

βM
, where ||eAt ||2 ≤ βe

−αt , max
i=1,...,n

(Re(λi (A))) < −α(5.89)

(=⇒ system is BIBO stable, 
f. Theorem 2.3.24) and symmetri
 A,Nk . Let

U ∈ Rn×r be orthogonal. Then the redu
ed system Σ̂errbil with Â = UTAU,

B̂ = UTB, N̂k = U
TNkU, Ĉ = CU is BIBO stable.
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Algorithm 5 FGFA for bilinear systems (bilFGFA).

Input: (A,Nk , B, C), maxIt : maximal number of iterations.

Output: Redu
ed model (Â, N̂k , B̂, Ĉ).

1: Choose a matrix U0 ∈ R
n×r

su
h that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Rj by using equation (5.75).

5: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

6: Compute the new sear
h dire
tion Fj = −∇J (Uj ) and its SVD

Fj = WjΣjV
T
j .

7: Minimize J (Uj (t)) over t ≥ 0, where

Uj(t) = UjVj cos(tΣj )V
T
j +Wj sin(tΣj )V

T
j . (5.88)

8: Set tj = tmin and Uj+1 = Uj (tj ).

9: end for

10: Cal
ulate the redu
ed model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.

Proof. As the redu
ed matrix Â and the original matrix A are symmet-

ri
, their eigenvalues are real and the following 
ondition for the eigenvalues

hold [60℄:

λi(A) ≥ λi(Â) ≥ λi+n−r (A), i = 1, . . . , r.

As A is stable, this leads to the 
ondition

−α > λi(A) ≥ λi(Â), i = 1, . . . , r. (5.90)

Therefore, one 
an 
hoose α̂ = α. As A and Â are symmetri
, they 
an be

diagonalized by orthogonal matri
es, and it holds:

||eAt ||2 ≤ ||e
QT ΛQt ||2 = ||Q

T eΛtQ||2 ≤

=1︷ ︸︸ ︷
||QT ||2

=1︷ ︸︸ ︷
||Q||2︸ ︷︷ ︸

=β

||eΛt ||2 ≤ e
−αt

with β = 1.

The same 
al
ulation leads to ||eÂt ||2 ≤ e
−α̂t . Hen
e β = β̂ = 1 and α̂ = α.
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For Nk and N̂k symmetri
, one knows that

||Nk ||2 = max
l=1,...,n

|λl(Nk)| and ||N̂k ||2 = max
l=1,...,r

|λl(N̂k)|.

It also holds:

λi(Nk) ≥ λi(N̂k) ≥ λi+n−r (Nk), i = 1, . . . , r.

Therefore we 
on
lude with |λi (N̂k)| ≤ max{|λ1(Nk)|, |λn(Nk)|}:

||N̂k ||2 = max
l=1,...,r

{|λl(N̂)|} ≤ max{|λ1(Nk)|, |λn(Nk)|} = ||Nk ||2.

We �nish by 
al
ulating

m∑

k=1

||N̂k ||2 ≤

m∑

k=1

||Nk ||2 <
α

Mβ
=

α̂

Mβ̂
,

from whi
h it follows that the redu
ed system is BIBO stable. �

Corollary 5.5.12. If A and Nk are symmetri
 and the 
ondition (5.89) holds,

the error system is BIBO stable and it holds αerr = α = α̂, βerr = β = β̂ = 1

if the redu
tion is performed with an orthogonal U ∈ Rn×r .

Proof. If the redu
tion is performed by an orthogonal U, then Aerr and

Nerrk are symmetri
, as Â and N̂k stay symmetri
. For a system ful�lling


ondition (5.89), it holds α = α̂ and β = β̂ = 1 as shown in Proposition

5.5.11. As

λmax(A
err) = λmax

([
A
Â

])
= max{λmax(A), λmax(Â)} ≤ max{−α,−α̂},= −α,

one 
an 
hoose αerr = α = α̂. The symmetri
 matrix Aerr 
an be diagonal-

ized by an orthogonal matrix, and it holds

||eA
errt ||2 ≤ ||e

QT ΛerrQt ||2 = ||Q
T eΛ

err tQ||2 ≤

=1︷ ︸︸ ︷
||QT ||2

=1︷ ︸︸ ︷
||Q||2︸ ︷︷ ︸

=βerr

||eΛ
err t ||2 ≤ e

−αerr t ≤ e−αt ,

with βerr = β = β̂ = 1. Using ||N̂k ||2 ≤ ||Nk ||2 (
f. Proposition 5.5.11) one


an 
on
lude that ||Nerrk ||2 = max{||Nk ||2, ||N̂k ||2} = ||Nk ||2. As the original

system satis�es the 
ondition (5.89), one 
on
ludes

m∑

k=1

||Nerrk ||2 =

m∑

k=1

||Nk ||2 <
α

Mβ
=

αerr

Mβerr
,
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and hen
e the error system is BIBO stable. �

The following theorem states, that the gradient of the fun
tion 
on-

verges to zero while using Algorithm 5.

Theorem 5.5.13. Let A and Nk be symmetri
 and let

||u(t)||2 =

√√√√
m∑

k=1

|u(t)|2 ≤ M.

For a bilinear system (A,B,Nk , C) with

m∑

k=1

||Nk ||2 <
α

βM
, where ||eAt ||2 ≤ βe

−αt , max
i=1,...,n

(Re(λi(A))) < −α (5.89)

(=⇒ system is BIBO stable), the Algorithm 5 provides BIBO stable redu
ed

models and is globally 
onvergent in the sense that for any initial proje
tion

matrix U0 it holds

lim
j→∞
||∇J (Uj )|| = 0. (5.91)

Proof. The redu
ed systems are BIBO stable (
f. Proposition 5.5.11).

Hen
e Â in parti
ular is stable and therefore (as we assume all Grami-

ans to exist), the H2-norm of the error system 
an be 
al
ulated using

equation (5.42). It holds J (U) = ||Σerr||2H2
and the fun
tion J (U) =

tr(CTC(P11 − 2P12U
T + UP22U

T )), seen as a fun
tion from R
n×r → R,

is smooth. As St(r, n) ⊂ Rn×r is an embedded submanifold of R
n×r

and

G(r, n) ∼= St(r, n)/Or , J 
an be seen as a smooth fun
tion on the Grass-

mann manifold.

Using the 
ondition for the Armijo stepsize,

J (Uj )− J (Uj (tA)) ≥ −ǫδ
iγ 〈∇J (Uj ),−∇J (Uj )〉 , (5.92)

one 
an 
on
lude, that

J (Uj) ≥ J (Uj (tA)) = J (Uj+1). (5.93)

Using the 
onvergen
e analysis provided by Absil et al. ([1℄ 4.3.1,4.3.2), the

remaining steps of the proof 
an be exe
uted:
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First it will be shown, that for an in�nite sequen
e {Uj} generated by

Algorithm 5, every a

umulation point of {Uj} is a 
riti
al point of J .

We pro
eed by 
ontradi
tion. Let there be a subsequen
e {Uj}j∈K whi
h


onverges to an U∗ with ∇J (U∗) 6= 0. As it holds

J (Uj ) ≥ J (Uj+1), (5.94)

it follows that the sequen
e J (Uj ) 
onverges to J (U∗). Using Algorithm 5

we know that the 
ondition

J (Uj )− J (Uj+1) ≥ −ǫt
j
A 〈∇J (Uj ),−∇J (Uj )〉 ,

holds. The sequen
e −∇J (Uj ) is gradient related (
f. De�nition 2.2.2) and

we know that J (Uj)−J (Uj+1) must 
onverge to zero, hen
e {t jA}j∈K → 0.

As t jA = δ
mjγ is the Armijo stepsize, there exists a j su
h that everyK ∋ j ≥ j

satis�es the Armijo 
ondition. Hen
e, for

t j
A
δ
the Armijo 
ondition is not full-

�lled and it holds:

J (Uj)− J

(
Uj

(
t jA
δ
,−∇J (Uj )

))
< −ǫ

t jA
δ
〈∇J (Uj ),−∇J (Uj )〉 ∀j ∈ K, j ≥ j .

We de�ne ηj =
−∇J (Uj )
||−∇J (Uj )|| and αj =

t j
A
||−∇J (Uj )||

δ . It 
an be shown by a simple


al
ulation that Uj

(
t j
A
δ
,−∇J (Uj )

)
= Uj (αj , ηj). We de�ne the fun
tion

ĴUj = J ◦ Uj : TUj → Gr(r, n) (5.95)

whi
h allows us to rewrite the inequality above as:

ĴUj (0)− ĴUj (αj , ηj)

αj
< −ǫ 〈∇J (Uj ), ηj〉 ∀j ∈ K, j ≥ j .

We 
an now use the mean value theorem to obtain for t ∈ [0, αj ]:

−DĴUj (t, ηj)[ηj ] < −ǫ 〈∇J (Uj), ηj〉 ∀j ∈ K, j ≥ j . (5.96)

A detailed explanation of the di�erential 
an be found in the book of Absil

[1℄. We already stated that {t jA}j∈K → 0. As −∇J (Uj) is gradient related
and hen
e bounded, it holds {αj}j∈K → 0 as well. Every ηj has unit norm,

and therefore they belong to a 
ompa
t set. Hen
e there exists K̃ ⊂ K su
h

that {ηj}j∈K̃ → η∗ for η∗ with ||η∗|| = 1. Sin
e the metri
 on the tangential

spa
e is 
ontinuous, it holds DĴUj (0, ηj)[ηj ] = 〈∇J (Uj), ηj〉 (
f. Absil [1℄,
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Chapters 3.6 and 4.4) and J is smooth, we take the limit over K̃ in (5.96)

whi
h leads to:

−〈∇J (U∗), η∗〉 ≤ −ǫ 〈∇J (U∗), η∗〉 . (5.97)

Sin
e ǫ < 1, it follows that 〈∇J (U∗), η∗〉 ≥ 0. But as −∇J (Uj ) is gradient

related, one has 〈∇J (U∗), η∗〉 < 0 whi
h leads to a 
ontradi
tion. Hen
e

every a

umulation point of {Uj} is a 
riti
al point of J .

It is left to show that limj→∞ ||∇J (Uj )|| = 0 holds.

As Gr(r, n) is a 
ompa
t manifold, the following set is 
ompa
t (
f.

[1℄):

L = {U ∈ Gr(r, n) : J (U) ≤ J (U0)}.

We pro
eed by 
ontradi
tion and assume that there is a subsequen
e {Uj}j∈K
and σ > 0 su
h that ||∇J (Uj )|| > σ for all j ∈ K. We see that {Uj}j∈K ⊂ L
and sin
e L is 
ompa
t the sequen
e has an a

umulation point U∗ in L. As

the gradient is 
ontinuous it follows ||∇J (U∗)|| ≥ σ and U∗ is not a 
riti
al
point, whi
h 
ontradi
ts the statement shown before.

�

5.5.4.4. The sequentially quadrati
 approximation. In addition to their

FGFA algorithm, Xu and Zeng [68℄ proposed a se
ond algorithm, whi
h they


all sequentially quadrati
 approximation (SQA). The idea is to �nd a sear
h

dire
tion by minimizing the fun
tion

J̃ (U) = tr(CTC(P11 + UP
j
22U

T − 2P j12U
T )), (5.98)

in every iteration j and then to proje
t the di�eren
e of Uj and the obtained

minimal matrix Ũ on the tangential spa
e T[Uj ]Gr(r, n) and use this proje
tion

as the new sear
h dire
tion. Considering the bilinear Wilson 
onditions as

given in Theorem 5.5.1, a minimum of J̃ (U) 
ould be obtained by using

Ũ = P j12(P
j
22)
−1
. The di�eren
e between Uj and Ũ shall now be used as

sear
h dire
tion. One has to note that [Ũ] /∈ Gr(r, n) in most 
ases, and

hen
e Ũ − Uj is a di�eren
e de�ned in R
n×r

. Nevertheless, after proje
ting

onto T[Uj ]Gr(r, n) with Π = (In − UjU
T
j ) one obtains:

∆j = Π(Ũ − Uj) = Ũ − Uj(U
T
j Ũ). (5.99)

Using this ∆j and the negative gradient−∇J (Uj ), one 
an de�ne a gradient

related sequen
e (
f. De�nition 2.2.2).



98 5. MODEL ORDER REDUCTION

Proposition 5.5.14. If the sequen
e (∆j )j is bounded and it holds c1 < ||∆j ||

and

〈∇J (Uj ),∆j〉
||∇J (Uj )||·||∆j || < c2 with c1 > 0 and c2 ∈ (−1, 0), then the sequen
e (∆j )j

is gradient related.

Proof. Let (Uj )j∈K be a subsequen
e that 
onverges to a non 
riti
al

point of J . One needs to show that the subsequen
e (∆j )j∈K is bounded

and it holds

lim
j→∞

sup
j∈K
〈∇J (Uj ),∆j〉 < 0. (5.100)

As the sequen
e (−∇J (Uj ))j is gradient related, it holds

lim
j→∞

sup
j∈K
〈∇J (Uj ),−∇J (Uj )〉 < 0

⇔ lim
j→∞

sup
j∈K
||∇J (Uj )|| > 0.

It is assumed that

〈∇J (Uj ),∆j〉

||∇J (Uj )|| · ||∆j ||
< c2,

with c2 ∈ (−1, 0). Hen
e we obtain

〈∇J (Uj),∆j〉

||∇J (Uj)|| · ||∆j ||
< c2

⇔ 〈∇J (Uj ),∆j〉 < c2||∇J (Uj )|| · ||∆j ||

⇔ lim
j→∞
sup
j∈K
〈∇J (Uj ),∆j〉 < c2 c1 lim

j→∞
sup
j∈K
||∇J (Uj)||

︸ ︷︷ ︸
>0

⇔ lim
j→∞
sup
j∈K
〈∇J (Uj ),∆j〉 < 0.

�

As long as ||∆j || > c1 and

〈∇J(Uj ),∆j〉
||∇J(Uj )||·||∆j || < c2 are ful�lled, the gener-

ated sequen
e {Uj} is gradient related. If the inequalities are not ful�lled

anymore, one 
an keep the sequen
e of the Uj gradient related by taking

−∇J(Uj ) as new sear
h dire
tion. The following Algorithm 6 
an be estab-

lished.
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Algorithm 6 SQA for bilinear systems (bilSQA).

Input: (A,Nk , B, C), parameters c1 > 0, and c2 ∈ (−1, 0),

maxIt : maximal number of iterations.

Output: Redu
ed model (Â, N̂k , B̂, Ĉ)

1: Choose a matrix U0 ∈ R
n×r

su
h that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Ũ = P j12(P
j
22)
−1

and 
al
ulate ∆j .

5: Compute Rj by using equation (5.75).

6: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

7: if ∆j satis�es ||∆j || > c1 and
〈∇J (Uj ),∆j〉
||∇J (Uj )||·||∆j || < c2 then.

8: Compute the sear
h dire
tion Fj = ∆j .

9: else

10: Use Fj = −∇J (Uj ) .

11: end if

12: Compute Fj = WjΣjV
T
j .

13: Minimize J (Uj (t)) over t ≥ 0 where

Uj(t) = UjVj cos(tΣj )V
T
j +Wj sin(tΣj )V

T
j . (5.101)

14: Set tj = tmin and Uj+1 = Uj (tj).

15: end for

16: Cal
ulate the redu
ed model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.

In this Chapter, we have reviewed and stated methods from linear MOR

(Balan
ed Trun
ation, Krylov Subspa
e Methods and H2-optimal MOR),

parametri
 MOR and bilinear MOR, with a spe
ial fo
us on bilinear H2-

optimal MOR. Two main approa
hes for bilinear H2-optimal MOR have

been presented. First, the interpolatory approa
h leading to the Bilinear

Interpolatory Krylov Algorithm (BIRKA, 
f. Algorithm 3, [12℄) has been

stated. It has been extended to systems with E 6= In, E nonsingular. Se
-

ond, new algorithms for the H2-optimal MOR have been derived. They rely

on methods from optimization on Grassmann manifolds and their main ad-

vantage is the preservation of stability. For bilinear systems with A and Nk
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symmetri
, both 
onvergen
e and stability preservation of the algorithms

have been proven. However, for non-symmetri
 systems this remains an

open problem and 
an be the obje
tive of future resear
h.
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In this 
hapter we will fo
us on the appli
ability of BIRKA to the pre-

sented thermal models. Several strategies need to be developed to over
ome

the 
hallenges that a

ompany the adoption of a new algorithm within an

industrial 
ontext. They 
an be found in the next se
tions.

6.1. Krone
ker produ
t appproximation

The original BIRKA (
f. Algorithm 3) 
al
ulates the proje
tion matri
es

for model order redu
tion via the following Krone
ker produ
ts:

ve
(V ) =

(
−In̂ ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B) ve
(Im),

(6.1a)

ve
(W ) =

(
−In̂ ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗N
T
k

)−1
(C̃T ⊗ CT ) ve
(Ip).

