Bilinear .77%-optimal

Model Order Reduction

with applications

to thermal parametric systems

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr.rer.nat.)

von Dipl.-Math. Angelika Susanne Bruns
geb. am 06.01.1986 in Freudenstadt
genehmigt durch die Fakultat fiir Mathematik
der Otto-von-Guericke-Universitat Magdeburg

Gutachter: Prof. Dr. Peter Benner
Prof. Dr. Tobias Damm

eingereicht am 20.03.2015
Verteidigung am 30.06.2015









Contents

Danksagung
Zusammenfassung
Summary

List of Figures
List of Tables

List of Algorithms
Notations

Chapter 1. Introduction
1.1. Motivation
1.2. Dissertation overview
1.3.  Thesis contributions

Chapter 2. Mathematical prerequisites
2.1. Linear Algebra
2.2. Differential geometry
2.3. Systems theory

Chapter 3.  Modeling of heat transfer problems
3.1. Thermal Modeling
3.2.  The heat equation
3.3. Boundary and Interface conditions
3.4. Mode of operation of an electrical motor

Vii

Xi

xiii

XV

XVii

W N ==

Q 01 o1

10

25
26
29
30
31



iv CONTENTS

3.5.  Thermal modeling of an electrical motor 32
Chapter 4. Model parametrization 35
4.1. Discretization of the heat equation 35
4.2.  Physical parametrization 37
4.3. Geometric variations 37
Chapter 5.  Model Order Reduction 49
5.1.  Projection-based MOR and the error system 50
5.2. MOR of linear systems 52
5.3. Parametric Model Order Reduction (pMOR) 60
5.4. Bilinear Model Order Reduction 69
5.5. % - optimal bilinear Model Order Reduction 73

Chapter 6. Challenges when applying BIRKA to thermal industrial

models 101

6.1. Kronecker product appproximation 101
6.2. Stability 105
6.3. Singular stiffness matrix A and large norm matrices Nx 115
Chapter 7. Reduction of physically parametrized thermal models 121
7.1. Results for the s%-optimal reduction on Grassmann manifolds121
7.2. Results for the reduction using BIRKA 131

Chapter 8. Reduction of thermal models with geometric variations 145
8.1. Reformulation of the linear parametric as bilinear systems 146
8.2. Methods for the interpolation of the reduced models 149
8.3. Reduction and interpolation using reformulation one 154
8.4. Reduction and interpolation using the second reformulation 159

Chapter 9.  Conclusions and Outlook 171
9.1. Summary and Conclusions 171
9.2. Future research 173

Appendix A. Derivation of the bilinear Z%-optimal conditions 175
A.1. Wilson conditions 175

A.2. Derivation of the optimality conditions by Benner and Breiten177
A.3. Proof of Theorem 5.5.4 183



CONTENTS v

Bibliography 187

Ehrenerklarung 191






Danksagung

Diese Arbeit ware ohne die Beteiligung vieler Personen in dieser Art
und Weise nicht moglich gewesen. Natiirlich gilt mein Dank an erster Stelle
meinem Betreuer Prof. Dr. Peter Benner, der sich bei meinen Besuchen in
Magdeburg immer Zeit fiir mich nahm, mir hilfreiche Hinweise und Tipps gab
und insbesondere das Wagnis Industrie- und “Numerik-fremde" Doktorandin
einging. Herzlichen Dank!

AuBerdem bedanke ich mich herzlich bei Prof. Dr. Tobias Damm fiir die
Ubernahme der Zweitkorrektur.

Die CSC Gruppe am MPI in Magdeburg hat mich bei meinen Besuchen im-
mer freundlich aufgenommen. Danke fiir eure Hilfsbereitschaft und diverse
schéne Abende in Magdeburg, Schloss Ringberg, im Harz und in Kroatien.
Ein spezieller Dank geht an meine Mentorin Dr. Ulrike Baur.

Meine Promotionszeit bei Bosch ware nicht das Gleiche gewesen ohne meine
Kollegen aus der “Mathematikerecke”. Ich danke hier insbesondere Dr. Ka-
trin Schumacher und Dr. Rudy Eid fiir die hervorragende Betreuung - nicht
nur fachlich, auch personlich habe ich viel von euch gelernt. Ebenso bedanke
ich mich bei allen anderen Kollegen aus der CR/ARH, die mir vor allem bei
Fragen zu thermischen Simulationen weiter geholfen haben, zusatzlich danke
ich Dr. Kilian Kriener und Thomas Heid von ED/ESY3.

Ich danke auBerdem meinen Eltern und meiner Schwester fiir ihre Unter-
stiitzung wahrend nun schon iiber 10 Jahren Mathematik. Danke an Sophie
fiir liber 6 Jahre Horizonterweiterung.

Johannes — Danke. Fiir alles. Ich liebe dich.

vii






Zusammenfassung

Wird in der Industrie eine neue Komponente entwickelt, so spielen Com-
putersimulationen mittlerweile eine wichtige Rolle. Immer schnellere und im-
mer genauere Simulationsmodelle werden gewiinscht, damit Zeit und Kosten
gespart werden konnen. Mit Hilfe von Modellordnungsreduktion (MOR)
kann man aus groBen, mit der Finite Elemente Methode erstellten Mod-
ellen kleine und genaue Modelle erhalten, die dann in kurzer Zeit simuliert
werden kdnnen. Immer haufiger wird auch gefordert, die Variation von Pa-
rametern im groBen Finite Elemente Modell auf die kleinen reduzierten Mod-
elle zu tibertragen. Diese Parameter beschreiben beispielsweise verschiedene
Randbedingungen, die im Modell abgebildet werden, genauso wie Anderun-
gen in der Geometrie (z.B. Variation von Langen). Mit Hilfe von Methoden
aus der parametrischen Modellordnungsreduktion (pMOR) konnen diese Pa-
rameterabhadngigkeiten auch im reduzierten Modell erhalten und zur Simu-
lation von unterschiedlichen Szenarien genutzt werden.

Anstatt die heute iblichen Verfahren zur pMOR zu benutzen, werden in
dieser Arbeit die parametrischen Modelle, die eine spezielle Parameterab-
hangigkeit zeigen, in bilineare Modelle umgeschrieben. Nun kdnnen auch
Verfahren zur bilinearen Modellordnungsreduktion angewandt werden, ins-
besondere Verfahren zur J%-optimalen Reduktion. Ziel dieser s%-optimalen
Verfahren ist es, den Fehler zwischen dem Ausgangsmodell und dem re-
duzierten Modell in der s%-Norm zu minimieren. Wir verwenden zum einen
den sogenannten Bilinear Interpolatory Rational Krylov Algorithm (BIRKA)
von Benner und Breiten [12]. AuBerdem entwickeln wir neue bilineare 7%%-
optimale Algorithmen, die auf Optimierungsverfahren auf Grassmann-Man-
nigfaltigkeiten beruhen.

Die theoretischen Grundlagen der thermischen Modellierung werden erklart
und auf die erstellten Modelle von Elektromotoren angewandt. Parametrische
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Modelle kénnen aus den Finite Elemente Modellen durch eine Analyse der
Gleichungen abgeleitet werden. Die Parameter sind einerseits GréBen, die
das thermische Verhalten wahrend des Betriebs erklaren und andererseits
GroBen, die Variationen in der Geometrie des Motors beschreiben. Diese
Parameter sollen in den reduzierten Modellen erhalten bleiben.

Wihrend die neu entwickelten Algorithmen noch nicht reif fiir die Reduktion
von groBen Modellen sind, wird in der Arbeit gezeigt, dass die Reduktion mit
BIRKA zu guten reduzierten Modellen fiihrt. Allerdings miissen dazu ver-
schiedene Nachbesserungen an der Reduktionsmethodik vorgenommen wer-
den, beispielsweise miissen Methoden zur Stabilitatserhaltung angewandt
werden. In Modellen mit Variationen in der Geometrie, werden zusatzlich
zum urspriinglichen BIRKA nach der Reduktion noch Interpolationsverfahren
verwendet, um reduzierte Modelle mit der Parameterabhangigkeit des Orig-
inalmodells zu erhalten.



Summary

The design process of a new component in industry is nowadays al-
most always accompanied by computer simulations. In order to save time
and money, fast and accurate models for the simulation of the component
are required. Using Model Order Reduction (MOR) large models obtained
by Finite Element simulations can be reduced to small models possessing
the same behavior as the original. Often it is required to obtain reduced
models, where the dependence in one or several parameters (for example
the length or width of a part) of the original model is preserved. Using so
called parametric Model Order Reduction (pMOR) the parameters in the
reduced model can be varied and the models can be used for fast simulation
of several scenarios.

Instead of using the commonly employed methods from pMOR, methods
from bilinear Model Order Reduction will be used within this work, as para-
metric models with a certain form of parameter dependence can be rewritten
as bilinear models. We focus on methods from bilinear s%-optimal Model
Order Reduction, as their objective is to minimize the error between the orig-
inal and the reduced model measured in the s%-norm. First, the Bilinear
Interpolatory Rational Krylov Algorithm (BIRKA) developed by Benner and
Breiten [12] is used. Second, we derive new bilinear J#-optimal algorithms
based on optimization on Grassmann manifolds.

The foundations of thermal modeling and their application to thermal sim-
ulations of electrical motors using Finite Element software will be explained.
Parametric models suitable for pMOR can be derived from a Finite Element
software analyzing the underlying equations. Two classes of parameters will
be considered: Constants influencing the thermal behavior of the model and
changes in the geometry of the model.

Using the newly developed optimization algorithms for %-optimal MOR,

Xi



xii SUMMARY

we find that they are not yet ready for the reduction of large parametric
models as encountered in our thermal simulations. In contrast, the BIRKA
performs well for the reduction of these models. However, several modifica-
tions on the reduction methods need to be performed to assure, for example,
the preservation of stability during the reduction. For the reduction of mod-
els with parameters resulting from changes in the geometry, interpolation
procedures need to be applied after the reduction to transfer the parameter
dependence of the original to the reduced model.
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CHAPTER 1

Introduction

1.1. Motivation

In industry, simulations are an important tool in the design process of
a new component. In order to save time and money, fast and accurate
models for simulation are needed. Model Order Reduction (MOR) is a pow-
erful method to obtain small and accurate models from large Finite Element
models. More and more often, Finite Element models are used, which con-
tain several parameters. Such parameters can be lengths and heights as
well as physical behavior. These parametrized models will often be used to
find optimal designs by using optimization w.r.t. the given parameters. As
the Finite Element models are large, optimization runs can easily exceed the
computation capacities. It is hence desirable to reduce models while preserv-
ing the parameter dependency. This is the objective of parametric Model
Order Reduction (pMOR). Recently, Benner and Breiten [11] presented a
method to rewrite linear parametric models into bilinear models. This allows
bilinear Model Order Reduction methods to be used for parametric Model
Order Reduction. The resulting reduced order model should be a good ap-
proximation of the original model. Within the framework of J#-optimal
Model Order Reduction, the error can be measured and minimized in the
J-norm. In this work, we will examine bilinear .s%-optimal methods for
the reduction of linear parametric systems, which have been applied to and
further developed on thermal models of electrical motors.



2 1. INTRODUCTION

1.2. Dissertation overview

In Chapter 2, we review results from Linear Algebra, Differential Geom-
etry and Systems Theory. The concepts will be stated for linear and bilinear
systems.

Chapter 3 provides the reader with the foundations of heat transfer mod-
eling. The underlying physical effects (heat conductance, convective heat
transfer, radiation) will be reviewed and the mode of operation and the
thermal modeling of an electrical motor will be described. Three different
electrical motor models have been built and will be presented. Chapter 4
gives an overview over the equations that are solved during heat transfer
modeling, and the procedure to obtain parametric models by careful analysis
of these equations.

In Chapter 5, methods for Model Order Reduction (MOR) will be discussed.
First, methods for linear MOR will be reviewed, followed by a discussion
of methods for the reduction of parameter dependent models (parametric
MOR). It is possible to rewrite parametric models with a certain parameter
dependency as bilinear models, and hence methods from bilinear MOR will
be considered. Of particular interest are methods from the class of .7%3-
optimal bilinear MOR, as their objective is to minimize the error between
original and reduced model. First, we review existing methods and state the
Bilinear Interpolatory Rational Krylov Algorithm (BIRKA) [12]. Second,
we develop algorithms for the reduction of bilinear systems via optimization
on Grassmann manifolds. These methods are of interest, as they preserve
stability during the reduction process.

The objective of Chapter 6 is the discussion of several issues that were
encountered while applying BIRKA to thermal models. These issues are
examined, and strategies for their mitigation will be developed. Especially
preservation of stability during the calculation is crucial. Results for BIRKA
and the new #%-optimal methods will be given in Chapters 7 and 8. Whereas
the new methods are not yet applicable to large systems, BIRKA performs
well on bilinear systems that have been obtained from linear parametric sys-
tems. First, only physical parameters are considered. Second, we present
results for systems with a parameter dependency resulting from changes in
geometry, which can only be rewritten partially as bilinear systems. For
such systems, parametric reduced order models can then be obtained by an
interpolation procedure.
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1.3. Thesis contributions

The main contributions of this thesis are:

One objective of this thesis is MOR of thermal electrical motor
models. Hence, it is shown how matrices suitable for pMOR can
be obtained from Comsol®, a Finite Element Software. To do so,
the equations which are solved by the Software are used to theo-
retically reconstruct the dependence in parameters of the model
(cf. Chapter 4).

In contrast to other works about pMOR, in this thesis the reduc-
tion of the parametric models is done using BIRKA [12]. Several
issues where encountered when the algorithm was applied: One
class of parameters leads to a non-singular stiffness matrix, in sev-
eral cases there is the need to scale other system matrices to fulfill
a Kronecker product approximation and in addition, BIRKA does
not preserve stability. All these issues have been resolved, and we
show results for the reduction of a motor model from n = 41, 199
degrees of freedom to a reduced order of r = 300. This has been
done for 13 physical parameters.

In addition, models with geometrical variations are considered.
After the reduction with BIRKA, several interpolation strategies
between the reduced order models obtained in several parameter
points have been compared.

Finally, we develop new .#%-optimal bilinear methods for MOR
using optimization on Grassmann manifolds. These methods can
preserve stability for symmetric systems matrices, and their appli-
cability to small models will be proved.






CHAPTER 2

Mathematical prerequisites

2.1. Linear Algebra 5
2.2. Differential geometry 8
2.3. Systems theory 10

In this first theoretical chapter, some results from different areas of
mathematics are reviewed. First, general results from Linear Algebra will be
presented, followed by a closer look on some definitions from Differential
Geometry. The last section provides the reader with an introduction to
linear and bilinear systems theory.

2.1. Linear Algebra

Within this section we review the decomposition of matrices, the prop-
erties of the Kronecker product and provide the reader with basic knowledge
on matrix pertubation theory.

2.1.1. Matrices and their decompositions. Most of the matrices in
this work are symmetric, which is why we state the definition here.
Definition 2.1.1. A matrix A € R™" is called symmetric if A = AT. A
symmetric matrix is positive (semi)definite, denoted by A > (>)0, if x” Ax >
(>)0 for all vectors 0 # x € R". It is negative (semi)definite, denoted by
A < ()0, if x" Ax < (£)0 for all vectors 0 # x € R".

5



6 2. MATHEMATICAL PREREQUISITES

We will often refer to the following two matrix decompositions, the
eigenvalue and the singular value decomposition.

Definition 2.1.2 (Generalized eigenvalue decomposition [38, Section 7.7]).
If A, B € C™", then the set of all matrices of the form A — A\B with A € C
is a pencil. The generalized eigenvalues of A — AB are elements of the set
A(A, B) defined as

MA,B) ={z e C:det(A—zB)=0}.
If X € A(A, B) and 0 # x € C" satisfies
Ax = ABx, (2.1)

then x is an eigenvector of A — XB. The problem of finding nontrivial
solutions to (2.1) is the generalized eigenvalue problem. If B is nonsingular,
A(A, B) = A(B*A) holds.

Theorem 2.1.3 (The singular value decomposition (SVD) [38, Theorem

2.4.1]). IfA € R™", then there exist orthogonal matricesU = [un, . . ., Um] €
R™™ and V = [w1, ..., va] € R™" such that
UT AV = diag(on, . . ., op) € R™, (2.2)

with p = min (m, n) where g1 > 02> +-+- > 0, > 0.

The o; will be called singular values. If it shall be clarified that they
result from a singular value decomposition of the matrix A, we denote them
by o;(A). Let r be such that o1 > 02 > --- >0, > 01 =--- =0, = 0.
Then rk(A) = r and A can be decomposed in the following way:

p
A= Z O',‘U,‘V,‘T.
i=1
Using matrices, we will write this decomposition as follows:
A=UX,V/, (2.3)

with U, € R™, ¥, € R™ and V, € R™" and refer to it as the compact
singular value decomposition.
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2.1.2. Properties of the Kronecker product. The following matrix
product is referred to as the Kronecker product:

Definition 2.1.4. For two matrices A € C™™ and B € C**, the Kronecker
product is defined as:
3115 almB
am B anmB
The Kronecker product has the following properties (see for example
[38], Section 12.3):
(AeB) =A" @B, with Ac C™™ B e C*,
(A®B) '=A'®B™", with AcC™™ BeC",
(ARB)®C=A®(B®C), with Ac C™™ BeC* and C e C*7,
(AC® BD) = (A® B)(C ® D),
with Ac C™" B e C*' CceC™ and D € C™,
but in general AQ B # B®A! In addition one obtaines (with A € C™", B €
(Ckxl):
rk(A® B) = rk(A) - rk(B),
det(A® B) = det(A)" - det(B)™ for A€ R™ and B € R™",
tr(A® B) = tr(A) - tr(B),
[[A® Bll2 = ||All2 - ||B]l2.

If C = AXB for C € R™™ A € R™* X € R*' and B € R™™ then
one obtains for the Kronecker product and the vec operator:

vec(C) = (B" @ A)vec(X). (2.4)

2.1.3. Matrix pertubation theory. The connection between the eigen-
values of two matrices will be needed within this work. The following results
have been established in the context of matrix pertubation theory, the re-
lation of the eigenvalues of a pertubed Matrix M + S and the unpertubed
matrix M will be examined.
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Theorem 2.1.5 (Bauer-Fike,[38, Theorem 7.2.2]). If u is an eigenvalue of
M+ScC™ and X *MX = diag(\1, .. ., An), then
min D= ul < k2(X)]S]le. (2.5)

Corollary 2.1.6. Let X" 'MX = diag(\i, ..., An), and M+ S € C™". For
every eigenvalue A\(M + S) an eigenvalue X\j(M) exists such that |\j(M) —
AM + S)| < K2(X)[|S]]2-

The next results show the connection between the eigenvalues of two
real symmetric matrices A and B.
Proposition 2.1.7 (Weyl,[60, Theorem 4.8, Corollary 4.9]). Let A,B €
R™" be two symmetric matrices. Let \i(A) and X\i(B) fori=1,..., n be
the eigenvalues of A and B with \i(A) > -+ > Xp(A) and \(B) > -+ >
An(B). Then it holds:

A(A+ B) € N(A) + M(B), M(A) + M (B)] fori=1,....n. (2.6)

Corollary 2.1.8 ([60, Corollary 4.10]). Under the assumptions of Proposi-
tion 2.1.7 it holds

IN(A+B) = N(A) <|IBll2 fori=1,....n. (2.7)

2.2. Differential geometry

In Section 5.5.4, several algorithms based on optimization on manifolds
will be derived. For a more detailed presentation of this topic, we refer to
[1] and [30]. Let O, denote the set of the orthogonal matrices in R™".
Definition 2.2.1 (Stiefel manifold [1, Section 3.3.2]). For r < n, the Stiefel
manifold is defined as the set of all n X r orthonormal matrices:

St(r,n) = {X e R™"|X"X =/,}.

Clearly, St(r, n) C R™". It can be shown that St(r, n) is a compact
submanifold of R™" (cf. [1, Section 3.3.2]). The tangent space of a Stiefel
manifold at X € St(r, n) is defined as follows (cf. [1, Example 3.5.2]):

TxSt(r,n) ={Z e R™"X"Z+Z"X = 0}.

Heading for an algorithm for the gradient flow, the gradient of a function
on the manifold has to be calculated. Therefore, we first have to provide
a concept of direction and length of a tangent vector. This leads to the
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definition of an inner product on the tangent space. For a Stiefel manifold,
the inner product is defined as

(&.m) = tr(¢7m) with &€ n € TxSt(r, n). (2.8)
The gradient in X of a function F on a Stiefel manifold is defined to be the
tangent vector VF such that

tr(FLY) = tr(VF) (/= %XXT)Y), (2.9)

holds for all tangent vectors Y € TxSt(r, n). Here, Fx is the matrix of all
partial derivatives of F with respect to X, i.e.:

oF

(Fx)ij = X, (2.10)
Solving equation (2.9) leads to the following expression for the gradient:
VF = Fx — XFx X. (2.11)

The Grassmann manifold Gr(r,n), r < n, is defined as the set of all r-
dimensional subspaces of R”. Following [30], it can be seen as a quotient
manifold in the following way: Two matrices U; and U- in St(r, n) are equiv-
alent, if they span the same r-dimensional subspace. This holds if and only
if U1 = UQ for an orthogonal matrix Q € R™". The equivalence class [U]
of a point U € St(r, n) can be defined as:

[U] = {UQIQ € O,}.

The map

G : Gr(r,n) — St(r,n)/O;
is a bijection. We will therefore consider the Grassmann manifold as this
quotient manifold of St(r, n). A matrix U € St(r, n) represents a whole
equivalence class in Gr(r, n). The tangent space of the Grassmann manifold
can be described as follows [30, Section 2.5]:

TxGr(r,n) = {Z e R™"|X"Z = 0}. (2.12)

On a manifold, the shortest connection between two points is called a ge-
odesic. Let X(0) = X and X(0) = H. Let H = WXV’ be the compact
singular value decomposition (cf. equation (2.3)) of H with W € R™",
>,V € R™". The geodesic can be described as [30, Section 2.5.1]:

cos Zt} v

sinX_t (2.13)

X(t)=[xv W] [
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For a Grassmann manifold, the inner product is defined as
& n) = tr(ETn), with &, m € TxGr(r, n). (2.14)

The gradient in X of a function F on the Grassmann manifold is defined to
be the tangent vector VF such that

tr(FyY) =tr((VF)TY), (2.15)

holds for all tangent vectors Y € TxGr(r, n). Solving equation (2.15) leads
to the following expression for the gradient [30, Section 2.5.3]:

VF = Fx — XX Fx. (2.16)
We will also need the following definition:

Definition 2.2.2 ([1, Definition 4.2.1]). Given a function F on St(r, n) or
Gr(r, n), a sequence {n«}, Mk € Tx St(r, n) or Mk € Tx Gr(r, n) is gradient-
related if, for any subsequence {xk}«ex of {xc} that converges to a non-
critical point of F, the corresponding subsequence {m« }xex is bounded and
satisfies

lim sup (VF(xx), nk) < 0. (2.17)
k—00 kek

2.3. Systems theory

Many physical phenomena, chemical reactions, biological processes or
models for the forecast of financial processes can be mathematically de-
scribed by the same class of systems, so called dynamical systems. External
influences that have a direct impact on the behavior of the system are called
inputs. The behavior of the systems will be monitored within a certain time
range and at certain points, the system’s outputs. The connection between
the inputs and the outputs will often be measured and referred to as the
system’s input-output-relationship. A dynamical system can be described by
a differential equation. In this work, two kinds of dynamical systems will be
considered: linear and bilinear systems.



2.3. SYSTEMS THEORY 11

2.3.1. Linear Systems. In the following section some basic knowledge
on linear dynamical systems will be reviewed, such as stability, observability,
controllability, balanced systems, norms of systems and the input-output
relationship.

Definition 2.3.1. A /inear system ¥, of order n is a system of ordinary
differential equations of the following form:

_ _{Ex(t)_Ax(t)+Bu(t),

y(t) = Cx(t), x(0) = xo, (2.18)

where E,A € R™", B € R™™, C € R”*". The input u(t) € R can be
time-dependent just as the states x(t) € R" and the output y(t) € R” are.
The value of x(0) = xo is called initial value. The space X containing all
states x(t) is called state space.

2.3.1.1. Stability. Systems with bounded solution trajectories x(t) are
of special importance. This characteristic of a system is referred to as
stability. For linear systems (c.f. system (2.18)) with nonsingular E, stability
is defined as follows:

Definition 2.3.2 (c.f. [63] Chapter 2.7,[5] Chapter 5.8,[61] Chapter 3.2.1).
The system

Ex(t) = Ax(t), E nonsingular,
is asymptotically stable if

(i) For all x° € R” the initial value problem Ex(t) = Ax(t), x(0) =
x°, has a solution and for every € > 0 there exists a § > 0 such
that [|x(t)|]2 < € for all t > 0 and for all ||x(0)|]> < & (Lyapunov
stability).

(i) There exists & > 0 such that x(t) — 0 as t — oo if ||x(0)|]> < 4.

Theorem 2.3.3 ([63] Corollary 2.11, [61] Theorem 3.7). The system
Ex(t) = Ax(t), E nonsingular,
is asymptotically stable if and only if all the eigenvalues of N\E — A lie in the

open left half-plane.

We will therefore speak of a stable system, if all the eigenvalues of
AE — A, E nonsingular, lie in the open left half-plane. In this case, the
eigenvalues of the pencil AE — A are those of the matrix E~LA.



12 2. MATHEMATICAL PREREQUISITES

2.3.1.2. Controllability, Observability and Balanced Systems. During
the analysis of a linear system (2.18) one might ask how the system is
affected by the input u(t). The following two characterisations will be con-
sidered.

Definition 2.3.4 ([5]). x* € R" is reachable (from the origin x(0) = 0) if
there exist an admissible input function and te < oo such that x(t.) = x*
holds (and hence x(t.) = x* belongs to the state space of a linear system
(2.18)).

Definition 2.3.5 ([5, 46]). A nonzero state x(0) = xo is controllable if there
exists an admissible input function such that the system can be transformed
from xo to any given end state x(t.) within a finite time [0, t.].

For linear continuous time systems the concepts of controllability and
reachability coincide (cf. [5], Theorem 4.18). Hence, the following concepts
will be developed for the controllability of a linear system. In the following
chapters we will need the concept of the controllability Gramian.

Definition 2.3.6 ([61] Lemma 4.57). Consider a stable linear system (2.18)
with E nonsingular. The controllability Gramian can be defined as follows:

P = % / (iwE — A)"' BB* (iwE — A) ™" dw. (2.19)

If one considers the eigenvalue decomposition of P, the eigenvalues
measure the degree of controllability, whereas the eigenvectors correspond-
ing to the largest eigenvalues can be understood as the directions in which
the system is easy to control.

Proposition 2.3.7 ([61] Corollary 4.58). Consider a stable linear system
(2.18) with E nonsingular. The controllability Gramian P (2.19) exists and
is the unique Hermitian solution to the following Lyapunov equation:

AXE" + EXAT + BB™ =0. (2.20)
In addition, P is positive definite if and only if the system is controllable.