(6.1b)

101
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However � for large systems� this 
al
ulation of the proje
tion matri
es V

and W is not feasible due to the Krone
ker produ
t, whi
h rapidly in
reases

the number of the equations to be handled. Benner and Breiten [12℄ propose

an iterative method to over
ome this di�
ulty. For the 
al
ulation of the

proje
tion matri
es, a Neumann Series is employed in the following way:

ve
(V ) =

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗Nk

)−1
(B̃T ⊗ B) ve
(Im)

=︸︷︷︸
(×)

∞∑

i=0

[
(−Ir ⊗ A− Λ⊗ E)

−1(

m∑

k=1

Ñk
T
⊗ Nk)

]i

· (−Ir ⊗ A− Λ⊗ E)
−1(B̃T ⊗B) ve
(Im)

= (−Ir ⊗ A− Λ⊗ E)
−1(B̃T ⊗ B)vec(Im)︸ ︷︷ ︸

ve
(V 1)

+ (−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗ Nk) ve
(V

1)

︸ ︷︷ ︸
ve
(V 2)

· · ·+ (−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗ Nk) ve
(V

j−1)

︸ ︷︷ ︸
ve
(V j )

+ · · ·

=

∞∑

j=1

ve
(V j), (6.2)

where (×) is only valid if ||(−Ir ⊗ A − Λ ⊗ E)
−1(
∑m

k=1
Ñk
T
⊗ Nk)||2 < 1

holds. In pra
ti
e, the in�nite sum is trun
ated after an appropriate number

of additions. The 
olumns of the summands V j are now 
al
ulated without

using any Krone
ker produ
ts:

V 1i = (−λiE − A)
−1BB̃i ,

V 2i = (−λiE − A)
−1

(
m∑

k=1

NkV
1(Ñk)i

)
,
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.

.

.

V ji = (−λiE − A)
−1

(
m∑

k=1

NkV
j−1(Ñk)i

)
, for i = 1, . . . , r.

This 
al
ulation 
an be exe
uted in the same way for ve
(W ). The same

proje
tion matri
es are 
al
ulated using the Trun
ated BIRKA proposed

by Flagg [34℄. The large matri
es (−λiE − A) 
an be fa
torized by an

LU-de
omposition so that V ji 
an be 
al
ulated e�
iently. In any 
ase,

approximating the Krone
ker produ
t as in (6.2) 
an lead to divergen
e if

||(−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗Nk)||2 ≥ 1.

It is advisable to 
he
k if this norm remains smaller than 1 during the ex-

e
ution of BIRKA, as divergen
e might lead to poor redu
ed order mod-

els. However, a dire
t 
al
ulation of the norm involves the inversion of

(−Ir ⊗ A − Λ ⊗ E) ∈ R
rn×rn

, whi
h is not feasible for large systems due

to high memory demands. Hen
e, the 
al
ulation of the Krone
ker produ
t

has to be avoided. To this aim, we introdu
e the following norm estimation:

∣∣∣∣∣

∣∣∣∣∣(−Ir ⊗ A− Λ⊗ E)
−1

(
m∑

k=1

Ñk
T
⊗Nk

)∣∣∣∣∣

∣∣∣∣∣
2

≤ ||(−Ir ⊗ A− Λ⊗ E)
−1||2||

m∑

k=1

Ñk
T
⊗Nk ||2

≤ ||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
⊗Nk ||2

≤︸︷︷︸
see below

1

||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
||2||Nk ||2.

(6.3)

If the last expression is smaller than 1, the algorithm is de�nitly usable. We

have thus derived a su�
ient 
ondition.

The norm ||(−Ir ⊗A− Λ⊗E)
−1||2 
an be 
al
ulated without expli
it inver-

sion of the matrix. The following Lemmata (
f. [60℄ Chapter I.4 and [5℄

Chapter 3) will be used to establish the new result for the 
al
ulation of the


orresponding norm in Proposition 6.1.3.

1 ||M1 ⊗M2||2 = ||M1||2||M2||2[44℄, Corollary 13.11.
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Lemma 6.1.1. For M ∈ Cn×n nonsingular:

||M−1||2 =
1

mini=1...n

√
λi(MM

T
)

.

Lemma 6.1.2. For a normal matrix M:

||M−1||2 =
1

mini=1...n |λi(M)|
.

By using the two Lemmata 6.1.1 and 6.1.2, we derive the following

proposition, whi
h will be used for the 
al
ulation of the norm of (−Ir ⊗A−

Λ⊗ E)−1.

Proposition 6.1.3. For A,E ∈ Rn×n , symmetri
, D = diag(d1, . . . , dr ),

dk ∈ C:

||(−Ir ⊗ A−D ⊗ E)
−1||2 =

1

θ
,

where

θ = min
k=1...r

{
|λmin(−A− dkE)| for Im(dk) = 0√
λmin((−A− dkE)(−A − dkE)

T
) else

Proof. The above matrix 
an be written as follows:

(−Ir ⊗ A−D ⊗ E) =




−A− d1E 0 . . . 0

0 −A− d2E . . . 0
.

.

.

.

.

.

0 . . . 0 −A− drE


 ,

with dk ∈ C. For dk ∈ R it is obvious that (−A − dkE) is normal due

to A and E symmetri
, and thus Lemma 6.1.2 
an be used for 
al
ulating

λmin(−A−dkE). For dk ∈ C the eigenvalue λmin((−A−dkE)(−A − dkE)
T
)

is determined using Lemma 6.1.1. Taking the minimum of all 
al
ulated

eigenvalues and inverting it 
on
ludes the proof. �

The 
al
ulation of ||(−Ir ⊗A−Λ⊗E)
−1||2 
an now be done by Propo-

sition 6.1.3 using the MATLAB

R©
[47℄ fun
tion eigs. For the estimation of

the norm as given in equation (6.3), it remains to 
al
ulate the norms of Nk
and Ñk , whi
h is done in MATLAB with the fun
tions normest and norm,

respe
tively.

For randomly 
hosen initial values, the norm estimate is possibly greater
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than 1. However, as Λ and Ñk 
hange towards their optimal values, the

norm estimate improves. For this reason, at least two or three iterations

should be performed to 
he
k if the norm is smaller than 1 with better

approximations of Λ and Ñk .

6.2. Stability

In 
ontrast to the observations in [12℄, unstable systems have been

en
ountered when applying BIRKA to industrial problems. Hen
e, a 
on
ept

for stability preservation for the redu
tion with BIRKA is needed. Stability

for linear and bilinear systems has been dis
ussed in Se
tions 2.3.1.1 and

2.3.2.2. Whenever we speak of a linear stable system, we refer to a system

with Re(λi(A,E)) < 0 for the eigenvalues λi of a system.

For the spe
ial bilinear systems that result from parametri
 systems (
f.

Se
tion 5.3.2), it is possible to dedu
e a relation between the eigenvalues

of the matri
es A and A+
∑m

k=1
ukNk . As Nk = 0 for uk resulting from the

original linear inputs, only the inputs that are time independent will be taken

into a

ount and thus a 
omparison of the linear and bilinear eigenvalues is

reasonable. In other words it holds (
f. Se
tion 5.3.2):

m∑

k=1

ukNk =

m∑

k=1

ukNk ,

and we use the latter for our 
omparison. Theorem 2.1.5 and Corollary

2.1.6, originally due to Bauer and Fike [38℄, allow us to show Proposition

6.2.1, providing results for the distan
e between the 
onsidered eigenvalues

and the stability of the bilinear system in terms of the eigenvalues:

Proposition 6.2.1. Let A = Xdiag(λ1, . . . , λn)X
−1

with Re(λi(A)) < −c <

0 for all i = 1, . . . , n. If

||u||2

m∑

k=1

||Nk ||2 <
c

κ2(X)
, (6.4)

then for any j ∈ {1, . . . , n}, there exists an i ∈ {1, . . . , n} su
h that

|λi(A)− λj(A+

m∑

k=1

ukNk)| < c.

In addition Re(λj (A+
∑m

k=1
ukNk)) < 0 for j = 1, . . . , n.
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Proof. With Corollary 2.1.6 one 
on
ludes:

|λi (A)− λj(A +

m∑

k=1

ukNk)| ≤ κ2(X)||

m∑

k=1

ukNk ||2

≤ κ2(X)||u||2||

m∑

k=1

Nk ||2

< c.

Assume Re(λj(A +
∑m

k=1
ukNk)) ≥ 0 for one �xed j ∈ {1, . . . , n}. As

c < |Re(λi(A))| for all i = 1, . . . , n and for j there exists i su
h that

|λi(A)− λj(A +
∑m

k=1
ukNk)| < c one 
al
ulates:

c < |Re(λi(A))|

≤ |Re(λi(A))| +Re(λj(A +

m∑

k=1

ukNk))

= |Re(λi(A))− Re(λj (A+

m∑

k=1

ukNk)|

≤

√(
Re(λi (A))− Re(λj(A +

∑m

k=1
ukNk))

)2
+
(
Im(λi(A))− Im(λj (A+

∑m

k=1
ukNk))

)2

< c,

whi
h leads to a 
ontradi
tion. Therefore Re(λj (A +
∑m

k=1
ukNk)) < 0

holds. �

For systems with E = In and su�
ently small inputs uk and matri-


es Nk (
f. (6.4)), the bilinear system remains stable and every eigenvalue

of the bilinear system lies in a neighbourhood of an eigenvalue of the lin-

ear system. For E nonsingular, Proposition 6.2.1 remains valid for E−1A
and

∑m

k=1
ukE

−1Nk . Hen
e, it will be assumed that the eigenvalues of

E−1A +
∑m

k=1 ukE
−1Nk and E

−1A are su�
iently 
lose. This leads to the

fa
t that stability preserving methods for the linear systems will be used, as

we assume the pertubation in the eigenvalues of E−1A resulting from adding∑m

k=1
ukE

−1Nk to be small.
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6.2.1. Stability preservation using the systems Gramians. For linear

systems (i.e. Nk = 0, k = 1, . . . , m), stability 
an be preserved by using the

following result due to Youse� [70℄. Basi
ally, Villemagne and Skelton [66℄

have stated it even earlier, whereas Guger
in [39℄ used it in 
ontext of an

interpolatory approa
h. Youse� in
orporated the fa
t that the eigenvalues

of the redu
ed model will not ex
eed a 
ertain value σ.

Proposition 6.2.2. Given a linear stable system (A,B,C) with Re(λi(A)) <

−σ < 0 for i = 1, . . . , n. Then for any arbitrary full row rank matrix

V ∈ Rn×k and W = QV (V TQV )−1, where Q = QT > 0 satis�es ATQ +

QA + 2σQ < 0, the redu
ed model (Â, B̂, Ĉ) is stable and Â = W TAV

satis�es Re(λi(Â)) < −σ for i = 1, . . . , r .

For positive semide�nite Q, the proposition remains valid, if one as-

sumes V TQV to be invertible. We generalize this for a system with E 6= I,

E nonsingular, Q positive semide�nite and Q̂ = V TETQEV nonsingular,

whi
h � up to the author's knowledge � has not been stated elsewhere.

Proposition 6.2.3. Given a linear stable system (E, A,B, C) with E non-

singular and Re(λi(A, E)) < −σ < 0 for i = 1, . . . , n. Let Q = QT ≥ 0

satisfy

ATQE + ETQA+ 2σETQE ≤ 0. (6.5)

Then for any arbitrary full rank matrix V ∈ Rn×r with Q̂ = V TETQEV non-

singular (and therefore Q̂ > 0), the redu
ed model (Ê, Â, B̂, Ĉ) generated

with

W = QEV (V TETQEV )−1,

is stable and satis�es Re(λi(Â, Ê)) ≤ −σ for i = 1, . . . , r .

The proof of the Proposition follows exa
tly the proof of Youse� (
f.

Proposition 6.2.2). However, as we have introdu
ed two generalizations �

the presen
e of the E matrix and the non-stri
t Lyapunov inequality (
f.

equation (6.5)) � we state it here for 
ompleteness.
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Proof. Multiplying equation (6.5) with V T and V and making use of

Ir = (V
TETQEV )−T (V TETQEV )T = (V TETQEV )−1(V TETQEV ),

leads to:

V TATQEV + V TETQAV + 2σV TETQEV ≤ 0

⇒V TAT QEV (V TETQEV )−T︸ ︷︷ ︸
W

(V TETQEV )T︸ ︷︷ ︸
Q̂

(V TETQEV )−1(V TETQ︸ ︷︷ ︸
W T

EV )

+ V TET QEV (V TETQEV )−T︸ ︷︷ ︸
W

V TETQEV︸ ︷︷ ︸
Q̂

(V TETQEV )−1V TETQ︸ ︷︷ ︸
W T

AV

+ 2σV TET QEV (V TETQEV )−T︸ ︷︷ ︸
W

(V TETQEV )T︸ ︷︷ ︸
Q̂

· (V TETQEV )−1V TETQ︸ ︷︷ ︸
W T

EV ≤ 0

⇒V TATWQ̂W TEV + V TETWQ̂W TAV + 2σV TETWQ̂W TEV ≤ 0

⇒ÂT Q̂Ê + ÊT Q̂Â+ 2σÊT Q̂Ê ≤ 0

⇒(Â+ σÊ)T Q̂Ê + ÊT Q̂(Â+ σÊ) ≤ 0.

Using the identity Ê = W TEV = (V TETQEV )−T V TETQEV = Ir , let λ
r
i

and vi be any eigenvalue and eigenve
tor of Â+ σIr , then:

(Â + σIr )
T Q̂+ Q̂(Â + σIr ) ≤ 0⇒v

∗
i (Â+ σIr )

T Q̂vi + v
∗
i Q̂(Â + σIr )vi ≤ 0

⇒λri v
∗
i Q̂vi + λ

r
i v
∗
i Q̂vi ≤ 0

⇒(λri + λ
r
i )v

∗
i Q̂vi ≤ 0

⇒2Re(λri )v
∗
i Q̂vi ≤ 0

(v ∗i Q̂vi > 0)⇒Re(λ
r
i ) ≤ 0.

The eigenvalues of the redu
ed system are the eigenvalues of Â as Ê = Ir .

Using λri vi = (Â + σIr )vi this leads to Âvi = λri vi − σvi = (λ
r
i − σ)vi .

As Re(λri ) ≤ 0 and −σ < 0, one 
an 
on
lude that Re(λri − σ) < 0 and

therefore the redu
ed system is stable. �

The dual result is also true:
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Proposition 6.2.4. Given a linear stable system (E, A,B, C) with E nonsin-

gular and Re(λi(A, E)) < −σ < 0 for i = 1, . . . , n, then for any arbitrary

full row rank matrix W ∈ Rn×r and P = P T ≥ 0 whi
h satisfy

APET + EPAT + 2σEPET ≤ 0, (6.6)

and nonsingular P̂ = WEPETW T
, the redu
ed model (Ê, Â, B̂, Ĉ) gener-

ated with

V = PETW T (WEPETW T )−1,

is stable and satis�es Re(λi(Â, Ê)) ≤ −σ for i = 1, . . . , r .

Proof. The proof is analogous to the one of Proposition 6.2.3. �

For the 
al
ulation of the proje
tion matrix W the following Lyapunov

equation is solved:

(A+ σE)TQE + ETQ(A + σE) = −CTC ≤ 0, (6.7)

for a σ < |Re(λmax(A, E))|. Hen
e one obtains

W = QEV (V TETQEV )−1,

as in Proposition 6.2.3. The solution of the Lyapunov equation (6.7) is pos-

itive semide�nite, as the shifted system (A+σE, E) remains asymptoti
ally

stable.

Equation (6.7) 
an be solved by using the low rank ADI iteration (
f. for

example [15, 57℄) whi
h generates a low rank fa
tor Z, su
h that Q ≈ ZTZ.

The 
al
ulated low rank matrix Q̂ ≈ V TETZTZEV 
an be singular. This

always o

urs if rk(Z) < rk(V ) = r . Even if rk(V ) ≤ rk(Z) one 
an not


on
lude that V TETQEV is nonsingular

2

, but for rk(V ) relatively small 
om-

pared to rk(Z) it is often true.

Solving large Lyapunov equations is numeri
ally demanding. For large sys-

tems (n > 500, 000) it might be impossible � even with highly developed

methods su
h as the ADI algorithm. Hen
e, this stability preserving method

will rea
h its limitations when the system's dimensions get too large.

2n = 4, E = I4, V TETZT =

(
1 1 0 0
0 0 1 1

)( 1 0 1
−1 0 0
0 −1 0
0 1 0

)
=

(
0 0 1
0 0 0

)
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6.2.2. Stability preservation via one-sided proje
tions. In the spe
ial


ase of symmetri
 matri
es E,A and Nk and positive de�nite E, another

possibility for preserving stability is to use only a single proje
tion matrix

(this is 
alled one-sided method). The matri
es of thermal systems provided

in Se
tion 4.1 have exa
tly these properties, and therefore this stability

preservation approa
h is of interest.