In practice, we will often be able to measure the output y(t) of a linear
system (2.18). If the input u(t) and the output y(t) are known, we want
to reconstruct the states x(t). This leads to the concept of observability.
Definition 2.3.8 ([46]). A linear system (2.18) is completely observable, if
the initial state xo can be reconstructed from the behavior of the input u(t)
and the output y(t) within a finite time interval [0, te].
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Again, we will need the concept of the systems observability Gramian.

Definition 2.3.9. Consider a stable linear system (2.18) with E nonsingular.
The observability Gramian Q is defined as follows:

Q=E"QE,
with

Q = % / (iwE — A)™* C*C (iwE — A)~" dw. (2.21)

The interpretation is similar to the controllability case: If one considers
the eigenvalue decomposition of @, the eigenvalues measure the degree of
observability, whereas the largest eigenvectors can be understood as the
directions in which the system is easy to observe.

Proposition 2.3.10 ([61] Corollary 4.58). Consider a stable linear system
(2.18) with E nonsingular. The matrix Q (see Definition 2.3.9) exists and
is the unique Hermitian solution to the following Lyapunov equation:

ATXE+E"XA+C'C=o. (2.22)

In addition, Q and therefore also the observability Gramian Q is positive
definite if and only if the system is observable.

A balanced representation of a linear dynamical system is a representa-
tion of the system in which every state is “equally" reachable and observable.
This section introduces the concepts which will be needed for the Balanced
Truncation Model Order Reduction in Section 5.2.1. The reader should
note that there exist several other balanced representations beside the one
presented here. They can be found in the work by Gugercin and Antoulas
[40] and the references therein.

Definition 2.3.11 ([61, Definition 7.5]). The Hankel singular values, de-
noted by g;, of a stable linear system (2.18) with E nonsingular are the
square-roots of the eigenvalues of PQ.

Proposition 2.3.12 ([61, Corollary 7.7]). A stable linear system (2.18) with
E nonsingular is controllable and observable if and only if its Hankel singular
values are non-zero.

Definition 2.3.13 ([61, Definition 7.10]). A stable linear system (2.18) with
E nonsingular is called balanced, if the controllability and the observability
Gramians are equal and diagonal.
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Every stable, controllable and observable linear system with E nonsin-
gular can be transformed into a balanced representation. To do so, one
computes the Cholesky factorization of the Gramians

P=RR andQ=1L"L,

which exists due to the positive definiteness of P and @ (cf. Propositions
2.3.7 and 2.3.10). Computing the QR decomposition of the Cholesky fac-
tors L and R leads to the following decomposition with orthogonal matrices
Qc and Qo:
R"=QR" and L = Q,L.
It is obvious that P = RR"™ = RR™ and @ = L"L = [7L. The Hankel
singular values can now be computed via the singular values of LER:
2 T A 55T ~TiTT 5T =TT =5 207 5
G =NPE QE)=N(RR E'L'LE)y=X(R'E'L' LER) =0j(LER),
Q

with the singular value decomposition
[ER = UVy,

and orthogonal Uy, Vs and X = diag(s1, . . ., Sn). The matrices of the linear
system can now be transformed to a balanced system representation:

W, ETy, W/, ATy, W/ B, CT,
where
W, = ZTUbZ—l/QV T, = ’évbz—l/zv Wb—l — TJ'ET’ Tb—I — WbTE.

The Gramian (as the observability and the controllability Gramian coincide
cf. Definition 2.3.13) of the balanced system is obtained from those of the
original system in the following way:

TP, = =WlOW, T = T QTs.

2.3.1.3. Systems norms and spaces and input-output relationship. As
the objective is to approximate the given original models, one needs to be
able to quantify the difference between the original and the reduced system,
or generally speaking, between two dynamical systems. To do so, several
different spaces and their norms, both in the time and in the frequency
domain, need to be considered.



2.3. SYSTEMS THEORY 15

Definition 2.3.14 ([5, Section 5.1.2]). Let f : Z — R", with Z € {R,R_,
R4, [a, b]} be a vector valued function. The Lebesgue space L5(Z) is defined

as:
LYT) = {f:I%R" : (/ ||f(t)||§>5 < oo}. (2.23)

In our models, input and output will be considered as functions in these
spaces: u(t) € L5(T) and y(t) € L5(Z) with t € T (cf. the definition of
a linear system (2.18)). Usually, one is interested in a relationship between
input and output. As such a relationship in the time domain is described
by a convolution which is often difficult to calculate, the relation is often
examined in the frequency domain. There, it can easily be determined by a
product of matrices, as we will see in this section. For the transformation
from time to frequency domain the Laplace transformation is used.

Definition 2.3.15 ([18, Section 15.2]). The Laplace transform of a function
f:RT — R is defined as

F(s) = L{f(t)}(s) = /OO f(t)e *tdt, (2.24)
0
with
L{f'(t)}(s) = sF(s) — f(0). (2.25)

For a vector, the Laplace transform has to be seen element wise. We
transform the linear system (assuming x(0) = xo = 0):

LLEX(t)}(s) = L{Ax(t) + Bu(t)}(s)
= EL{x(t)}(s) = AL{x(t)}(s) + BL{u(t)}(s)
= SEX(s) = AX(s) + BU(s)
= X(s) = (sE - A BU(s),

and Y(s) = CX(s). This leads to the following connection between the
input and the output:

Y(s) = C(sE — A)'BU(s).

Definition 2.3.16. The transfer function H : C — CP*™ of the linear system
(2.18) is defined as

H(s) := C(sE — A 'B. (2.26)
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Functions in frequency domain will often be interpreted as functions
of a complex variable. A detailed description of frequency domain spaces
for linear systems can be found in [5]. Here we use Hardy spaces % and
. The following system norms can then be established using the transfer
function H(s) and the corresponding Hardy space norms:

Definition 2.3.17 ([5, Section 5.1.3]). The % norm of a stable system is

defined as .
2

[1Zinl| 2 = (/ tr(H*(—iy)H(iy))dy> ) (2.27)

The 5 norm of a stable system is defined as
[[Ziinl| s = sup (omax(H(iy))) (2.28)
YeR
with maximal singular value omax.
Proposition 2.3.18 ([5]). It holds:

ISl = V/tr(B*QB) = /tr(CPC*), (2.29)
for the systems Gramians as defined in (2.21) and (2.19).

2.3.2. Bilinear Systems. The second class of dynamical systems which
will be considered in this thesis are bilinear systems. An overview and exam-
ples can be found in [49].

Definition 2.3.19. A bilinear system of order n is a system of differential
equations of the following form:

Ex(t) = Ax(t) + > Neuk(t)x(t) + Bu(t),
k=1
y(t) = Cx(t),  x(0) = xo,
where E, A, Ny € R™", B € R™™, C € R"*". The input u(t) € R" can be
time-dependent just as the states x(t) € R" and the output y(t) € R” are.
The value of x(0) = xo is called initial value.

Zb“ . (230)

In this section, only systems with E # [,, E nonsingular, will be con-
sidered.
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2.3.2.1. Volterra series representation. A connection between the sys-
tems input and output can be established by using the following Volterra
series representation for the states of bilinear systems established by Mohler
[49]. We will consider systems with E nonsingular.

x(t) = Z/ / Z eE—lA(n)EﬂNkl.
i=1 /0 0

ki ko, ki=1
E~1A(To— —1 E~1A(T3— -1 E-LA(Ti—T; -1
e (r2=m1) Ny, e (3=m2) . E Ni_ e (ri=7i-1) £ by,

'Ukl(t—’Tl)"'le/(t—T,')d’Tl...dT,'. (2.31)

The input-output relationship of the system can then be defined as:

y<t>—§;Am~~~Am

. eEflA(7—277—1)E71 Ni, eEflA(T3*7'2) ...E1T Nk/—l eEflA("'/*Tifl) E1L bk,

m CeF AMIETI N, .
Kiko ... k=1
U (t—=T1) U (t—T)dT .. dTi, (2.32)
with columns by, of B and Volterra kernels defined as:
plkd () = Cef AT ETIN, eF AT L (2.33)
L ETIN eF AT L,

where | = 1,2,..., ki=1,..., m, and Tiy1 > T, > 0. The input-output

o0 oo
y(t) = Z/ / Z Rl CC I i) (2.34)
i=1 70 0 ko k=1
i
H ug(t =) | dmi...d7.
j=1
In practice, the Volterra kernels h{*%) (1, ., 7;) need to be exam-

ined in the frequency domain as well. Therefore we need a multivariate
Laplace transform:
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Definition 2.3.20 ([24]). Given a function f(t1, ..., t,) defined on R" define
its Laplace transform F(si, ..., sn) by:

F(st, ..., sn):/ o f(a tn)exp<—ztk5k> dti...dty.
- k=1

(2.35)
We can now transform the Volterra kernels.

Definition 2.3.21. The i-th order transfer function of the Volterra kernel

= CeF AMETIN eF AT BTN,

is defined as

E-YA(Ti—Ti_1) -1
., € [ = bk,,

=C(SE —A) "Ny (si-1E — A" Ny (s1E — A) by, (2.36)

By taking N = [Ny ... Np], this definition can be rewritten simultane-
ously for all Nk by using Kronecker products:

Hi(si, ..., si) =C(siE — A" "N[lm @ (si1E — A N(Im@N) . ..

N @ @I @($2E = A NUm @ -+ @ Iy @N)
———

i—2 times i—2 times
Un® -+ @Iy @(SLE = A) D(Im® -+ & I, ®B).
———
i—1 times i—1 times

(2.37)
In addition, Bruni et al. [19] examined the convergence of the Volterra
series and established the following result:

Proposition 2.3.22. If the Volterra series in (2.31) converges, then it uni-
formly converges to the solution of the bilinear system (2.30). For bounded
inputs the Volterra series (2.31) converges on any finite time interval [0, te].

The convergence of the Volterra series is connected to the stability of
the system.
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2.3.2.2. Stability. The notion of stability for bilinear systems differs

from that for linear systems. For bounded inputs, the following definition of
stability applies:
Definition 2.3.23 ([72, 59]). The bilinear system (2.30) is called bounded-
input-bounded-output (BIBO) stable, if for any bounded input, the output
is bounded on [0, 00). An input/output is called bounded if it satisfies the
following condition: ||u||eec = Max;Supic(o.c0)|t;(t)| < M.

Siu and Schetzen [59] combined convergence of the Volterra series with
BIBO stability. They showed the following sufficient condition for BIBO
stability.

Theorem 2.3.24 ([59]). Let a bilinear system (2.30) with nonsingular E
be given, and let the pencil A — \E be stable, i.e. there exist real scalars
B, € RwithB >0 and 0 < a < —max;i(Re(Xi((A, E)))) such that

l|leE A1), < et t > 0. (2.38)

Assume [|u(t)|| = /Y, luk(t)[2 < M uniformely on [0, c0) with M > 0
and denote T = Y | ||[E""Nk|l2. Then the system is BIBO stable if I <
Miﬁ.

The bilinear system is hence stable if the matrices Ny are sufficiently
bounded.

2.3.2.3. Reachability, observability and balanced representation. As for
linear systems, the concepts of reachability, observability and balanced rep-
resentation exist for bilinear systems. However, the concepts need to be
generalized, which will be done in the following section.

Definition 2.3.25 ([25, 56]). A state x(t.) of a bilinear system (2.30) is
reachable (from the origin x(0) = 0) if there exists an admissible input
function that maps the origin of the state space into the state x(t.) in a
finite interval of time [0, te].

Definition 2.3.26 ([56]). A bilinear system (2.30) is called (span) reachable
if the space of all reachable states X" spans R”.

For a bilinear system (2.30) with E # [ nonsingular, the following
statements for reachability can be derived. Let

Pl(tl) _ eE’IAtl E*l B,
P(t, ..., t)=ef METMP_, MNoPi... NmP_i], i=23,...



20 2. MATHEMATICAL PREREQUISITES

Definition 2.3.27 ([72]). If it exists, the reachability Gramian is defined as

P:Z/O /O PP dt; ...dt,. (2.39)
i=1

Zhang and Lam [72] established the following theorem for the existence
of the reachability Gramian:
Theorem 2.3.28 ([72]). The reachability Gramian (2.39) exists, if
(i) the pencil A— \E is stable, with

|lef A, < Be ™, t > 0, (2.40)

where B8 > 0 and 0 < o« < —max;(Re(N\i(A, E)), B,a € R.
(i) T1< 22, with T3 = || S0 ETX NN E7T o
The connection of P to the bilinear Lyapuonv equations and the reach-
ability of the system can now be established:

Theorem 2.3.29 ([72]). Suppose A — XE s stable, and the reachability
Gramian P exists. Then

(i) P satisfies the following bilinear Lyapunov equation:

AXET + EXAT + > N XN] + BBT =0. (2.41)
k=1
(it) The bilinear system (2.30) is reachable if and only if P is positive
definite.

Proposition 2.3.30 ([72]). If (2.41) has a unique solution, then the solution
P is symmetric.

For linear stable systems, it is known that if the Lyapuonv equation has
a unique solution it is the reachability (controllability) Gramian. For bilinear
systems, however, it is possible that a unique solution to the Lyapunov
equation is not the reachability Gramian. Consider for example the following
bilinear system (cf. [72]):

X = —Xx+42xu+ u.

This leads to the solution of the Lyapunov equation p = —%. But the
integrals p; = [ pip/ lead to p; = 2’72, which gives p = > ° 272 which
does not converge — hence the reachability Gramian does not exist.

This behavior is summarized in the following theorem:
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Theorem 2.3.31 ([72]). Suppose A — A\E is stable.

e (2.41) has a positive (semi) definite solution X if and only if the
reachability Gramian (2.39) exists and converges to a positive
semidefinite matrix X satisfying (2.41).

e |f (2.41) has a unique positive (semi) definite solution X, then
(2.39) converges to X and therefore X is the reachability Gramian.

For a bilinear system (2.30) with E nonsingular the following statements
for observability can be derived. Let

Qi) = Cef A1,

Qita, ..., t) = [QitE Ny QitE 'Na. .. Qi1E  Np]Tef A =23 ...

Definition 2.3.32 ([72]). If it exists, the observability Gramian is defined as

Q:Z/O /0 QiQidt: ... dt. (2.42)
i=1

Zhang and Lam [72] established the following theorem for the existence
of the observability matrix:

Theorem 2.3.33 ([72]). The observability matrix (2.42) exists, if

(i) the pencil A— \E is stable, with

e Y1, < Be ™ £ >0, (2.43)
where 3 > 0 and 0 < o < —max;(Re(Xi(A, E)), B, € R.

(i) T1< 2%, with T3 = || S0 ETXNeNJ ET .
Theorem 2.3.34. Suppose A — \E is stable, and the observability Gramian
exists. Then

(i) E-TQE™! satisfies the following bilinear Lyapunov equation:

ATYE+ETYA+Y NYN+CTC=0. (2.44)
k=1
(if) The bilinear system (2.30) is observable if and only if Q is positive
definite.
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Theorem 2.3.35 ([72]). Suppose A — A\E is stable.

e (2.44) has a positive (semi) definite solution Y if and only if the
observability Gramian (2.42) exists and converges to a positive
semidefinite matrix Q satisfying (2.44) for E-TQE™!.

e [f (2.44) has a unique positive (semi) definite solution Y, then
(2.42) convergesto Q@ = ETYE and Q is the reachability Gramian.

A balanced representation of a bilinear system can be obtained in the
same way as in the linear case. Assume the bilinear system is BIBO stable,
and the Gramians P and @ exist and are positive definite. They can be
decomposed as

P=RR and Q=1L"L.
By using the singular value decompositon of
LER = UpZV, ,

one obtains

W, ETh, WY ATy, Wy NiTp, W) B, CTh,
where

Wy=L"U= 2, To=RWE Y2 W, '=TJ/E", T,'=W/E.

Details can be found in [42, 2] and the references therein.

2.3.2.4. s%5-norm of a bilinear system.

Definition 2.3.36. The J%-norm of a bilinear system is defined as

1Z0ill5, = tr <Z/ / Yoo s, s
i=1 Y0 0 ko, k=1
(i) sy s)) dsi...ds;),
(2.45)
with Volterra kernels hfkl """ k’)(sl ..... si) defined in (2.33).
Zhang and Lam [72] showed, that the bilinear J%-norm satisfies the
same property as the linear norm:
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Theorem 2.3.37. For a bilinear system (2.30) if A— A\E is stable and the
reachability Gramian P (or the observability Gramian Q) exists, then its
J-norm can be computed from

IZbill |, = \/tr(CPCT) (or =+/tr(BTQB)), (2.46)
where P (or ETTQE™!) satisfies (2.41) (or (2.44)).

Benner and Breiten [12] showed that the bilinear %-norm can equiv-
alently be written as:

Theorem 2.3.38 ([12]). Let X, be a stable bilinear system. Then it holds
that

110115, = vec(l,)"(C & C)-

m -1
-<A®EE®AZNk®Nk> (B @ B)vec(In).
k=1

(2.47)
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The design of a new product is a complex process with many experts
involved. From the idea to the final concept, a close cooperation between
design engineers, simulation experts, test engineers and manufacturing spe-
cialists is required. After setting up a first design, this design is examined
by a team of simulation experts. Depending on the requirements, different
analyses need to be conducted. Several physical aspects need to be taken
into account, like mechanical deformations, fluid flows, electromagnetic ef-
fects and thermal analyses. Depending on the evaluation of the simulation
results, the design will be improved. A prototype of the optimized product
is then fabricated and thoroughly tested in a series of experiments. Until
arriving at the final product, all new designs will be simulated — hence sim-
ulation plays a major role. In the final stage of the product development,
simulation and experiment should coincide. The main part is now designing
the manufacturing process, which also might involve changes in the design,
which again need to be examined by simulation and experiment. Finally, the

25
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new component is carefully designed, can be manufactured and the produc-
tion can start!

As explained above, simulation is an important part of the product design
process. Having the ability of simulating different designs instead of building
them can save a lot of time and money. It is desirable to obtain models of
the product that lead to accurate results. The more complex the models
get the longer the simulations take. This — in turn — shows the need for
small and accurate models, which can, for example, be obtained by Model
Order Reduction (cf. Chapter 5).

This work focuses on the thermal modeling of electrical motors. The under-
lying physical effects, the mode of operation of an electrical motor and the
model parametrization and creation will be the key aspects of this chapter.

3.1. Thermal Modeling

For a thermal analysis, several physical effects have to be considered
and can be modeled based on the three main types of heat transfer: heat
conductance, convection and radiation. For a broad overview of heat and
mass transfer see for example the book of Baehr and Stephan [7].

3.1.1. Heat Conductance. Temperature gradients lead to energy trans-
fer by heat conductance. The heat flux g(x, t) (in % at time t and location
x) describes the energy transfer in a conductive material. The heat flux
quantifies the amount of heat which flows through a certain area. Fourier's
law states the proportionality between heat flux and the temperature gradi-
ent:

g = —k-grad(T). (3.1)
The constant k is called thermal conductivity. Strictly speaking, it depends
on temperature, but in many applications it is well approximated by a con-
stant. Thermal conductivities are known for many materials: Metals usually
have high thermal conductivities (102 —10° ), while the thermal conduc-
tivities of fibres and foams are small (10722 — 1.%°). They can therefore
be used as insulators.
For two solids in contact, the heat leaving one body has to be absorbed by
the other. For the heat flux, this leads to the following equation on the

interface:
oT1\ oT»
(50), = (k%n),
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where T7 and T are the temperature on the first and second solid, and % is
the derivative in normal direction. If the two materials are closely attached
to each other, the temperature on the interface is the same:

() = (T2):.

In some situations, the two surfaces are not directly connected, but sepa-
rated by a small gap. This gap is filled with air or an insulation material
and leads to a low thermal conductance. This thermal resistance can be
modeled on the interface by a thermal contact conductance coefficient (or
contact heat transfer coefficient) hc leading to the following equation for
the flux:

0T
(h5e), = hel(To)i = (T2
interface | A interface | B
T T1
(Ty)r = (T2) (To)r # (T2)s

Figure 3.1. Temperature on the interface between two
solids in contact with each other. A: no contact resis-
tance, B: contact resistance

3.1.2. Convective Heat Transfer. In a fluid, heat is not only trans-
ferred by conduction, but also by the movement of the molecules within
the fluid. These two effects are summarized as convective heat transfer,
which is often referred to as convection. A special case is the heat trans-
fer between a fluid and a solid. The characteristics of the fluid layer close
to the solid have the greatest effect on the heat transfer between the two
materials. Hence, the velocity and the temperature within this layer have
to be modeled and analyzed, which is not a trivial task. The modeling of
heat transfer in combined solid and fluid systems is often called conjugate
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heat transfer modeling. For large and complex models, a conjugate heat
transfer analysis can be too time consuming, because a fine discretisation of
the boundary layer is required. Hence, a heat transfer coefficient h is intro-
duced, which describes the heat transfer between fluid and solid. It allows
an analysis of the heat transfer without explicit treatment of the fluid. The
heat flux on the boundary between fluid and solid is then modeled by the
following equation:

G = h(Tsolia — Tuid)-

The values of the heat transfer coefficients h can be determined by mea-
surements or simulations of the fluid flow. Different fluids (air, water) and
different types of convection result in different values for the heat transfer
coefficients. Forced convection occurs whenever the fluid is forced to flow
in a certain direction in contrast to free (or natural) convection. For free
convection between air and a solid, the values of the heat transfer coef-
ficients range from 5 W — 25 while for forced convection in hot air
they range from 20 to 3004 —7c- 1 he highest heat transfer coefficients
can be measured in b0|I|ng water or condensating vapor, with values up to
10° % — 10° -4

2K1

K*

3.1.3. Radiation. Every material emits energy to its environment by
electromagnetic waves. This type of energy transfer is called thermal ra-
diation or heat radiation. The internal energy of a body is converted into
electromagnetic waves and transmitted to its surroundings. Similarly, a body
simultaneously absorbs energy in the form of radiation and transforms it to
internal energy. If a heat flux by radiation is modeled, it is done by the
following equation:

g= ecr(T4 - Ts4),

where o is the Stefan-Boltzmann constant (5.67 - 1078 2K4) and € is the
emissivity — the ability of a body to emit radiation. Strictly speaking, this
material property is dependent on the temperature and the condition of
the body's surface. Typical values are 0.90 for wood at 293K or 0.049 for
aluminum at 443K. As the temperatures T of the material and Ts of the
surroundings are raised to the power of four, the effect of the radiation is
large at high temperatures.



3.2. THE HEAT EQUATION 29

3.2. The heat equation

The law of energy conservation for thermal systems can be stated in
terms of the first law of thermodynamics [28, 62]: The change in internal
energy of a closed system is the sum of the heat supplied and the work
added to the system.

In this section, G will denote the amount of the quantity G supplied to the
system during a time dt. First, the expression for the heat supplied to the
system is derived. The governing equation for the heat flux into a surface
element dA, caused by the heat Q(x, t) (at time t and location x) is the
following [7]:

dQ(x, t)

dA

Integration over the surface and using the Gauss theorem leads to the fol-
lowing equation for the heat:

=—q(x,t) - n. (3.2)

Qx, t) = —/ q(x,t) - ndA = —/ div(g(x, t))dV. (3.3)
(A) (V)

The work added to the system can be described by a time dependent power
density S(x, t) per volume area (measured in %). Integration leads to the
following expression for the work [7]:

W= S(x, t)dV. (3.4)
V)
The change in internal energy U(x, t) can be stated using the specific heat
capacity C. It specifies the heat that must be supplied to increase the
temperature by d7. The change in internal energy for this temperature
change can then be calculated from the heat capacity and the mass of the
body [7]:

dU(x, t) = mCdT (x, t) = / pdV - CdT (x, t). (3.5)
V)

As heat conduction in a solid body is considered, the changes in volume

and density due to temperature and pressure changes are small and can be

neglected, leading to:
dU(x, t) _ pCGT(x, t)d\/. (3.6)
dt W) ot
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Using the law of energy conservation for thermal systems, the equations
(3.3),(3.6) and (3.4) result in:

/ (,;c% +div(g(x, 1)) — S(x, t)) dV = 0. (3.7)
V)

This integral is equal to zero for any chosen region only when the integrand
is zero. Therefore the following equation can be derived:

pC% = —div(q(x, 1)) + S(x, t). (3.8)
Using Fourier’s law (3.1) the so called heat equation is obtained:
pC% — kAT (x, t) + S(x. 1). (3.9)

3.3. Boundary and Interface conditions

To determine the thermal behavior of a component, the temperature
field T(x, t) (dependent on location x and time t) has to be examined. The
temperature field T(x, t) within a domain Q C R? for times t € [0, tenq] can
be calculated using the heat equation (3.9) with constant material properties
o, C, k and a heat source S. The derivation of the heat equation can be
found in Section 3.2.

On interfaces and outer surfaces, now called boundaries and denoted as
I c R?, different conditions have to be specified, depending on the situation
of interest. They are mathematically formulated as follows:

e Dirichlet boundary conditions:
T(x,t) = Tp(t) on the boundary I'p.

These conditions correspond to fixed temperatures on surfaces.
e Neumann boundary conditions:
_kaT(X, t)
on
where gy is a given heat flux on the boundary.
e Robin boundary conditions:
7k6T(X, t)
on
where h denotes the heat transfer coefficient defined in Section
3.1.2. T is the temperature of the surrounding domain.

=gy in Ty,

=h(T —Tx) inTg,
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e Interface conditions: A thermal resistance between two surfaces
can be modeled on the interface by a thermal contact conductance
coefficient, as shown in Section 3.1.1. The interface / will be
considered as two surfaces: /1 with temperature 71 and /> with
temperature T,. The following equation applies:

2T _ a7l
2 On - On
e (OO = T 0)l,)

3.4. Mode of operation of an electrical motor

An electrical motor converts electrical energy into mechanical work,

which is produced by the interaction of an electrical current and a magnetic
field. One part of the motor — the so called stator — consists of sev-
eral coils wound around an iron core. When a voltage is applied, a current
is induced in the coil. Inside the counterpart — the so called rotor — a
magnetic field is generated either by a permanent magnet or by an electro-
magnet. The interaction of this magnetic field with the current in the stator
results in a rotation of the rotor.
Actuating the motor with electrical currents leads to an increase in tem-
perature in its different components due to thermal losses. It is important
to analyze the influence of this temperature change on the materials of the
motor, as it affects its life-span. This is done by carrying out a thermal
analysis.

magnets

coil
stator

rotor

Figure 3.2. Drawing of a slice through an electrical motor.
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(a) Drive unit and generator in one: (b) Generator for commercial vehi-

the Bosch integrated motor genera- cles. The configuration of the coils

tor. is the same as for an electrical mo-
tor.

Figure 3.3. Two components manufactured by Robert
Bosch GmbH illustrating the structure of an electrical
motor. Photos by courtesy of Robert Bosch GmbH.

3.5. Thermal modeling of an electrical motor

The main heat source in the electrical motor are thermal losses, result-
ing from the current in the coil of the stator and/or rotor. The motor has to
fulfill various operational requirements and therefore different current pro-
files have to be considered. The temperature on certain parts of the motor
(for example the flange) should not exceed a specified upper limit because
these parts are in contact with other temperature sensitive components.
This upper limit is built into the model as a fixed temperature (Dirichlet
boundary condition, cf. Section 3.3).

The motor is surrounded by air, therefore convection has to be considered.
The motor needs to work in a large temperature range (arctic winter, trop-
ical summer), therefore different ambient temperatures are examined in the
model. Varying the heat transfer coefficients represent different cooling
strategies or different interaction scenarios of the motor with its environ-
ment (Robin boundary condition, cf. Section 3.3).

Various parts of the motor are not directly attached to each other and the
resulting thermal resistance has to be modeled by a contact heat transfer
coefficient. Varying this parameter, the small gap between the two mate-
rials can be considered as filled with air or an insulation material (Interface
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condition, cf. Section 3.3). The motor is built from various materials such
as steel, copper and plastics. These materials have different properties,
among others the density p, the specific heat C and the thermal conduc-
tivity k. Here, these material parameters will not be varied. As the motor
temperature remains relatively small, the effect of radiation is not of great
importance, and will therefore be neglected.

The thermal analyses within this work have been conducted using Comsol
Multiphysics®, version 3.5a. This software provides the user with an en-
vironment for the modeling of dynamical systems. In our case, the heat
equation (3.9) on the electrical motor model is solved, using the boundary
conditions and interface conditions as explained above.

Different motor models have been examined. First, only one coil and parts
of the stator are considered. The resulting geometry, which is provided with
the different boundary and interface conditions as well as heat sources and
material properties, can be seen in Figure 3.4.

Insulation ——

Housing

Stator

Figure 3.4. The Comsol® model simulates the heat
transfer in a stator slice, without the rotor.

Second, a complete motor is modeled. Details for this model are given
in the next chapter, as on top of the underlying physics, changes in geometry
are incorporated.
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The heat dissipation in a component can be determined by a Comsol®
simulation as explained in Chapter 3. Comsol® is based on the Finite El-
ement Method. Having knowledge of the mathematical background allows
one to construct parametrized models, which can then be treated by Model
Order Reduction. In this Chapter, we focus on the parametrization of ther-
mal models. Two types of parameters will be considered: physical parame-
ters and parameters resulting from variations in geometry. The latter require
a detailed analysis of the underlying equations, which will be the main subject
of this chapter.

4.1. Discretization of the heat equation

As given in Section 3.3, the temperature field of a component can be
determined by solving the heat equation (3.9). This is done by a spatial
discretization using the Finite Element Method (cf. for example [16]). To
do so, the domain on which the equation is solved is divided into smaller
domains, so called elements. On these elements, special basis functions
P;j(x) will be considered. By using them, incorporating the boundary and
interface conditions and the weak formulation of the heat equation, one is

35
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able to discretize the equation.
oT (x, t
/wj(x)pC%dX —|—/ Vi(x) - kVT(x, t)dx
Q Q

+/ Yi(x)hT(x, t)ds
(4.1)
/wj(x)hCT(X t)ds—/wj(x)th(x t)ds

/wJ(X)S X, t)dx+/ Yi(x qN)ds+/rR W (x)h T ds.

The material parameters p, C and k are taken as constant. With finite
element basis functions 1« (x) the temperature is approximated as follows,

T(x, t)~ ZTk(t)wk(X)-
k=1

By plugging this into equation (4.1), the following discretized equation is
obtained:

S(t)
ET(8) = (A b+ heN)T(6) + 8 | T 4.2)

Tp

where the entries of the matrices are given as:
Exj = pC/’ll)k(X)’(/}j(X)dX,
Q
Akj = k/ V’l[lk(x) . V’L,[)j(X)dX,
Q

(M) = / D () () dx,

N2)kj_/1/’k X)W (x dX*/i//k X)W (x
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Bj = / Pj(x)dx,
Q
Bjp = */ ¥i(x)ds,
Mn

Bj3:/ ’l/lj(X)dS.
I'r

The entries of the fourth column Bjs are obtained from an elimination of
the corresponding Dirichlet boundary nodes after the discretization. As
J o) (x)dx = [ (x)%k(x)dx and [ Vi (x)- Vi (x)dx = [ Vh(x)-
Vi(x)dx, the matrices E, A and N for the considered class of systems
are symmetric and E is in addition positive definite.

4.2. Physical parametrization

In the discretized form of the heat equation (4.2), two types of physical
parameters appear: Heat transfer coefficients h resulting from convection
(cf. Section 3.1.2) and given as Robin boundary conditions (cf. Section
3.3), and the contact heat transfer coefficients hc, resulting from heat con-
duction (cf. Section 3.1.1) on the interface of two model parts (cf. Section
3.3).

4.3. Geometric variations

For a change in geometry, Comsol® 3.5a uses the so called “moving
mesh" [51]. The mesh can be deformed, moved and scaled using transfor-
mations given by the user, or — in the case where the physical processes
transform the model — are calculated by Comsol®. The underlying equa-
tions are those of an arbitrary Lagrangian-Eulerian (ALE) framework. It
basically transforms the mesh from a reference frame to a material or spa-
tial frame. A more detailed description of this framework can be found in
[29] and the references therein. In our special case, we will incorporate
scaling functions in order to scale the model, and just scale the mesh, not
deform or move it (often called “mesh morphing").

4.3.1. Modeling of scalings in the motor model. The model of an
electrical motor requires essentially two different scaling functions. The
first one is a simple linear scaling, which is used to scale the model in z-
direction. The second one is the nonlinear scaling of an annulus. The inner
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radius is kept constant and the outer radius is scaled. It will be used for
the scaling of housing and stator. The two different scalings are illustrated
in Figures 4.1 and 4.2a, whereas Figure 4.2b gives an idea how a complete
scaling of the housing would look like. The scalings can be described via the
following functions:

Definition 4.3.1. Let Q =[0,a] x [0, b] € R? and p > 0. A linear scaling
function to increase the size of the rectangle 2 in x-direction is defined as

follows:
Gy Q= Q. CR? (;) — <(1 +y“)x> . (4.3)

Definition 4.3.2. Let Q2 be an annulus with inner radius R. Lety > 1. The
R

annulus scaling function will be defined as follows:
X
_ . 4.4
\/ X2+ y2 (y) (44

These scaling functions need to be inserted in the Comsol® model to
scale the modeled motor parts.

Fy:Q%QSCRz,(;) > lfy+(l'y)

y y

(0,0) X (0.0) z

Figure 4.1. Simple linear scaling of a rectangle.

The variation of the height of the stator, rotor and housing will be
modeled by a linear scaling defined by a linear function Go. The flange
will also change the height, it is modeled by a function G,. The stator
and housing will be scaled using nonlinear functions Fy and F,, respectively.
This is shown in Figure 4.3. For the modeling of geometric variations, the
stator will in addition be simplified as a hollow cylinder. In contrast to our
first model (cf. Figure 3.4) the coils will be modeled as cuboids within the
stator. This can be seen in Figure 4.4, a top view of the Comsol model.
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(a) Scaling of an annulus R (b) Scaling of the housing
- roig to the annulus R - fhew both in z and x, y-direction

Figure 4.2. Two scalings needed for the geometry varia-
tion of an electrical motor

flange C | - ‘

G,

bearing

housing = - —

shaft

bearing [—

rotor stator

Figure 4.3. Rotationally symmetric slice through the
complex Comsol motor model showing the different scal-
ing functions
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4.3.2. Parametrized system formulation. Using the weak formulation
of the heat equation as given in equation (4.1), it is possible to obtain a
parametrized model depending on the different scalings. Moosmann [50]
showed in his thesis, that scalings can be incorporated in the model by
transforming the basis functions from an unscaled to a scaled element and
additionally use substitution in the integrals. We will basically use this ap-
proach for the scaling of our models. First, we state that for the defined
linear scalings (4.3) it holds:

Y =" oGy, (4.5)

However, for the nonlinear scaling Fy given in equation (4.4) this is not true
anymore. To overcome this difficulty, we will need to consider only the scal-
ing of the finite element mesh. In our Comsol® model, we use triangular
mesh elements in the scaled annuli. Hence we need to scale triangles as
illustrated in Figure 4.5.

Figure 4.4. Model parametrized in geometry, top view.
Simplified modeling of the stator with coils.
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lold

rnew

Figure 4.5. Scaling of a triangular mesh element in the annulus.

Knowing how the vertices of the triangles will be scaled using the non-
linear function F, (cf. equation (4.4)), it is possible to calculate linear
functions G, for the scaling of the mesh in the annuli in the following way:
The vertices of the triangle (xaj, ya;), (x8;,¥8;) and (xcj, yc;) lie on cir-
cles with radii raj,re; and rc;. Using the scaling function F, leads to the
following scaling of the vertex A, which can be calculated for B and C in

the same way:
YA, raj YA,
—_— —m———

::DA,j(’Y)
We are now able to calculate a linear function G, that maps the vertices of a
triangle 7; = ((xa;, ya,)), (x8,, ¥8;), (xcj, ¥cj)) to the vertices of the scaled
triangle 7> = (Da,(Y)(xa,. ¥a;). Dg,j(7)(x8,. x8,). Dcj(7)(xcj. xc,)):

Gyj: T =T CR?

X\ YK1j + Ko n YKs,; + Ke;  YK7,; + Kgj X

y YKz + Kaj YKo+ Kioj YKy + Kz ) \y /)’
with constants K to K12, depending on the vertex coordiantes (xa;, ya,).
(XBJ’,yBJ’), (X(_‘J’,yclj) and the radii A, IBjy IC s R. The reader should note,

that for every triangular mesh element a different scaling function G, is
needed, as it depends on the vertices. For later calculations, we state here
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the Jacobian matrix of the inverse functions and the Jacobian determinant
of the functions G, ;:

-1 1 VK11 + K12 —7vKoj — Koy
J = | ' | 4.6
( GA"J) det Js,; (’YK”’ — Ks YKs, + Kej ' (4.62)
det JG"I.J = ’72(K5JK11J — KQJK7J) + KsJKlzJ — Klod'KgJ (4.6b)

+ v(Ks K12 + Ko jK11,j — Ko jKsj — K10jK7,)
= ")’2d2J +vdij + do
= di().

For the linear scaling (cf. equation (4.3)) the corresponding inverse Jacobian
and determinant are given by:

-1 + 0
(Jou) = (16“ 1) : (4.72)
det Jg, =1+ u. (4.7b)

In most of the motor parts, both scalings need to be incorporated. For
example, the stator is scaled linearly in z and nonlinearly in x, y-direction.
Hence a function in R3 will be used:

Gyej((x,y,2))

YK1j + Ko YKs; + Kej YKz, + Ks; 0 X
= | YKz + Koy | + | YKoy + Kroj YKirj + Kizy 0 y
0 0 0 1+6 z

The corresponding inverse Jacobian and Jacobian determinant are:

K11, K1, —vKg,—Kio,

0
di () di ()
-1 YKy Ks, Ksj+K
(JG%GJ) - ’Ydj?'y) - . BdJJ('Y) = (1)
0 0 146
detJs,, = (1+6)d(7),

with d;(y) as given in (4.6b). Let r = (x,y,z) and ¢* = (x°,y°,2z°) be
scaled coordinates. Using the weak formulation of the heat equation (4.1),
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the equation (4.5) and substitution, one obtains for one entry of the scaled
matrix E£° with a linear function G:

oCp / Wi (2 )Y7 (¢°)de’ (4.8)

S
Ekl

c / (0 G () 0 6 ()
QS

oCy / DG (G (GG ()] det Jo o)
G’I(QS)

oCy / (e (1) et I (o).
Q

Considering the function Gye; one obtains |det Jg, ,.(r)] = (1 + 8)d;(7).
depending on the mesh element 7;. However, as for all j every d;(7y) is a
polynomial of degree two in -y, the matrix E° can be written as

E°=(1+40)(vEz+vE1 + Eo).

For the matrix A the calculation of a dependency in the parameter for one
entry of the scaled matrix A® is more complicated:

A / V)V () (4.9)
Qs

s
ki

_— / V(0 G Y (106 1)) d

A / V(6 ) o () V(G () Je s ()

A / Vi (6) Jo1 (G () Vabi (6) Jo 1 (G (1)) | det o 1) d.
Q=G"1(Qs)

For the functions Gy, the calculation of the integral (4.9) needs to be
done in the mesh elements on which the basis functions 3 and ] are
supported, i.e.

A7 =\ / V) V() i
TSU U7

end

—AZ/ VYL () VY () .
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The integral on one mesh element leads to (using equation (4.9)):
S
klj

_ / Vs () VA () e

- / V() o1 (G (@) V() g1 (G (©))] det do, (1)
7— 61 (7—5) ¥.6.4 ¥.6.J

V.60

YK11,j+ Ko, —YKo,j—Kio, 0

;/j("/)K K%(’YE(
=X [ [oi(x) owi(r) Gsu(y)] | Mafe etk
- d;(7) d;(7) L
J 0 0 e

YK, j+Kiaj YKo, —Kio, 0 T

A )

—YK7,—Ks, YRs, 6.J
(D19 (x)  BoYk(x)  Bs9u(v)] SO ™ (3
0 0 e

< [(1+0)d;(v)|dr

1+6
Ok ¥ /ka/(

J

dzr;) ~'v/ @i (x)dr
7

1+6 d
+ / @hi(x)dr + 4 o (x)dr
T 7

di(v) 1+0

with functions wL, depending on the derivatives 19k, 01, O2Uk, 02,
039k, O3, and the constants K;;. One matrix entry A3, considered as a
function of v depends on different d;(«y) and Kj;.

For a different matrix entry A7, and a different mesh element 7; one
obtains:

s 1+6 2/ 0 1+6 / 1
=" Ygn(r)dr + Y | @gn(r)dr
gh dA(’y) 75 gh( ) dA(’y) 75 gh( )

J J

1+906 d('Y) 3
+W H_e/%h(x)d&

with different denominators d;(-y) and dj(fy). Hence it is not possible to find
an easy affine dependency in the parameter -y like for the matrix E. We
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state now the discretized heat equation with a parametrization in geometry.
For the ease of presentation, we only consider changes in two parameters y
(resulting originally from a nonlinear scaling (4.4)) and 6 (resulting from a
linear scaling (4.3)):

E(v,0) = (1+0)(vEx+vE+ Eo), (4.10)
A.0) = (L+6)A()+ ﬁAz(’y). (4.11)

The matrices N; and N> (cf. equation (4.2)) have the same dependency in
the parameters as E. The calculation of the parameter dependency for the
matrices B resulting from the right hand side of equation (4.1) can be exe-
cuted by using substitution and equation (4.5) for the integral fr PYr(r®)dr’.
For the different columns of B however, it is important to note that only
those boundaries or parts of the model that will be affected by the scaling
will actually change. If for example only the height of the stator changes,
the Dirichlet boundary condition on top of the flange will not be affected.
Assuming that 8 changes the height of the stator and <y scales it in x, y-
direction, the corresponding scalings will be as follows:

Bu(v,0) = (1+6)(¥*Bnz+YBn1 + Bho), (4.12)
Br,(v) = (’YzBTO,z +vB7ry1 + Bryo). (4.13)
Bs(7,8) = (140)(v’*Bsz+vBs1+ Bsy), (4.14)

where By refers to the outer surface of the housing with a Robin bound-
ary condition, By, refers to a Dirichlet boundary condition on the flange,
whereas Bs models the heat source in the coils and B = [By, B, Bs].
For the two additional scalings of flange (original linear scaling with pa-
rameter 1) and housing (original nonlinear scaling with parameter v), the
generalization is straightforward.

Figure 4.6 shows results of a simulation of the parametrized model for
t = 600s without any scalings. After the discretization one obtains a system
with n = 71,978 degrees of freedom. It is obvious, that the coils in the
stator are the main heat sources. The temperature on the flange remains
fixed at To = 348.15K, whereas interaction between the model and the
environment is given by convection.

To simplify the analysis of the geometry variations, it is convenient to
have a model with the same physical behavior and the same scaling functions
but with fewer degrees of freedom. Therefore a simplified model was built.
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It consists of rotor, stator, housing and flange. The geometry can be seen
in Figure 4.7. A result of a simulation of the heat flux with scaling of the
stator in z- and x, y-direction is shown in Figure 4.8.

Time=600 _Slice: Temperature [K] Max: 873.406

500

450

400

350

Min: 333.408

Figure 4.6. Simulation of large model — no scaling func-
tion was applied.
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rotor

flange~_ ' stator

housing

Figure 4.7. Simplified motor model.

In this chapter we have shown that it is possible to obtain parametrized
models by an analysis of the underlying equations. By inserting scaling
functions into Comsol®, the scaling of an electrical motor model can be
analyzed, and these scalings can be represented by parameters. First, linear
scalings have been considered (cf. equation (4.3)). Inserting them in the
finite element discretization of the heat equation shows that these scalings
can be considered as affine parameters (cf. the parameter 6 in equations
(4.10) to (4.14)). Second, nonlinear scalings have been examined (cf. equa-
tion (4.4)). They can be considered as linear scalings by using the scaling
of the underlying mesh and hence a parameter dependency can be obtained
by inserting these linear scalings into the finite element discretization of the
heat equation.
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However these originally non-linear scalings lead to a non-affine param-
eter dependency for the matrix A (cf. parameter <y in equation (4.11)).
Having derived the parameter dependency of our models, methods from
parametric Model Order Reduction (cf. Section 5.3) can be applied to ob-
tain small reduced order models. In addition, several Comsol® models for
the thermal analysis of electrical motors have been built and presented in
this chapter.

Time=10 _Slice: Temperature [K] Max: 216,445
v

—

Min: 273.614

Figure 4.8. Simplified motor model after the scaling and
a short thermal simulation
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Model Order Reduction (MOR) is a powerful method to reduce the
dimension of large dynamical systems and therefore the simulation time
significantly while guaranteeing a very good approximation of the original
output. The simulation of a linear system

o {Ex(t) = Ax(t) + Bu(t), (2.18)

y(t) = Cx(¢),  x(0) = x,

where E,A € R™", B € R™™, C € R”", u(t) € R™, x(t) € R" and

y(t) € RP requires a large amount of time if the number of degrees of

freedom n is large. The main idea of projection based MOR is to find

matrices that project the system onto a low-dimensional subspace and by
that obtain a reduced model:

R ER(t) = AR(t) + Bu(t),

lin * ~ (51)

{ 9(t) = Ex(t), %(0) =5

49
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with £,A € R, B € R™™, C € RP*, u(t) € R™, %(t) € R" and
y(t) € RP, where r < n. A reduced order model is extremely useful,
when not only one, but a large number of simulations needs to be done
with different input scenarios (e.g. in optimization, parameter studies or
feedback control) as it reduces the simulation time significantly.

In this chapter, the theory of MOR is reviewed. First, methods for MOR of
linear systems are stated (cf. Section 5.2), followed by a short introduction
to parametric Model Order Reduction (pMOR), in Section 5.3. A certain
class of linear parametric systems can be reformulated as bilinear systems
(cf. Section 5.3.2) and hence reduced using bilinear Model Order Reduction.
Methods for bilinear MOR will be reviewed (cf. Sections 5.4 and 5.5),
and a new bilinear s#%-optimal reduction method, based on optimization on
Grassmann manifolds is derived in Section 5.5.4.

5.1. Projection-based MOR and the error system

The following two definitions state the main properties of a projector.
Definition 5.1.1. A projector is a matrix P € R™" with P2 = P. P is the
projection onto a subspace V C R" if range(P) = V. P is an orthogonal
projector (or Galerkin projection) if P = PT, otherwise an oblique projector
(or Petrov-Galerkin projection).

Definition 5.1.2. IfV = [vi, ..., vi] is a basis of V, then Py, = V(VT V) VT
is a projector onto V. Let W be another k-dimensional subspace of R". The
projector Py, = V(WTV) W', projects onto V along W.

Assume that the original state x(t) € R" approximately lies in a low-
dimensional subspace V with dim(V) = r < n, hence x(t) can be approx-
imated by a linear combination of basis vectors of V : x(t) ~ V&(t), with
X(t) € R". By inserting this into the original linear system, one obtains:

EVX(t) = AVK(t) + Bu(t) + (1), (5.2)
y(t) = CVX(t).

As EVX(t) € span(EV), one can project AVX(t) + Bu(t) onto EV along
a subspace W which is orthogonal to the residual (i.e. W7e(t) = 0 holds)
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and the reduced-order model can then be obtained:

E A B
— —~ ~ =
e WTEV X(t) = WT AV x(t) + W' B u(t),
y(t) :‘CAV,?(t),
C

where E,A € R, B € R™™, € € R and §(t) € R”. Determining
suitable matrices V' and W is the main aim of projective Model Order Re-
duction.

It remains to determine if the reduced order model is a good approximation
to the original. The outputs of the reduced model and the original model
will therefore be compared:

yo(t) = y(t) = 9(b).
Accordingly, one can derive the following error system:

E o] [x)] [A o] [x®)] [B
[0 é] [x*m}:[o A] [ﬂw]*[é] i)

V() = Cx(t) — Ex(t) = [¢ —€] mg] .

(5.3)

x(t .
Let x*"(t) = ?Et; be the states of the error system. The transfer function

of the error system can be stated as:

(sECT—ACm)~1 gerr
——=7Te o] [a o]\ 8]
o = Al g0 ) 3
= C(sE-A)'B-C(sE-A)'B
= H(s) — H(s).
In the frequency domain it holds
Y'(s) = H"(s)U(s). (5.4)

It is now the objective to minimize Y*"(s), the error between the original
output function Y (s) and the reduced output Y(s). By using Parseval’s
theorem (cf. [5]), one obtains that the L>-norms (cf. Section 2.3.1.3)
of Y'(s) and U(s) in the frequency domain and y*'(t) and u(t) in the
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time domain coincide. To quantify the Model Order Reduction error, it is
desirable to find an error bound of the following structure:

err

Wy lles < ellu™lep-

By using the input-output relationship (5.4) in the frequency domain, the
€ can be given as the difference between the transfer functions H(s) and
H(s), which can be measured in the #-norm of the error system:

1Z50 ot = 11 Zin — Sl [ o = sup (omax(H(iy) = A(iy))) . (5.5)
ye

For the error of the impulse response, the %-norm can be used, and com-
putated in the following way:

||Zﬁ:||;¢2 — ||Z|in7ihn||3f2 — \/tr((Berr)*QerrBerr) — \/tr(Cerr'Derr(Cerr)*)’
(5.6)
where P®" and Q%" are the Gramians of the error system.

5.2. MOR of linear systems

In the following Section, several methods for the reduction of linear
systems will be shortly reviewed. Numerous researchers have been working
on the reduction of this class of systems in the last three decades. For a
detailed introduction, we refer to the book of Antoulas [5] and the references
therein. We assume that all linear systems we consider throughout this
section are reachable, observable and stable. In addition, the matrix E is
always invertible.

5.2.1. Balanced Truncation. Consider a stable, observable and con-
trollable linear system (cf. (2.18), Chapter 2.3.1.2). The basic idea of the
balanced truncation method is to eliminate the states in which the system
is difficult to observe and difficult to reach. The following derivation of Bal-
anced Truncation follows basically the dissertation of Stykel [61], whereas
we examine only systems with nonsingular £ matrix. As the system is stable,
observable and controllable, the controllability (2.19) and the observability
Gramian (2.21) exist and are positive definite, they can be factorised by
using a Cholesky factorization: P = R"R and Q = LL" with R € R™" and
[ e R™" of full rank. The second step consists of calculating the singular
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value decomposition of the product:

- o0 (W
LER=[U: U] [0 ZJ [\/ﬂ :

with Ur, Vi € R™", Us, Vo € R™(™" having orthogonal columns and £; =
diag(s1, ... <) and X» = diag(sr+1, - . - Sn) are matrices containing the Hankel
singular values ordered in descending order. A balanced reduced realization
can now be computed using

W=L"Us;"? e R™ and V = RVix; /2 e R™".
The reduction of the linear system is then performed using W and V as
projections in the following way:

E=WTEV, A=w"Av, B=wW'B, (C=cCV
The quality of the approximation can be measured in the Ho.-norm according
to the following error bound:
Theorem 5.2.1 ([5]). The Hoo-norm of the error system is bounded by the
sum of neglected Hankel singular values:

||Zlin - i“nHH')c S 2(§r+1 + -+ Qn)-

5.2.2. Krylov subspace methods. The main idea behind Krylov sub-
space methods, which are widely used for the reduction of linear systems,
consists of comparing the summands of series expansions of the original
and reduced systems transfer functions. Various authors contributed to the
development of this technique, for a deeper insight we refer to the book of
Antoulas [5] and the references therein.

Definition 5.2.2. The £-th (block) Krylov subspace for A € R™" and B €
R™™ is defined as follows:

Ke(A, B) = span{B, AB, ..., A1BY. (5.7)
Definition 5.2.3 ([5, 31, 36]). The moments of a transfer function H(s)
evaluated at s = 5o € C are
o d
mMi(s0) = (=1)" 5z H(S)ls=s,-
It holds
mi(s0) = C((soE — A) 'E)(ssE— A 'B, k=0,1,....
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The moments my are the coefficients of a Laurent series expansion of
the transfer function H(s) around sp. Expanding at infinity leads to the
definition of the so called Markov parameters:

Definition 5.2.4. The Markov parameters (also called the moments at in-
finity) of a system are defined as:

M, =C(E*AYE™'B, j=0,1,....

The moments and Markov parameters of the original and the reduced
system can now be compared. The objective of the so called “moment
matching" methods is to find projection matrices such that a certain number
of these moments are equal for the reduced and the original system without
the need of explicitely calculating them. The following theorem shows how
to choose the projection matrices in order to achieve moment matching.
They are formulated for the case in which a matching around s = 0 is
desired.

Theorem 5.2.5 ([58]). If the columns of the matrices V and W used in
(5.3) form bases for the Krylov subspaces Ko, (A E, (ETYA)*A'B) and
Ke,(ATET (E-TAT)2ATTC), respectively, both with rank q, where q is a
multiple of m and p, then the first 4% + =2 moments and 7+ + 2 Markov
parameters of the original and the reduced order system match.

A reduced model calculated using the Krylov subspaces above leads to
a good approximation of the original model, as long as a sufficient number
of moments and Markov parameters is matched. This guarantees that the
reduced transfer function is an approximation of the original one.

The calculation of the matrices V and W can be done by using the
Arnoldi or the Lanczos algorithm. They can be found in [5].
In the case where a moment matching around several different points sk is
considered, the following theorem has been shown by Gallivan et al. [36]:

Theorem 5.2.6 ([36]). I
K
U Ku((scE = A E, (skE — A)'B) C Im(V),

k=1
and

UK ((sE=A)TET (skE = A)TCT) C Im(W).

k=1
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where the points s,y € C are chosen such that the pencils skE — A are
invertible for all k € {1,..., K}, then the Jx + Lk moments at sx of the
original linear system Sy, (2.18) and those of the reduced linear system S,
match, provided the matrices sxE — A are invertible.