Proposition 6.2.5 ([22℄). Given a linear system (i.e. Nk = 0) with A,E

symmetri
. If E = ET > 0 and A = AT < 0 then the system is asymptoti-


ally stable.

Corollary 6.2.6 (4.4,[60℄). Let A ∈ Rn×n be a symmetri
 matrix, V ∈ Rn×r

have orthonormal 
olumns, and Â = V TAV . Then

λi(A) ≥ λi(Â) ≥ λi+n−r (A), i = 1, . . . , r. (6.8)

Corollary 6.2.7 ([22℄). Given a linear system with E = ET > 0 and A =

AT < 0, for i = 1, . . . , n. Let V ∈ Rn×r have orthonormal 
olumns, Â =

V TAV and Ê = V TEV , then the redu
ed system is asymptoti
ally stable.

Proof. With Corollary 6.2.6 one 
an 
on
lude that the eigenvalues of

the matrix Â = V TAV are negative. As Â = ÂT and V TEV = Ê =

ÊT > 0 one 
on
ludes with Proposition 6.2.5 that the redu
ed system is

asymptoti
ally stable. �

Hen
e for linear systems with A and E symmetri
 and E positive de�-

nite, stability 
an be preserved via one-sided proje
tions. As shown in Propo-

sition 6.2.1, the eigenvalues of a bilinear system, derived from a linear para-

metri
 system, 
an now be related to the eigenvalues of this linear system.

Using Proposition 2.1.7 and Corollary 2.1.8, this leads to the following re-

sult:

Corollary 6.2.8. Let uk ∈ R for k = 1, . . . , m, A ∈ Rn×n and Nk ∈ R
n×n

symmetri
 with eigenvalues 0 > λ1(A) ≥ · · · ≥ λn(A) and λ1(Nk) ≥ · · · ≥

λn(Nk). Given that V ∈ R
n×r

has orthonormal 
olumns and Â = V TAV and

N̂k = V
TNkV , then it holds

|λi(Â+

m∑

k=1

ukN̂k)− λi(Â)| ≤ ||u||2

m∑

k=1

||Nk ||2. (6.9)
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Proof. Corollary 2.1.8 leads to

|λi(Â +

m∑

k=1

ukN̂k)− λi(Â)| ≤ ||

m∑

k=1

ukN̂k ||2

≤ ||u||2

m∑

k=1

||N̂k ||2.

As Nk and N̂k are symmetri
, they are normal and therefore ful�ll

||N̂k ||2 = max
i=1,...,r

|λi(N̂k)| = max{|λ1(N̂k)|, |λr (N̂k)|},

and

||Nk ||2 = max
i=1,...,n

|λi(Nk)| = max{|λ1(Nk)|, |λn(Nk)|}.

With Corollary 6.2.6 one 
on
ludes λ1(Nk) ≥ λi(N̂k) ≥ λn(Nk). This leads

to ||N̂k ||2 ≤ ||Nk ||2 and therefore equation (6.9) holds. �

If ||u||2
∑m

k=1
||Nk ||2 is su�
iently small, one 
an assume that λi(Â +∑m

k=1
ukN̂k) ≈ λi(Â) and therefore the redu
ed bilinear system is stable if

the linear system is stable (
f. Corollary 6.2.7). In addition it holds:

Corollary 6.2.9. Under the assumptions of Corollary 6.2.8 let c ∈ R+

with c < |λmax(Â)| = |λ1(Â)|. If ||u||2
∑m

k=1
||Nk ||2 < c then λi(Â +∑m

k=1
ukN̂k) < 0.

Proof. Assume λi(Â +
∑m

k=1
ukN̂k) ≥ 0 and 
al
ulate using equation

(6.9):

c < |λ1(Â)| ≤ |λi (Â)|

≤ |λi(Â)|+ λi(Â+

m∑

k=1

ukN̂k)

= |λi(Â)− λi(Â+

m∑

k=1

ukN̂k)| < c.

This leads to a 
ontradi
tion, so λi(Â+
∑m

k=1
ukN̂k) < 0. �
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Remark 6.2.10. Using one-sided proje
tions for the redu
tion of symmet-

ri
 matri
es, one 
an not only derive 
onditions for the eigenvalues of the

bilinear rewritten parametri
 models (as given in 6.2.8 and 6.2.9), but also

derive the BIBO stability preservation of general bilinear systems, as it has

been done in Proposition 5.5.11.

6.2.3. Stability preservation - the work�ow. As the redu
ed models

that have been 
al
ulated with the stabilization pro
ess using the Gramians

are in most 
ases better than those generated by a one-sided approa
h, the

work�ow in Figure 6.1 applies.

Fix a redu
ed order r . Is solving

equation (6.7) by an ADI iteration

possible?

Yes

Solve the equation (6.7) and determine

the rank rk(Z) = l .

l ≫ r

Stability preservation via Proposi-

tion 6.2.3.

l < r

No

Use a one-sided approa
h.

Figure 6.1. Proposed work�ow for stabilization.

The reader should note that l ≫ r indi
ates the fa
t that the matrix Q̂

(
f. Se
tion 6.2.1) 
an still be singular, but for the 
ase of l ≫ r , it is more

likely that Q̂ is invertible.

Remark 6.2.11. For the redu
tion with these stability preserving methods,

the matrix W originally given by BIRKA (
f. Algorithm 3) is not used within

the redu
tion. Instead, either the matrix W given by Proposition 6.2.3 or

simply W = V (the one-sided approa
h) is used. This leads to the fa
t

that the derived H2-optimality 
onditions as given in equations (5.43) to

(5.47) or (5.50) to (5.53) are not 
ompletely ful�lled anymore. Only the
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onditions (5.47) or (5.53) hold, as they only depend on the 
al
ulation of

the matrix V .

6.2.4. Stabilization via mirroring of eigenvalues. Re
ently, Zeng, Chen

and Lu [71℄ proposed a stability preservation for IRKA (
f. Algorithm 1).

After redu
ing the model by a proje
tion matrix generated during an IRKA

step, the matrix Â = S−1ΛS (assume Ê = Ir ) is diagonalized and its unsta-

ble eigenvalues are mirrored:

λjmir = −|Re(λj)|+ i · Im(λj ).

Finally, set Â = S−1ΛmirS as the stable redu
ed matrix. In the bilinear 
ase,

this method 
an be used to obtain Re(λi(Â)) < 0. However with this step,

the BIBO stability will not be 
onsidered.

In Figure 6.2, results for the redu
tion with stabilization for di�erent orders

are 
ompared. We redu
e the simpli�ed motor with n = 2, 952 (
f. Se
tion

4.3.2). However, we will not in
orporate geometry variations and simply use

one physi
al parameter (heat transfer 
oe�
ient) and three loads.

The original BIRKA (
f. Algorithm 3) is a

urate for a redu
ed order of

r = 20 (if a stable model has been obtained), whereas the redu
tion with

the stabilization 
onverges to a model, whi
h � as it 
an be seen in the

third output � is not a good approximation of the original. After in
reasing

the order up to r = 50, BIRKA with the stabilization performs well.

If a stable redu
ed model is generated by a redu
tion, where V as given

by BIRKA is used as one-sided proje
tion, one obtains a

urate results with

r = 100. Hen
e, the stabilization via the mirroring of the eigenvalues 
an be

su�
iently a

urate with a smaller redu
ed order. Nevertheless, one needs

to 
he
k if the redu
ed order model is a

urate enough, as a redu
tion with

the stabilization might lead to a 
onvergen
e of the algorithm but still pro-

vides an ina

urate approximation of the original model.

Remark 6.2.12. This stability preservation only adresses the eigenvalues of

the matrix Â. For a bilinear system, the BIBO stability might not be ful�lled.

Hen
e, for the redu
tion of thermal models, we use the stability preservation

via the one-sided proje
tions (even if they result in larger redu
ed orders).

They guarantee BIBO stable models, if the BIBO stability 
ondition (as

given in 2.3.24) is ful�lled for the original model. This result has been

established in Proposition 5.5.11.
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Figure 6.2. Redu
tion of the small motor model n =

2, 952 using stabilization via mirroring of poles
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6.3. Singular sti�ness matrix A and large norm matri
es Nk

6.3.1. Singular sti�ness matrix A. The e�e
t of thermal resistan
e

between two parts 
an be modeled by a small gap between them (
f. Se
-

tion 3.1.1). This 
an be done using Robin boundary 
onditions on the inter-

fa
e surfa
es, and then modeling the resistan
e by a 
onta
t heat transfer


oe�
ient hc :

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n
= hc

(
T (x, t) |I1 − T (x, t)|I2

)
.

By 
onstru
ting the parametrized heat equation as given in Se
tion 4.1,

this leads to the following parameter dependent sti�ness matrix:

A+ hcNc .

However, matrix A 
an be singular (but A+hcNc is not) due to the following

e�e
t. Assume we are solving the heat equation for a model with two

di�erent parts, separated by a small gap (
f. Figure 3.1). In the 
ase,

where there is no heat �ux between the two parts, the 
onta
t heat transfer


oe�
ient is hc = 0 and the boundary 
onditions be
ome:

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n
= 0.

Hen
e, the heat equations be
ome

ρC
∂T1(x, t)

∂t
= k∆T1(x, t) and ρC

∂T2(x, t)

∂t
= k∆T2(x, t),

on the two di�erent parts, with

∂T1(x,t)

∂t
= ∂T2(x,t)

∂t
= 0 as the temperature

is 
onstant (i.e. T1(x, t) = T const1 and T2(x, t) = T const2 ) sin
e no heat

�ux is present. The dis
retization of the heat equation with the boundary


ondition yields A1T
const
1 = 0 and A2T

const
2 = 0, whi
h is only 
omplied if A1

and A2 are singular matri
es. In the 
ase, where a heat �ux between the two

parts is present, a matrix Nc is in
luded in the dis
retization and A+ hcNc
is a nonsingular matrix � whereas A remains singular.

As BIRKA is not de�ned for systems with singular A matrix (and leads to

ina

urate results when a redu
tion is performed), one needs to modify the

original systems representation. As A+ hcNc is nonsingular, it is possible to

use a shift s and obtain:
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A+ hcNc

=A+ sNc − sNc + hcNc

=Ã+ h̃cNc where Ã = A+ sNc and h̃c = hc − s.

One 
an now apply BIRKA, using the nonsingular Ã instead of A. After the

redu
tion, the 
al
ulation needs to be reversed: If

ˆ̃A and N̂c are the resulting

redu
ed order matri
es, one 
al
ulates: Â = ˆ̃A− sN̂c . However, for a stable
ˆ̃A the matrix Â is not known to be stable, but one 
an 
onne
t the stability

of

˜̂A and Â using Proposition 6.2.1, whi
h leads to the following statement:

Let Re(λi (
˜̂A)) < −c and X−1 ˜̂AX = diag(λ1, . . . , λr ). If |s| · ||N̂c ||2 <

c
κ2(X)

,

then Re(λj (Â)) < 0 for all j = 1, . . . , r .

6.3.2. Large norm matri
es Nk . It is possible that BIRKA 
annot be

applied to a system where the norms of Nk are large. First of all, the

Krone
ker produ
t approximation as given in Se
tion 6.1

||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
||2||Nk ||2 < 1, (6.10)

is not ne
essarily ful�lled. In addition, the BIBO stability 
ondition

3

as given

in Theorem 2.3.24

m∑

k=1

||E−1Nk ||2 <
α

Mβ
, (6.11)

might not be ful�lled.

3

With β,α ∈ R, β > 0 and 0 < α ≤ −maxi (Re(λi ((A, E)))) and ||eE−1At ||2 ≤
βe−αt , t ≥ 0, ||u(t)|| =

√∑m

k=1
|uk(t)|2 ≤ M.
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One 
an then apply a simple s
aling g ∈ R+ to the bilinear model and

try to 
hoose it su
h that (6.10) holds for the s
aled matri
es Nk = gNk .

Eẋ = Ax +

m∑

k=1

Nkukx + Bu,

⇒ Eẋ = Ax +

m∑

k=1

Nk
g

g
ukx + B

g

g
u,

⇒ Eẋ = Ax +

m∑

k=1

Nkukx + Bu, with Nk = gNk , B = gB and u =
1

g
· u.

(6.12)

In addition, one might think of 
hoosing the s
aling su
h that the BIBO

stability 
ondition holds for the s
aled model. However this is never the 
ase:

Lemma 6.3.1. If a bilinear system does not ful�ll the BIBO stability 
on-

dition (6.11), the s
aled system (6.12) does not ful�ll the BIBO stability


ondition.

Proof. Set Γ =
∑m

k=1
||E−1Nk ||2. It holds

Γ · |g| = |g|

m∑

k=1

||E−1Nk ||2 =

m∑

k=1

||E−1gNk ||2.

For the s
aled input u one obtains:

||u|| = ||
1

g
u|| =

1

|g|
||u|| ≤

M

|g|
:= M.

As the BIBO stability 
ondition does not hold for the original system one

obtains:

Γ ≥
α

Mβ
,

⇒ Γ|g| ≥
α|g|

Mβ
=

α

Mβ
.

This shows, that the BIBO stability 
ondition is not ful�lled for the s
aled

system as

∑m

k=1
||E−1gNk ||2 = Γ|g| <

α

Mβ
does not hold. �

In our 
ase, we mostly 
onsider bilinear systems, that have been ob-

tained by rewriting a parametri
 system (see Se
tion 5.3.2) in the following
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way:

Eẋ = (A+ pN1)x + Bu,

Eẋ = Ax + N1û1x + N2û2 + · · ·+ Nm+1ûm+1 + B̂û,

with N2 = ... = Nm = 0, B̂ = [0 B], B ∈ Rn×m and û = [p u]T . Now the

s
aling g 
an be used in a slightly di�erent way than for �originally� bilinear

systems:

Eẋ = Ax +N1u1x + N2u2 + · · ·+ Nm+1um+1 + Bu,

with N1 = gN1, N2 = ... = Nm = 0, [g · 0 B] = B = B̂ = [0 B] and

u =
[
p
g u

]T
. Hen
e the input u is only s
aled in the entries whi
h refer to

N1, and the matrix B is not s
aled.

Using this s
aling, one 
an not only try to s
ale in su
h a way that the

Krone
ker produ
t approximation is ful�lled, but also that the BIBO stability


ondition is 
omplied. This is possible if one assumes that

||u|| =

√√√√ 1

|g|2

m∑

i=1

|ui |2 +

m∑

i=m+1

|ui |2 ≤ M ≤
1

|g|
||u||.

(In our example m = 1.) Hen
e

M ≤
1

|g|
M, (6.13)

holds, and in addition one has

|g|

m∑

k=1

||E−1Nk ||2 =

m∑

k=1

||E−1gNk ||2,

as Nk = 0 for k > m. As the BIBO stability 
ondition does not hold for the

original model, one has:

α|g|

Mβ
≤ |g|

m∑

k=1

||E−1Nk ||2.

But as (6.13) holds, it is possible that

|g|

m∑

k=1

||E−1Nk ||2 <
α

Mβ
,
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is ful�lled (as

α|g|
βM
≤ α

βM
), if g is 
hosen in the right way.

When s
aling the matri
es Nk , we observed that the redu
ed orders

in
reased. This e�e
t 
an also be seen with linear models in the following

way:

Remark 6.3.2. The s
aling fa
tor g might a�e
t the redu
ed order, whi
h

has to be in
reased in order to obtain a good approximation of the original

uns
aled model.

For a further investigation of this behavior, we have introdu
ed a s
aling

in a linear model (as A = A0 + gA1). A redu
tion of this s
aled model

was performed using a one-sided moment mat
hing. The obtained matrix

Vscaled has then been used to redu
e the uns
aled model (A = A0 +A1). By

in
reasing the order of the s
aled model, it has been possible to a
hieve a

good approximation to the uns
aled one.

In this 
hapter, several issues that o

ured, while applying BIRKA to

large thermal models, have been examined. First, an approximation of the

Krone
ker produ
t � originally due to Benner and Breiten [12℄ � has been

presented.

Se
ond, methods for the stability preservation of BIRKA have been derived.

Assuming that the eigenvalues of the linear and the bilinear systems (ob-

tained from parametri
 systems) are su�
iently 
lose, one 
an use stability

preservation methods for linear systems. First, a method using the sys-

tem's Gramians has been transferred to systems with E 6= In nonsingular

and positive semide�nite Gramians (
f. Se
tion 6.2.1). Se
ond, the stabil-

ity preservation using one-sided proje
tions has been examined, and again

stability preservation has been obtained for systems where the eigenvalues

of the linear and bilinear/parametri
 system are su�
iently 
lose. Re
ently,

a stability preservation via mirroring of eigenvalues has been proposed by

Zeng, Chen and Lu [71℄. A short examination of this method has been

added (
f. Se
tion 6.2.4) � providing good results whenever the redu
ed

order is su�
iently large. In addition one should note, as it has already

been shown in Proposition 5.5.11, using one-sided proje
tions for symmet-

ri
 models leads to BIBO stable models.