Moment-matching around points sk is nothing else than assuring that
the reduced transfer function interpolates the original transfer function at
points si.

5.2.3. Rational Interpolation. First, we only consider so called single
input single output systems (SISO), i.e. systems with CT, B € R". The
projection matrix V' is now obtained by

V=I[(sE-A)TB,..., (s;sE—A)'8H], (5.8)
with distinct parameters s, ..., s.. Let W be such that W'V = [,. The
following interpolation conditions can be established:

Proposition 5.2.7 ([5], Proposition 11.6). The transfer function of the re-
duced system Sy, as in (5.3) obtained by using V' as given in (5.8) and W
with WTV = I,, interpolates the transfer function of the original system i,
at the points sk, that is

H(si) = C(skE— A 'B=C(skE—A)'B=HA(s), k=1,..., r.

Using the matrix V' defined as in (5.8) would hence lead to a matching
of one moment around each interpolation point s, (cf. Theorem 5.2.6).
The interpolation conditions have been examined for two sided projections
as well. It is possible to establish interpolation conditions for the derivatives:

Proposition 5.2.8 ([5]). Let ¥, as in (5.3) with
V =[(soE — A) B, (ssE — A)’B, ..., (ssE — A)'B],

and W'V = I,. It interpolates the transfer function of ¥ at s, together with
r — 1 derivatives at the same point:

_ 1)k Ak
( kll) :?/—/(5”5:50 = C(SoEfA)’(kJrl)B

(71)k dk

= é(SoE — A)i(k+1)é = Xl @/‘A/(Sﬂs:so,

where k =1,2,..., r—1.
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Consider the following matrices

V=[(sE-A)'B ... (sE-A)B], (5.9)
W=[(snE-A)TC" ... (s2E—-A)TCT]. (5.10)

Then the following proposition derives the interpolation conditions for a
system with two projection matrices:

Proposition 5.2.9 ([5]). Assuming full rank V, W € R"™" given as in (5.9)
and (5.10), the transfer function of the projected system %, defined by
(5.3) interpolates the transfer function of L, at the pointss;, i =1,...2r.

Using Theorem 5.2.6, one obtains that V and W as defined in equa-

tions (5.9) and (5.10) lead to a matching of 2 moments around each point
Sk .
For systems with multiple inputs and multiple outputs (MIMO) correspond-
ing interpolation conditions — the so called tangential interpolation condi-
tions — have been examined by several researchers [35, 65, 43, 41]. The
following theorem can be obtained:

Theorem 5.2.10 ([35, 65, 43, 41]). Let V,\W € R"™" be of full rank. Let
sk € C, rx € R™ and |, € RY™P be interpolation points and left and right
tangential directions. Let the points sy be chosen such that skE — A is
non-singular. If forallk =1, ..., r it holds

(skE — A)'Bry € span(V),
(skE — A)CTI] e span(W),

the reduced system (WT EV, WT AV, W' B, CV) satisfies:

/kI:/(Sk) = /kH(Sk), (5.11)
A(sre = H(sr, (5.12)
WH (s)re = H'(s)re, forallk=1,..., r. (5.13)

It remains the task of choosing interpolation points sk and interpolation
directions rk, Ix such that the obtained reduced model is a good approxima-
tion to the original one. This problem has been examined in the context
of s#%-optimal Model Order Reduction, which we will review in the next
section.
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5.2.4. J%-optimal Model Order Reduction. The objective of the J7-
optimal MOR is to find a reduced system (£, A, B, €) such that the error
of the system examined in the J&-norm ||, — fhnH%Z is minimized.

5.2.4.1. Interpolation-based 74 -optimality conditions. With the aim of
minimizing the #%-norm of the error system ||Lii, — %iin|| 2. the derivation
of this norm using the system Gramians representation (2.29) is considered,
following the derivation given by van Dooren et al. [64].

Py P :
Let P = | 7 "] and Q" = QlTl Quz be the solutions of the
P12 P22 12 sz

Lyapunov equations of the error system:
AT pert (Eerr)T + e perr (Aerr)T + Ber (Berr)T =0
(Aerr)T QerrEerr + (Eerr)T QerrAerr + (Cerr)T cer = 0,

where

err __ A 0 err __ B err __ E O err __ C
R |

We aim at minimizing
T = [T — Zinl 2, = tr(CTPE(C®)T) = tr((B°") Q°"B°"). (5.14)
We can rewrite J as:
J =tr(B"QuB +2B" QB + B Qx»B)
=tr(CPLCT = 2CPLCT + CPuCT).
The gradient of a matrix valued function can be defined as follows:

Definition 5.2.11 ([64]). The gradient of a real scalar function f(X) of a
matrix variable X € R™"™ is the matrix Vxf(X) € R™™ defined by
d
f(X)], = —
VX0l = g
The calculation of the gradient with respect to each of the system
matrices leads to (cf. [64]):

(5.15)

f(X), i=1,..., n, j=1,..., m.

Ved = 2(@22/2\P22 + QrzAlDlz),
Vid = 2(@22EP22 + QIzEPu),
Ved = 2(Q2B+QLB)

Ved = 2(CPyn—CPpo).



58 5. MODEL ORDER REDUCTION

For an optimal interpolation point, the gradient of the function J must be
zero. This leads to the following conditions:

Theorem 5.2.12 (Wilson conditions for systems with E # /,, E nonsingu-
lar). If the reduced transfer function H(s) minimizes J, then the following
holds:

Q2AP» + QAP =0,
Q22EPn + QLEP12 =0,
Q2B+ QB =0,
CPy—CP=0.
One directly concludes that the following proposition holds:

(5.16)

Proposition 5.2.13 (cf. [64]). For every stationary point of J where Px
and Q2> are invertible, we have the following identities:

E=WTEV, A=wWTAy, B=wW'B, C=cV,

with W = —Q12Q55 and V := PPyt Pio, P, Q2 and Qx satisfy the
following Sylvester and Lyapunov equations:
APLET + EPLAT + BB =0, (5.17)
ATQuE+ETQuA-C'C =0, (5.18)
APnE" + EPLAT + BB =0, (5.19)
ATQuE+ETQnA+CTC=0. (5.20)

Remark 5.2.14. An J#-optimal reduced order model fulfills the Wilson con-
ditions given in Theorem 5.2.12. A model fulfilling the Wilson conditions is
not necessarily to be J%-optimal!

If one wants to calculate an s%-optimal reduced order model, one might
think of iteratively solving the Sylvester equations (5.17) and (5.18) starting
from a (randomly) chosen reduced order model and updating V and W (and
hence the reduced model) in every step.

It is possible to establish the equivalence between these Wilson condi-
tions for .#%-optimality and recently obtained interpolation conditions (cf.
for example [43]). They have been first derived for the SISO case by
Gugercin and coworkers [41] and then independently generalized to the
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MIMO case not only by Gugercin but also by Van Dooren and cowork-
ers [64], as well as Bunse-Gerstner and coworkers [21]. As a first derivation
of interpolation conditions was done by Meier and Luenberger in 1976 [48],
we will refer to these conditions as the Meier-Luenberger conditions.

Theorem 5.2.15 (Meier-Luenberger conditions). Given a linear stable sys-
tem with transfer function H(s), if H(s) is the best stable approximation
of H with respect to the s#%-norm, then the following conditions hold (for
k=1,..., r):

CN‘Z—/‘A/(*XK) = C‘Z—H(ka), (5.21)
H(=Xk)Bx = H(—X«)Bx, (5.22)
CIA (=X Bk = CLH (= X) B, (5.23)

with € = EX and B = BTY, where Y, X are the left and right eigenvectors
of A — \E and have been calculated such that Y*AX = diag(A1, ..., X
and Y'EX = I,.

The connection between Theorems 5.2.10 and 5.2.15 can now be seen:
If

(—=ME — A 'BBy € span(V),
and
(—=ME — A TCTE] e span(W),

hold for the projections V' and W, the conditions (5.21) — (5.23) are sat-
isfied. This leads to Algorithm 1, widely known as IRKA (Interpolatory
Rational Krylov Algorithm) [41, 6]. It has also been derived in a slightly dif-
ferent version as MIRlam (MIMO lterative Rational Interpolation Algorithm)
by Bunse-Gerstner and coworkers [43, 21].

5.2.4.2. s%5-optimal models via optimization on manifolds. Another
approach has been developed by Yan and Lam in 1999 [69]. They as-
sume that the reduced order model (5.3) has been generated by a one sided
projection U = V = W and, hence, J can be perceived as a function of U

(69]:
tr(BB' (Qu + UQxnU" +2Q1,U")) (5.24)
tr(CTC(Pi1 4+ UPnU™ —2PpUT)), (5.25)

where J(U) coincides with J as given in equation (5.15) by inserting B =
U™B and € = CU. Yan and Lam [69] have shown that minimizing J(U)

J ()
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Algorithm 1 IRKA as given in [6].

Input: [nitial selection of interpolation points o1, ..., o, and initial left
and right tangential directions /1, . . ., L € R and qi, ..., gr € R™1
Output: Reduced order model £ = WTEV, A= WTAV, B =W'B,
c=cv.

:V=[(1E — A)'Baqi, ..., (0,E — A)'Baq/]
W =[(1E-A)TCh,..., (o, E—-A)TCTI
while not converged do
E=WTEV, A=W'TAV, B=W'B, C=cV
Compute Y*AX = diag(\1, ..., X)) and Y*EX = I,, where Y* and
X are the left and right eigenvectors of AE — A.
6 Set o) < —Xx and [} < e/ Y*B g + CXex
7: V =[(c:E—-A)1Baq, ..., (0/E — A Bg/]
8: W=[(1E-A)TCh,..., (0, E—A)TCTI
9: end while

g s @nNe

can be seen as the following minimization problem on the Stiefel manifold
St(r,n) == {X €R™",r<nlX"X =1}

Minimize J(U) over U € St(r, n) (5.26)
subject to the stability of the reduced system.

Using tools from differential geometry, they derived an iterative gradient
flow algorithm calculating a new projection matrix U in every step until
a minimum of J(U) is reached. This method has recently been further
developed by Xu and Zeng [68]. For a deeper insight in the used theory,
the reader is referred to [69, 68] or Section 5.5.4, where the corresponding
theory will be derived for bilinear systems.

5.3. Parametric Model Order Reduction (pMOR)

In applications, parameters are often incorporated in the linear models,
for example geometric variations or physical effects (cf. Section 4). Hence,
it is desirable to find methods to reduce these models, keeping their pa-
rameter dependency. An overview of methods for parametric model order
reduction can be found in [13]. A parametric model is defined as follows:
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Definition 5.3.1. A linear parametric system of order n is a matrix differ-
ential equation of the following form:

S (p) - {E(P)X(fyp) = A(p)x(t.p) + B(p)u(t),
P y(t.p) = CRIX(Ep),
where E(p), A(p) € R™", B(p) € R™™, C(p) € RP*". The system depends

onp=(p' ..., p?) € Q € R? — a set of parameters in a (usually bounded)
domain Q. It holds u(t) € R, x(t,p) € R” and y(t,p) € RP.

The aim of parametric Model Order Reduction (pMOR) is to reduce
the system (5.27) while preserving the dependency on the parameters:

£0r (o) E(p)A(t,p) = A(p)x(t, p) + B(p)u(t),
lin . N N N
y(t,p) = C(p)X(t.p).

with E(p), A(p) € R™", B(p) € R™™, C(p) € RP*", u(t) € R™, K(t,p) €
R’ and y(t,p) € RP.

(5.27)

(5.28)

For the one/two parameter case, early methods were developed by Weile
et al. [67] using moment matching. These methods were transferred to the
multiparameter case by Daniel et. al [27], Farle et al. [32] and Feng et
al. [33]. After a multivariate Taylor series expansion around the param-
eter points and frequencies, projection matrices are then calculated using
moment matching. However, as the number of parameters increases, the
order of the model increases as well which leads to large reduced orders.
In addition to this approach, several other interpolation methods for pMOR
have been proposed. Baur et al. [9] extend the statements in Sections 5.2.3
and 5.2.4 to parametric systems. Baur and Benner propose to interpolate
the systems transfer function [10]. Other methods interpolate the reduced
system’s matrices. These methods have been developed independently by
Panzer et al. [53] and Amsallem et al. [3]. Recent research by Geuss et al.
[37] showed that both methods can be seen within the same interpolation
framework. These two interpolation methods will be reviewed within this
section.

Prior to stating the theory of the interpolation methods, we want to
draw attention to a special class of linear parametric systems, having the
following special parameter dependency (which we present for E(p), it is
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valid for all other matrices as well):

E(p) = Eo+ Y fi(p)E;. (5.29)

This is called an affine parameter dependency and is convenient in practice,
as parameters and matrices are independent. The system matrices can be
reduced as follows:

M
E(p) =WTEGY =W EV + Y fi(pW EV. (5.30)

Jj=1

The benefit of an affine parameter dependency is that the matrices E; can
be reduced a priori. For a new parameter prew = (Prew, - - - . pZy), only the
functions f; need to be evaluated and the reduced matrix E(pnew) Can be
easily calculated.

Instead of using interpolation to obtain reduced order models, it is also pos-
sible to establish projections V and W that are valid in the whole parameter
domain €2. Often, this is done by concatenating the projections obtained
for the reduction in several parameter points:

V=1[V().. ., V(p)l, W=[W(p1),. ..., W (pk)].

Certainly, there might be linearly dependent columns in different V/(p;), V/(p;)
or W(p;), W(p;), which can be eliminated, while finding an orthogonal basis
of the overall subspace by means of an SVD. After the SVD-step one obtains
V € R™% with r <ry<rKandW e <l with r < ¥ < rK depending
on the significance of the sampling points p1, ..., px. Hence the order of
the reduced model for a parameter pnew might increase. If ¥ and r) are
different, for example rf > rY, one can choose ryi = r', taking only the
first r columns of W. If r is much larger than r, a one-sided projection
setting V = W can be tried, as using only the first ry columns of W can
lead to a loss of information. In addition, the original model needs to be
assembled in the new point prew prior to the reduction (cf. (5.29)) which is
then performed in the following way:

E(pnew) = WTE(pnew)V, A\(pnew) = WTA(pnew)\/y
é(pneW) = WTB(pneW)v €(pneW) = C(prew)V.
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In the case where the parameter dependency is affine (as given in equation
(5.29)), it is not necessary to assemble the matrices in the new point prew,
only the functions f; need to be evaluated (cf. (5.30)). Hence this method
will often be used when an affine parameter dependency is given.

5.3.1. Parametric MOR via interpolation of the systems matrices.
In this work, we will focus on the works, where the parametric reduced
order models will be interpolated. As recently noted by Geuss et al. [37],
the present known methods [53, 3] for the interpolation of reduced order
models can be seen within a general framework. We are going to follow
Geuss' presentation. It basically consists of four steps:

(1) Sample the parameter space and obtain models in points py, . . ., Pi:

Ziin (pj) with E(p;). A(p;). B(pj), C(pj) forj=1,..., K.

(2) Calculate reduced order models using techniques from linear MOR
(cf. Section 5.2) in points p1, . . ., pk:
Zin (b)) with E(p;), Alpj). B(p;), C(py) forj=1,..., ¢
using projection matrices V (p;) and W (p;).
(3) Adjust the reduced order bases.
(4) Choose the interpolation manifold and the interpolation method
to obtain a reduced system Sjin (Prew ).
5.3.1.1. Adjusting the reduced order bases. The subspaces V; and W;
spanned by the columns of matrices V(p;) € R™" and W (p;) € R™" need
to be adjusted, as the different reduced models ¥, (p;) do not lie in the
same state space. Hence, one needs to transform the models into the same
coordinate system by using matrices M; € R™" and T; € R™" prior to the
interpolation:

E; =M/ E(p)T;,

A= M A(p)T;,
EJ = Mf‘é(m)v
Ci=C(p)T;, forj=1,..., K.
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First, we will consider the subspaces V;. After choosing a reference
subspace Ry € R™, state transformations T; can be calculated such
that the reduced states can be transferred to the reference subspace, i.e.
RX(t,pj) = T;x(t,p;) holds. There are three main approaches for the choice
of the reference subspace:

e Single reference subspace:
This first method has been developed by Amsallem et al. [3]. One
of the bases V/(pj,) is chosen as reference:

Rv = V(pjp)-

It is not clear for which jo € {1,..., K} the best interpolated
reduced order models will be obtained. A good guess might be
the jo closest to the interpolation point.

e Non-weighted SVD:
Following Panzer et al. [53], first an SVD of all given reduced
order bases V(p1) to V(pk) needs to be calculated:

usz" = [V(p1),..., V(pk)].

The reference subspace will then be chosen as: Ry = U(:,1:r),
the first r columns of U.

e Weighted SVD [53]: The reference subspace will now be calcu-
lated as:

USZ™ = [wi(p)V(p1), ..., wr (P)V (pk)].

with Ry = U(:,1 : r), where wj(p) are parameter dependent
weights. Accordingly, a new reference subspace needs to be cal-
culated for every new parameter. Using this approach, subspaces
where the corresponding p; lie near the interpolation point will be
“automatically" favoured.
Amsallem et al. [3] and Geuss et al. [37] noted that the matrix T; can
be calculated under the assumption, that the vectors of V(p;) = V(p;)T;
and Ry are in good correlation. They make use of the so called Modal
Assurance Criterion (MAC):

|LITW|2
MA = ——
o, w) (uTu)(wTw)’
with vectors w, u € R". Details can be found in [37, 3] and the references

therein. In our case, we want the vectors vj, the i-th column of V(p;), and
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Rl the I-th column of R, to be in good correlation. They are normalized
and hence the MAC reduces to:

MAC(v/, Ry) = v/, Ru|*.

According to Geuss [37], there are two possibilities for the fulfillment of the
MACs.

e Strong fulfillment:
Assuming good correlation for the corresponding vectors, i.e.

MAC(V,Ry) = |V, Ry|P=1,k=1,..., r,
and no correlation between the non corresponding vectors, i.e.
MAC(V,Ry) = v/, RUP=0,i#1 i l=1,..., r,
one obtains:
T V() Ry = I
Hence one can choose T; as:
Ti=(RoV(p)) "

Obtained by a different derivation, Panzer et al. [53] use the same
matrices T; for the transformation.

o Weak fulfillment:
This approach has been developed by Amsallem et al. [3]. Instead
of finding a correlation for the whole matrix, only the diagonal
elements will be considered. They shall be maximized, given by
the following equation:

T, =arg mTaxtr (TJ-TV(pJ)TR\/) )
j

A solution to this problem can be obtained by using the SVD of
V(p))" Ry = U;x,Z] for orthogonal matrices T;:

T = tr (T U%;2]
J arg%ﬁi"(f JJJ)
= arg 7[?5% tr (Zj T; UJZJ) .

where T; = U;Z] solves the problem.
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We have now given the explanations for the adjustment of the right reduced
order bases. For the adjustment of the left reduced order bases Geuss et
al. [37] propose to use the dual systems of the reduced order systems and
proceed as for the right reduced order bases. Considering the approaches
given by Panzer and Amsallem and coworkers [53, 3], they can be incorpo-
rated in this framework as well. The following transformation matrices M;
have been proposed:

e A strong fulfillment of the MACs leads to the choice
M; = (RyW (),

with Ry obtained by using one of the three given possibilities
given for Ry and using W instead of V.
o A weak fulfillment of the MACs leads to

- T N
M; = arg Arﬂ?ggr tr (Mj W (p;) RW)
=uz],
by using the SVD of W (p,)” Rw.
e Panzer et al. [53] propose to use Ry = Ry and hence obtain
M; = (RIW(p;)) .
e In the approach by Amsallem et al. [3] an adjustment of the

left subspaces is not given. However, the obtained reduced order
models can be multiplied by £(p;)~* which will lead to the choice

M= E() T = (V)T (EG)) W)

where the reference subspace is given by Ry = E(p;)V (p;).

Manifold R%*%  Nonsingular matrices
Expx(l) X+T exp(MX
Logx(Y) Y —X log(YX™h)
Table 5.1. Exponential and logarithm mappings for dif-
ferent manifolds.
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5.3.1.2. Choosing the interpolation manifold. After the adjustment of
the bases, it remains to interpolate the transformed matrices E;, A;, B;, and
C;. Amsallem et al. [3] propose to interpolate on tangential spaces of a
certain matrix manifold M. For a reference point X € M, the exponential

mapping

Expyx : TXM — M (5.31)
and the logarithm mapping
Logy : M D Ux — TxM (5.32)

define the connection between a manifold and a tangential space. In our
case, two different manifolds will be considered. The first is the manifold
of the real matrices with k rows and / columns: R¥*!. The second is the
one of nonsingular matrices in R***. The definitions for the exponential and
the logarithm mapping can be found in Table 5.1. The maps exp and log
are the matrix exponential and logarithm, respectively. After choosing one
reference model from all the transformed reduced models, the remaining
models will be interpolated in the tangential space with respect to the refer-
ence model. Hence, for a fixed reference matrix A(pg, ), the other matrices
need to be mapped to the tangential space TZ(%)M by the logarithm map-
ping: ['; = Logz(peo)(ﬁ(pj)). The obtained I'; will now be interpolated using
a suitable interpolation method which leads to the matrix Mew C TZ(%)M
for a parameter sample prew. This matrix is transformed to the manifold M
using the exponential mapping and gives ﬁ(pnew).

In contrast to Amsallem et al. [3], Panzer et al. [53] however simply inter-
polate the matrices without mapping the matrices on tangential manifolds.
In Chapter 8, we are going to compare different approaches using this frame-
work and apply them to our bilinear systems (cf. Section 8.2):

o We follow Amsallem et al. [3]: Use a fixed reference subspace and
obtain T; by a weak fulfillment of the MACs and M; by inversion
of E(p;).

e As given by Panzer et al. [53], we use a reference subspace given
by a (weighted) SVD of all underlying matrices V(p,), and obtain
T, = (RIV(p,)) " and My = (ROW(p))) .

5.3.2. Parametric systems as bilinear systems. For parametric models
with a special affine parameter dependency, it is possible to transform them



68 5. MODEL ORDER REDUCTION

into bilinear models. This transformation was originally given by Breiten and
Benner in [11].
Consider the following affine parametric system:

Yiin (p) :

Ex(t,p) = A+;f(Pk)Ak x(t,p) + Bi(1), (5.33)

y(t.p) = Cx(t.p),

with E,A A, € R™ C € RP*", B € R™™. Define Ny = Ax for k =

1,..., mand Ny =0 fork=m+1,..., m-+m. In addition let m := m+m,
and let the first m col~umns of the new B be zero. For the columns m +T1
to m use the matrix B. Finally, set u(t) = [f(pl) ... f(pm) U(t)] )

The steps above result in a bilinear system:

Ex(t) = Ax(t) + Y Neue(£)x(t) + Bu(t),

i pm

(5.34)
y(t) = Cx(t).

The transformation of such parametric models results in bilinear models,

where all parameters can be seen as inputs. Bilinear Model Order Reduction
needs to be applied for the reduction, which is now “parameter free", as in
contrast to the methods for parametric model order reduction which have
been discussed in the previous sections, there is no interpolation procedure
needed to obtain parametric reduced order models, as it is not necessary
to consider the newly obtained inputs in the reduction process. The linear
parametric models given by a physical parametrization (cf. equation (4.2))
of the electrical motor model have exactly the structure of (5.33) and hence
bilinear model order reduction methods can be applied to obtain a parametric
reduced order model.
However, constant inputs ux (as resulting from parametric systems) are not
L5 functions (as the integrals [ uzdw do not exist) and hence strictly
speaking not admissible input functions. During the reduction, the system
is reduced without “knowing" anything about the inputs. A good reduced
order model can hence be calculated using bilinear reduction methods. In
addition, the condition for BIBO-Stability (cf. Theorem 2.3.24) can be
fulfilled for constant inputs as well.
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5.4. Bilinear Model Order Reduction

The reduction of bilinear systems as given by equation (2.30) (or (5.34))
obtained attention within the last 20 years. The methods developed for lin-
ear systems can often be transferred to bilinear systems.

Throughout this Section, we assume the bilinear systems (2.30) to be
reachable, observable and BIBO stable. In addition, we assume the existence
of the Gramians of the system, and only systems with E nonsingular will be
considered.

5.4.1. The error system. As in the linear case, we need to quantify
the quality of the approximation. Hence, the error between the original and
the reduced order model needs to be measured. The error system is defined
as follows:

[5e][36] = 421 ) +Z[ 0] [69) wet [8] o),

vo-s=[c - 1]

err .
Zb\\ .

(5.35)
The reachability Gramian of the error system P*" = |:ng 2;} satisfies the
following generalized Lyapunov equation:

[A ] P Pro [ET +[E } P11 Prio [AT }
Al | Pl Po ET EJ| Pl P AT

u N P, P NT R
o3 ] [ 2] [ o]+ (8] e =0

(5.36)

[E—

—|Mave| _reT Qu Q12 E-1
yer — [Ysz Yzz} - [ E‘*T] {QITZ sz} [ ,;——1} ) (5.37)
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satisfies the following Lyapunov equation:
AT Y11 Y12 E ET Yi1 Yio A
[ ) [Pe] F e+ [ ] 2] [ 4]

m
N Yi1 Yio N R cT
+Z |: K NkT:| |:yl'g y22i| |: k Nk:| +[C7C] [767] =0.
k=1
(5.38)
The s%-norm of the error system will now be used to measure the error

between the original and the reduced order model. Using the error system
Gramians this can be done in the following way:

NZ5 152 = |10 — Loil | = \/tr (Ic —c1Per [ <F])

= Jir (le7 er1@er []).

In addition, using the definition of the J#%-norm given by Benner and Breiten
as in (2.47), the norm of the corresponding error system can hence be given
as:

J = 1=55
= vec(l2p)  ([c -¢] ® [c —¢])
(el el -3 [ a] o[

< (1] © [8]) vecon).

(5.39)

(5.40)

5.4.2. Bilinear Balanced Truncation. Already in 1993, Al-Baiyat and
Bettayeb [2] applied balancing methods to special (so called k-power) bilin-
ear systems. Recent results have been obtained by Hartmann et al. [42].
As given in Section 2.3.2.3, the bilinear Gramians can be decomposed as

P=RR andQ=1L"L.
By using the singular value decompositon of
LER = UpZV, ,

one obtains
W/ ET,, W/ ATy, W/ NeTo, W B, CTo,
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where
Wy =LTUS Y2 To=RWVE Y2, W, =T/E", T,'=W/E.
If the Hankel singular values given by © = diag(s1, .. ., Sn) show a decay and

Sa+1 <K Sgq holds, one can approximate the original model by using
W=LTus? T =RuUL, Y2

o0 (W
LER=[U1 U] [0 ZJ [\/ﬂ :

U, Vi € R™, Uy, Vb € R™) having orthogonal columns and ¥ =
diag(s1, ... <), Lo = diag(Sa+1, - - - Sn)-

with

5.4.3. Bilinear Krylov Subspace Methods. Model Order Reduction
for bilinear systems via Krylov subspaces has been examined by several re-
searchers such as Philipps [54], Condon and lvanov [23], Breiten and Damm
[17], Bai and Skoogh [8], and Lin and coworkers [45]. Moment matching
can be achieved by series expansions of the multivariate transfer functions
as given in (2.37). For ease of presentation, we assume E = /, throughout
the following section. A multimoment can be defined as:

Definition 5.4.1 ([45],[34]). Let X be a bilinear system as given in (2.30).
For nonnegative integers m, ..., mj, a multimoment H,(ml""'m’)(sl ..... Si)
of the transfer function H;(s1, ..., si) as given in (2.37) is defined as

H T (s s)) =(=1)'C(siln — A) "™ N[lm @ (si—1/n — A)"™N] ...