Third, one needs to 
onsider singular A matri
es, whi
h 
an be avoided by

using shifts, and matri
es Nk that have the same magnitude as the A matrix,

whi
h need to be s
aled, in order to obtain good results. Results for these

modi�
ations will be presented in Chapters 7.2 and 8.





CHAPTER 7

Redu
tion of physi
ally parametrized

thermal models

7.1. Results for the H2-optimal redu
tion on Grassmann manifolds121

7.2. Results for the redu
tion using BIRKA 131

In this 
hapter, we present results for the redu
tion of models where

only physi
al properties are varied. This in
ludes (
onta
t) heat transfer


oe�
ients (Robin boundary 
onditions) and �xed temperatures (Diri
hlet

boundary 
onditions). First, we 
onsider the new bilinear H2-optimal algo-

rithms derived in Se
tion 5.5.4. They will be tested by redu
ing a bilinear

heat equation model on a square with n = 100 degrees of freedom. Se
ond,

we will present results for the redu
tion with BIRKA (
f. Algorithm 3) and

the modi�
ations given in Chapter 6.

7.1. Results for the H2-optimal redu
tion on Grassmann manifolds

Results for the redu
tion with bilGFA (Algorithm 4), bilFGFA (Algo-

rithm 5) and bilSQA (Algorithm 6) will be analyzed in this se
tion. The

derivation of the algorithms 
an be found in Se
tion 5.5.4. Their main ad-

vantage is that they 
an preserve stability during redu
tion, if the original

model is BIBO stable. To demonstrate their performan
e, the algorithms

will be applied to a bilinear heat equation model on a square [26℄:

∂T

∂t
= ∆T in Ω = (0, 1)× (0, 1),

121
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∂T

∂n
= 0.75 · u1,2,3(T − 1) on Γ1,Γ2,Γ3,

T = u4 on Γ4,

with uk(t) =
1
6 cos(kπt) for k = 1, . . . , 4 and one Diri
hlet (on Γ4) and

three Robin boundary 
onditions (Γ1,2,3). The dis
retization of the above

di�erential equation leads to the following bilinear system:

Σbil :




Ṫ (t) = AT (t) +

4∑

k=1

Nkuk(t)T (t) + Bu(t),

y(t) = CT (t),

(7.1)

with A,Nk ∈ R
100×100

, B ∈ R100×4 and C ∈ R100. We redu
e the original

model to order r = 8. The system is then BIBO stable, as the 
al
ulated A

and Nk are symmetri
, and 24.75 =
∑3

k=1
||Nk ||2 <

α
Mβ =

11
1
3 ·1
= 33 holds.

In every step of the algorithms, we are going to measure the error in the

H2-norm as follows: First, we 
al
ulate the norm of the original model:

Jo = ||Σbil||
2
H2
= tr(CP11C

T ),

then after ea
h step we 
al
ulate the H2-norm of the error system:

Jerr = ||Σ
err
bil ||

2
H2
= tr(CP11C

T − 2CP12Ĉ
T + ĈP22Ĉ

T ).

The relative error of the system is the square root of the quotient of these

norms:

ERRrel =

√
Jerr
Jo

. (7.2)

First, we apply bilFGFA (Algorithm 5). Se
ond, we redu
e with a bilinear

version of the gradient �ow algorithm (bilGFA, Algorithm 4). For the 
al-


ulation of tj , we use the adaptive stepsize for the linear 
ase established by

Yan and Lam [69℄, whi
h turns out to be a good 
hoi
e for the time step-

ping in our bilinear model. Third, we will 
ompare the results with bilSQA

(Algorithm 6).

We will initialize the algorithms with two di�erent s
enarios:

(I1) The matrix U0 is obtained by generating a random matrix in R
n×r

followed by an SVD to orthogonalize the 
olumns in order to ful�ll

the 
ondition UT0 U0 = Ir . The relative H2-error of the starting

model is ERRrel = 0.64524.
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(I2) The matrix U0 is obtained by a redu
tion of the linear model (i.e.

Nk are not 
onsidered) via a moment mat
hing approa
h (
f. the

book of Antoulas [5℄, Chapter 11) followed by taking only the

�rst three 
olumns of the proje
tion matrix and �lling the rest of

the 
olumns with basis ve
tors e1 = [ 1 0 ... 0 ]
T
to er−3. Again, an

orthogonalization is required to satisfy the 
ondition UT0 U0 = Ir .

The relative H2-error of the starting model is ERRrel = 0.29734.

In addition to the initializations, we start the algorithms bilFGFA and bilSQA

with di�erent parameter 
hoi
es:

(P1) ǫ = 0.5, δ = 10−3 and γ = 3, 100.
(P2) ǫ = 0.9, δ = 10−3, γ = 420, c1 = 10

−12
and c2 = −10

−7.

Remark 7.1.1. It should be noted that the 
hoi
e of the parameters and of

the initialization has a strong impa
t on the performan
e of the algorithms.

During our analysis, several parameter 
hoi
es and initializations have been

tested (not only those presented here). Some of them lead to good results,

others do not result in a des
ent of J (U) or require long simulation times

until a minimum is rea
hed.

After a user de�ned maximal number of iterations every algorithm stops.

In addition, the following stopping 
riteria have been implemented: bilGFA

stops after the 2-norm of the iterate Γj (
f. equation (5.82)) is smaller than

a user de�ned toleran
e, bilFGFA and bilSQA are stopped after the norm

on the Grassmann manifold ||∇J (Uj )|| = 2tr(∇J (Uj )
T∇J (Uj)) is smaller

than a prede�ned toleran
e. The results for the di�erent initializations, pa-

rameter 
hoi
es, stopping 
riteria and algorithms are summarized in Tables

7.1 and 7.2.

The results for the redu
tion with the initialization (I1) and di�erent

algorithms and parameter 
hoi
es are shown in Figure 7.1.
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Figure 7.1. Redu
tion with bilGFA, bilFGFA and bilSQA

for initialization (I1). Stopping 
riteria: ||Γj ||2 < 10
−5
,

||∇J (U)|| < 10−9
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The des
ent in the fun
tion J (U) for the redu
tion with initialization

(I1) is plotted in Figure 7.2. One observes that bilSQA starts with the

steepest des
ent � it is obtained by using ∆j as a des
ent dire
tion (
f.

Se
tion 5.5.4.4). However, after 
hanging the dire
tion to −∇J (Uj ), the

des
ent is smaller and 
an lead to large numbers of iterations depending on

the stopping 
riterion used.

0 100 200 300 400 500
10−4

10−3

10−2

steps taken

J
(U
)

Des
ent of the obje
tive fun
tion J (U)

bilFGFA, (P1)

bilGFA

bilSQA, (P2)

Figure 7.2. Des
ent in fun
tion J (U) for di�erent algo-

rithms using the initialization (I1)

Results for di�erent stopping 
riteria with initialization (I1) are shown

in Figures 7.3, 7.4 and 7.5. bilSQA performs best, whi
h is 
onsistent

with Figure 7.2, where this algorithm shows the steepest des
ent. As

given in Table 7.1 the 
orresponding relative H2-error for stopping 
rite-

rion ||∇J (U)|| < 10−6 is 0.04355. To rea
h 
omparable a

ura
y, more

iterations and a smaller stopping 
riterion are required for the other two

algorithms.
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Table 7.1. Results using the di�erent algorithms with ini-

tialization (I1) and di�erent stopping 
riteria.

Algorithm and

parameter 
hoi
e

stopping 
riterion number of

iterations

approx. 
al-


ulation time

relative H2-error

of the �nal model

bilGFA ||Γ||2 < 10
−2

49 6se
 0.484

bilGFA ||Γ||2 < 10
−3

453 40se
 0.15143

bilGFA ||Γ||2 < 10
−4

712 1min 0.088272

bilGFA ||Γ||2 < 10
−5

3,415 5min 0.028826

bilFGFA (P1) ||∇J (U)|| < 10−4 5 1se
 0.47982

bilFGFA (P1) ||∇J (U)|| < 10−6 391 10se
 0.10271

bilFGFA (P1) ||∇J (U)|| < 10−8 4,472 2min 0.037932

bilFGFA (P1) ||∇J (U)|| < 10−9 9,821 4min 0.029936

bilSQA (P2) ||∇J (U)|| < 10−4 8 1se
 0.075125

bilSQA (P2) ||∇J (U)|| < 10−6 182 5se
 0.04355

bilSQA (P2) ||∇J (U)|| < 10−8 1,771 40se
 0.037208

bilSQA (P2) ||∇J (U)|| < 10−9 12,156 4min 0.035788

Table 7.2. Results using the di�erent algorithms with ini-

tialization (I2) and di�erent stopping 
riteria.

Algorithm and

parameter 
hoi
e

stopping 
riterion number of

iterations

approx. 
al-


ulation time

relative H2-error

of the �nal model

bilGFA ||Γ||2 < 10
−2

9 1se
 0.27289

bilGFA ||Γ||2 < 10
−3

107 9se
 0.14657

bilGFA ||Γ||2 < 10
−4

776 1min 0.04425

bilGFA ||Γ||2 < 10
−5

6,901 10min 0.028703

bilFGFA (P1) ||∇J (U)|| < 10−4 4 1se
 0.26078

bilFGFA (P1) ||∇J (U)|| < 10−6 316 7se
 0.10764

bilFGFA (P1) ||∇J (U)|| < 10−8 3,637 1min30se
 0.041569

bilFGFA (P1) ||∇J (U)|| < 10−9 5,864 2min 0.038746

bilSQA (P2) ||∇J (U)|| < 10−4 5 0.2se
 0.091838

bilSQA (P2) ||∇J (U)|| < 10−6 85 2se
 0.042356

bilSQA (P2) ||∇J (U)|| < 10−8 1,899 40se
 0.036458

bilSQA (P2) ||∇J (U)|| < 10−9 44,076 18min 0.030022
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The algorithms (bilGFA, bilFGFA and bilSQA) perform well on this

simple bilinear model. The quality of the resulting optimal models, however,

depends on the sele
tion of the initial matrix U0, the stopping 
riteria and

the optimization parameters (ǫ, δ, γ, c1, c2). If they are not 
hosen 
arefully,

it is possible that a large number of iterations is required. This 
an lead to

long redu
tion times, if the algorithm is applied to larger models, even if one

is able to solve the underlying Lyapunov and Sylvester equations (
f. (5.69)

to (5.72)) in a reasonable amount of time.

The following open issues provide interesting opportunities for future re-

sear
h:

• The solution of the bilinear Lyapunov and Sylvester equations has

been implemented dire
tly. It remains open if it is possible to

obtain redu
ed order models in a reasonable number of iterations

(and hen
e time) using te
hniques for large systems (for example

the ADI iteration presented among others in [57, 14℄).

• For systems with symmetri
 A and Nk matri
es, BIBO stability is

preserved during the redu
tion, and the algorithm is 
onverging.

However, for systems where A and Nk are not symmetri
 it re-

mains an open question if stability 
an be preserved in the redu
ed

model.

• The derivation of an adaptive stepsize for the bilinear 
ase might

have an in�uen
e on the number of iterations and on the 
on-

vergen
e behavior. For linear systems, Yan and Lam established

Theorem 5.5.13 for their adaptive stepsize. As for bilinear sys-

tems an analogue stepsize is not yet known and the derivation of

a similar theorem remains an open problem.

• In addition, one 
an think of �nding a way to 
hoose good opti-

mization parameters (ǫ, δ, γ, c1, c2) a priori. Or to update them

in an e�
ient way during the redu
tion.

• The timestep in the algorithms is 
hosen using an Armijo 
ondi-

tion. One might think of testing a di�erent 
ondition to 
hose the

stepsize, for example a Wolfe 
ondition on Grassmann manifolds

(refer to Qi [55℄).
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7.2. Results for the redu
tion using BIRKA

In 
ontrast to the bilinear fast gradient �ow algorithm, whi
h is not

yet ready for the appli
ation to large bilinear models as shown in Se
tion

7.1, BIRKA 
an be used in the 
ontext of large models. Nevertheless,

several issues need to be adressed, su
h as stability preservation and the

approximation of the Krone
ker produ
t. These issues have been dis
ussed

in Chapter 6. We will now present results for the redu
tion of a thermal

model, where only physi
al properties are parametrized (
f. Se
tion 3.3).

The thermal analysis is 
arried out using Comsol Multiphysi
s

R©
, version 3.5a

[52℄. By exporting several matri
es from Comsol

R©
and a thorough analysis

of the underlying equations, it is possible to re
onstru
t a parametri
 model

with variable parameters and loads of the form:

Σlin :





EṪ (t) =

(
Ã+

q∑

i=1

hiNi +

v∑

k=q+1

(h̃c )kNk

)
T (t) + B ·




h1T∞
.

.

.

hqT∞
T0
L(t)



,

y(t) = CT (t),

(7.3)

where q is the number of heat transfer 
oe�
ients h, and v − q is the

number of 
onta
t heat transfer 
oe�
ients hc . If A is singular, it has been

repla
ed by a non-singular matrix Ã as des
ribed in Se
tion 6.3.1.

In Figure 7.6, the modeled motor part is shown. One 
an see parts

of stator, 
oil, housing and some insulation parts. The following loads and

parameters need to be 
onsidered: On top of the housing a temperature

T0 is �xed to take a spe
i�ed maximum temperature into a

ount. The


oil losses L(t) are in
orporated into the 
oil. Heat transfer by 
onve
tion

is modeled at seven di�erent lo
ations, for example on 
oil and housing,

resulting in 7 heat transfer 
oe�
ients (i.e. q = 7). Thermal resistan
e

is in
orporated at six di�erent lo
ations, for example between insulation

and stator or insulation and 
oil (i.e. v = 13). The size of the model is

n = 41, 199 and the original transient Comsol R© simulation for one parameter

setting takes about 90 minutes.

Two di�erent models of the ele
tri
al motor have been examined. The �rst

one 
onsiders only heat transfer 
oe�
ients as parameters and ignores the



132 7. RESULTS � REDUCTION OF PHYSICALLY PARAMETRIZED THERMAL MODELS

Figure 7.6. The Comsol

R©
model for the heat transfer in

a stator sli
e, without the rotor.

e�e
ts of thermal resistan
e between some parts of the motor. This leads to

a model with 7 parameters and 4 loads. The se
ond model additionally takes

into a

ount the thermal resistan
es and therefore 
onta
t heat transfer


oe�
ients are 
onsidered, whi
h leads to a model with 13 parameters and

4 loads. The temperatures at four di�erent lo
ations will be examined:

at the front of the stator, at the 
oil and at two di�erent points on the

insulation.

Ea
h of the resulting parametri
 systems (7.3) is reformulated as a bilinear

system by following the pro
edure explained in [11℄ (
f. Se
tion 5.3.2) and

afterwards redu
ed using BIRKA (Algorithm 3). The 
al
ulation of the

proje
tion matri
es V and W is performed as explained in (6.2) and the

in�nite sum is trun
ated after 10 summands.

The 
al
ulations were performed using MATLAB [47℄ on 12CPUs with 3GB

RAM ea
h.

7.2.1. Model 1 � no 
onta
t heat transfer 
oe�
ients.

7.2.1.1. General results. The stability of the original model is preserved

by 
al
ulating the proje
tion matrix W as des
ribed in Proposition 6.2.3. It

required 16 iterations to �nish the redu
tion, and the 
hange in the eigenval-

ues between the last two iterations was less than 10−7. The whole pro
edure
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took about 11 hours and resulted in a model of order r = 50 whi
h 
an be

simulated in 10 se
onds. This is a speed-up of over 500 
ompared to the

original simulation time of 90 minutes. Compared to the redu
tion time of

11 hours, the original model 
ould have been simulated about 8 times.

When 
omparing the solution of the original model to the solution of the

redu
ed model, one obtains only a small deviation, whi
h 
an be seen in the

error plots of Figure 7.7. The absolute error in temperature is smaller than

0.07 K, 
orresponding to a relative error of less than 2 · 10−4. It is impor-

tant to make sure that the redu
ed model gives reliable results over a wide

range of parameter values and inputs. Simulations with the redu
ed model

have been performed where the heat transfer 
oe�
ients are 
hosen from

a range of 5 to 100, and the 
oil losses L(t) and the ambient temperature

T∞ have been varied. For all these variations the redu
ed model gives an

ex
ellent approximation of the full model. In Figure 7.8, the behavior of the

temperature for six di�erent heat transfer 
oe�
ients on the 
oil is shown.

The error plots on the right show that the relative and absolute errors are

su�
iently small. In 
ontrast to the standard pMOR methods (
f. Se
tion

5.3) no training or interpolation in the parameters is required.

7.2.1.2. Stability preserving� 
omparing the di�erent approa
hes. As

explained in Se
tions 6.2.1 and 6.2.2, stability 
an be preserved by di�erent

pro
edures. Here, the following approa
hes will be examined:

• gramianBIRKA: The redu
ed model is 
al
ulated using V as in

Algorithm 3 and equation (6.2), and the matrix W is 
al
ulated

using Proposition 6.2.3. Results are shown in Figures 7.7 and 7.8.

• BIRKA-tS: The proje
tion matri
es V and W are 
al
ulated with

Algorithm 3 and equation (6.2). Stability is not preserved. Hen
e,

in every step of the iterative pro
ess the generated redu
ed system

is saved, and a stable system is 
hosen from these systems. Su
h

a stable system does not always exist, and even if it does, it is

possibly not an optimal redu
ed system, as it is not ne
essarily

the �nal redu
ed system.

• BIRKA-oS: The redu
ed model is 
al
ulated with Algorithm 3

and equation (6.2). Only in the last step a one-sided proje
tion

with V is used.

• only V: The proje
tion matrix V is 
al
ulated as in Algorithm 3

and equation (6.2). In every step of the algorithm a one-sided

proje
tion is used to 
al
ulate the redu
ed model.
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For the outputs on top of the 
oil (output 2) and on the insulation

between 
oil and stator (output 3), all approa
hes give a su�
ient a

ura
y

for a redu
ed order of r = 40. However, for the outputs on the stator-front

(output 1) and on the insulation on top of the stator (output 4) the results

di�er. For the original BIRKA (BIRKA-tS), good results for all outputs

are obtained for r = 40 if a stable model is found. The gramianBIRKA

performs well for r = 50 (see Figures 7.7 and 7.8). For the two one-sided

approa
hes, the order needs to be in
reased up to r = 60 for BIRKA-

oS and up to r = 100 for only V to obtain a

urate models (
f. Figure

7.9). The 
al
ulation in BIRKA-tS uses two proje
tion matri
es V and

W , su
h that the optimality 
onditions hold. All important informations

about the original model are provided by these matri
es, and then transferred

to the redu
ed order model. The three other methods will only use V in

their redu
tion, whereas the information 
ontained in W is lost. BIRKA-oS


al
ulates matri
es V and W in every step. In the last step V is used as

a one-sided proje
tion to obtain a stable redu
ed order model. Hen
e the

information given by V and W is present during the 
al
ulation and gets

lost only in the last step. The gramianBIRKA gets information not only

from V as given by the original BIRKA, but also from the solution of the

Lyapunov equation (6.7) whose solution Q is used for the 
al
ulation of W

as given by Proposition 6.2.3. For this reason these methods perform well

for r = 60 and r = 50 respe
tively. The method only V however, uses

least information, as in every step of the original BIRKA only V is used for

a one-sided redu
tion.

Table 7.3. Comparison of simulation times and redu
tion

times for the se
ond model

redu
ed

order

approa
h simulation

time of re-

du
ed model

redu
tion time speed-

up

r = 600 only V 60s 3 days 3 hours 90

r = 300 BIRKA-tS af-

ter only V

15s 3d 3h + 12h 300

r = 300 BIRKA-oS af-

ter only V

15s 3d 3h + 12h 300
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Figure 7.9. One-sided methods.

7.2.2. Model 2 � 
onta
t heat transfer 
oe�
ients. In the se
ond

model thermal resistan
e has been taken into a

ount. Six additional 
on-

ta
t heat transfer 
oe�
ients hc are in
orporated into the model. Their

values range from 200 W
m2K

up to 3, 600 W
m2K

. These parameters 
an lead

to a singular matrix A, and a shift s needs to be introdu
ed to obtain a

nonsingular matrix Ã = A + sN as explained in Se
tion 6.3.1. For every

given hc ∈ [h
min
c , hmaxc ], the 
enter of the interval is 
hosen as a shift.

For this model, the stability preservation using Proposition 6.2.3 is not ap-

pli
able, be
ause the size of a redu
ed model will be larger than the rank

of the low rank fa
tor in the ADI iteration. Hen
e, stability 
an only be

preserved using a one-sided proje
tion. This leads to larger redu
ed orders
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ompared to an unmodi�ed BIRKA.

For the redu
tion, the following approa
hes are used:

• only V: The proje
tion matrix V is 
al
ulated as in Algorithm 3

and equation (6.2). In every step of the algorithm a one-sided

proje
tion is performed to 
al
ulate a redu
ed model.

• BIRKA-tS after only V: The proje
tion matri
es V and W are


al
ulated with Algorithm 3 and equation (6.2) from a redu
ed

model generated by only V. Stability is not preserved. Hen
e, in

every step of the iterative pro
ess the generated redu
ed system

is saved, and a stable system is 
hosen from these systems. This

stable system does not always exist, and even if it does, it is

possibly not an optimal redu
ed system, as it is not ne
essarily

the �nal redu
ed system.

• BIRKA-oS after only V: The redu
ed model is 
al
ulated with

Algorithm 3 and equation (6.2) out of a redu
ed model generated

by only V. Only in the last step a one-sided proje
tion with V is

used.

The redu
tion was performed using the one-sided approa
h only V and

took about 3 days and 3 hours. The redu
ed model has order r = 600

and 
an be simulated within 60 se
onds, whi
h 
orresponds to a speed-up

of about 90 
ompared to the original simulation time of 90 minutes. This

redu
ed model leads to a good approximation of the original model over the

whole parameter range. This is illustrated for instan
e in Figure 7.10, where

the variation of the heat transfer 
oe�
ient on the 
oil is shown. The two

approa
hes BIRKA-tS and BIRKA-oS use the redu
ed model 
al
ulated

with only V and redu
e it again. This two step redu
tion has been done for

the following reason: The larger the redu
ed order gets, the more unstable

models are obtained within the redu
tion pro
ess. Hen
e 
hoosing a stable

model from the obtained redu
ed order models (as it is done in BIRKA-tS)

is di�
ult, and stable models are in most 
ases not a good approximation

to the original. In addition, a stabilization after the redu
tion (as it is

done in BIRKA-oS) has the same problem � good approximations to the

original model are rare. Hen
e, after this additional redu
tion pro
ess, whi
h

takes 12 hours, models of order r = 300 are obtained. These models 
an

be simulated in 15 se
onds, whi
h 
orresponds to a speed-up of over 300


ompared to the original simulation time. A summary of these results 
an
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be found in Table 7.3. Figure 7.11 shows results for the original and the

redu
ed models from the di�erent approa
hes and the errors for output 3,

whi
h are the largest errors that o

ure. The redu
ed models generated

with only V and BIRKA-tS show su�
ient a

ura
y, whereas BIRKA-oS

performs not a

urate enough.

7.2.3. Dis
ussion of the results. As given in Chapter 6, several issues

were en
ountered when using BIRKA (Algorithm 3) for linear parametri


models. The solution for the �rst issue � the approximation of the Kro-

ne
ker produ
t, 
f. Se
tion 6.1 � is used for all given redu
tions. In

addition, the matrix A needs to be shifted to obtain a nonsingular Ã (
f.

Se
tion 6.3.1) for the se
ond model with 
onta
t heat transfer 
oe�
ients.

The third issue had the largest e�e
t on the redu
tion: The stability of the

redu
ed order models needs to be preserved. Several strategies have been

presented in Se
tion 6.2 and examined on di�erent models in this se
tion.

All stability preservation strategies 
an be used for the �rst model, whereas

the strategy using the Gramian (Se
tion 6.2.1) is not appli
able for the se
-

ond model.

It is found that with these strategies it is always possible to obtain stable

redu
ed order models whi
h give a

urate results over a large parameter

range (
f. Figures 7.8 and 7.10). This is possible without any sampling of

the parameter spa
e or interpolation between redu
ed order models, whi
h

is the standard approa
h for the redu
tion of parametri
 models (
f. Se
tion

5.3). These small parametri
 models 
an therefore be used e�
iently for

optimization, where a large number of simulations for di�erent parameter

values is required.

For the se
ond model, the model 
an be redu
ed down to an order of

r = 300. This is, 
ompared to the �rst model with orders from r = 40

to r = 100, relatively large. This might be due to the fa
t that the behavior

in six additional parameters needs to be taken into a

ount, and the matrix

A needs to be shifted as well. In addition, the one-sided approa
h for the

stabilization leads to higher redu
ed orders as observed also for the �rst

model.



140 7. RESULTS � REDUCTION OF PHYSICALLY PARAMETRIZED THERMAL MODELS

350

400

T
e
m

p
e
ra

tu
re

(K
)

Output 1 — on stator — front

350

400

450

500

T
e
m

p
e
ra

tu
re

(K
)

Output 2 — on top of the coil

350

370

390

410

T
e
m

p
e
ra

tu
re

(K
)

Output 3 —

insulation between coil and stator

348

350

352

354

356

358

360

362

T
e
m

p
e
ra

tu
re

(K
)

Output 4 —

insulation on top of the stator

original model reduced model

0 200 400 600 800

10−4

10−5

10−6

10−7

10−8

Time (s)

R
e
la

ti
ve

e
rr

o
r

0 200 400 600 800

0

2

4

·10−2

Time (s)

A
b
so

lu
te

e
rr

o
r

(K
)

output 1 output 2 output 3 output 4

Figure 7.10. Temperature 
urves for six di�erent values

(5, 25, 45, 65, 85, 100[W/m2K]) of the heat transfer 
o-

e�
ient on the 
oil, and the relative and absolute errors
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Figure 7.11. Results for redu
tion of model 2 with dif-

ferent approa
hes, together with the errors for output 3,

the most sensitive of the outputs.
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7.2.3.1. Redu
tion times. The main disadvantage of the approa
h are

the long redu
tion times. This is due to the fa
t, that for every step of the

redu
tion, several time-
onsuming 
al
ulations need to be performed.

In every step of the algorithm, the matri
es V and W need to be 
al-


ulated by the following formulas:

V 1i = (−λiE − A)
−1BB̃i ,

W 1
i = (−λiE − A)

−TCT C̃i , i = 1, . . . , r,

and for j = 2, . . . ,maxiterS (using the Krone
ker produ
t approximation,


.f. Se
tion 6.1)

V ji = (−λiE − A)
−1

m∑

k=1

NkV
j−1(Ñk)i ,

W j
i = (−λiE − A)

−T
m∑

k=1

NkW
j−1(Ñk)i , i = 1, . . . , r.

The 
ru
ial point is that V j−1 and W j−1
are required in the 
al
ulation of V j

and W j
and have to be 
al
ulated a priori, so the inversions of (−λiE −A)

and (−λiE − A)
T
need to be performed r · (maxiterS + 1) times.

For the 
al
ulations presented in this 
hapter, the inversion of the ma-

tri
es (−λiE−A) and (−λiE−A)
T
was done using an LU-fa
torization. In

every step of the algorithm, r LU-fa
torizations are performed, and all the

matri
es Li and Ui are stored. The 
olumns of the matri
es V and W are

obtained in the following way: Cal
ulate the r 
olumns of V 1 and W 1
by:

V 1i = (−λiE − A)
−1BB̃i = U

−1
i L

−1
i BB̃i ,

W 1
i = (−λiE − A)

−TCT C̃i = L
−T
i U−Ti CT C̃i . i = 1, . . . , r

For all j = 2, . . . ,maxiterS the r 
olumns of V j and W j
are then 
al
ulated

by:

V ji = U
−1
i L

−1
i

m∑

k=1

NkV
j−1(Ñk)i ,

W j
i = L

−1
i U

−T
i

m∑

k=1

NkW
j−1(Ñk)i , i = 1, . . . , r.
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However using MATLAB, the LU-fa
torization is not the fastest pos-

sibility for the 
al
ulation of A−1b (if b is a ve
tor). We will now 
ompare

redu
tion times for the approa
h using the LU-fa
torization, and the dire
t


al
ulation of A−1b via the �ba
kslash� (written as A\b) fun
tionality in

MATLAB.

We 
onsider the model with n = 41, 199 and 13 parameters and 4 loads

and the following assumptions:

1) The sum V =
∑∞
j=1
vec(V j) (
.f. 6.2) is trun
ated at j =

maxiterS = 10 (W is handled in the same way).

2) The algorithm is assumed to 
onverge after 15 steps and the

redu
ed order is r = 300.

Using the LU-fa
torization, one observes for the 
al
ulation of one step

(results may di�er depending on the memory and CPUs available):

• 300 LU-fa
torizations need to be 
al
ulated and saved. Ea
h

LU-fa
torization, takes about 6 se
onds, and hen
e in total 30

minutes.

• The 2r ·maxiterS 
olumns of V andW need to be 
al
ulated using

the matri
es Li and Ui . For one 
olumn, this takes 0.7 se
ond and

hen
e for 2r ·maxiterS = 6000 this takes 6000 · 0.7sec = 70min.

So the total 
al
ulation time for one step is approximately 100min. After


onvergen
e (15 steps, i.e. 15 · 100min = 25h) this leads to an overall


al
ulation time of more than a day

1

.

Using the �ba
kslash� implemented in MATLAB, one observes for the


al
ulation of one step (results may di�er depending on the memory and

CPUs available):

• The 2r · maxiterS 
olumns of V and W need to be 
al
ulated.

If one 
olumn requires 0.4sec, one obtains: 2 · 300 · 10 · 0.4 =

2400sec = 40min.

Hen
e the total 
al
ulation time for one step is approximately 40min. Until


onvergen
e (15 steps) on needs 15 · 40min = 600min = 10h of time.

For this example, the �ba
kslash� fun
tionality implemented in MATLAB

1

The large redu
tion times of more than 3 days mentioned in table 7.3 depend on the

following: First, extra LU-fa
torizations for (−λiE −A)T have been 
al
ulated, whi
h are not

ne
essary as those of (−λiE−A) 
an be used. Se
ond, more steps than the des
ribed 15 steps

have been used. Third, the redu
tion order used is r = 600, whi
h leads to more inversions.
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only needs 40% of the redu
tion time, than the 
al
ulation with the LU-

fa
torization.

However, for larger models (around n > 100, 000), where loading the

matri
es Li and Ui is faster than the 
al
ulation of A\b, it 
an be bene�
ial to

use the LU-fa
torization. All 
al
ulations for the small models (n = 2, 952)

in the up
oming se
tions are done using the �ba
kslash� fun
tionality in

MATLAB.

Opportunities for further improvement open up for the parallelization

of the 
al
ulation of the LU-fa
torizations and the 
olumns, as ea
h fa
tor-

ization and 
olumn 
an be 
al
ulated independently from the others. De-

pending on the number of available parallel slots, several fa
torizations and


olumns 
an be 
al
ulated at the same time, hen
e the overall pro
ess of

the redu
tion 
an be sped up.
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In this 
hapter, two models of an ele
tri
al motor with geometri
 vari-

ations will be 
onsidered. The �rst one is a large model with n = 71, 978

degrees of freedom, the se
ond one � with a less 
omplex geometry for

the ease of presentation � is a smaller model with n = 2, 952 degrees of

freedom (
f. Se
tion 4.3.2). The geometri
 variations are des
ribed by us-

ing a�ne parameters µ and θ (s
aling of �ange and housing in z-dire
tion),

and non-a�ne parameters γ and ρ (s
aling of housing and stator in (x, y)-

plane)

1

. One physi
al parameter � a heat transfer 
oe�
ient h on the

housing � will be 
onsidered here (for more details on the model see Se
-

tion 4.3). As in the previous 
hapter, the redu
tion will be performed using

BIRKA, and stability preservation is obtained by using a one-sided approa
h

(
f. Se
tion 6.2 and Se
tion 7.2 as only V). Due to the geometri
 varia-

tions, the parametri
 linear models have a di�erent stru
ture than models

1

Stri
tly speaking, γ and ρ are non-a�ne for the dependen
y in A (
f. Se
tion 4.3.2),

but not for the other matri
es. For the ease of presentation and 
al
ulation, we refer to and

treat them as non-a�ne parameters.

145
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with only physi
al parameters. Two di�erent approa
hes for reformulating

linear parametri
 models as bilinear models (
f. 5.3.2) will be introdu
ed in

this 
hapter. In addition to the reformulation step, it will be ne
essary to

interpolate the bilinear models as the dependen
e on the parameters stays

present. This will be done by using standard interpolation methods known

from the pMOR literature as des
ribed in Se
tion 5.3.1.

8.1. Reformulation of the linear parametri
 as bilinear systems

The models of the ele
tri
al motors with geometri
 variations 
an be

des
ribed by the following linear parametri
 system:

Σlin,p :





E(θ,µ, γ, ρ)ẋ(t)

= (A(θ, µ, γ, ρ) + hAh(θ, γ, ρ)) x(t) + B(θ, µ, γ, ρ)u(t),

y(t) = Cx(t).

(8.1)

The parameters are: µ and θ (s
aling of �ange and housing in z-dire
tion),

γ and ρ (s
aling of housing and stator in radial dire
tion), and a heat transfer


oe�
ient h (on the housing). The parameter dependent matri
es are:

E(θ, µ, γ, ρ) = E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ),

A(θ, µ, γ, ρ) = A0(γ, ρ) +
1

1 + θ
A 1
1+θ
(γ, ρ) + θAθ(γ, ρ)

+
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

Ah(θ, γ, ρ) = Ah0(γ, ρ) + θAhθ(γ, ρ),

B(θ, µ, γ, ρ) =

[
1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

Bh0(γ, ρ) + θBhθ(γ, ρ) (1 + θ)BS(γ, ρ)

]
,

u(t) =
[
T0 hT∞ S(t)

]T
.