. lm X & /m ®(52/n - A)imzN]

i—2 times
: lm X Q lm ®(51ln - A)imlB]y

i—1 times

(5.41)
where N =[N ... Npl.
To ensure moment matching, Krylov subspaces (cf. 5.2.2) need to be
built. Often (see f.e. [8, 45, 17]), the following Krylov subspaces are used
for moment matching around s = 0O:



72 5. MODEL ORDER REDUCTION

span(VP) = K (AL, AT!B),

span(V?) = U Kq(A™ ATIN VY)Y,

k=1

span(V) = span (U span(V(i))> .

i=1
Moment matching in points other than the origin can be guaranteed by the
following result given by Flagg [34]:

Theorem 5.4.2 ([34], Subsystem Interpolation). Let {£}/, {{;}e, € C
and vectors ¢’ € C” and b € C" be given. Defineb; =1; ® b and N®T =
[NT, . Nn| where 1; is a column of m'™" ones. To construct a reduced

order system that matches all the multimoments HJ(-II """ /f)(& ..... &)b; and

cHJ(.Il""'IJ)(Q ..... G)forj=1,..., kandh, ..., i=1,..., g, construct the
matrices V. and W as follows:

span(V ) = Ko{(&2/ = A" (&1 — A) ' BbY,

span(W) = Ko{(C1 = A) ", (G = A) " CP e},

span(VY) = Ko{(&1 — A (&1 — AN @ VU N} forj=2, .., K,
span(WD) = K {(¢1 = A, (&I —= A TN (ln@ WU N forj=2, ...,

span(V) = span{U span(VY)},

K
span(W) = span{U span(WUY)}.

j=1

Provided W = (WTV)"'WT s defined, the reduced system A = WT AV,
Ny =WTNV, € =CV and B =W’ B satisfies:

HJ(.II ..... /J)(El .... Ej)bj _ ﬁ(/l,...,g)(gl .... gj)bj

and

forj=1,..., kandh,..., k=1,..., q.
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Using this moment matching of multimoments would involve a strategy
for finding points {¢}/_;, {¢;}; C C and vectors ¢” € C” and b € C"
such that the reduced model delivers a good approximation to the original
model. The advantage of this approach is that it does not depend on the
convergence of the underlying Volterra series, which might not be known
a priori (cf. the definition of BIBO stability and the convergence of the
Volterra series given in Section 2.3.2). In addition to the moment matching
approach, one might think of the interpolation of the multivariate trans-
fer functions Hi(si,...,s)), or — in other words — the interpolation of
the Volterra series. This approach has been examined by Flagg [34] in his
dissertation and resulted in a derivation of interpolation conditions for the
Volterra series representation of a bilinear system. Flagg was able to es-
tablish a connection between Volterra series interpolation and the results
concerning the #%-optimal conditions for bilinear systems recently derived
by Zhang and Lam [72] and Benner and Breiten [12].

5.5. % - optimal bilinear Model Order Reduction

As in the linear case, one is interested in J%-optimal bilinear MOR.

Within this section, necessary .#%-optimality conditions for bilinear systems
are obtained by deriving the %-norm (5.39) of the error system (5.35).
First, the bilinear Wilson conditions originally obtained by Zhang and Lam
[72] will be derived. Using a different approach, Benner and Breiten [12]
obtained the Bilinear Interpolatory Rational Krylov Algorithm (BIRKA), a
generalization to bilinear systems of the linear IRKA (Algorithm 1). In addi-
tion, we will derive a new J#%-optimal algorithm relying on optimization on
Grassmann manifolds, which is a generalization of the methods given in the
linear case by Yan and Lam [69] and Xu and Zeng [68].
As the Finite Element Discretisation of industrial models leads to systems
with E # I,, we need to incorporate E in our derivation. We can not simply
invert the matrix E as due to their large dimension, the inversion would be
numerically expensive or even impossible. Hence, we will derive optimality
conditions for systems with E # [,, E nonsingular, which have not been
stated elsewhere. All systems will be assumed to be reachable, observable,
BIBO stable and the Gramians shall exist.



74 5. MODEL ORDER REDUCTION

5.5.1. Wilson conditions for bilinear systems. Defining
C= [ng] [c -¢]. the norm of the error system can be given as:
T =183 = tr ([c €] P [ 5 ]) =t (P*C). (5.42)

By differentiating the norm (5.42) and using the Lyapunov equations (5.36)
and (5.38) we obtain the following conditions (for a detailed derivation see
Appendix A.1):

E = —Yu'YREPLPR, (5.43)
A = —Yu'YhAPLPY, (5.44)
Ne = —Yu'YihNePioPst, fork=1,..., m, (5.45)
B = -Y5'VihB, (5.46)
¢ CPiPs', (5.47)

with Yj; as given in (5.37) and P; as in (5.36). This leads to the following
theorem:

Theorem 5.5.1 ([72]). If the reduced system ¥y, which is reachable and
observable, is an s6-optimal reduced order model for the system %> and
the reachability and observability Gramians P*" and Q°" exist, then there
exist matrices W,V € R™" such that

E=W'EV, A=WTAV, N, =W NV, B=W'B,=CV. (5.48)
They can be obtained by equations (5.43) to (5.44) as W = —Yi2Ys,' and
V = P12P251.

Remark 5.5.2. Inserting the observability Gramian Q" in the equations
leads to the projections for the system multiplied by £71:

E = —Yu'YREP:P

= —EQuETETQLETEPLPY,

I = —Q3 QLPr2Py’,
—Y2' Y2 AP Py
—EQu ETETTQLE ' APLPy,
= E'A=-QuQLE TAPLP,

>,
[

with analogue calculations for Ng,B and C.
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5.5.2. The optimality conditions derived by Benner and Breiten. As
in the case of the Wilson conditions, Benner and Breiten deduce the opti-
mality conditions by differentiating the %-norm of the error system (5.40).
In contrast to their derivation, we need to consider £ # [,, E nonsingular.
The obtained reduced system can be written as (A, Nk, B, C) after multi-
plying with £7 from the left, and hence we will assume £ = /,. In addition,
we assume that A is diagonalizable.

It is possible to rewrite the representation of the .#%-norm as given in (5.40)
by using:
A=SAS', BT =5'B, C=CS, Nl = S H(N),S,
which leads to:
T = |IZ513,
= vec(lp) ([c -] @ [c -¢])

x ([g] ®[5]) vec(lzm).
(5.49)
Derivations with respect to the eigenvalues of the reduced system
A = diag(X1, ..., ;) and the matrices N, B, and € lead to the follow-
ing optimality conditions (their derivation can be found in Appendix A.2):

m -1
vec(1,) (C ® C) </r QA-NQE-Y N @ M)

k=1

m -1
(eie] ® E) <—/r DA-NDE-> N ® /vk) (B" ® B)vec(Im)

k=1

m —1
=vec(l,) (C® C) (—/, QAN I, — Z Nie” ® /Y/k)

k=1

m -1
(eie] ®1,) <—/, DA-NDI - N ® Nk> (B™ @ B)vec(Im),
k=1

(5.50)
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m -1
vec(l,) (€ ® C) (/r QA-AQE-Y N ® M)

k=1

m -1
(eie] ® N) (—/r DA-NDE-Y N ® /vk) (B" ® B)vec(Im)

k=1

m -1
= vec(l,) (C® €) (—/, QA-NSD I, — Z N ® Nk>

k=1

m —1
(eie] ® ) (—/r QA-NDI Y N ® /Y/k> (BT ® B)vec(Im),

k=1
(5.51)
m —1
vec(1,)" (€ ® C) <—/, QA-AQE — Z Ne" ® /vk>
k=1
-(eje] @ B)vec(Im)
m -1
= vec(l,) (C® €) (—/, QA-ARI, — Z N ® /\A/k>
k=1
. (eje,T ® B)vec(Im), (5.52)

m -1
vec(lp)" (ere] ® C) (—/, QA-ANQE — Z N ® /Vk)

k=1
(B" @ B)vec(Im)

m -1
= vec(/p)T(e,-ejT 2 6) <—/r QA-ND I, — Z /\7;<T ® Nk)

k=1
(B" @ B)vec(Im). (5.53)

The following theorem shows the connection between an optimal reduced
order model and the conditions (5.50) — (5.53).
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Theorem 5.5.3 ([12]). Let Ly denote a BIBO stable bilinear system. As-
sume that S is a reduced bilinear system of order r that minimizes the
Ft5-norm of the error system among all other bilinear systems of dimension
r. Then, Sy fulfills the conditions (5.50) — (5.53).

5.5.3. Algorithms resulting from the J#-optimality conditions. Now
it is possible to obtain two different algorithms for the calculation of bilinear
optimal reduced order models. First, as seen in the context of the Wilson
conditions, optimal models can be obtained by using W = —Y1»Y5,' and
V = PPyt (cf. Theorem 5.5.1). Hence it holds span(Ys2) C W and
span(P2) C V. It is sufficient to determine Y12 and P2 which can be done
by solving Sylvester equations obtained by splitting the equations (5.36) and
(5.38). This leads to the following algorithm (for a more detailed insight
we refer to the derivation of Benner and Breiten [12]):

Algorithm 2 Generalized Sylvester iteration (cf. [12]).

Input: E, A N, B,C, E, A N, B, C
Output: £°Pt, APt [yoPt, GortCort

1: while not converged do

2: Solve
AXET + EXAT +3 "N XNi+ BBT =0 (5.54)
k=1
3: Solve
ATYE+ETYA+Y NY R —C¢=0 (5.55)
k=1

V = orth(X), W = orth(Y") % orth computes an orthonormal basis
E=WTEV, A=WTAV, N, =W NV, B=W'"B,

end while

B = £ A% = A (P = f, B = B, ¢ = C

N g
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Theorem 5.5.4 ([12]). If Algorithm 2 converges, then E°P*, A°Pt, NPt 5Pt
and C°P* fulfill the Wilson optimality conditions (5.43)-(5.47).

Proof. The proof of this Theorem can be found in the Appendix A.3.
O

As we derived the optimality conditions according to Breiten and Benner
[12] by using reduced systems assuming E = /., we obtain for the solution
of the bilinear Sylvester equations (5.54) and (5.55):

k=1

m -1
vec(X) = (—/, QA-AQE - Z N ® Nk> vec(BB")

k=1

m -1
- (ss1 ©A-SAST@E-Y SN[ST® /vk) (B ® B)vec(Im)
m -1
= ((s ® 1) (—/, QA-ANQE — Z N ® /vk> (s'® /n)> (B ® B)vec(Im)
k=1

m -1
=(5®1,) </, BA-ANRE-> N ® /vk) (B™ @ B)vec(Im),

k=1

vec(V)
and

m -1
vec(Y) = </,T AT +ATRET+) N ® /\/[) (7 & Cyvec(l)

k=1
m -1
- <STST QAT +STAST R ET+Y SRS @ N[) (€T @ CT)vec(l)

k=1

k=1

m —1
=(=ST®lh) (/, QAT —AQE" — Z Ny @ NZ) (ST ® 1) (CT @ CT)vec(l,)

-1
m
=(-ST ) (/, wA NG E =Y f® N[) (€T & CTyvec(l,),

k=1

vec(W)

This leads to the fact that span(X) C V and span(Y) C W. Instead of
solving the Sylvester equations as given in (5.54) and (5.55), we can use the
vectorized form of the Sylvester equations to calculate an optimal reduced
model, which leads to Algorithm 3.
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Algorithm 3 Bilinear IRKA for systems with £ # [, E nonsingular (cf. [12]).

Input: E, A N, B,C, A N, B, C
Output: A%, NPt BoPt, CoPt
1: while not conyerged do ~ ~
2 A=SAS™H, BT =578, C=CS N] =SS
~ 71 ~
3: vec(V) = (—/r RA-NQE — ET:1 NkT ® Nk) (BT @ B)vec(In)

4 veeW) = (=1, @ AT =A@ ET =37 Nk ® NZ)f1 (CT @ CM)vec(l,)

5: V =orth(V), W = orth(W) % orth computes an orthonormal basis

6 A = WEV)Y'WTAV, N = WTEV)'WINV, B =
WTEV)'WTB, € =cVv

7: end while

g A% = A [P = fl, B = B, ¢ = C

The convergence of Algorithm 3 will be measured in terms of the change
in the eigenvalues of the reduced system. In every iteration the change in
the eigenvalues between the last two iterations is checked. If it is sufficiently
small, the algorithm stops and returns the final reduced order model.

5.5.4. J%-optimal MOR by using methods from differential geome-
try. We will establish a new result for the derivation of J%-optimal bilinear
reduced order models. For ease of presentation we will assume E = /,. As a
system with £ invertible is equivalent to the system multiplied by £, this
is possible. In addition, a generalization to systems with £ # /, should be
possible.

5.5.4.1. The minimization problem. As in the preceding sections we
are going to minimize the #%-norm of the error system. However, we use
a different approach, which was originally given for linear systems by Yan
and Lam in 1999 [69]. It is based on minimizing the norm on the Stiefel
manifold. This approach was recently transferred to Grassmann manifolds
by Xu and Zeng [68]. We will now develop the methods for the bilinear
case. In contrast to the methods in the previous sections, these methods
directly preserve the BIBO stability of the model. Hence there is no need
for stabilization methods that can be used for example to stabilize reduced
order models obtained by BIRKA see Section 6.2.
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First, the objective function for the minimization has to be found. We
define the following function:
TJWV) = JWTALWT MYV, ... W N,V,WTB,CV)
= ||Zgwr||‘29f2
A err CT
= w([c -C]P {CT})
= tr(CPuCT —2CPLCT + CPuCT)

= tr(C'CPy -2V CTCPL+V'CTCVPy)
= tr(CTC(Pi1 — 2PV +VPLVT)),

with P" as given in equation (5.36), where [E E] = Inr. The reader should
note that P2 and P, depend on the reduced model and hence are functions
of V and W. The problem of finding an J#-optimal reduced order model

can be stated as a minimization problem of the form:

Minimize JWTAV,WT N V,WT B, CV) with respect to

(W, V) € R™" x R™" subject to WV = I, and %y is BIBO (5.56)

stable.
If we use W™ = Vi = (VTV) VT or VT = WH = WTW)IWT, the
matrices W and V satisfy W7V = [, if they have full rank. The following
modified problem can therefore be considered:

Minimize 7 (V) = J(VTAV,VINV,VIB CV) over V € R™"

~ 5.57
subject to the BIBO stability of S reduced with V! and V. ( )

This modified problem is an approximation to the original problem (5.56).
It finds reduced models in a subset of the reduced models that would be
considered while solving (5.56). It holds:
T(V) tr(CTCPu =2V CTCPL + VI CTCVPy)
tr(CTC(Py — 2PV +VPuV ). (5.58)

Define U = V(VTV)™'2. Let the reachability Gramian of the error system
obtained by reducing the original system with U be

Serr Pll /512
P == =~
[PIQ ng]
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Let the reachability Gramian of the system reduced with V and V' be P°™,
If P" and P®" are the unique solutions to the Lyapunov equations of the
respective error systems, then one concludes that

P = (VTV) 2B (vTv) 2 and Pio = Pio(VTV) 2,
This can be seen in the following Lemma.
Lemma 5.5.5. Using V and V' for the reduction or using U (one-sided)
respectively, and assuming that the corresponding Lyapunov equations of
the error systems have unique solutions, leads to the following connection
between the systems Gramians: Py = (VTV) Y2Pyu(VTV) Y2 and Py =

Pio(VTV) Y2 where the matrices with =  correspond to the system with
U.

Proof. If the original model has been reduced with U, one obtains

the solution of the following Lyapunov equation:

A Pu Po]| [E
VTV BVTAV(VTV) R | [P P VTV) RVTETV(VTV) 2

n [E Py Ao [AT

| (VTV)RVTEV(VTV) 2| |PL P (VTV)BVTATV (VT V)3
+i Ni Pu Po| [N

1 1 ~ ~

- VTV VTNV VTV 2| |PL P VTV) VTN V(VT V)

[ B T T V-3
+ VTV VB (BT BTV(VTVv)“z] =0. (5.59)

If the reduction has been performed with V and V' = (VTV)~'V7, one ob-
tains:

A Pi Pl [ET

VTV WTAV| |PL  Pxo VTETV(VTV) !
(E Pu Po| [AT
(VIV)"WTEV| |PL P VIATV(VTV)

+Z N P Pl [N]
(VIVYWWVTNV PSP VINIV(VTV)!

+

m
k=1
B

Tl tvis

} (BT B'V(VTV) ] =0 (5.60)
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from the left and the right

. . . . In
Multiplying equation (5.60) with [ (\/T\/)%}

yields:

A In
[ (VTV)%VTAV(VTV)%] [ (VTV)%]
P P |/ ET
' [sz P22:| [ (VTV)%} [ (VTV)%vTETV(vTV)%]
E In
+ [ (\/T\/)%\/TE\/(\/TV)%] [ (VTV)%]

m Nk
+;{ (VTV)2VTN;<V(VTV)‘} (VTV)3 }

| P1 P2 In N
PL P V)2

- [(VTV)B%VTB] (B BTV(VT\/)*%} =0. (5.61)

[Pu P2] [l AT
PL Pn (VTV)2 (VTV) 2VTATV(VT V) 2
(

vTv )2VTNTV(VTV)‘}

Under the assumption that (5.61) and (5.59) hold, one obtains (as equation
(5.59) has a unique solution):

P Po| [l Py Pul [l
{/512 /522] - [ (VTV)%} [Psz PZJ [ (VTV)%] (5.62)
which leads to
Pl = (VTV):PL,
and

e = (VTV) 2 Po(VTV)2,
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One can then show that the functions 7(V) and [J(U) are equal:
TWV) =tr(CTCPy —2VTCTCPL 4+ VT CTCVPy)
=tr(CTCPy — 2(VTV) V2V CTCPu + (VTV) VT T v (VTV) V2 By,)
=J ()
=JWUTAU, U MU, ... U NaU, UT B, CU).

Hence the following minimization problem is equivalent to (5.57):

Minimize J(U) := J(UT AU, UT Nk U, UT B, CU) over U € R™"
with UTU = I, subject to the BIBO stability of > the reduced
bilinear system calculated with U.

As U is an element of the Stiefel manifold St(r, n) (cf. Section 2.2) the
minimization problem can be stated on this manifold:

Minimize J(U) = J(UTAU U NU, U™ B,CU) over U €
St(r, n) subject to the BIBO stability of 2y, the reduced bi- (5.63)
linear system calculated with U.

Before we can state the minimization problem on the Grassmann manifold
(cf. Section 2.2), we need the following Lemma:

Lemma 5.5.6. For an orthogonal matrix Q@ € R™" it holds 7 (U) = J(UQ).

Proof. It holds (cf. (2.45)):

m

J<U>—zza'%2—tr<z ey (B s, )
=1 70 0 Ki=1

The Volterra kernels of the error system are:
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bx

i

As, As; As
P e Ny, =1 Ny, ... N, , et
[: C] |: ky ko Ki—1

by
ehsi Nkl ehdi-1 Nk2 .. Nqu €A51:| |:Bk,:| ’
The Volterra kernels coincide for UQ and U with QQ7 = Q" Q = I, because
[c -cuq]
eAS' /\/k1 - Nk:—l eASl
: eQTUTAuQs,QTUT N UQ .. .. QTUT Nk’?1 UQeQTUTAUQs1

. bk'
QTUTka
=[c -cy]
) C‘AS’ Nkl . NkHl eAsl
QQTeUTAUs,QQTUT N U. .. QQTUTNM1 UQQT eUTAU51
. bk/
QQ™UT by,
ensi Ny, ... N‘ﬂf e’ bk
= [C _CU] ' ' QUT AUs; (T N U...UT Ny, UeVTAUs: UThy |

and we conclude J(U) = J(UQ).

We can now state the minimization problem on the Grassmann mani-
fold:

Minimize J(U) over [U] € Gr(r, n) subject to the

BIBO stability of 3 reduced with U. (5.64)

5.5.4.2. The bilinear fast gradient flow algorithm. We will now calcu-
late the gradients VsJ and Vg J of the objective function J(U) on the
Stiefel and the Grassmann manifolds. A minimum of the objective function
J(U) needs to satisfy Vs J = 0 or Vg J = 0, respectively. As shown before
(cf. Section 2.2), the gradients need to satisfy the following equations:

VsT =Ju - UTJ U, (2.11)
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T
VeJ = Ju— UU™ Tu. (2.16)

Hence, one needs the matrix of all partial derivatives of J with respect to
U, ie.

oJ
= = 5.65

()5 = 501 (5.65)
Let Ej; be the single-entry matrix having a one in entry (7, j) and zeros else-
where. We derive:

0
(Ju)i = Wtr (CTC(/DH —2P12UT+UP22UT)) (5.66)
ij

0Px
oU;

=tr (CTC (EopzzUT +US—U" + UPnE[ — 26P1,2 Ut - 2P12E"§))

OPxn i1 T T 7 ,~0P
uccu-2ucc
a0, V=20 o,

() (+)

—tr +2(CTCUP» — CTCPL) Ef

By splitting the Lyapunov equations of the error system ((5.36) and (5.38)),
the following Lyapunov and Sylvester equations can be obtained:

AP+ PuAT 4> NePulN{ + BBT =0, (5.67)
k=1

ATQu+QuA+ Y N QuNe+C'C=0, (5.68)
k=1

UTAUP» + PoUTATU + > UTNkUPLUTNJU + UTBB U =0, (5.69)
k=1

UTATUQz + Q22UT AU + Y UT N UQUT NeU + UTCTCU =0,

- (5.70)

AP+ PoUTATU +) " NePUT N U+ BBTU =0, (5.71)

k=1
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ATQ12 =+ Q12UTAU + Z NZ—QQUT/V;(U — CTCU = 0. (5.72)
k=1

Differentiating the equations (5.69) and (5.71) with respect to U leads to:

OPa " 0P

EFAUPy, + UT AE; P2 + UT AU 30, * 30,

UTATU + PoE[ ATU + PoUT ATE,,

OP
au;

+ Y ELNUPRUTNU+ > UTNeEyPooU N U+ UTNU

k=1 k=1 k=1

U™Nf U

+ Y UTNUPRESNU+ > U NeUPUT N Ey + EJBB"U + UTBBTE; =0,
k=1 k=1
(5.73)

and

0P 0P, 7.7 T AT T AT S
A P E;; A P A" E; N
au, au,.JU U+ PoEjA U+ PRU J+; k

OPn 7T
GUUU N U

+ ) NePRESNIU+ Y NePoUTN]Ey + BBTE;; = 0. (5.74)

k=1 k=1

We define

Z = PoEjATUA+PoUTATE; + ) E[NUPoUT N[ U
k=1
+ U NKE;PoUT N[ U+ UTBBTE;.
k=1
For the next step, we use the following Lemma:

Lemma5.5.7. LetP, X e R™" andQ,Y e R™". LetA,C; e R"™",B,D; €
R™™ j=1,..., h. If P and Q satisfy

h h
AP+PB+Y CPDj+X=0and ATQ+QB" +Y C/PD] +Y =0,
j=1 J=1

then it holds
tr(Y'P) =tr(X'Q).
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Proof.

h
tr(Y'P) = tr((-ATQ-QB" - " ¢]QD])P)

J=1

h
= —tr(PATQ) - r(PQBT) = Y tr(PC/ QD))

J=1

h
= —tr(PATQ) —tr(BTPQ) - > _tr(D] PC] Q)
j=1
h
= tr((-AP-PB-Y CPD)'Q)
j=1
= tr(X'Q).
m

This Lemma together with equations (5.70) and (5.73) gives part (*)
of equation (5.66):
6P22
oUj;
and together with equations (5.72) and (5.74), the lemma leads to part (+)
of equation (5.66):

tr(u’c’cu Y=tr((Z 4+ Z") Qa) = 2tr(ZQ),

oP "
2) =tr((PoEJATU + PoUTATE, + Y NePE[ N[ U
ij

k=1

tr(—=U'Cc’C

+ Z /VkP12UT/VkTEij + BBTEU')Tle)-
k=1
Now the derivative Jy can be calculated:
(jU)ij =2tr (ZQQQ =+ (CTCUPQQ — CTCPj[Q)E,'}-
+ UTAE;PLQu2 + E[ AUPLQr2 + E[; BB Qo

+ Z UT NkEyjPLNY Qiz + Z E;NkUP£N1Q12>

k=1 k=1
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=2tr (PQQE;ATUQQQ + PoUTATE;Qa

+ ) ENUPoUT N[ UQ2 + > UT NkEy Pl N UQ2
k=1 k=1

+U"BBTE;Qx + ATUQ1TzP12E7J— + AUP;QIQE; + BBTQuE;

+Z N[UQIszPuE; + Z /VkUngNZ—QuE;

k=1 k=1

—|—(CTC1D22 — CTCP12)E,7J—>
=2tr ( (ATUQsz P> + AUPLQ12 + BB Q1o + BB  UQa

+Z Ni UQLNicPrs + Z NcUPLNY Q1o
k=1 k=1

+CTCUP»y — CTCPu 4 ATUQ2Pos 4+ AUP»Q2s

Jrz NeUPoUT N UQas + Z NZUQ22UTN%<UP22> Er71—> .

k=1 k=1

By defining
R = ATU(QIQPIQ + Qu2Pr2) + AU(P£Q12 + PoQx») + BBT(QIQ + UQ2)

—+ Z /VkU(PgNZ—Qu + P22UT/VZ—UQ22),

+CTC(UP2 — Pi2) + Y N{U(QTNkPi2 + QoaUT NkUP2)

k=1

(5.75)

we obtain

Ju =2R. (5.76)

The gradient on the Stiefel manifold can now be determined:

VsJ =Ju—UTyU
=2(R—UR"U). (5.77)
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The gradient on the Grassmann manifold is:
VeJ =Ju—UU" Ty
=2(R—UUR).

89

(5.78)

A minimum point of the function [7(U) must satisfy the following conditions:

e OnSt(r,n): (R=URTU)=0and UTU =1,.
e On Gr(r,n): (R—UUTR)=0and UTU = 1,.
Using the definition of R, one obtains the following lemma.

Lemma 5.5.8. /t holds U'R = R"U (i.e. UTR is symmetric), with R as

given in (5.75).