(8.2)

These equations show, that the parameters θ and µ (resulting from origi-

nally linear s
alings in the model 
f. Se
tion 4.3) are a�ne, where as the

parameters γ and ρ are not (resulting originally from non-linear s
alings 
f.

Se
tion 4.3). This parametrized linear model 
an now be reformulated as a

bilinear model in two di�erent ways.
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8.1.1. Complete reformulation as a bilinear model (R1). We want

to make use of the spe
ial stru
ture that allows us to redu
e a parametri


model as a bilinear model. Here, the stru
ture (
f. (8.1) and (8.2)) is how-

ever slightly di�erent from the one des
ribed in Se
tion 5.3.2. The matrix

E depends on the parameters and not all parameters are a�ne. Hen
e, we


an only rewrite the system as a bilinear system with a parameter depen-

den
y in E(θ, µ, γ, ρ) and non-a�ne dependen
ies (parameters γ, ρ) in the

other matri
es. For our �rst approa
h, we will �x h and 
onsider only the

parameter dependen
y in geometry:

(E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ)) ẋ(t)

= A0(γ, ρ)x(t) +

m∑

k=1

Nk(γ, ρ)uk(t)x(t) + B(γ, ρ)u(t),

y(t) = Cx(t),

with

u(t) =

[
1

1 + θ
θ

1

1 + µ
µ T0

1

1 + µ
T0 µT0 T∞ θT∞ (1 + θ)S(t)

]T
,

A0(γ, ρ) = A0(γ, ρ) + hAh0(γ, ρ),

N1(γ, ρ) = A 1
1+θ
(γ, ρ), N2(γ, ρ) = Aθ(γ, ρ) + hAhθ(γ, ρ),

N3(γ, ρ) = A 1
1+µ
(γ, ρ), N4(γ, ρ) = Aµ(γ, ρ),

N5(γ, ρ) = · · · = N10(γ, ρ) = 0,

B(γ, ρ) =



0 0 0 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0

B0(γ, ρ) B 1
1+µ
(γ, ρ) Bµ(γ, ρ)

hBh0(γ, ρ) hBhθ(γ, ρ) BS(γ, ρ)

]
.
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Throughout this 
hapter, we will refer to this reformulation as refor-

mulation one (R1).

Using this reformulation, it is possible that the norms of the matri
es

N1 to N4 are of the same magnitude as the norm of A0. This 
an lead to the

fa
t that the BIBO stability 
ondition (
f. Theorem 2.3.24) is not ful�lled,

whi
h means that the system is possibly not BIBO stable. In addition, for

the redu
tion of the system with BIRKA it is 
ru
ial that the system ful�lls

the 
ondition (
f. Se
tion 6.1)

||(Ir ⊗ A0 − Λ⊗ E)
−1

(
m∑

k=1

ÑTk ⊗Nk

)
||2 < 1,

as the Krone
ker produ
t needs to be approximated. If the norm is larger

than one, the algorithm might show no 
onvergen
e behavior. To over
ome

these di�
ulties, the Nk 
an be s
aled with an appropriate s
aling fa
tor g

(
f. Se
tion 6.3.2). This leads to the redu
tion of the following system:

(E0(γ, ρ)+θEθ(γ, ρ) + µEµ(γ, ρ))ẋ(t)

= A0(γ, ρ)x(t) +

m∑

k=1

gNk(γ, ρ)u
g
k (t)x(t) + B(γ, ρ)u

g(t),

y(t) = Cx(t),

with matri
es A0, Nk and B given as above, and

ug(t) =

[
1

g(1 + θ)

θ

g

1

g(1 + µ)

µ

g
T0

1

1 + µ
T0 µT0 T∞ θT∞ (1 + θ)S(t)

]T
.

8.1.2. In
omplete reformulation as bilinear model (R2). For the se
-

ond approa
h, the transformation into a bilinear model will only be 
ondu
ted

for the physi
al parameter h, whereas the dependen
y on the geometry will

be regarded as a parameter dependen
y in a bilinear model. This leads to
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the following bilinear, parametri
 system:

Σbilin (p) :




E(p)ẋ(t) = A(p)x(t) +

4∑

k=1

Nk(p)uk(t)x(t) + B(p)u(t),

y(t) = Cx(t),

(8.3)

where p = (θ, µ, γ, ρ). The matri
es are as follows:

E(p) = E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ),

A(p) = A0(γ, ρ) +
1

1 + θ
A 1
1+θ
(γ, ρ) + θAθ(γ, ρ)

+
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

N1(p) = Ah0(γ, ρ) + θAhθ(γ, ρ),

N2(p) = · · · = N4(p) = 0,

B(p) =

[
0

1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

Bh0(γ, ρ) + θBhθ(γ, ρ) (1 + θ)BS(γ, ρ)

]
,

u(t) =
[
h T0 hT∞ S(t)

]T
.

Throughout this 
hapter, we will refer to this reformulation as refor-

mulation two (R2). A short summary for both reformulation methods 
an

be found in Table 8.1.

8.2. Methods for the interpolation of the redu
ed models

For both of the two reformulations, the bilinear models will be redu
ed

with a one-sided version of BIRKA (
f. Algorithm 3, Se
tion 7.2) at dif-

ferent sampling points pj = (θj , µj , γj , ρj), j = 1, . . . , J, in the parameter

spa
e. In these points, redu
ed order models Ê(pj ), Â(pj ), N̂k(pj ), B̂(pj )

and proje
tion matri
es V (pj ) will be obtained. In the up
oming se
tions,

we 
ompare di�erent interpolation strategies to 
onstru
t redu
ed models

at other parameter points pnew = (θnew, µnew, γnew, ρnew). We will give a

short overview here, for a more detailed presentation, the reader is referred

to Se
tion 5.3.1.
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Table 8.1. Two reformulation methods � short summary.

(R1) (R2)

Complete reformulation In
omplete reformulation

Dependen
e in physi
al parame-

ters h will be ignored. All a�ne

parameters on the right hand side

of (8.1) (see also (8.2)) will be

shifted to the input, whereas ma-

trix E, still depends on them.

Reformulation of the model is only


ondu
ted for the physi
al param-

eter h. All matri
es still depend on

the parameters in geometry.

The interpolation methods, that will be used 
an be arranged into two

di�erent 
lasses: One-step methods and two-step methods.

One-step methods (see Se
tion 5.3.1):

After the redu
ed order models in di�erent points pj have been obtained one

needs to

1) Adjust the redu
ed order bases.

Di�erent redu
ed order models do not lie in the same state spa
e

and hen
e a transformation to the same state spa
e is needed.

One needs to �nd a referen
e subspa
e RV and transformations

Mj and Tj su
h that the states 
an be transferred to the referen
e

subspa
e. One obtains:

Ej = M
T
j Ê(pj )Tj ,

Aj = M
T
j Â(pj )Tj ,

Nkj = M
T
j N̂(pj )kTj ,

Bj = M
T
j B̂(pj ),

Cj = Ĉ(pj )Tj , for j = 1, . . . , J.

2) Choose the interpolation manifold and interpolation method.

Interpolate the matri
es E j , Aj , Nkj , Bj and C j to obtain the re-

du
ed order model at pnew.
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Four di�erent methods will be used to 
ondu
t the adjusting of the

bases and the interpolation � we will refer to them as the one-step methods:

(P1) This approa
h was developed by Panzer et al. [53℄. The refer-

en
e subspa
e RV is given by a SVD of the matri
es V (pj ). As

transformations one uses Tj = Mj = (R
T
V V (pj ))

−1
. After the

transformation to the referen
e 
oordinate system, a linear inter-

polation is used to obtain a redu
ed model at the interpolation

point pnew. (No spe
ial manifold is 
hosen.)

(P2) Like (P1), just use a weighted SVD of the matri
es V (pj ).

(A1) This approa
h was introdu
ed by Amsallem et al. [3℄. The ref-

eren
e subspa
e is obtained by 
hoosing the proje
tion matrix of

a referen
e model RV = V (pj0 ) from the given redu
ed models.

In our 
ase, this will be the nearest model with respe
t to the

new parameter point pnew. The matrix Tj = UjZ
T
j is given by the

SVD of V (pj )
TRV = UjΣjZ

T
j , and the matrix Mj is obtained as

Mj = Ê(pj )
−T =

(
V (pj )

TE(pj )V (pj )
)−1

. Hen
e it holds E j = Ir

after the transformation. Now, for every matrix Aj , Nkj , Bj and

Cj a manifold for the interpolation needs to be 
hosen. Here, we


hoose the manifold of real n × n matri
es for the interpolation

of Aj and Nkj , the manifold of real n × m matri
es for the in-

terpolation of Bj and the manifold of real p × n matri
es for the

interpolation of C j . The interpolation is now 
ondu
ted on the

tangential spa
e to the matrix in the referen
e point. (I.e. in

T
Aj0
M for the interpolation of the matri
es Aj .) A linear interpo-

lation between the matri
es is used. Details for the 
hoi
e of the

manifold are given in Se
tion 5.3.1.2.

(A2) Like (A1), just use the manifold of the non-singular n×n matri
es

for the interpolation of the matri
es Aj .
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Two-step methods:

The se
ond 
lass of methods will be 
alled two-step methods. They 
an

be used only if at least one a�ne parameter is present.

• First step: First, the non-a�ne parameters are �xed in one point

Ĵ and only the a�ne parameters will be varied, i.e. (θk , µl , γĴ , ρĴ),

k = 1, . . . , K, l = 1, . . . , L. A global proje
tion matrix is 
al
u-

lated by using a SVD:

Vglobal,Ĵ = svd ([V (θ1, µ1, γĴ , ρĴ) V (θ1, µ2, γĴ , ρĴ) . . . V (θK , µL, γĴ , ρĴ)]) .

The global proje
tion matrix is 
al
ulated su
h that Vglobal,Ĵ ∈ R
n×r

with the same redu
ed order r as for the matri
es V (θk , µk , γĴ , ρĴ).

In a new parameter point (θnew, µnew, γĴ , ρĴ) the redu
ed model


an now easily be obtained. For example for the redu
ed mass

matrix E:

Ê((θnew, µnew, γĴ , ρĴ)) = V
T
global,ĴE0(γĴ , ρĴ)Vglobal,Ĵ

+ θnewV
T
global,ĴEθ(γĴ , ρĴ)Vglobal,Ĵ + µnewV

T
global,ĴEµ(γĴ , ρĴ)Vglobal,Ĵ . (8.4)

The 
al
ulation of a global proje
tion matrix is now done for all

points (γj , ρj), and results in redu
ed models where θnew and µnew,

the a�ne parameters, are already �xed. Hen
e for the a�ne

parameters in pnew no interpolation needs to be done, it remains

only to interpolate the non-a�ne parameters.

• Se
ond step: The interpolation of the non-a�ne parameters, i.e.

matri
es Ê((θnew, µnew, γĵ , ρĵ)), Â((θnew, µnew, γĵ , ρĵ)),

N̂k((θnew, µnew, γĵ , ρĵ)), B̂((θnew, µnew, γĵ , ρĵ)) and

Ĉ((θnew, µnew, γĵ , ρĵ)), j = 1, . . . , J is done using the interpolation

methods stated during the explanation of the one-step methods.

We will refer to this approa
h as (Af-A1), (Af-A2), (Af-P1) or (Af-P2)

depending on the method that is used for the interpolation in the se
ond

step. In the 
ase where all parameters are a�ne and only the �rst step

needs to be done we 
all the method (Af).

For a qui
k referen
e, all methods are summarized in Tables 8.2 and

8.3.
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Table 8.2. One-step methods for the interpolation of redu
ed order models.

(P1) (P2) (A1) (A2)

referen
e

subspa
e

RV =

svd([V (p1), . . .

. . . , V (pK)]), SVD

of the proje
tion

matri
es

RV =

svd([ω1V (p1), . . .

. . . , ωKV (pK)]),

weighted SVD

of the proje
tion

matri
es

RV = V (pj0), proje
-

tion matrix of 
hosen

referen
e model

RV = V (pj0), proje
-

tion matrix of 
hosen

referen
e model

trans-

formation

matri
es

Tj = Mj =

(RTV V (pj ))
−1

Tj = Mj =

(RTV V (pj ))
−1

Tj = UjZ
T
j is given

by the SVD of

V (pj )
TRV = UjΣjZ

T
j ,

and the matrix Mj

is obtained as Mj =(
V (pj )

TE(pj )V (pj )
)−1

Tj = UjZ
T
j is given

by the SVD of

V (pj )
TRV = UjΣjZ

T
j ,

and the matrix Mj

is obtained as Mj =(
V (pj )

TE(pj )V (pj )
)−1

manifolds

for inter-

polation

no manifold is 
ho-

sen

no manifold is 
ho-

sen

the manifold of real

n × n, n ×m and p ×

n matri
es, depending

on whi
h matrix to in-

terpolate

the manifold of real

n × n, n ×m and p ×

n matri
es, depending

on whi
h matrix to in-

terpolate - for Â(pj )

the manifold of the

non-singular matri
es

is 
hosen
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Table 8.3. Two-step methods for the interpolation of re-

du
ed order models.

(Af-P1) (Af-P2) (Af-A1) (Af-A2) (Af)

First step Cal
ulation of redu
ed order models for the a�ne param-

eters in the new parameter point pnew see 8.2.

Se
ond

step � in-

terpolation

method

used

(P1),

see

Table

8.2

(P2),

see

Table

8.2

(A1),

see

Table

8.2

(A2),

see

Table

8.2

no inter-

polation

ne
essary

� only

a�ne pa-

rameters

8.3. Redu
tion and interpolation using reformulation one

To simplify the presentation, we �x the parameters µ, γ, ρ, so only one

a�ne parameter θ remains. After the reformulation (R1) and a s
aling of

the matri
es N1 and N2 as explained in Se
tion 8.1.1, the following system

is obtained:

Σbilin (θ) :




(E0 + θEθ) ẋ(t) = A0x(t) +

6∑

k=1

gNku
g
k (t)x(t) + Bu

g(t),

y(t) = Cx(t),

(8.5)

with

ug(t) =
[

1
g(1+θ)

θ
g T0 T∞ θT∞ (1 + θ)S(t)

]T
,

A0 = A0(γ, ρ) + hAh0(γ, ρ) +
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

N1 = A 1
1+θ
(γ, ρ),

N2 = Aθ(γ, ρ) + hAhθ(γ, ρ),

N3 = · · · = N6(γ, ρ) = 0,
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B =



0 0
.

.

.

.

.

.

0 0

1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

hBh0(γ, ρ) hBhθ(γ, ρ) BS(γ, ρ)

]
.

Now the results for the large model with n = 71, 978 degrees of free-

dom from Se
tion 4.3 are dis
ussed. As noted before, the Nk are large

and need to be s
aled before a redu
tion of the s
aled system (8.5) 
an be

performed.

Using BIRKA as given in Algorithm 3 and the Krone
ker produ
t approxi-

mation (
f. Se
tion 6.1), we redu
e the model as given by equation (8.5)

at �ve di�erent sampling points θ ∈ {0, 0.5, 1, 1.5, 2} to a redu
ed order of

r = 700. After the redu
tion, stable models are obtained by using a one

sided proje
tion V in the last model (
f. BIRKA-oS in Se
tion 7.2.1.2).

The interpolation between the redu
ed models at the sampling points is


ondu
ted using methods (P2), (A1) and (Af) from Se
tion 8.2.

We examine the temperature distribution at four di�erent points in the

model: At the bottom of the housing, on the 
oil, in the upper bearing

and at the bottom of the rotor. Results for the interpolated models at two

di�erent parameter points θnew ∈ {0.45, 1.65} for two {0, 2}, three {0, 1, 2}

and �ve {0, 0.5, 1, 1.5, 2} sampling points 
an be found in the Figures 8.1

and 8.2, for the �rst and the fourth output, respe
tively.

The quality of the approximation improves with in
reasing the number

of sampling points. When using �ve sampling points, the interpolated re-

du
ed models for θnew ∈ {0.45, 1.65} yield good results for the �rst three

outputs. It seems however di�
ult to approximate the fourth output, whi
h

� even with �ve sampling points � only leads to good models for the ap-

proa
h via a global proje
tion matrix (Af), as it 
an be seen in Figure 8.2.

This might be related to the fa
t that this output lies on the bottom of

the rotor and is not dire
tly atta
hed to the stator (as main heat sour
e).

Hen
e the heat 
an only be transferred via housing and �ange.
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Figure 8.1. First output (bottom of the housing), inter-

polation of redu
ed order models (r=700) in a di�erent

number of sampling points, with results in di�erent inter-

polation points.
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Figure 8.2. Fourth output (bottom of the rotor), inter-

polation of redu
ed order models in a di�erent number

of sampling points, with results in di�erent interpolation

points.
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Table 8.4. Costs for the redu
tion and interpolation of

the model with one a�ne parameter.

Method Costs

O�ine � Redu
tion in one parameter point 1 week per sam-

pling point

Online � Interpolation with (A1) or (A2) 20-25min

Online � Interpolation with (P1) or (P2) 10-15min

O�ine � Cal
ulation of the global proje
tion

matrix

20min

Online � Assembling of the model in the new

parameter point

<1min

As we have 
onsidered a model in one a�ne parameter, it was possible

to use the method via a global proje
tion matrix (Af) and no (additional)

interpolation between the redu
ed order models. This method always leads

to good results, and hen
e it 
an be re
ommended whenever the parameter

dependen
y is a�ne and the 
al
ulation of the SVD of all matri
es V (θj )

does not ex
eed the 
omputational 
apa
ity. Method (A1) outperforms

(P2) in approximation of the �rst output (�ve sampling points), whereas

(P2) performs better for the outputs two to four. Hen
e, one 
annot state

that one interpolation method is better than the other.

The redu
tion of the large model for one sampling point required up to

one week on 12 CPUs with 3GB RAM ea
h. So sampling in more than one

parameter will easily ex
eed the available resour
es or lead to extremely long

simulation times

2

. Hen
e, the interpolation methods will now be tested on

the smaller model with n = 2, 969 degrees of freedom from Se
tion 4.3.

In addition, we will 
hange the reformulation method, and use the se
ond

reformulation (
f. Se
tion 8.1.2, (R2)), as there will be no need to s
ale

the models prior to the redu
tion, as we have noted that a s
aling in the Nk
in
reases the redu
ed order (
f. Remark 6.3.2).

Costs for the redu
tion and interpolation 
an be found in Table 8.4.

Ex
ept for the redu
tion that has been performed on 12CPUs with 3GB

RAM ea
h, the 
al
ulations have been performed on visualization nodes

2

A dis
ussion explaining the long simulation times 
an be found in Se
tion 7.2.3.
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that are used simultaneously by di�erent users. Depending on the memory

demands and the loads of the other users, the 
al
ulation times 
an di�er.

8.4. Redu
tion and interpolation using the se
ond reformulation

For the presentation of the results obtained by using the se
ond refor-

mulation (R2) (
f. Se
tion 8.1.2), the model with n = 2, 969 will be used.

It has been presented in Se
tion 4.3 and is shown in Figures 4.7 and 4.8. For

three di�erent points the temperature pro�le is monitored: On the bottom

of the housing (output 1), on the stator (output 2) and on the upper part

of the rotor (output 3).

To obtain stable redu
ed order models the one-sided approa
h only

V (
f. Chapter 7.2) is 
hosen. This leads to larger redu
ed orders as an

original BIRKA � however stability is preserved automati
ly, whi
h is 
ru
ial

for the interpolation steps. For every sampling point pj = (θj , µj , γj , ρj) the

original model was redu
ed to an order of r = 100. The parameters (θj , µj)

are a�ne, and the parameters (γj , ρj) are non-a�ne, hen
e our explained

two-step approa
h applies. The sampling points are given as:

2sp: θj , µj ∈ {0, 2} and γj , ρj ∈ {1, 3}; 2
4
sampling points

3sp: θj , µj ∈ {0, 1, 2} and γj , ρj ∈ {1, 2, 3}; 3
4
sampling points

5sp: θj , µj ∈ {1, 0.5, 1, 1.5, 2} and γj , ρj ∈ {1, 1.4122, 2, 2.5878, 3};

54 sampling points

where {1.0489, 1.4122, 2, 2.5878, 2.9511} are the Cheby
hev points within

[1, 3]. We use 1 and 3 instead of 1.0489 and 2.9511 as ea
h of the param-

eters is in the 
losed interval [1, 3].

For the interpolation of the models, we will use four di�erent methods.

First, an interpolation in all four parameters (θj , µj , γj , ρj) will be performed

dire
tly (one-step approa
h) by using the two interpolation methods (A1)

and (P2). In addition, a two-step approa
h will be applied by using the

methods (Af-P2) and (Af-A1) - see Se
tion 8.2.
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Figure 8.3. Temperature 
urves from redu
ed models ob-

tained by interpolation with di�erent methods and num-

bers of sample points in point θ = 1.67, µ = 1.78, γ =

2.36, ρ = 1.22.

In Figure 8.3 the results for two, three and �ve sampling points in the

�rst output for the interpolation point

pnew0 = (θ = 1.67, µ = 1.78, γ = 2.36, ρ = 1.22),

and redu
ed order r = 100 are shown. For two sampling points (dotted

lines) the two-step methods (i.e. (Af-P2) and (Af-A1)) lead to better re-

sults than the one-step methods (i.e. (P2) and (A1)). For three sampling

points (dashed lines), the one-step methods get better in general, and for

�ve sampling points (dashdotted lines), the approximation using the one-

step methods is su�
iently a

urate � espe
ially for the approa
h (A1).

Considering three other interpolation points

pnew1 = (θ = 1.67, µ = 1.78, γ = 2.976, ρ = 2.73),
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pnew2 = (θ = 1.56, µ = 1.2, γ = 1.47, ρ = 1.634),

and pnew3 = (θ = 0.34, µ = 0.13, γ = 1.134, ρ = 1.22),

the results for the interpolated models 
an be found in Figures 8.4 to 8.6.

One observes that one obtains good results for �ve sampling points in all

four di�erent interpolation points pnewi . There are however di�eren
es in the

quality of the approximation. The point pnew1 is for example not perfe
tly

approximated by the approa
hes (Af-P2) and (Af-A1). In addition, one 
an

observe os
illations in the approximations by (Af-P2) and (Af-A1). They

o

ur whenever there is a signi�
ant 
hange in the dynami
s of the model.

In general: For few sampling points, the two-step methods (Af-A1)

and (Af-P2) (i.e. using a global proje
tion matrix for the a�ne parameter

dependen
y and then interpolating the non-a�ne parameters) lead to bet-

ter results than a dire
t interpolation. However, as the number of sampling

points in
reases, the approa
hes with dire
t interpolation (i.e. (A1), (P2))

perform as good as the ones with a global proje
tion matrix for the a�ne

parameters, or even better. Hen
e, if the redu
tion in one sampling point is

time 
onsuming (as it is using BIRKA � 
f. Se
tion 7.2.3), it is desirable

to sample as few points as possible. If the 
al
ulation of a global proje
tion

matrix in the a�ne parameters is not too time 
onsuming, using few sam-

pling points and one of the two-step methods ((Af-A1) and (Af-P2)) yields

satisfa
tory results.
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Figure 8.4. Interpolation of redu
ed order models in �ve

sampling points at pnew1 = (θ = 1.67, µ = 1.78, γ =

2.976, ρ = 2.73).
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Figure 8.5. Interpolation of redu
ed order models in �ve

sampling points at pnew2 = (θ = 1.56, µ = 1.2, γ =

1.47, ρ = 1.634).
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Figure 8.6. Interpolation of redu
ed order models in �ve

sampling points at pnew3 = (θ = 0.34, µ = 0.13, γ =

1.134, ρ = 1.22).
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Table 8.5. Costs for the redu
tion and interpolation of

the model with two a�ne and two non-a�ne parameters

redu
tion in

sampling

points (sp)

o�ine redu
tion in one parameter point: ≈ 30min.

for 2 sp: 24 · 30min= 8h,

for 3 sp: 34 · 30min≈ 1.7days,

for 5 sp: 54 · 30min≈ 13days.

one-step method

online Interpolation with (A1) < 10min,

(A2) < 15min,

(P1) < 10min,

(P2) < 5min.

two-step method

o�ine one global proje
tion matrix for �xed non-

a�ne parameters (θk , µl , γĴ , ρĴ): ≈ 1min,

for 2 sp: 22 · 1min= 4min,

for 3 sp: 32 · 1min≈ 6min,

for 5 sp: 52 · 1min≈ 25min.

online interpolation of non-a�ne parameters with:

(A1) <5s,

(A2) <10s,

(P1) <20s,

(P2) <5s.

In Table 8.5 approximate 
osts for the redu
tion and interpolation are

summarized. Again the 
al
ulations have been performed on visualization

nodes used simultaneously by di�erent users. The 
al
ulation times are

therefore only approximations depending on load and available memory on

the nodes. It is not surprising, that the interpolation using all parameter

points is slower that the one, where only the non-a�ne parameters need

to be interpolated. In general, (A1) is faster than (A2) and (P2) is faster

than (P1). This is due to the following behavior: The redu
tion in (P2) is

performed using a weighted SVD. We use the weights that will be used for

the linear interpolation of the models afterwards. As only the nearest models

with respe
t to the new parameter point are used in the interpolation, only

the proje
tion matri
es V (pj ) from these models are used for the 
al
ulation

of the referen
e subspa
e RV . In 
ontrast, all matri
es V (pj ) are used

for the SVD in (P1). This explains longer 
al
ulation times. During the
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exe
ution of (A1) and (A2), the interpolation is done on tangential spa
es

of matrix manifolds. The matri
es need to be mapped to these spa
es by

using di�erent logarithms (see Table 5.1). Whereas the manifold of n ×m

matri
es only involves a subtra
tion, the manifold of nonsingular matri
es

requires an inversion and a matrix logarithm. This leads to longer 
al
ulation

times.

8.4.0.1. Interpolation methods (A2) and (P1). So far, only results for

the interpolation methods (A1) and (P2) have been presented. This is due

to the fa
t that the obtained results for the approa
hes (A2) and (P1)

are in most 
ases not as good as the results for the other approa
hes. A


omparison of the approa
hes (P1) and (P2) for the interpolation point

pnew0 = (θ = 1.67, µ = 1.78, γ = 2.36, ρ = 1.22),


an be found in Figure 8.7, and results for the approa
h (A2) for the in-

terpolation point pnew3 are shown in Figure 8.8. Whereas the method (P1)

usually gives reasonable results, the method (A2) has signi�
ant problems

in the approximation of the third output of the model.

Method (A2) fails to provide a reasonable approximation. This might

be related to the interpolation pro
edure. First, all matri
es in the sampling

points A(pj ) (whi
h belong to the manifoldM of the non-singular matri
es)

need to be transferred to the tangential spa
e regarding the referen
e model

TA(pj0 )
M, then a �
lassi
" interpolation � in our 
ase linear interpolation�

is performed on these elements of TA(pj0 )
M. It is not 
lear, that the �
lassi
"

interpolation stays in the tangential spa
e, and hen
e the interpolated matrix

A(pnew) might lead to ina

urate results.
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Figure 8.7. Interpolation using the approa
hes (P1) and

(P2) in �ve sampling points at interpolation point θ =

1.67, µ = 1.78, γ = 2.36, ρ = 1.22.
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Figure 8.8. Interpolation of redu
ed order models in

two,three and �ve sampling points at interpolation point

θ = 0.34, µ = 0.13, γ = 1.134, ρ = 1.22 for (A2).
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8.4.1. Dis
ussion of results. In this 
hapter, results for the redu
tion

and interpolation of thermal models with geometri
 variations have been

presented. Linear parametri
 models have been reformulated as bilinear

models in two di�erent ways (
f. Se
tion 8.1.1 and 8.1.2) and then redu
ed

using BIRKA with one-sided proje
tions (
f. Se
tions 6.2.2 and 7.2.1.2).

First, results for the �rst reformulation (R1) (
f. Se
tion 8.1.1), for a

model with n = 71, 978 and one geometri
al parameter have been shown

(
f. Figures 8.1 and 8.2). An additional prepro
essing step was ne
essary

to avoid problems resulting from the fa
t, that the norms of Nk and A

are of the same magnitude. A s
aling was introdu
ed and lead to a large

redu
ed order r = 700. The se
ond reformulation (R2), Se
tion 8.1.2, does

not require this prepro
essing. Due to high 
omputational demands (
f.

Se
tion 7.2.3), all results for the se
ond reformulation and four parameters

have been presented for a smaller model with n = 2, 969. Interpolation

of this model using di�erent numbers of sampling points and interpolation

methods (
f. Se
tion 8.2) have been performed. In general, all methods give

reasonable results. However, the method (P2) � using a weighted SVD

to obtain the referen
e subspa
e � usually outperforms the method (P1)

� the non-weighted SVD. In addition, it was not possible to obtain good

results for the interpolation method on tangential spa
es of non-singular

matri
es (A2), whereas the interpolation on tangential spa
es of R
k×l

leads

to good results (A1). The two approa
hes (A1) and (P2) usually give


omparable results, hen
e it is not possible to favor one method over the

other. Having two a�ne and two non-a�ne parameters, it is re
ommended

to use a two-step method � �rst 
al
ulate a global proje
tion matrix for

the a�ne parameters and then interpolate the redu
ed order models in the

non-a�ne parameters. For few sample points these methods yield usually

better results than the one step methods.
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h 173

9.1. Summary and Con
lusions

The main obje
tive of this work was to investigate the use of bilinear

H2-optimal methods in parametri
 Model Order Redu
tion. As shown by

Benner and Breiten [11℄, it is possible to reformulate a 
ertain 
lass of linear

parametri
 systems as bilinear systems (
f. Se
tion 5.3.2). The parame-

ters 
an then be 
onsidered as inputs and the redu
tion 
an be performed

without any sampling and interpolation in the parameter spa
e, as most of

the other methods for pMOR do [53, 3, 37, 13℄. After obtaining a bilinear

model, one 
an make use of bilinear Model Order Redu
tion. In this work,

we fo
used on two methods for bilinear H2-optimal Model Order Redu
-

tion, whi
h are des
ribed in Chapter 5. BIRKA (
f. Algorithm 3), originally

obtained by Benner and Breiten [12℄, is stated and new algorithms for the

bilinear H2-optimal redu
tion have been developed. These algorithms use

optimization on Grassmann manifolds and � as a main advantage � 
an

preserve stability. We have proven the stability preservation for symmetri
,

bilinear systems and analyzed the 
onvergen
e behavior of the algorithms.

171
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In addition to these theoreti
al results, several models for the ther-

mal analysis of ele
tri
al motors have been built using Comsol

R©
3.5a (
f.

Chapter 3). Linear parametri
 systems have been exported from Comsol

R©

by an analysis of the underlying equations (
f. Chapter 4). For industri-

ally relevant problems, both physi
al and geometri
 parameters need to be


onsidered and the parameter dependen
y after the redu
tion must be pre-

served. As the resulting models are usually large (in our 
ase n = 41, 199,

n = 71, 978, and n = 2, 969), the bilinear H2-optimal redu
tion methods

have to be 
apable of dealing with these large systems.

The newly developed methods for the redu
tion using optimization on

Grassmann manifolds are, however, not yet ready (
f. Se
tion 7.1) for the

use with these large systems, but results for the redu
tion of a heat equa-

tion on a square have been stated. BIKRA (
f. Se
tion 5.5,[12℄) is 
apable

of redu
ing the large models, but several problems have been identi�ed. In

some 
ases, the sti�ness matrix A is singular, the magnitude of the Nk is

too large and a s
aling needs to be introdu
ed. Also unstable models have

been obtained after the redu
tion. All these issues haven been examined

and solutions have been proposed (
f. Chapter 6).

Numeri
al results for the redu
tion of two di�erent types of models

have been obtained. On one hand, a part of an ele
tri
al motor model,

in
orporating physi
al parameters, has been 
onsidered. These models are

parametrized with physi
al parameters and have a stru
ture that easily al-

lows to reformulate them as a bilinear model. Redu
tion with BIRKA yields

good results, not only in a 
ertain parameter interval, but globally in the

whole parameter range (
f. Chapter 7.2, Figure 7.8). The se
ond type of

models are ele
tri
al motor models, that in addition to the physi
al parame-

ters use parameters that des
ribe 
hanges in geometry. This leads to models

with a stru
ture that 
an not easily be rewritten as a bilinear system. Hen
e

one 
an reformulate the model as a bilinear model for 
ertain parameters

and interpolate the other parameters (
f. Chapter 8). For the interpolation,

several well known methods from pMOR have been used (
f. [53, 3, 37℄),

whi
h generally lead to good results. There are, however, di�eren
es in the

quality of the approximation. For models with an a�ne parameter depen-

den
e in 
ertain parameters, using a global proje
tion matrix for the a�ne
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parameter dependen
e leads to good results and 
an outperform a dire
t

interpolation, espe
ially for few sampling points.

9.2. Future resear
h

Based on the work that has been presented in this thesis, several op-

portunities for future resear
h have been identi�ed:

• The new methods for the bilinear H2-optimal MOR using op-

timization methods on the Grassmann manifold as developed in

Se
tions 5.5.4 and 7.1 still require some investigation:

� The Algorithms bilGFA, bilFGFA and bilSQA have not yet

been tested on large problems, due to the fa
t that one needs

to solve large bilinear Sylvester equations. In the future, low-

rank approximations to the solutions should be applied su
h

as the ADI iteration (
f. [57, 14℄), to allow treatment of

large systems.