Proof. Using equations (5.69) to (5.72) one obtains:

—(ATQ12)"

UTR=U" <cTc +ATUQL + ) N{ UQLNk> Pra
k=1
—QnUT AU

+UT [ CTCU+ATUQL + ) NI UQ2UT Nku> Pz

(=AP)T

T

+U

(
(

BB + AUPL + ) /\/kUPITQ/\/Z> Q2
k=1
—PuUTATU

+uT <BBTU + AUP» + Z /\/kUPQQUT/\/[U> Q2

k=1

= —Q1APL — QU T AUPy» — PLAT Qio — PoUT ATUQ2:

=QhL (PuUTATu + Z NePLUTNJU + BBTU
k=1

+Q <P22UTATU + 3 UTNUPUT N[ U+ UBBTU

k=1
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+P12 Q12UTAU+ZN;<Q12UTN;<U CTCU>
k=1

k=1

+ Py (szuTAU + > UTNJUQUT NeU + uTcTcu>
U.

RT

Using the previous shown lemma, the following theorem results:
Theorem 5.5.9. A minimum point U € R™" of the function J(U) must
satisfy the conditions

(R—UU'RY=0andU"U =1, (5.79)
regardless of whether the minimization is performed on the Stiefel or the
Grassmann manifold.

It is now the objective to find a zero of the gradient, i.e. a zero of
(R —UUTR) = 0. Following [69] and [68] this is done by using a gradient
flow on the manifolds:

U= g—‘; — UMU)TR(E) — R(D). (5.80)

Yan and Lam [69] propose to rewrite the equation (5.80) using the symmetry
of UTR with T = UR™ — RU” skew-symmetric:

U=ru. (5.81)
They then suggest the following iteration for updating U:
Uppr = exp (517) U (5.82)

Xu and Zeng [68] find the new projection matrix Uj+1 by using the geodesic
(i.e. the shortest connection of two points) on the Grassmann manifold:

Ui = UV cos(55)V;T + Wsin(55)V, (5.83)

with —VeJ(U;) = VVJ-ZJ-\/J-T (the SVD of —VsJ(U;)). In addition they
show that

exp (tMN) U = UV cos(t)V + W sin(tZ)V', (5.84)
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which is also true in the bilinear case. Hence, the calculation of Uj1; is the
same in both approaches.

Remark 5.5.10. As the calculations of Uj+1 using (5.82) or (5.83) lead to
the same updated matrix, the optimization Yan and Lam performed in [69]
was already based on a geodesic on a Grassmann manifold, which they were
probably not aware of. Hence from a present point of view, they were in
fact performing a reduction on a Grassmann manifold.

It now remains to choose the time step t; such that a step in descent
direction is performed, i.e. the condition

J ) > T(Uj+), (5.85)

needs to be complied. In the linear case, Yan and Lam [69] propose two
different time steps. One is based on the original matrices and chosen a
priori, the other one is chosen in every step based on the original matrices
and the corresponding matrix U;. For linear systems and these time steps,
the condition (5.85) is always satisfied. It is now possible to state the
general optimization algorithm 4 for bilinear systems, inspired by the linear
algorithm given by Yan and Lam [69].

Algorithm 4 GFA for bilinear systems (bilGFA).

Input: (A, Nk, B, C), maxit : maximal number of iterations.

Output: Reduced model (A, Nk, B, ).
1: Choose a matrix Uy € R™" such that UJ Uy = /. Set j = 0.
2: for j=0— maxlt— 1 do
3 Compute P, Qh,, Pl,, @, by solving the equations (5.69) - (5.72)

for U;.

4 Compute R; by using equation (5.75).
5: Compute the gradient VJ(U;)) = R; — U;(U] R)).
6: Compute I = U;R] — RiU/.
7
8
9

Choose t;.
Set Ujy1 = exp(tjrj)Uj.
. end for
10: Calculate the reduced model: A = Ul . AUnaxt, Nk = Ul e NkUmaxit,
B=U_.B, €= CUnai.

maxlt
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For bilinear systems, the calculation of adaptive time steps t; is not a
straight forward generalization and requires further investigation. However,
choosing an appropriate time step can be done by using the Armijo step size
as proposed by Xu and Zeng [68]. With

U(t) = UV cos(t5)V;" + W sin(t5)V),

the Armijo stepsize is ta = 'y where i is the smallest nonnegative integer
such that

T(U) = TUs(ta)) > =6y (VI (U;), =VT(U))) (5.86)

holds for 8, € € (0,1),v > 0. As —ed'y (VI (U;), =V T (U))) is positive, it is
obvious that

TJW)) = TUj(ta)) = T (Ujy)- (5.87)

We are now at the point where all steps have been taken to define the
optimization algorithm for a bilinear model. It is a further development
of the linear fast gradient flow algorithm (FGFA) established by Xu and
Zeng [68]. We will therefore call it the bilinear fast gradient flow algorithm
(bilFGFA). Its main steps can be found under Algorithm 5.

The algorithm ends when the maximal number of iterations maxlt is
reached. However this does not mean that the obtained reduced system
(A, Ny, B, C) is an optimal model. Therefore, it is reasonable to check if the
gradient V7 (U) converges to zero. If it is sufficiently small, the algorithm
should stop.

5.5.4.3. Analysis of the convergence behavior of the bilFGFA. Starting
from a BIBO stable original system, and reducing with bilFGFA, the resulting
reduced system is not known to be BIBO stable. For symmetric matrices A
and Ny, we can prove the following result, which ensures the BIBO stability
of the reduced system:

Proposition 5.5.11. Let ||u(t)|[2 = /D, lu(t)]? < M. Let (A, B, N, C)

be a bilinear system with

(= system is BIBO stable, cf. Theorem 2.3.24) and symmetric A, Ni. Let
U € R™" be orthogonal. Then the reduced system S5 with A = UT AU,
B=U"B, Nk =U"NcU, € =CU is BIBO stable.
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Algorithm 5 FGFA for bilinear systems (bilFGFA).

Input: (A, Nk, B, C), maxit : maximal number of iterations.

Output: Reduced model (A, Nk, B, ).
1: Choose a matrix Uy € R™" such that Uj Up = I,. Set j = 0.
2: for j=0— maxlt— 1 do
3: Compute P, Qb,, Pl,, @, by solving the equations (5.69) - (5.72)

for U;.

4: Compute R; by using equation (5.75).
5: Compute the gradient VJ(U;) = R; — U;(U] R)).

6: Compute the new search direction F; = =V J(U;) and its SVD
F=WEV .
7: Minimize J(U;(t)) over t > 0, where
Ui(t) = UV, cos(tZ)V.T + W sin(tx)V)" . (5.88)
8: Set t; = tmin and Ujr1 = U;(t)).
9: end for

10: Calculate the reduced model: A = U!_ . AUmaxit, Nk = UJ s NicUnaxit.

B =U] B, € = CUna.

Proof. As the reduced matrix A and the original matrix A are symmet-
ric, their eigenvalues are real and the following condition for the eigenvalues
hold [60]:

A (A) > Ai(A) > Nipar (A), i=1,..., r.
As A is stable, this leads to the condition
—a > N(A) > Ni(A), i=1,..., r. (5.90)

Therefore, one can choose & = a. As A and A are symmetric, they can be
diagonalized by orthogonal matrices, and it holds:
=1 -1
—~N A
T _ .
lle™]l2 < 116 " = [|QT ™ Q2 < |QT |12 [|QI2 [|€™|> < €™ with = 1.
—_————

=6

The same calculation leads to [|e*]|; < e™%. Hence 3 =6 =1and & = a.
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For Nx and Ni symmetric, one knows that
[INk[l> = max |X/(Ni)| and || Nkl =  max XNk

It also holds:
N(Nk) > N (Nk) > N r(Ni), i=1,..., r.
Therefore we conclude with [X;(N)] < max{|A1(N)], IAn(N)|}:
[1Rkll2 = max {X(A)[} < max{[Xa(Nil, [An(Ni)[} = [N lo-

We finish by calculatmg

Zn/vknz < Zn/vknz < Mﬁ MB

k=1 k=1
from which it follows that the reduced system is BIBO stable. O

Corollary 5.5.12. /f A and N, are symmetric and the condition (5.89) holds,
the error system is BIBO stable and it holdsa® = a =&, 8" =6=0=1
if the reduction is performed with an orthogonal U € R™".

Proof. If the reduction is performed by an orthogonal U, then A*" and
NE™ are symmetric, as A and N stay symmetric. For a system fulfilling
condition (5.89), it holds &« = & and 8 = 3 = 1 as shown in Proposition
5.5.11. As

Amax(A™) = Amax ([* 4]) = max{Amax(A), Amax(A)} < max{—a, —a}, = —a,

one can choose a®" = a = &. The symmetric matrix A" can be diagonal-
\ 9
ized by an orthogonal matrix, and it holds
=1 -1
e NN
T — —
||eAerrtH2 S ||eo /\eert||2 _ HQTeAe”tQHQ < HQTHQ HQH2 ||e/\977t|‘2 S e et S e octI
N——

=gerr
with 85" =8 = = 1. Using ||Nkl|2 < ||Nkl|2 (cf. Proposition 5.5.11) one

can conclude that ||N§™||2 = max{|| Nk, [|Nk]]2} = [|Nk]|2. As the original
system satisfies the condition (5.89), one concludes

err

err j— a
ZHN ||2—Z||Nk||2<Mﬁ ViEk
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and hence the error system is BIBO stable. O

The following theorem states, that the gradient of the function con-
verges to zero while using Algorithm 5.

Theorem 5.5.13. Let A and Ny be symmetric and let

lu(ll2 = | D lu(®)P < m.

k=1

For a bilinear system (A, B, Nk, C) with

(= system is BIBO stable), the Algorithm 5 provides BIBO stable reduced
models and is globally convergent in the sense that for any initial projection
matrix Up it holds

lim [VT ()] = 0. (5.91)

Proof. The reduced systems are BIBO stable (cf. Proposition 5.5.11).
Hence A in particular is stable and therefore (as we assume all Grami-
ans to exist), the J%-norm of the error system can be calculated using
equation (5.42). It holds J(U) = [|=°"||%, and the function J(U) =
tr(CTC(Pi1 — 2PUT 4+ UP»UT)), seen as a function from R™" — R,
is smooth. As St(r,n) C R™ is an embedded submanifold of R™" and
G(r,n) 2 St(r,n)/O,, J can be seen as a smooth function on the Grass-
mann manifold.

Using the condition for the Armijo stepsize,

T(U) = TWU(ta)) > 8"y (VI (U), =VI(U))), (5.92)
one can conclude, that
J(U)j) 2 TU(ta)) = T (Ujs1). (5.93)

Using the convergence analysis provided by Absil et al. ([1] 4.3.1,4.3.2), the
remaining steps of the proof can be executed:
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First it will be shown, that for an infinite sequence {U;} generated by

Algorithm 5, every accumulation point of {U;} is a critical point of J.

We proceed by contradiction. Let there be a subsequence {U; }jex which
converges to an U, with V7 (U.) # 0. As it holds

JWU) =2 T (Uja), (5.94)

it follows that the sequence J(U;) converges to J(U.). Using Algorithm 5
we know that the condition
T(U) = T (Upa) 2 —et4 (VI (), =VI(U)) .

holds. The sequence —V.J(U;) is gradient related (cf. Definition 2.2.2) and
we know that J(U;) — J (U;+1) must converge to zero, hence {t;}jex — 0.
As t), = §™y is the Armijo stepsize, there exists ajsuchthatevery K>
satisfies the Armijo condition. Hence, for £ the Armijo condition is not full-
filled and it holds:

JW)-J (llj (% —VJ(UJ))> < —6% (VIW), -VIW) VieK.j=].

—vIWU) & lI-vIW)ll
[

R CAll

. t, . :
calculation that U; (TA 7V‘7(Uj)) = U, (e, mj). We define the function

We define n; and o = . It can be shown by a simple

juj =J ol : Ty, — Gr(r, n) (5.95)
which allows us to rewrite the inequality above as:
Ju,(0) = Ty, (g, m))

3 <—e(VIWU).m) VieK. =]
J

We can now use the mean value theorem to obtain for t € [0, j]:
—DJy,(t. )] < —e(VIT(U)).m) VieK.j>]. (5.96)

A detailed explanation of the differential can be found in the book of Absil
[1]. We already stated that {tﬁ}jelg — 0. As =V J(U;) is gradient related
and hence bounded, it holds {o;}jex — O as well. Every n; has unit norm,
and therefore they belong to a compact set. Hence there exists K C K such
that {n;};cg — m: for n. with |[n.|| = 1. Since the metric on the tangential
space is continuous, it holds DfUJ(O,nj)[nj] = (VI (U)),n;) (cf. Absil [1],
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Chapters 3.6 and 4.4) and J is smooth, we take the limit over K in (5.96)
which leads to:

—(VIT(U.). 1) < —e (VT (Us),m) . (5.97)

Since € < 1, it follows that (V.7 (Us), ) > 0. But as —V.J (V) is gradient
related, one has (V7 (U.), n«) < 0 which leads to a contradiction. Hence
every accumulation point of {U;} is a critical point of J.

It is left to show that limj ||V J(U;)|| = 0 holds.

As Gr(r, n) is a compact manifold, the following set is compact (cf.
[1):
L={Ue€Gr(r,n): JWU) <J(U)}.
We proceed by contradiction and assume that there is a subsequence {U; }jex
and ¢ > 0 such that [[VT(U))|| > o for all j € K. We see that {U;}jex C L
and since £ is compact the sequence has an accumulation point Uy in L. As
the gradient is continuous it follows ||V.7(Us)|| > ¢ and U. is not a critical
point, which contradicts the statement shown before.
O

5.5.4.4. The sequentially quadratic approximation. In addition to their
FGFA algorithm, Xu and Zeng [68] proposed a second algorithm, which they
call sequentially quadratic approximation (SQA). The idea is to find a search
direction by minimizing the function

JWU) =tr(CTC(Pu + UPLUT —2PL,UT)), (5.98)

in every iteration j and then to project the difference of U; and the obtained
minimal matrix U on the tangential space T[Uj]Gr(r, n) and use this projection
as the new search direction. Considering the bilinear Wilson conditions as
given in Theorem 5.5.1, a minimum of 7(U) could be obtained by using
U = P/,(P),)~*. The difference between U; and U shall now be used as
search direction. One has to note that [J] ¢ Gr(r, n) in most cases, and
hence U — U, is a difference defined in R™". Nevertheless, after projecting
onto Tjy,Gr(r, n) with M = (I, — U;U]) one obtains:

A = |—|(0 —U) = J— Uj(UJTO). (5.99)

Using this A; and the negative gradient —V.J(U;), one can define a gradient
related sequence (cf. Definition 2.2.2).
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Proposition 5.5.14. /f the sequence (4;); is bounded and it holds c1 < ||Aj]|

(vVI().8;) .
and HVJ(U/W < o withc > 0and o € (—1,0), then the sequence (4;);

is gradient related.

Proof. Let (U;)jex be a subsequence that converges to a non critical
point of 7. One needs to show that the subsequence (A;)jex is bounded
and it holds

lim sup(V.J(U)), Aj) < 0. (5.100)

Jmo jek
As the sequence (—VJ(U;)); is gradient related, it holds

lim sup(VJ(U;), -VI(U;)) <0
J—0o jek
< lim sup||[VI(U))]] > 0.
J—oo jek
It is assumed that
(VI). b))
VT (U - 1A
with ¢ € (—1,0). Hence we obtain
VIW). b))
IVACHIRIT
< (VIW), 4) <l VT WU - 114l
< lim sup(VJ(U)), Aj)) < e a lim sup [|[VT(U))]|
J70 jek J70 jek

< 2,

< &

>0

< lim sup(VJ(U)), b)) < 0.

J—=oo jek
O

(VJ).8;) .
As long as ||Aj]] > a and m < ¢ are fulfilled, the gener-

ated sequence {U;} is gradient related. If the inequalities are not fulfilled
anymore, one can keep the sequence of the U; gradient related by taking
—VJ(U;) as new search direction. The following Algorithm 6 can be estab-
lished.
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Algorithm 6 SQA for bilinear systems (bilSQA).

Input: (A, Ni, B, C), parameters ¢c1 > 0, and & € (—1,0),
maxlt : maximal number of iterations.

Output: Reduced model (A, Ny, B, €)

1: Choose a matrix Uy € R™" such that UJ Uy = I,. Set j = 0.
2: for j=0— maxlt— 1 do

3: Compute P, QL. P.,, Q, by solving the equations (5.69) - (5.72)

for Uj.

4:  Compute U = P/, (P,)™" and calculate A;.

5: Compute R; by using equation (5.75).

6: Compute the gradient VJ(U;) = R; — U;(U] R)).
(VW) A

7 if A; satisfies ||Aj|| > ¢ and TSZITAy < C2 then.
8: Compute the search direction F; = A;.
o: else
10: Use F = *VJ(UJ‘) .
11: end if
12: Compute Fj = W,Z;V/7.
13: Minimize J (U;(t)) over t > 0 where
Ui(t) = UV, cos(t)V,T + W sin(tz)V,". (5.101)
14: Set tj = tmin and Ujp1 = U;(t)).
15: end for

16: Calculate the reduced model: A = Ul AUnaxt, Nk = Ul e NkUmaxit,
B = U;axlth C= CUmaxlt-

In this Chapter, we have reviewed and stated methods from linear MOR
(Balanced Truncation, Krylov Subspace Methods and s#%-optimal MOR),
parametric MOR and bilinear MOR, with a special focus on bilinear /-
optimal MOR. Two main approaches for bilinear J#%-optimal MOR have
been presented. First, the interpolatory approach leading to the Bilinear
Interpolatory Krylov Algorithm (BIRKA, cf. Algorithm 3, [12]) has been
stated. It has been extended to systems with E # /,, E nonsingular. Sec-
ond, new algorithms for the J#-optimal MOR have been derived. They rely
on methods from optimization on Grassmann manifolds and their main ad-
vantage is the preservation of stability. For bilinear systems with A and N



100 5. MODEL ORDER REDUCTION

symmetric, both convergence and stability preservation of the algorithms
have been proven. However, for non-symmetric systems this remains an
open problem and can be the objective of future research.



CHAPTER 6

Challenges when applying BIRKA to thermal
industrial models

6.1. Kronecker product appproximation 101
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6.3. Singular stiffness matrix A and large norm matrices Nx 115

In this chapter we will focus on the applicability of BIRKA to the pre-
sented thermal models. Several strategies need to be developed to overcome
the challenges that accompany the adoption of a new algorithm within an
industrial context. They can be found in the next sections.

6.1. Kronecker product appproximation

The original BIRKA (cf. Algorithm 3) calculates the projection matrices
for model order reduction via the following Kronecker products:

k=1

m -1
vec(V) = (—/ﬁ QA-—ANRE — Z’/\TkT ® /\/k> (B" @ B) vec(Im),

(6.1a)
m -1
vec(W) = <lﬁ QAT —AQE" — Z Ne ® NZ) (C" @ CMyvec(l,).
k=1

(6.1b)

101
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However — for large systems — this calculation of the projection matrices V/
and W is not feasible due to the Kronecker product, which rapidly increases
the number of the equations to be handled. Benner and Breiten [12] propose
an iterative method to overcome this difficulty. For the calculation of the
projection matrices, a Neumann Series is employed in the following way:

m -1
vec(V) = (/r @A-NQE-Y N @ /\/k> (BT @ B)vec(Im)
k=1

0o

- [(/@A/\@E)l(z /\7kT®Nk)]
(x) =0 k=1

(=, A=AQE) (B @ B)vec(Inm)
=(-1, A—A® E) ™ (B" @ B)vec(Im)

vec(V1)

+(~h 9 A=A E) (O] N @ Ni) vec(V?)

k=1

vec(V2)

ot (L@ A=A E) O] N @ N vec(V ) 4

k=1

vec(V/)

= ivec(vj), (6.2)

where (x) is only valid if [|(—-/, @ A—A® E) '(>,, I\leT ® Nl < 1
holds. In practice, the infinite sum is truncated after an appropriate number
of additions. The columns of the summands \/ are now calculated without
using any Kronecker products:

Vi (—X\E - A)'BE;,

(~NE— A (Z /\/kvl(/\h),) ,

V2
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Vo= (NE—AT D NV (NG| fori=1,.
k=1

This calculation can be executed in the same way for vec(W). The same
projection matrices are calculated using the Truncated BIRKA proposed
by Flagg [34]. The large matrices (—X\;E — A) can be factorized by an
LU-decomposition so that \/lj can be calculated efficiently. In any case,
approximating the Kronecker product as in (6.2) can lead to divergence if

I(~hreA-AeE) (O M ® Nl > 1.

k=1

It is advisable to check if this norm remains smaller than 1 during the ex-
ecution of BIRKA, as divergence might lead to poor reduced order mod-
els. However, a direct calculation of the norm involves the inversion of
(=@ A=—A®E) € R™'", which is not feasible for large systems due
to high memory demands. Hence, the calculation of the Kronecker product
has to be avoided. To this aim, we introduce the following norm estimation:
‘ (-, ®A-A®E)™! <Z /\”U@Nk) < \|(—/,®A—/\®E)*IHZHZ/\LT@MHQ
k=1

2 k=1

_ “ ~ T
< N=®A=ABE) 2 Y [N ® Nellz

k=1

< M=l @A=ASE) S IIN [l Nllo.
I )l ;u el 1
(6.3)
If the last expression is smaller than 1, the algorithm is definitly usable. We
have thus derived a sufficient condition.
The norm ||(—=/, ® A— A® E)}||2 can be calculated without explicit inver-
sion of the matrix. The following Lemmata (cf. [60] Chapter 1.4 and [5]
Chapter 3) will be used to establish the new result for the calculation of the
corresponding norm in Proposition 6.1.3.

1
see below

1 HMI ® MQHz = HM1H2HM2H2[ ], Corollary 13.11.
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Lemma 6.1.1. For M € C™" nonsingular:
1

Mminj=1..n AI(MWT)

Lemma 6.1.2. For a normal matrix M:

1Mo =

IM7H]2 =

1
min/:l...n |>\/(M)|
By using the two Lemmata 6.1.1 and 6.1.2, we derive the following

proposition, which will be used for the calculation of the norm of (—/,® A—
A® E)™L.

Proposition 6.1.3. For A, E € R"™", symmetric,c D = diag(dh, ..., dr),

di € C:
_ 1
(=1, @ A—D®E) || = 3
where
[Amin(—A — dcE)| for Im(dx) =0
6 = min —
k=t \/Amm((—A — dvE)(—A—dkE) ) else
Proof. The above matrix can be written as follows:
—A—diE 0 o 0
0 —A—dE o 0
(- @ A—DQ®E)=
0 . 0 —-A—dE

with di¢ € C. For dk € R it is obvious that (—A — dxE) is normal due
to A and E symmetric, and thus Lemma 6.1.2 can be used for calculating
Amin(—A— dE). For di € C the eigenvalue Amin((—A— deE)(—A — dE)')
is determined using Lemma 6.1.1. Taking the minimum of all calculated
eigenvalues and inverting it concludes the proof. O

The calculation of ||[(—/, ® A—A® E)"!{|2 can now be done by Propo-
sition 6.1.3 using the MATLAB® [47] function eigs. For the estimation of
the norm as given in equation (6.3), it remains to calculate the norms of Ny
and Ny, which is done in MATLAB with the functions normest and norm,
respectively.

For randomly chosen initial values, the norm estimate is possibly greater
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than 1. However, as A and N, change towards their optimal values, the
norm estimate improves. For this reason, at least two or three iterations
should be performed to check if the norm is smaller than 1 with better
approximations of A and Ny.

6.2. Stability

In contrast to the observations in [12], unstable systems have been
encountered when applying BIRKA to industrial problems. Hence, a concept
for stability preservation for the reduction with BIRKA is needed. Stability
for linear and bilinear systems has been discussed in Sections 2.3.1.1 and
2.3.2.2. Whenever we speak of a linear stable system, we refer to a system
with Re(\;(A, E)) < 0 for the eigenvalues \; of a system.

For the special bilinear systems that result from parametric systems (cf.
Section 5.3.2), it is possible to deduce a relation between the eigenvalues
of the matrices A and A+ >/, uxNk. As Ny = 0 for uj resulting from the
original linear inputs, only the inputs that are time independent will be taken
into account and thus a comparison of the linear and bilinear eigenvalues is
reasonable. In other words it holds (cf. Section 5.3.2):

m ‘m

Z ug Nk = Z U Nk,

k=1 k=1
and we use the latter for our comparison. Theorem 2.1.5 and Corollary
2.1.6, originally due to Bauer and Fike [38], allow us to show Proposition
6.2.1, providing results for the distance between the considered eigenvalues
and the stability of the bilinear system in terms of the eigenvalues:
Proposition 6.2.1. Let A= Xdiag(X1, ..., X)X with Re(Mi(A)) < —c <
Oforalli=1,..., n. If

- c
||u||zk§_;||/vk||2 <00 (6.4)

then for any j € {1,..., n}, there exists an i € {1, ..., n} such that

IN(A) = M(A+ D ui)| < c.

k=1

In addition Re(Aj(A+ S ukNe)) <0 forj=1,...,n.
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Proof. With Corollary 2.1.6 one concludes:

NA) = XA+ uN)] < k(I D i
k=1

k=1

A

< k2Ol Y Nl
k=1

< cC.
Assume Re()\;(A + ZTZI ukNk)) > 0 for one fixed j € {1,..., n}. As
c < |[Re(Ni(A))] forall i =1,..., n and for j there exists / such that
INi(A) = Ni(A+ D0, ukNi)| < ¢ one calculates:

c < |Re(Ni(A))]
< Re(M(A)| +Re(\(A+ ) uelk)
k=1
= [Re(Ai(A)) = Re(N(A+ Y )|
k=1
< \/ (Reu(A) — Re(y(A + ST, wehi)) + (Im(A(A) — mOy(A+ T, i)
< C,

which leads to a contradiction. Therefore Re(M\j(A + ZTZI ucNk)) < 0
holds. 0

For systems with E = [, and sufficently small inputs ux and matri-
ces Nk (cf. (6.4)), the bilinear system remains stable and every eigenvalue
of the bilinear system lies in a neighbourhood of an eigenvalue of the lin-
ear system. For E nonsingular, Proposition 6.2.1 remains valid for E"1A
and >, ukE "N, Hence, it will be assumed that the eigenvalues of
EPA+ > ukE""Ni and E7'A are sufficiently close. This leads to the
fact that stability preserving methods for the linear systems will be used, as
we assume the pertubation in the eigenvalues of E~!A resulting from adding
>or, ukE" Ni to be small.
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6.2.1. Stability preservation using the systems Gramians. For linear
systems (i.e. Nk =0, k=1,..., m), stability can be preserved by using the
following result due to Yousefi [70]. Basically, Villemagne and Skelton [66]
have stated it even earlier, whereas Gugercin [39] used it in context of an
interpolatory approach. Yousefi incorporated the fact that the eigenvalues
of the reduced model will not exceed a certain value o.