� Convergen
e and the stability preservation for the Algorithms

bilGFA,bilFGFA and bilSQA have not yet been established for

bilinear systems with non-symmetri
 A and Nk .

� For the optimization, one needs to 
orre
tly set several pa-

rameters to ensure a des
ent in the obje
tive fun
tion. It

would be an advantage to identify robust 
riteria based on

whi
h these parameters 
an be 
hosen.

• The redu
tion of the large parametri
 thermal models has been

done using BIRKA [12℄. The redu
tion times for our large models

are within the range of several hours to a few days for 12 CPUs

with 3GB RAM (see Se
tion for a dis
ussion 7.2.3). However,

the stru
ture of BIRKA would allow a parallelization, whi
h 
ould

signi�
antly redu
e the redu
tion time.

• One interpolation approa
h by Amsallem [3℄ shows weak perfor-

man
e for some models (
f. Se
tion 8.4.0.1). This 
ould be


aused by the fa
t that our used interpolation method does not

preserve the membership in the tangential spa
e. This behavior

requires a development of interpolation pro
edures that do stay

on the 
orresponding manifold.

• The interpolation methods used for the redu
tion of the paramet-

ri
 models require the redu
tion at several sampling points. The
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number of sampling points has a strong impa
t on the 
ompu-

tational demands, so it is worthwhile to explore methods to sys-

temati
ally and optimally sample the parameter spa
e, e.g. using

sparse grids [10℄ or latin hyper
ube sampling [4, 20℄.



APPENDIX A

Derivation of the bilinear H2-optimal


onditions

A.1. Wilson 
onditions

We start by di�erentiating the norm

J =||Σerrbil ||
2
H2
= tr(

[
C −Ĉ

]
P err

[
CT

−ĈT

]
)

=tr(P err
[
CT

−ĈT

] [
C −Ĉ

]
)

=tr(P errC),

(5.42)

as given by Zhang and Lam [72℄ with respe
t to a parameter γ:

∂J

∂γ
= tr(

∂P err

∂γ
C) + tr(P err

∂C

∂γ
).

First, we insert the following Lyapunov equation in the derived norm:

(Aerr)T Y errEerr + (Eerr)T Y errAerr +

m∑

k=1

(Nerrk )
T Y errNerrk + (C

err)TCerr︸ ︷︷ ︸
=C

= 0,

(A.1)

and obtain:

∂J

∂γ
=tr

(
∂P err

∂γ

(
−(Aerr)T Y errEerr

−(Eerr)T Y errAerr −

m∑

k=1

(Nerrk )
T Y errNerrk

))
+ tr(P err

∂C

∂γ
).

(A.2)
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Se
ond, we will derive the other Lyapunov equation of the error system:

AerrP err(Eerr)T + EerrP err(Aerr)T +

m∑

k=1

Nerrk P
err(Nerrk )

T + Berr(Berr)T︸ ︷︷ ︸
=B

= 0,

(A.3)

and multiply it from the left by Y err(= (Eerr)−1QerrEerr):

2tr(
∂Aerr

∂γ
P err(Eerr)T Y err) + 2tr(Aerr

∂P err

∂γ
(Eerr)T Y err)

+2tr(AerrP err
∂(Eerr)T

∂γ
Y err) + 2tr(

m∑

k=1

∂Nerrk
∂γ

P err(Nerrk )
T Y err)

+tr(

m∑

k=1

Nerrk
∂P err

∂γ
(Nerrk )

T Y err) + tr(
∂B

∂γ
Y err) = 0.

(A.4)

Adding (A.4) to the derived norm (A.2) leads to the following equation:

∂J

∂γ
=2tr(

∂Aerr

∂γ
P err(Eerr)T Y err) + 2tr(

∂Eerr

∂γ
P err(Aerr)T Y err)

+

m∑

k=1

2tr(
∂Nerrk
∂γ

P err(Nerrk )
T Y err) + tr(

∂B

∂γ
Y err) + tr(P err

∂C

∂γ
).

(A.5)

Di�erentiating by the redu
ed matri
es leads to:

∂J

∂âi j
= 2tr(

∂Aerr

∂âi j
P err(Eerr)T Y err) = 2tr(

∂Â

∂âi j
(P T12E

T Y12 + P22Ê
T Y22)).

As an optimal redu
ed model would ful�ll

∂J
∂âi j
= 0 for all i , j one 
an 
on
lude

P T12E
T Y12 + P22Ê

T Y22 = 0. (A.6)

One obtains for the derivative with respe
t to the ei j :

∂J

∂êi j
= 2tr(

∂Eerr

∂êi j
P err(Aerr)T Y err) = 2tr(

∂Ê

∂êi j
(P T12A

T Y12 + P22Â
T Y22)),

and again, this leads to:

P T12A
T Y12 + P22Â

T Y22 = 0. (A.7)

For the matri
es Nk one derives:

∂J

∂(n̂k)i j
= 2tr(

∂Nerrk
∂(n̂k)i j

P err(Nerrk )
T Y err) = 2tr(

∂Ê

∂(n̂k)i j
(P T12N

T
k Y12+P22N̂

T
k Y22)),
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for all k = 1, . . . , m. One obtaines:

P T12N
T
k Y12 + P22N̂

T
k Y22 = 0, k = 1, . . . , m. (A.8)

The equations for B and C involve more 
ompli
ated 
al
ulations:

∂J

∂b̂i j
= tr

(
∂B

∂b̂i j
Y err
)
= tr

([
0 Beje

T
i

eie
T
j B

T eie
T
j B̂

T + B̂eje
T
i

] [
Y11 Y12
Y T12 Y22

])

= tr(Beje
T
i Y12) + tr(eie

T
j B

TY12 + eie
T
j B̂

TY22 + B̂eje
T
i Y22)

= tr(BT Y12eie
T
j ) + tr(B̂

T Y12eie
T
j ) + tr(eie

T
j B

T Y12) + tr(eie
T
j B̂

TY22)

= 2tr(eie
T
j (B

T Y12 + B̂
TY22)),

This yields:

BT Y12 + B̂
TY22 = 0. (A.9)

Whereas

∂J

∂ĉi j
= tr

(
P err

∂C

∂ĉi j

)

= tr

([
−P12eje

T
i C −P11C

T eie
T
j + P12eje

T
i Ĉ + P12Ĉ

T eie
T
j

−P22ejeiC −P T12C
T eie

T
j + P22eje

T
i Ĉ + P22Ĉ

T eie
T
j

])

= tr(−P12eje
T
i C) + tr(−P

T
12C

T eie
T
j ) + tr(P22eje

T
i Ĉ) + tr(P22Ĉ

T eie
T
j )

= 2tr((−P T12C
T + P22Ĉ

T )eie
T
j ) = 0,

yields

− P T12C
T + P22Ĉ

T = 0. (A.10)

A.2. Derivation of the optimality 
onditions by Benner and Breiten

Following Benner and Breiten [12℄, the representation of the H2-norm

will be derived with respe
t to the eigenvalues of the redu
ed system λ̂i and

Ñk , B̃, C̃:
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J = ve
(I2p)
T (
[
C −C̃

]
⊗
[
C −C̃

]
)

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1

×

[
B

B̃T

]
⊗

[
B

B̃T

]
ve
(I2m).

We will need the following lemma, originally given by Benner and Breiten

[12℄:

Lemma A.2.1. Let C(x) ∈ Rp×n, A(y), E, Nk ∈ R
n×n

and B ∈ Rn×m with

x, y ∈ R. Let

L(y) =

(
−A(y)⊗ E − E ⊗ A(y)−

m∑

k=1

Nk ⊗Nk

)
,

and assume that C and A are di�erentiable with respe
t to x and y . Then

∂

∂x

[
vec(Ip)

T (C(x) ⊗ C(x))L(y)−1(B ⊗ B)vec(Im)
]

= 2vec(Ip)
T
(
∂

∂x
C(x) ⊗ C(x)

)
L(y)−1(B ⊗ B)vec(Im),

and

∂

∂y

[
(ve
(Ip)

T (C ⊗ C)L(y)−1(B ⊗ B) ve
(Im)
]

= 2

[
(ve
(Ip)

T (C ⊗ C)L(y)−1
(
∂A(y)

∂y
⊗ E

)
L(y)−1(B ⊗ B) ve
(Im)

]
.

Proof. The proof given by Benner and Breiten shows this result for

E = In. The 
ase E 6= In is a straight forward generalization of the proof,

whi
h will therefore be omitted here. �

In addition, we will need the following matrix:

M :=

[
Ir ⊗

[
In
0

]
Ir ⊗

[
0T

Ir

]]
,



A.2. DERIVATION OF THE OPTIMALITY CONDITIONS BY BENNER AND BREITEN 179

where 0 = zeros(r, n). It holds for M:

MT
(
ÑTk ⊗

[
Nk

N̂k

])
M =

[
Ñk
T
⊗ Nk

Ñk
T
⊗ N̂k

T

]
,

as well as MMT = Ir2n. We will now start with the di�erentiation of the

norm with respe
t to C̃ by making use of Lemma A.2.1:

∂J

∂C̃i j
=2(vec(I2p))

T
([
0 −eie

T
j

]
⊗
[
C −C̃

])

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1

×

[
B

B̃T

]
⊗

[
B

B̃T

]
vec(I2m)

=︸︷︷︸
seef ootnote

2(vec(I2p))
T
([
0 −eie

T
j

]
⊗
[
C −Ĉ

])

×

(
−

[
E

Ir

]
⊗

[
A

Â

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

N̂k

])−1

×

[
B

B̃T

]
⊗

[
B

B̂T

]
vec(I2m)

=2(vec(I2p))
T
(
−eie

T
j ⊗

[
C −Ĉ

])

×

(
MMT

(
−Ir ⊗

[
A

Â

]
− Λ⊗

[
E

Ir

]

−

m∑

k=1

Ñk
T
⊗

[
Nk

N̂k

])
MMT

)−1

× B̃T ⊗

[
B

B̂T

]
vec(I2m)
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=2(vec(I2p))
T
(
−eie

T
j ⊗

[
C −Ĉ

])

×

(
M

(
−

[
Ir ⊗ A

Ir ⊗ Â

]
−

[
Λ⊗ E

Λ⊗ Ir

]

−

m∑

k=1

[
Ñk
T
⊗ Nk

Ñk
T
⊗ N̂k

])
MT

)−1

× B̃T ⊗

[
B

B̂T

]
vec(I2m)

=2(vec(I2p))
T
[
−eie

T
j ⊗ C eie

T
j ⊗ Ĉ

]

×

(
−

[
Ir ⊗ A

Ir ⊗ Â

]
−

[
Λ⊗ E

Λ⊗ Ir

]

−

m∑

k=1

[
Ñk
T
⊗ Nk

Ñk
T
⊗ N̂k

])−1

×

[
B̃T ⊗B

B̃T ⊗ B̂T

]
vec(I2m)

=− 2vec(Ip)
T (eie

T
j ⊗ C)

·

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

+ 2vec(Ip)
T (eie

T
j ⊗ Ĉ)

·

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im).

The di�erentiation with respe
t to the eigenvalues λ̂i is done as follows.

First, we use Lemma A.2.1:

1

Using Λ = S−1ÂS, ÑT
k
= S−1N̂kS, B̃T = S−1B̂, C̃ = ĈS.
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∂J

∂λi
= 2vec(I2p)

T
([
C −C̃

]
⊗
[
C −C̃

])

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1([
0 0

0 eie
T
i

]
⊗
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E

Ir

])

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1

×

[
B

B̃T

]
⊗

[
B

B̃T

]
vec(I2m)

= 2vec(I2p)
T
([
C −C̃

]
⊗
[
C −Ĉ

])

×

(
−

[
E

Ir

]
⊗

[
A

Â

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

N̂k

])−1

×

([
In

Ir

]
⊗

[
In

S

])([
0 0

0 eie
T
i

]
⊗

[
E

Ir

])

×

([
In

Ir

]
⊗

[
In

S−1

])

×

(
−

[
E

Ir

]
⊗

[
A

Â

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

N̂k

])−1

×

[
B

B̃T

]
⊗

[
B

B̂

]
vec(I2m)
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= 2vec(Ip)
T
(
−C̃ ⊗

[
C −Ĉ

])

×

(
MMT (−Ir ⊗

[
A

Â

]
− Λ⊗

[
E

Ir

]

−

m∑

k=1

Ñk
T
⊗

[
Nk

N̂k

]
)MMT

)−1

×

(
eie
T
i ⊗

[
E

Ir

])

×

(
MMT (−Ir ⊗

[
A

Â

]
− Λ⊗

[
E

Ir

]

−

m∑

k=1

Ñk
T
⊗

[
Nk

N̂k

]
)MMT

)−1

× B̃T ⊗

[
B

B̂

]
vec(Im)

= −2vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗Nk

)−1

× (eie
T
i ⊗ E)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

+ 2vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
i ⊗ Ir )

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im).

The 
onditions for the di�erentiation with respe
t to Ñk and B̃ 
an be

derived in exa
tly the same manner, hen
e they will be omitted here. Setting

the derived equations to zero leads to the optimality 
onditions stated in

Se
tion 5.5.2.
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A.3. Proof of Theorem 5.5.4

We demonstrate the following result:

Theorem A.3.1 ([12℄). Assume Algorithm 2 
onverges. Then Êopt, Âopt,

N̂optk , B̂opt and Ĉopt full�l the Wilson optimality 
onditions (5.43)-(5.47).

Proof. We denote by E, A, Nk , B, C the matri
es 
orresponding to

the step before the last step. A state spa
e transformation 
an be used to

transform this model to the optimal model, due to the 
onvergen
e of the

algorithm:

E = T−1ÊoptT, A = T−1ÂoptT, Nk = T
−1N̂optk T,B = T−1B̂opt,

C = ĈoptT,

By the orthogonalization step in the Algorithm 2, we know that

V opt = XoptF, W opt = Y optG,

with F,G ∈ Rr×r nonsingular. The following two Sylvester equations hold:

AXoptE
T
+ EXoptA

T
+

m∑

k=1

NkX
optN

T

k + BB
T
= 0, (A.11)

ATY optE + ET Y optA+

m∑

k=1

NTk Y
optNk − C

TC = 0. (A.12)

The �rst equation (A.11) is multiplied with

(
W opt

)T
from the left, and the

expressions for E, A, Nk , B, C are inserted:

(
W opt

)T
AXoptFF−1E

T
+
(
W opt

)T
EXoptFF−1A

T

+
(
W opt

)T m∑

k=1

NkX
optFF−1N

T

k +
(
W opt

)T
BB

T
= 0,

⇒
(
W opt

)T
A

V opt︷ ︸︸ ︷
XoptF F−1T T (Êopt)TT−T

+
(
W opt

)T
E

V opt︷ ︸︸ ︷
XoptF F−1T T (Âopt)TT−T

+
(
W opt

)T m∑

k=1

Nk X
optF︸ ︷︷ ︸
V opt

F−1T T (N̂optk )
TT−T +

(
W opt

)T
BB̂optT−T = 0.
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By multiplying with T T from the right this leads to the following Lyapunov

equation:

ÂoptF−1T T (Êopt)T+ÊoptF−1T T (Âopt)T +

m∑

k=1

N̂optk F−1T T (N̂optk )
T

+ B̂opt(B̂opt)T = 0.

Under the assumption that the redu
ed order system is stable this equation

has an unique solution and hen
e P22 = F−1T T . We multiply the se
ond

Sylvester equation (A.12) with

(
V opt

)T
from the left and insert the given

expressions, whi
h leads to:

(Âopt)TG−1T−1Êopt+(Êopt)TG−1T−1Âopt +

m∑

k=1

(N̂optk )
TG−1T−1N̂optk

+ (Ĉopt)T Ĉopt = 0.

Multiplying this equation with −1 gives the solution Y22 = −G
−1T−1 and

as Y22 is a symmetri
 matrix this leads to: Y22 = −T
−TG−T . Inserting the

expressions for the overlined matri
es into the Sylvester equations (A.11)

and (A.12) yields to the following equations:

AXoptT T (Êopt)T + EXoptT T (Âopt)T +

m∑

k=1

NkX
optT T (N̂optk )

T

+ B(B̂opt)T = 0,

AT Y optT−1Êopt + ET Y optT−1Âopt +

m∑

k=1

NTk Y
optT−1N̂optk

+ CT Ĉopt = 0.

hen
e one obtains P12 = X
optT T and Y12 = Y

optT−1. The Wilson 
onditions


an now be proven:

Y T12EP12 + Y22Ê
optP22

= T−T (Y opt)TEXoptT T − T−TG−T (W opt)TEV optF−1T T
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= T−T (Y opt)TEXoptT T − T−TG−TGT (Y opt)TEXoptFF−1T T = 0.

with similar 
al
ulations for 
onditions (5.44) and (5.45). For the other


onditions one obtains:

Y T12B + Y22B̂
opt = T−T (Y opt)TB − T−TG−T (W opt)TB = 0

ĈoptP22 − CP12 = Ĉ
optF−1T T − CXoptT T = 0.

�
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