Proposition 6.2.2. Given a linear stable system (A, B, C) with Re(A\;i(A)) <
—o < O0fori=1,..., n. Then for any arbitrary full row rank matrix
V e R™ and W = QV(VTQV)™!, where Q = QT > 0 satisfies ATQ +
QA +20Q < 0, the reduced model (A, B,C) is stable and A = WT AV
satisfies Re(\i(A)) < —o fori=1,..., r.

For positive semidefinite Q, the proposition remains valid, if one as-
sumes VT QV to be invertible. We generalize this for a system with E # /,
E nonsingular, Q positive semidefinite and Q = V7 ETQEV nonsingular,
which — up to the author’s knowledge — has not been stated elsewhere.

Proposition 6.2.3. Given a linear stable system (E, A, B, C) with E non-
singular and Re(A\i(A, E)) < —o <0 fori=1,..., n Let@=Q" >0
satisfy

ATQE+ ETQA+20ETQE < 0. (6.5)

Then for any arbitrary full rank matrix V € R™" with Q = V" ETQEV non-
singular (and therefore Q > 0), the reduced model (E, A, B, ) generated
with

W =QEV(VTE"QEV) !,
is stable and satisfies Re(\i(A, E)) < —o fori=1,..., r.

The proof of the Proposition follows exactly the proof of Yousefi (cf.
Proposition 6.2.2). However, as we have introduced two generalizations —
the presence of the E matrix and the non-strict Lyapunov inequality (cf.
equation (6.5)) — we state it here for completeness.
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Proof. Multiplying equation (6.5) with V7 and V' and making use of
I, =(WVTETQEV) T(VTETQEV)" = (VTETQEV) Y(VTETQEV),
leads to:
VIATQEV +VTETQAV 4+ 20VTETQEV <0
=VIATQEV(VTETQEV) T (VTETQEV) (VTETQEV) M (VTETQEV)
w Q wT
+VTETQEV(VTETQEV) T VTETQEV (VTETQEV) 'VTE'Q AV

w Q wT
+20VTET QEV(VTETQEV) T (VTETQEV)"
w a
(VTETQEV)Y 'WTETQEV <0
wT

=sVIATWOWTEV + VTETWOWT AV + 20V ETWQWTEV <0
=ATQE+ ETQA+20E"QE <0

=(A+0E) QE+ETQ(A+0E) <.

Using the identity £ = WTEV = (VIETQEV) TVTETQEV = I, let )]
and v; be any eigenvalue and eigenvector of A+ o/,, then:
(A+0l) Q+QA+0l,)<0=v(A+0l) Qvi+ v/ QA+ al)v <0

=N VQV + A vQv <0

=N+ AV Qvi <0

=2Re(A)vi'Qv; <0

(v Qvi > 0) =Re(\]) < 0.

The eigenvalues pf the reduced system are the eigenvalues of A as E = /,.
Using A\jvi = (A + al;)v this leads to Av; = Alv, —ov, = (A] — o).

As Re(A\]) < 0 and —o < 0, one can conclude that Re(A\{ — o) < 0 and
therefore the reduced system is stable. O

The dual result is also true:
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Proposition 6.2.4. Given a linear stable system (E, A, B, C) with E nonsin-
gular and Re(M\(AE)) < —o <0 fori=1,..., n, then for any arbitrary
full row rank matrix W € R™" and P = PT > 0 which satisfy

APE" + EPAT +20EPE" <0, (6.6)

and nonsingular P = WEPETWT, the reduced model (E, A, B, C) gener-
ated with

V=PETW (WEPETWT) !,
is stable and satisfies Re(\i(A, E)) < —o fori=1,..., r.

Proof. The proof is analogous to the one of Proposition 6.2.3. O

For the calculation of the projection matrix W the following Lyapunov
equation is solved:

(A+0E) QE+ETQA+0E)=-C'C<0, (6.7)
for a o < |Re(Amax(A, E))|. Hence one obtains
W =QEV(VTE'QEV)™,

as in Proposition 6.2.3. The solution of the Lyapunov equation (6.7) is pos-
itive semidefinite, as the shifted system (A+ ¢ E, E) remains asymptotically
stable.

Equation (6.7) can be solved by using the low rank ADI iteration (cf. for
example [15, 57]) which generates a low rank factor Z, such that Q = Z7 Z.
The calculated low rank matrix Q ~ V" ETZ" ZEV can be singular. This
always occurs if rk(Z) < rk(V) = r. Even if rk(V) < rk(Z) one can not
conclude that V7 ETQEV is nonsingular?, but for rk(V) relatively small com-
pared to rk(Z) it is often true.

Solving large Lyapunov equations is numerically demanding. For large sys-
tems (n > 500, 000) it might be impossible — even with highly developed
methods such as the ADI algorithm. Hence, this stability preserving method
will reach its limitations when the system’s dimensions get too large.

10 1

o e reror_ (1 1 0 0\[-1 o0 o0
”*4'5*’4"/’52*(0 o1 1)lo -1 0
0
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6.2.2. Stability preservation via one-sided projections. In the special
case of symmetric matrices E,A and Ny and positive definite E, another
possibility for preserving stability is to use only a single projection matrix
(this is called one-sided method). The matrices of thermal systems provided
in Section 4.1 have exactly these properties, and therefore this stability
preservation approach is of interest.

Proposition 6.2.5 ([22]). Given a linear system (i.e. Ny = 0) with A E
symmetric. If E =E" >0 and A= A" < 0 then the system is asymptoti-
cally stable.

Corollary 6.2.6 (4.4,[60]). Let A€ R™" be a symmetric matrix, V € R™"
have orthonormal columns, and A =VTAV. Then

MN(A) > N(A) > Nignr(A), i=1,..., r. (6.8)

Corollary 6.2.7 ([22]). Given a linear system with E = E' > 0 and A =
AT <0, fori=1,..., n. Let V € R™" have orthonormal columns, A =
VTAV and E = VTEV, then the reduced system is asymptotically stable.

Proof. With Corollary 6.2.6 one can conclude that the eigenvalues of
the matrix A = VT AV are negative. As A = A" and VTEV = E =
ET > 0 one concludes with Proposition 6.2.5 that the reduced system is

asymptotically stable. O

Hence for linear systems with A and E symmetric and E positive defi-
nite, stability can be preserved via one-sided projections. As shown in Propo-
sition 6.2.1, the eigenvalues of a bilinear system, derived from a linear para-
metric system, can now be related to the eigenvalues of this linear system.
Using Proposition 2.1.7 and Corollary 2.1.8, this leads to the following re-
sult:

Corollary 6.2.8. Let ux € R fork =1, ..., m, Ae R™ and Ny € R™"
symmetric with eigenvalues 0 > X1(A) > --- > Xo(A) and Ai(Ni) > -+ >
An(Ni). Given that V € R™" has orthonormal columns and A = VT AV and
Nk = VT NV, then it holds

i(A+

M3|

uk/vk Al < ||u||2Z||Nk||z (6.9)
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Proof. Corollary 2.1.8 leads to

Z ukNi) = Xi(A)|

IA

m
||ZUka||2
k=1
m
lull2 > 1Rkl
k=1

As N and N are symmetric, they are normal and therefore fulfill

IA

[INk]2 = max | (N = max{[ 2 (Nl A (Rl

and

With Corollary 6.2.6 one concludes A1 (Nk) > Xi(Nk) > An(Ni). This leads
to ||Nkll2 < ||Nkl|2 and therefore equation (6.9) holds. O

If ||ull2 ZT:1 [|Ni||2 is sufficiently small, one can assume that X\;(A +
i, ukNi) ~ Xi(A) and therefore the reduced bilinear system is stable if
the linear system is stable (cf. Corollary 6.2.7). In addition it holds:
Corollary 6.2.9. Under the assumptions of Corollary 6.2.8 let ¢ € R*
with ¢ < Pmax(A)| = M(A). I |Julle D5, [INkll2 < ¢ then Xi(A +

ZT:l Uka) < 0.

Proof. Assume A\i(A+ ST uclli) > 0 and calculate using equation
(6.9):

¢ < A< NA)
< INA+FNAHY k)
k=1
= (A - N(A+ Zuka)| <c.
k=1

This leads to a contradiction, so A;(A + ZTZI ueNy) < 0. O
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Remark 6.2.10. Using one-sided projections for the reduction of symmet-
ric matrices, one can not only derive conditions for the eigenvalues of the
bilinear rewritten parametric models (as given in 6.2.8 and 6.2.9), but also
derive the BIBO stability preservation of general bilinear systems, as it has
been done in Proposition 5.5.11.

6.2.3. Stability preservation - the workflow. As the reduced models
that have been calculated with the stabilization process using the Gramians
are in most cases better than those generated by a one-sided approach, the
workflow in Figure 6.1 applies.

Fix a reduced order r. Is solving
equation (6.7) by an ADI iteration
possible?

i T

Yes @

‘ Use a one-sided approach.

Solve the equation (6.7) and determine ‘

the rank rk(Z) = 1.

Stability preservation via Proposi-
tion 6.2.3.

Figure 6.1. Proposed workflow for stabilization.

The reader should note that / > r indicates the fact that the matrix Q
(cf. Section 6.2.1) can still be singular, but for the case of /> r, it is more
likely that Q is invertible.

Remark 6.2.11. For the reduction with these stability preserving methods,
the matrix W originally given by BIRKA (cf. Algorithm 3) is not used within
the reduction. Instead, either the matrix W given by Proposition 6.2.3 or
simply W = V (the one-sided approach) is used. This leads to the fact
that the derived J%-optimality conditions as given in equations (5.43) to
(5.47) or (5.50) to (5.53) are not completely fulfilled anymore. Only the
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conditions (5.47) or (5.53) hold, as they only depend on the calculation of
the matrix V.

6.2.4. Stabilization via mirroring of eigenvalues. Recently, Zeng, Chen
and Lu [71] proposed a stability preservation for IRKA (cf. Algorithm 1).
After reducing the model by a projection matrix generated during an IRKA
step, the matrix A = S™'AS (assume E = /,) is diagonalized and its unsta-
ble eigenvalues are mirrored:

N = —[Re(\)| +i- Im(X).

Finally, set A = S™'AmirS as the stable reduced matrix. In the bilinear case,
this method can be used to obtain Re();(A)) < 0. However with this step,
the BIBO stability will not be considered.

In Figure 6.2, results for the reduction with stabilization for different orders
are compared. We reduce the simplified motor with n = 2, 952 (cf. Section
4.3.2). However, we will not incorporate geometry variations and simply use
one physical parameter (heat transfer coefficient) and three loads.

The original BIRKA (cf. Algorithm 3) is accurate for a reduced order of
r = 20 (if a stable model has been obtained), whereas the reduction with
the stabilization converges to a model, which — as it can be seen in the
third output — is not a good approximation of the original. After increasing
the order up to r = 50, BIRKA with the stabilization performs well.

If a stable reduced model is generated by a reduction, where V as given
by BIRKA is used as one-sided projection, one obtains accurate results with
r = 100. Hence, the stabilization via the mirroring of the eigenvalues can be
sufficiently accurate with a smaller reduced order. Nevertheless, one needs
to check if the reduced order model is accurate enough, as a reduction with
the stabilization might lead to a convergence of the algorithm but still pro-
vides an inaccurate approximation of the original model.

Remark 6.2.12. This stability preservation only adresses the eigenvalues of
the matrix A. For a bilinear system, the BIBO stability might not be fulfilled.
Hence, for the reduction of thermal models, we use the stability preservation
via the one-sided projections (even if they result in larger reduced orders).
They guarantee BIBO stable models, if the BIBO stability condition (as
given in 2.3.24) is fulfilled for the original model. This result has been
established in Proposition 5.5.11.
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First output
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Figure 6.2. Reduction of the small motor model n =
2,952 using stabilization via mirroring of poles
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6.3. Singular stiffness matrix A and large norm matrices Ny

6.3.1. Singular stiffness matrix A. The effect of thermal resistance
between two parts can be modeled by a small gap between them (cf. Sec-
tion 3.1.1). This can be done using Robin boundary conditions on the inter-
face surfaces, and then modeling the resistance by a contact heat transfer
coefficient hc:

oT |, (x, t) OT |1, (x, t)
kp———— = — kg ———=
on on
By constructing the parametrized heat equation as given in Section 4.1,
this leads to the following parameter dependent stiffness matrix:

A+ heNe.

However, matrix A can be singular (but A+ hcNc is not) due to the following
effect. Assume we are solving the heat equation for a model with two
different parts, separated by a small gap (cf. Figure 3.1). In the case,
where there is no heat flux between the two parts, the contact heat transfer
coefficient is he = 0 and the boundary conditions become:

LTG0t _, 9Tlu(x 1) _

= hc (T(X, t) |/1 - T(X' t)|/2) .

on on
Hence, the heat equations become
OT1(x, t OTr(x, t
pcM = kAT1(x, t) and pcL = kAT2(x, ),
ot ot
on the two different parts, with % = % = 0 as the temperature

is constant (i.e. Ti(x,t) = T7°™ and To(x, t) = T5°™") since no heat
flux is present. The discretization of the heat equation with the boundary
condition yields A; T7°™" = 0 and A>T3°™" = 0, which is only complied if A;
and A; are singular matrices. In the case, where a heat flux between the two
parts is present, a matrix N¢ is included in the discretization and A + hc N
is a nonsingular matrix — whereas A remains singular.

As BIRKA is not defined for systems with singular A matrix (and leads to
inaccurate results when a reduction is performed), one needs to modify the
original systems representation. As A+ hcN¢ is nonsingular, it is possible to
use a shift s and obtain:
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A+ heNe
=A+ sN¢ — sNc + he N
=A+ hcNe where A= A+ sN. and he = he — s.

One can now apply BIRKA, using the nonsingularg instead of A. After the
reduction, the calculation needs to be reversed: If A and N are the resulting
reduced order matrices, one calculates: A= A—sN.. However, for a stable
A the matrix A is not known to be stable, but one can connect the stability
of A and Aysing Proposition 6.2.1, which leads to the following statement:
Let Re(Ai(A)) < —c and X*AX = diag(\y, .. ., A)- I Is|-[[Nell2 < =555
then Re(XNj(A)) <Oforallj=1,..., r.

6.3.2. Large norm matrices Ni. It is possible that BIRKA cannot be
applied to a system where the norms of Ny are large. First of all, the
Kronecker product approximation as given in Section 6.1

(=1 @ A=A E) Ml Y 11Nk oIl < 1, (6.10)
k=1

is not necessarily fulfilled. In addition, the BIBO stability condition® as given
in Theorem 2.3.24

_ o
D IE Nl < et (6.11)
k=1

might not be fulfilled.

3With B,a € R, 8 > 0 and 0 < o < —max;(Re(Ai((A, E)))) and |lef A, <

Beat t >0, |lu(B)ll = /D, (P <M.
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One can then apply a simple scaling g € R to the bilinear model and
try to choose it such that (6.10) holds for the scaled matrices Nx = g/N.

Ex=Ax+ Z Nyugx + Bu,
k=1

m
= EX:Ax+Zngukx+Bgu,

k=1

T — — 1
= EX:Ax+ZNkEkx+BU, with Ny = g, B = gB and T =~ - u.
k=1
(6.12)

In addition, one might think of choosing the scaling such that the BIBO
stability condition holds for the scaled model. However this is never the case:

Lemma 6.3.1. /f a bilinear system does not fulfill the BIBO stability con-
dition (6.11), the scaled system (6.12) does not fulfill the BIBO stability
condition.

Proof. Set =" ||[E"'Ni||o. It holds

Melgl =191 IE ™ Nello =Y [IE " gNillo.
k=1 k=1

For the scaled input  one obtains:

1 1 M —
[all = lzull = llull £ 7 =M.
g lg] gl
As the BIBO stability condition does not hold for the original system one

obtains:

a
r>—
= VB’
algl _ «
= [ > = —.
lgl = MB " Tig
This shows, that the BIBO stability condition is not fulfilled for the scaled
system as Y, [|[E" gNi|l = Tg| < ML@ does not hold. O

In our case, we mostly consider bilinear systems, that have been ob-
tained by rewriting a parametric system (see Section 5.3.2) in the following
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way:
Ex = (A+ pNi)x + Bu,
Ex = Ax + Nylix + Nalio + -+ + Ny i1 + B0,
withNo= ... =N,=0,B=[0 B],BeR™ andi=[p u]". Nowthe

scaling g can be used in a slightly different way than for “originally” bilinear
systems:

Ex = Ax + Nyl x 4 NoTia + - -+ + Nipi1Tims1 + BT,

with Ny = gNy, No = ... =N, =0, [¢g-0 B]=B=B8=1[0 B]and
u= [E u]T. Hence the input v is only scaled in the entries which refer to
N1, and the matrix B is not scaled.

Using this scaling, one can not only try to scale in such a way that the
Kronecker product approximation is fulfilled, but also that the BIBO stability
condition is complied. This is possible if one assumes that

m m

_ 1 — 1

Tl = \| g5 2 Ul + D lul? < T < o llull
i=1

i=m+1

(In our example m = 1.) Hence
1

M <
gl

M, (6.13)

holds, and in addition one has

191D NE Nllo = > IIE glNillo,
k=1 k=1

as Ny = 0 for k > m. As the BIBO stability condition does not hold for the
original model, one has:

ool _ | N
— < E""Nil|2.
W <1912 IE M

But as (6.13) holds, it is possible that

- a
191 Y IE T Nello < =,
k=1 Mﬁ
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a

is fulfilled (as %2 < ). if g is chosen in the right way.
When scaling the matrices Ni, we observed that the reduced orders
increased. This effect can also be seen with linear models in the following

way:

Remark 6.3.2. The scaling factor g might affect the reduced order, which
has to be increased in order to obtain a good approximation of the original
unscaled model.

For a further investigation of this behavior, we have introduced a scaling
in a linear model (as A = Ao + gA1). A reduction of this scaled model
was performed using a one-sided moment matching. The obtained matrix
Vicaled has then been used to reduce the unscaled model (A = Ao+ A1). By
increasing the order of the scaled model, it has been possible to achieve a
good approximation to the unscaled one.

In this chapter, several issues that occured, while applying BIRKA to
large thermal models, have been examined. First, an approximation of the
Kronecker product — originally due to Benner and Breiten [12] — has been
presented.

Second, methods for the stability preservation of BIRKA have been derived.
Assuming that the eigenvalues of the linear and the bilinear systems (ob-
tained from parametric systems) are sufficiently close, one can use stability
preservation methods for linear systems. First, a method using the sys-
tem’s Gramians has been transferred to systems with £ # /, nonsingular
and positive semidefinite Gramians (cf. Section 6.2.1). Second, the stabil-
ity preservation using one-sided projections has been examined, and again
stability preservation has been obtained for systems where the eigenvalues
of the linear and bilinear/parametric system are sufficiently close. Recently,
a stability preservation via mirroring of eigenvalues has been proposed by
Zeng, Chen and Lu [71]. A short examination of this method has been
added (cf. Section 6.2.4) — providing good results whenever the reduced
order is sufficiently large. In addition one should note, as it has already
been shown in Proposition 5.5.11, using one-sided projections for symmet-
ric models leads to BIBO stable models.

Third, one needs to consider singular A matrices, which can be avoided by
using shifts, and matrices Nx that have the same magnitude as the A matrix,
which need to be scaled, in order to obtain good results. Results for these
modifications will be presented in Chapters 7.2 and 8.






CHAPTER 7

Reduction of physically parametrized
thermal models

7.1. Results for the J%-optimal reduction on Grassmann manifolds121
7.2. Results for the reduction using BIRKA 131

In this chapter, we present results for the reduction of models where
only physical properties are varied. This includes (contact) heat transfer
coefficients (Robin boundary conditions) and fixed temperatures (Dirichlet
boundary conditions). First, we consider the new bilinear J4-optimal algo-
rithms derived in Section 5.5.4. They will be tested by reducing a bilinear
heat equation model on a square with n = 100 degrees of freedom. Second,
we will present results for the reduction with BIRKA (cf. Algorithm 3) and
the modifications given in Chapter 6.

7.1. Results for the J#%-optimal reduction on Grassmann manifolds

Results for the reduction with bilGFA (Algorithm 4), bilFGFA (Algo-
rithm 5) and bilSQA (Algorithm 6) will be analyzed in this section. The
derivation of the algorithms can be found in Section 5.5.4. Their main ad-
vantage is that they can preserve stability during reduction, if the original
model is BIBO stable. To demonstrate their performance, the algorithms

will be applied to a bilinear heat equation model on a square [26]:
‘Z—::AT inQ=(0,1) x (0,1),

121
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T
(69_n =075 u123(T — 1) on Ty, 12,3,

T= Ug on F4,

with ui(t) = % cos(kmt) for k = 1,..., 4 and one Dirichlet (on I'4) and
three Robin boundary conditions (I1.23). The discretization of the above
differential equation leads to the following bilinear system:

T(t) = AT() + > Neu(DT(t) + Bu(t),

k=1

Zb‘\ . (7-1)

y(t) = CT(t),

with A, N, € R10X10 B ¢ RI00x4 54 C ¢ R We reduce the original

model to order r = 8. The system is then BIBO stable, as the calculated A
i 3

and N are symmetric, and 24.75 = 37, [|Ni|l2 < 555 = i = 33 holds.

In every step of the algorithms, we are going to measure the error in the

J-norm as follows: First, we calculate the norm of the original model:

Jo = ||Zbi|||§f2 = tI’(CPuCT),
then after each step we calculate the J#-norm of the error system:
Jer = 15572 = tr(CPaCT = 2CP1CT + CPuCT).

The relative error of the system is the square root of the quotient of these

norms:
ERRel = 4/ ‘; (7.2)

First, we apply bilFGFA (Algorithm 5). Second, we reduce with a bilinear
version of the gradient flow algorithm (bilGFA, Algorithm 4). For the cal-
culation of t;, we use the adaptive stepsize for the linear case established by
Yan and Lam [69], which turns out to be a good choice for the time step-
ping in our bilinear model. Third, we will compare the results with bilSQA
(Algorithm 6).

We will initialize the algorithms with two different scenarios:

(I11) The matrix Uy is obtained by generating a random matrix in R"*"
followed by an SVD to orthogonalize the columns in order to fulfill
the condition UJ Up = I,. The relative #-error of the starting
model is ERR = 0.64524.
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(12) The matrix Up is obtained by a reduction of the linear model (i.e.

Ny are not considered) via a moment matching approach (cf. the

book of Antoulas [5], Chapter 11) followed by taking only the

first three columns of the projection matrix and filling the rest of

the columns with basis vectors e; = [10 .. 0]" to e,_s. Again, an

orthogonalization is required to satisfy the condition U] Uy = I,.

The relative s%-error of the starting model is ERRe = 0.29734.

In addition to the initializations, we start the algorithms bilFGFA and bilSQA
with different parameter choices:

(P1) e=0.56 =102 and v = 3, 100.

(P2) €=0.9,6=10"2v=420, ¢ =102 and ¢ = —107".
Remark 7.1.1. It should be noted that the choice of the parameters and of
the initialization has a strong impact on the performance of the algorithms.
During our analysis, several parameter choices and initializations have been
tested (not only those presented here). Some of them lead to good results,
others do not result in a descent of J7(U) or require long simulation times
until @ minimum is reached.

After a user defined maximal number of iterations every algorithm stops.
In addition, the following stopping criteria have been implemented: bilGFA
stops after the 2-norm of the iterate I'; (cf. equation (5.82)) is smaller than
a user defined tolerance, bilFGFA and bilSQA are stopped after the norm
on the Grassmann manifold ||V.7(U)|| = 2tr(VJ(U;))T VI (U))) is smaller
than a predefined tolerance. The results for the different initializations, pa-
rameter choices, stopping criteria and algorithms are summarized in Tables
7.1 and 7.2.

The results for the reduction with the initialization (I1) and different
algorithms and parameter choices are shown in Figure 7.1.



124

7. RESULTS — REDUCTION OF PHYSICALLY PARAMETRIZED THERMAL MODELS
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Figure 7.1. Reduction with bilGFA, bilFGFA and bilSQA
for initialization (11). Stopping criteria: |||l < 107°,
IVT(U)|| < 107°
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The descent in the function [J(U) for the reduction with initialization
(I11) is plotted in Figure 7.2. One observes that bilSQA starts with the
steepest descent — it is obtained by using A; as a descent direction (cf.
Section 5.5.4.4). However, after changing the direction to —V.J(U;), the
descent is smaller and can lead to large numbers of iterations depending on
the stopping criterion used.

Descent of the objective function J(U)

r I I ]
B —— bilFGFA, (P1) ||
" —— bilGFA 1

i —— bilSQA, (P2)
10721 E
g | i
h | -
107 B
107" b J

! ! ! ! !
0 100 200 300 400 500

steps taken

Figure 7.2. Descent in function J(U) for different algo-
rithms using the initialization (I1)

Results for different stopping criteria with initialization (11) are shown
in Figures 7.3, 7.4 and 7.5. bilSQA performs best, which is consistent
with Figure 7.2, where this algorithm shows the steepest descent. As
given in Table 7.1 the corresponding relative %-error for stopping crite-
rion [|[VJ(U)|| < 107° is 0.04355. To reach comparable accuracy, more
iterations and a smaller stopping criterion are required for the other two
algorithms.



126 7. RESULTS — REDUCTION OF PHYSICALLY PARAMETRIZED THERMAL MODELS
Table 7.1. Results using the different algorithms with ini-
tialization (I1) and different stopping criteria.

Algorithm and | stopping criterion | number of | approx. cal- | relative J#-error
parameter choice iterations culation time | of the final model
bilGFA M <1072 49 6sec 0.484
bilGFA M. < 10~ 453 40sec 0.15143
bilGFA M. <1077 712 1min 0.088272
bilGFA M. <107° 3,415 5min 0.028826
bilFGFA (P1) VI <107* |5 1sec 0.47982
bilFGFA (P1) VJU)]| <107° | 391 10sec 0.10271
bilFGFA (P1) VI <107° | 4,472 2min 0.037932
bilFGFA (P1) VJIWU)]| <1077 [ 9,821 4min 0.029936
bilSQA (P2) V()] <10*]|8 Isec 0.075125
biISQA (P2) [VIU)|| <107° | 182 5sec 0.04355
biISQA (P2) VI <10 1,771 40sec 0.037208
biISQA (P2) VI <107° [ 12,156 4min 0.035788
Table 7.2. Results using the different algorithms with ini-
tialization (I2) and different stopping criteria.
Algorithm and | stopping criterion | number of | approx. cal- | relative J#-error
parameter choice iterations culation time | of the final model
bilGFA [IF]]. < 1072 9 1sec 0.27289
bilGFA M. < 10° 107 9sec 0.14657
bilGFA M. <1077 776 1min 0.04425
bilGFA M. <107° 6,901 10min 0.028703
bilFGFA (P1) HVJ( N <107% | 4 1sec 0.26078
bilFGFA (P1) J(U)|] <107° | 316 7sec 0.10764
bilFGFA (P1) J(U)] <107° | 3,637 1min30sec 0.041569
bilFGFA (P1) JU)| <107° | 5,864 2min 0.038746
bilSQA (P2) HVJ(U)H <107% |5 0.2sec 0.091838
bilSQA (P2) VT (U)|| <107° | 85 2sec 0.042356
biISQA (P2) VT[] <10°® | 1,899 40sec 0.036458
biISQA (P2) [[VT(U)]] < 107° | 44,076 18min 0.030022
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Figure 7.3. Reduction with bilGFA for initialization (I1)
with different stopping criteria.
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Figure 7.4. Reduction with bilFGFA for initialization (I1)
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The algorithms (bilGFA, bilFGFA and bilSQA) perform well on this
simple bilinear model. The quality of the resulting optimal models, however,
depends on the selection of the initial matrix Uy, the stopping criteria and
the optimization parameters (¢, §, 7y, c1, ¢2). If they are not chosen carefully,
it is possible that a large number of iterations is required. This can lead to
long reduction times, if the algorithm is applied to larger models, even if one
is able to solve the underlying Lyapunov and Sylvester equations (cf. (5.69)
to (5.72)) in a reasonable amount of time.

The following open issues provide interesting opportunities for future re-

search:

The solution of the bilinear Lyapunov and Sylvester equations has
been implemented directly. It remains open if it is possible to
obtain reduced order models in a reasonable number of iterations
(and hence time) using techniques for large systems (for example
the ADI iteration presented among others in [57, 14]).

For systems with symmetric A and N, matrices, BIBO stability is
preserved during the reduction, and the algorithm is converging.
However, for systems where A and Ny are not symmetric it re-
mains an open question if stability can be preserved in the reduced
model.

The derivation of an adaptive stepsize for the bilinear case might
have an influence on the number of iterations and on the con-
vergence behavior. For linear systems, Yan and Lam established
Theorem 5.5.13 for their adaptive stepsize. As for bilinear sys-
tems an analogue stepsize is not yet known and the derivation of
a similar theorem remains an open problem.

In addition, one can think of finding a way to choose good opti-
mization parameters (€, 0,y, c1, ¢2) a priori. Or to update them
in an efficient way during the reduction.

The timestep in the algorithms is chosen using an Armijo condi-
tion. One might think of testing a different condition to chose the
stepsize, for example a Wolfe condition on Grassmann manifolds
(refer to Qi [55]).
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7.2. Results for the reduction using BIRKA

In contrast to the bilinear fast gradient flow algorithm, which is not
yet ready for the application to large bilinear models as shown in Section
7.1, BIRKA can be used in the context of large models. Nevertheless,
several issues need to be adressed, such as stability preservation and the
approximation of the Kronecker product. These issues have been discussed
in Chapter 6. We will now present results for the reduction of a thermal
model, where only physical properties are parametrized (cf. Section 3.3).
The thermal analysis is carried out using Comsol Multiphysics®, version 3.5a
[52]. By exporting several matrices from Comsol® and a thorough analysis
of the underlying equations, it is possible to reconstruct a parametric model
with variable parameters and loads of the form:

thoo

a v :

~JET®= A+ hiNi+ D> (el | T+ 8- | 7| -
fin- i=1 k=g+1 To

L(1)

y(t) = CT (1),

(7.3)
where g is the number of heat transfer coefficients h, and v — ¢ is the
number of contact heat transfer coefficients hc. If A is singular, it has been
replaced by a non-singular matrix A as described in Section 6.3.1.

In Figure 7.6, the modeled motor part is shown. One can see parts
of stator, coil, housing and some insulation parts. The following loads and
parameters need to be considered: On top of the housing a temperature
To is fixed to take a specified maximum temperature into account. The
coil losses L(t) are incorporated into the coil. Heat transfer by convection
is modeled at seven different locations, for example on coil and housing,
resulting in 7 heat transfer coefficients (i.e. g = 7). Thermal resistance
is incorporated at six different locations, for example between insulation
and stator or insulation and coil (i.e. v = 13). The size of the model is
n = 41,199 and the original transient Comsol® simulation for one parameter
setting takes about 90 minutes.

Two different models of the electrical motor have been examined. The first
one considers only heat transfer coefficients as parameters and ignores the
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Insulation

Housing

Stator

Insulation

Figure 7.6. The Comsol® model for the heat transfer in
a stator slice, without the rotor.

effects of thermal resistance between some parts of the motor. This leads to
a model with 7 parameters and 4 loads. The second model additionally takes
into account the thermal resistances and therefore contact heat transfer
coefficients are considered, which leads to a model with 13 parameters and
4 loads. The temperatures at four different locations will be examined:
at the front of the stator, at the coil and at two different points on the
insulation.

Each of the resulting parametric systems (7.3) is reformulated as a bilinear
system by following the procedure explained in [11] (cf. Section 5.3.2) and
afterwards reduced using BIRKA (Algorithm 3). The calculation of the
projection matrices V and W is performed as explained in (6.2) and the
infinite sum is truncated after 10 summands.

The calculations were performed using MATLAB [47] on 12CPUs with 3GB
RAM each.

7.2.1. Model 1 — no contact heat transfer coefficients.

7.2.1.1. General results. The stability of the original model is preserved
by calculating the projection matrix W as described in Proposition 6.2.3. It
required 16 iterations to finish the reduction, and the change in the eigenval-
ues between the last two iterations was less than 10~7. The whole procedure
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Figure 7.7. Temperatures at four locations of the motor
- results of the original model compared to the reduced
model and relative and absolute errors
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took about 11 hours and resulted in a model of order r = 50 which can be
simulated in 10 seconds. This is a speed-up of over 500 compared to the
original simulation time of 90 minutes. Compared to the reduction time of
11 hours, the original model could have been simulated about 8 times.
When comparing the solution of the original model to the solution of the
reduced model, one obtains only a small deviation, which can be seen in the
error plots of Figure 7.7. The absolute error in temperature is smaller than
0.07 K, corresponding to a relative error of less than 2 - 107*. It is impor-
tant to make sure that the reduced model gives reliable results over a wide
range of parameter values and inputs. Simulations with the reduced model
have been performed where the heat transfer coefficients are chosen from
a range of 5 to 100, and the coil losses L(t) and the ambient temperature
T~ have been varied. For all these variations the reduced model gives an
excellent approximation of the full model. In Figure 7.8, the behavior of the
temperature for six different heat transfer coefficients on the coil is shown.
The error plots on the right show that the relative and absolute errors are
sufficiently small. In contrast to the standard pMOR methods (cf. Section
5.3) no training or interpolation in the parameters is required.

7.2.1.2. Stability preserving — comparing the different approaches. As
explained in Sections 6.2.1 and 6.2.2, stability can be preserved by different
procedures. Here, the following approaches will be examined:

e gramianBIRKA: The reduced model is calculated using V' as in
Algorithm 3 and equation (6.2), and the matrix W is calculated
using Proposition 6.2.3. Results are shown in Figures 7.7 and 7.8.

e BIRKA-tS: The projection matrices V and W are calculated with
Algorithm 3 and equation (6.2). Stability is not preserved. Hence,
in every step of the iterative process the generated reduced system
is saved, and a stable system is chosen from these systems. Such
a stable system does not always exist, and even if it does, it is
possibly not an optimal reduced system, as it is not necessarily
the final reduced system.

e BIRKA-0S: The reduced model is calculated with Algorithm 3
and equation (6.2). Only in the last step a one-sided projection
with V is used.

e only V: The projection matrix V is calculated as in Algorithm 3
and equation (6.2). In every step of the algorithm a one-sided
projection is used to calculate the reduced model.
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Figure 7.8. Temperature curve for six different values
(5,25, 45, 65, 85, 100[W/m?K]) of the heat transfer coef-
ficient on the coil together with the relative and absolute
errors between original and reduced order models.
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For the outputs on top of the coil (output 2) and on the insulation
between coil and stator (output 3), all approaches give a sufficient accuracy
for a reduced order of r = 40. However, for the outputs on the stator-front
(output 1) and on the insulation on top of the stator (output 4) the results
differ. For the original BIRKA (BIRKA-tS), good results for all outputs
are obtained for r = 40 if a stable model is found. The gramianBIRKA
performs well for r = 50 (see Figures 7.7 and 7.8). For the two one-sided
approaches, the order needs to be increased up to r = 60 for BIRKA-
oS and up to r = 100 for only V to obtain accurate models (cf. Figure
7.9). The calculation in BIRKA-tS uses two projection matrices V' and
W, such that the optimality conditions hold. All important informations
about the original model are provided by these matrices, and then transferred
to the reduced order model. The three other methods will only use V' in
their reduction, whereas the information contained in W is lost. BIRKA-0S
calculates matrices V and W in every step. In the last step V is used as
a one-sided projection to obtain a stable reduced order model. Hence the
information given by V and W is present during the calculation and gets
lost only in the last step. The gramianBIRKA gets information not only
from V as given by the original BIRKA, but also from the solution of the
Lyapunov equation (6.7) whose solution Q is used for the calculation of W
as given by Proposition 6.2.3. For this reason these methods perform well
for r = 60 and r = 50 respectively. The method only V however, uses
least information, as in every step of the original BIRKA only V is used for
a one-sided reduction.

Table 7.3. Comparison of simulation times and reduction
times for the second model

reduced | approach simulation reduction time | speed-
order time of re- up
duced model

r =600 | only V 60s 3 days 3 hours | 90

r =300 | BIRKA-tS af- | 15s 3d 3h + 12h 300
ter only V

r =300 | BIRKA-0S af- | 15s 3d 3h + 12h 300
ter only V
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Figure 7.9. One-sided methods.

7.2.2. Model 2 — contact heat transfer coefficients. In the second
model thermal resistance has been taken into account. Six additional con-
tact heat transfer coefficients h. are incorporated into the model. Their
values range from 200-4- up to 3,600-%. These parameters can lead
to a singular matrix A, and a shift s needs to be introduced to obtain a
nonsingular matrix A=A+ sN as explained in Section 6.3.1. For every
given he € [hT'", h™3], the center of the interval is chosen as a shift.

For this model, the stability preservation using Proposition 6.2.3 is not ap-
plicable, because the size of a reduced model will be larger than the rank
of the low rank factor in the ADI iteration. Hence, stability can only be
preserved using a one-sided projection. This leads to larger reduced orders
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compared to an unmodified BIRKA.
For the reduction, the following approaches are used:

e only V: The projection matrix V is calculated as in Algorithm 3
and equation (6.2). In every step of the algorithm a one-sided
projection is performed to calculate a reduced model.

e BIRKA-tS after only V: The projection matrices V and W are
calculated with Algorithm 3 and equation (6.2) from a reduced
model generated by only V. Stability is not preserved. Hence, in
every step of the iterative process the generated reduced system
is saved, and a stable system is chosen from these systems. This
stable system does not always exist, and even if it does, it is
possibly not an optimal reduced system, as it is not necessarily
the final reduced system.

e BIRKA-0S after only V: The reduced model is calculated with
Algorithm 3 and equation (6.2) out of a reduced model generated
by only V. Only in the last step a one-sided projection with V is
used.

The reduction was performed using the one-sided approach only V and
took about 3 days and 3 hours. The reduced model has order r = 600
and can be simulated within 60 seconds, which corresponds to a speed-up
of about 90 compared to the original simulation time of 90 minutes. This
reduced model leads to a good approximation of the original model over the
whole parameter range. This is illustrated for instance in Figure 7.10, where
the variation of the heat transfer coefficient on the coil is shown. The two
approaches BIRKA-tS and BIRKA-0S use the reduced model calculated
with only V and reduce it again. This two step reduction has been done for
the following reason: The larger the reduced order gets, the more unstable
models are obtained within the reduction process. Hence choosing a stable
model from the obtained reduced order models (as it is done in BIRKA-tS)
is difficult, and stable models are in most cases not a good approximation
to the original. In addition, a stabilization after the reduction (as it is
done in BIRKA-0S) has the same problem — good approximations to the
original model are rare. Hence, after this additional reduction process, which
takes 12 hours, models of order r = 300 are obtained. These models can
be simulated in 15 seconds, which corresponds to a speed-up of over 300
compared to the original simulation time. A summary of these results can
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be found in Table 7.3. Figure 7.11 shows results for the original and the
reduced models from the different approaches and the errors for output 3,
which are the largest errors that occure. The reduced models generated
with only V and BIRKA-tS show sufficient accuracy, whereas BIRKA-0S
performs not accurate enough.

7.2.3. Discussion of the results. As given in Chapter 6, several issues
were encountered when using BIRKA (Algorithm 3) for linear parametric
models. The solution for the first issue — the approximation of the Kro-
necker product, cf. Section 6.1 — is used for all given reductions. In
addition, the matrix A needs to be shifted to obtain a nonsingular A (cf.
Section 6.3.1) for the second model with contact heat transfer coefficients.
The third issue had the largest effect on the reduction: The stability of the
reduced order models needs to be preserved. Several strategies have been
presented in Section 6.2 and examined on different models in this section.
All stability preservation strategies can be used for the first model, whereas
the strategy using the Gramian (Section 6.2.1) is not applicable for the sec-
ond model.

It is found that with these strategies it is always possible to obtain stable
reduced order models which give accurate results over a large parameter
range (cf. Figures 7.8 and 7.10). This is possible without any sampling of
the parameter space or interpolation between reduced order models, which
is the standard approach for the reduction of parametric models (cf. Section
5.3). These small parametric models can therefore be used efficiently for
optimization, where a large number of simulations for different parameter
values is required.

For the second model, the model can be reduced down to an order of
r = 300. This is, compared to the first model with orders from r = 40
to r = 100, relatively large. This might be due to the fact that the behavior
in six additional parameters needs to be taken into account, and the matrix
A needs to be shifted as well. In addition, the one-sided approach for the
stabilization leads to higher reduced orders as observed also for the first
model.
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7.2.3.1. Reduction times. The main disadvantage of the approach are
the long reduction times. This is due to the fact, that for every step of the
reduction, several time-consuming calculations need to be performed.

In every step of the algorithm, the matrices V and W need to be cal-
culated by the following formulas:

V' = (=\E - A)'BB;,
W= (-NE—-AC'C, i=1,..., r,

and for j =2,..., maxiterS (using the Kronecker product approximation,
c.f. Section 6.1)

!

V= (-NE— AT NV (),
k=1

W/ = (=\E— AT ZNka YN, i=1,..., r.
k=1
The crucial point is that V/~! and W/~ are required in the calculation of V/
and W/ and have to be calculated a priori, so the inversions of (—\;E — A)
and (=\E — A)" need to be performed r - (maxiterS + 1) times.

For the calculations presented in this chapter, the inversion of the ma-
trices (=\;E — A) and (—X\;E — A)" was done using an LU-factorization. In
every step of the algorithm, r LU-factorizations are performed, and all the
matrices L; and U; are stored. The columns of the matrices V and W are
obtained in the following way: Calculate the r columns of V! and W* by:

V= (-NE—-A)'BB =U"'L'BE,
WH=(-NE—-A)TC"C=L"u"Cc"¢. i=1,..., r

Forallj=2,..., maxiterS the r columns of V¥ and W/ are then calculated
by:

VI= U7y NGV (N,
k=1

W= 1707y O NW T (), =1,

k=1
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However using MATLAB, the LU-factorization is not the fastest pos-
sibility for the calculation of A™'b (if b is a vector). We will now compare
reduction times for the approach using the LU-factorization, and the direct
calculation of A™'b via the “backslash” (written as A\b) functionality in
MATLAB.

We consider the model with n = 41, 199 and 13 parameters and 4 loads
and the following assumptions:

1) The sum V = 7= vec(V’) (cf. 6.2) is truncated at j =
maxiterS = 10 (W is handled in the same way).
2) The algorithm is assumed to converge after 15 steps and the

reduced order is r = 300.

Using the LU-factorization, one observes for the calculation of one step
(results may differ depending on the memory and CPUs available):

e 300 LU-factorizations need to be calculated and saved. Each
L U-factorization, takes about 6 seconds, and hence in total 30
minutes.

e The 2r-maxiterS columns of V and W need to be calculated using
the matrices L; and U;. For one column, this takes 0.7 second and
hence for 2r - maxiterS = 6000 this takes 6000 - 0.7sec = 70min.

So the total calculation time for one step is approximately 100min. After
convergence (15 steps, i.e. 15 - 100min = 25h) this leads to an overall
calculation time of more than a day'.

Using the “backslash” implemented in MATLAB, one observes for the
calculation of one step (results may differ depending on the memory and
CPUs available):

e The 2r - maxiterS columns of V and W need to be calculated.
If one column requires 0.4sec, one obtains: 2-300-10-0.4 =
2400sec = 40min.

Hence the total calculation time for one step is approximately 40min. Until
convergence (15 steps) on needs 15 - 40min = 600min = 10h of time.
For this example, the “backslash” functionality implemented in MATLAB

IThe large reduction times of more than 3 days mentioned in table 7.3 depend on the
following: First, extra LU-factorizations for (—X;E — A)T have been calculated, which are not
necessary as those of (—X\;E —A) can be used. Second, more steps than the described 15 steps
have been used. Third, the reduction order used is r = 600, which leads to more inversions.
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only needs 40% of the reduction time, than the calculation with the LU-
factorization.

However, for larger models (around n > 100, 000), where loading the
matrices L; and U; is faster than the calculation of A\b, it can be beneficial to
use the LU-factorization. All calculations for the small models (n = 2,952)
in the upcoming sections are done using the “backslash” functionality in
MATLAB.

Opportunities for further improvement open up for the parallelization
of the calculation of the LU-factorizations and the columns, as each factor-
ization and column can be calculated independently from the others. De-
pending on the number of available parallel slots, several factorizations and
columns can be calculated at the same time, hence the overall process of
the reduction can be sped up.
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In this chapter, two models of an electrical motor with geometric vari-
ations will be considered. The first one is a large model with n = 71,978
degrees of freedom, the second one — with a less complex geometry for
the ease of presentation — is a smaller model with n = 2,952 degrees of
freedom (cf. Section 4.3.2). The geometric variations are described by us-
ing affine parameters u and 6 (scaling of flange and housing in z-direction),
and non-affine parameters «y and p (scaling of housing and stator in (x, y)-
plane)’. One physical parameter — a heat transfer coefficient h on the
housing — will be considered here (for more details on the model see Sec-
tion 4.3). As in the previous chapter, the reduction will be performed using
BIRKA, and stability preservation is obtained by using a one-sided approach
(cf. Section 6.2 and Section 7.2 as only V). Due to the geometric varia-
tions, the parametric linear models have a different structure than models

1Strictly speaking, v and p are non-affine for the dependency in A (cf. Section 4.3.2),
but not for the other matrices. For the ease of presentation and calculation, we refer to and
treat them as non-affine parameters.

145



146 8. RESULTS - GEOMETRIC VARIATIONS

with only physical parameters. Two different approaches for reformulating
linear parametric models as bilinear models (cf. 5.3.2) will be introduced in
this chapter. In addition to the reformulation step, it will be necessary to
interpolate the bilinear models as the dependence on the parameters stays
present. This will be done by using standard interpolation methods known
from the pMOR literature as described in Section 5.3.1.

8.1. Reformulation of the linear parametric as bilinear systems

The models of the electrical motors with geometric variations can be
described by the following linear parametric system:

E(6.u. 7, p)x(t)
Tinp - = (A6, &, v, p) + hAK(6, 7, p)) x(t) + B(8, u, v, p)u(t),
y(t) = Cx(2).
(8.1)
The parameters are: u and 6 (scaling of flange and housing in z-direction),

v and p (scaling of housing and stator in radial direction), and a heat transfer
coefficient h (on the housing). The parameter dependent matrices are:

E(©, p. 7. p) = Eo(, p) + 0Ee(v, p) + LEL(7. p),

A, .y, p) = Aoy, p) + 755 A1 (7,0) + 6Aa(7. 0)

1

+
+ %A (v, p) + BAL(Y, p).

An(0. 7., p) = Ao (7, ) + 0Am (7, p), (8.2)

B(O, u.v.p) = (v, p) + uBu(y, p) + Bo(. p)

l+p, ﬁ—u
Bro (Y, 0) + 6Bno(7v, 0) (1 +6)Bs(v,0)|.

ut)y=[To hTw SO

These equations show, that the parameters 6 and u (resulting from origi-
nally linear scalings in the model cf. Section 4.3) are affine, where as the
parameters v and p are not (resulting originally from non-linear scalings cf.
Section 4.3). This parametrized linear model can now be reformulated as a
bilinear model in two different ways.
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8.1.1. Complete reformulation as a bilinear model (R1). We want
to make use of the special structure that allows us to reduce a parametric
model as a bilinear model. Here, the structure (cf. (8.1) and (8.2)) is how-
ever slightly different from the one described in Section 5.3.2. The matrix
E depends on the parameters and not all parameters are affine. Hence, we
can only rewrite the system as a bilinear system with a parameter depen-
dency in E(0, u, 7, p) and non-affine dependencies (parameters -, p) in the
other matrices. For our first approach, we will fix h and consider only the
parameter dependency in geometry:

(Eo(v. p) + 0Es(v. p) + wEu(v. 0)) x(t)

= Ao(v, p)X(t) + Y Ne(y, p)ux(£)x(£) + B(v. p)u(t),

k=1
y(t) = Cx(t),
with
1 1
ut)=1755 ¢ T4 # T
1 T
To uTo T 6Ts (14+60)S(t
Tl wTo (1+06)s(t)
Ao(7, p) = Ao(7, p) + hAn (Y. p).
Ni(y,p) = AL (7. p), Na(, p) = Ae(Y, p) + hAn (7. o).
Ns(v.p) = AL (7.p), Na(v, p) = Au(7, 0),
Ns(vy,p) = --+- = Nio(v.p) =0,
00 0O
Blvie)=1: © = 1 Bo(vp) BoL(vp) Bulv.p)
00 0O

hBro(v. p)  hBre(v,p) Bs(v.p)|.
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Throughout this chapter, we will refer to this reformulation as refor-
mulation one (R1).

Using this reformulation, it is possible that the norms of the matrices
Ni to N4 are of the same magnitude as the norm of Ag. This can lead to the
fact that the BIBO stability condition (cf. Theorem 2.3.24) is not fulfilled,
which means that the system is possibly not BIBO stable. In addition, for
the reduction of the system with BIRKA it is crucial that the system fulfills
the condition (cf. Section 6.1)

(I ® Ao —A® E)™* <Z N[@M) Il <1,

k=1

as the Kronecker product needs to be approximated. If the norm is larger
than one, the algorithm might show no convergence behavior. To overcome
these difficulties, the Ny can be scaled with an appropriate scaling factor g
(cf. Section 6.3.2). This leads to the reduction of the following system:

(Eo(v. p)+O0Es(7y, p) + nEL(y. 0))x(t)
= Ao(v, )x(t) + D> gNi(, p)uf(t)x(t) + B(v, p)u’(t),
y(t) = Cx(1), .

with matrices Ao, Nk and B given as above, and

1 0 1 n
Gt = L = B
®) LJ(HG) g 9(l+w g °°
}
1
To uTo Tw 6T (1+6)S(t
150 Ko (14+0)S(t)

8.1.2. Incomplete reformulation as bilinear model (R2). For the sec-
ond approach, the transformation into a bilinear model will only be conducted
for the physical parameter h, whereas the dependency on the geometry will
be regarded as a parameter dependency in a bilinear model. This leads to
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the following bilinear, parametric system:
4
E(p)x(t) = Ap)x(£) + > Ni(p)ux(t)x(t) + B(p)u(t),

men (P) : =1

y(t) = Cx(1),
(8.3)
where p = (6, 4,7y, p). The matrices are as follows:

E(p) = Eo(y, p) + 8Ee(y, 0) + uEu(v, 0).

1
A(p) = Aol p) + 1—+9Aﬁ (7. p) +0A0(v. p)

1
+ AL (7.0) + AV, ),

1+ u TR
Ni(p) = Ano (7, p) + 0Ane (7. p),
No(p) = --- = Na(p) = 0,
B(p)= 10 ﬁBﬁ_“(%pHuBu(%pHBo('y,p)

Bro (v, p) +0Bre(v,p) (14 6)Bs(v,0)|.

ut)y=[n To hTw S()]".

Throughout this chapter, we will refer to this reformulation as refor-
mulation two (R2). A short summary for both reformulation methods can
be found in Table 8.1.

8.2. Methods for the interpolation of the reduced models

For both of the two reformulations, the bilinear models will be reduced
with a one-sided version of BIRKA (cf. Algorithm 3, Section 7.2) at dif-
ferent sampling points p; = (6, uj,vj. 0;).J = 1,..., J, in the parameter
space. In these points, reduced order models E(p;), A(p;). Ni(p,). B(p))
and projection matrices V/(p;) will be obtained. In the upcoming sections,
we compare different interpolation strategies to construct reduced models
at other parameter points prew = (Bnew: tnew, Ynew, Prew)- We will give a
short overview here, for a more detailed presentation, the reader is referred
to Section 5.3.1.
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Table 8.1. Two reformulation methods — short summary.
| (R1) [(R2)

Complete reformulation

Incomplete reformulation

Dependence in physical parame-
ters h will be ignored. All affine
parameters on the right hand side

Reformulation of the model is only
conducted for the physical param-
eter h. All matrices still depend on

of (8.1) (see also (8.2)) will be | the parameters in geometry.
shifted to the input, whereas ma-

trix E, still depends on them.

The interpolation methods, that will be used can be arranged into two

different classes: One-step methods and two-step methods.

One-step methods (see Section 5.3.1):

After the reduced order models in different points p; have been obtained one

needs to

1) Adjust the reduced order bases.

Different reduced order models do not lie in the same state space
and hence a transformation to the same state space is needed.
One needs to find a reference subspace Ry and transformations
M; and T; such that the states can be transferred to the reference
subspace. One obtains:

E; = M/ E(p)T;,

A= M A(p)T;,
Nig = M N(p;)iT;,

B; = M/ B(p)).

C =C)T;, forj=1,....J

2) Choose the interpolation manifold an_d interpolation method.

Interpolate the matrices E;, A;, Nyj, B; and C; to obtain the re-
duced order model at prew.
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Four different methods will be used to conduct the adjusting of the
bases and the interpolation — we will refer to them as the one-step methods:

(P1)

(P2)
(A1)

(A2)

This approach was developed by Panzer et al. [53]. The refer-
ence subspace Ry is given by a SVD of the matrices V/(p;). As
transformations one uses 7; = M; = (R/V(p;))"t. After the
transformation to the reference coordinate system, a linear inter-
polation is used to obtain a reduced model at the interpolation
point prew. (No special manifold is chosen.)

Like (P1), just use a weighted SVD of the matrices V(p;).

This approach was introduced by Amsallem et al. [3]. The ref-
erence subspace is obtained by choosing the projection matrix of
a reference model Ry = V/(pj,) from the given reduced models.
In our case, this will be the nearest model with respect to the
new parameter point prew. The matrix T; = MZ is given by the
SVD of V(p;))" Ry = U;£;Z], and the matrix M; is obtained as
M= E@p) T = (V(p) E(p)V(p)) . Hence it holds E; = I,
after the transformation. Now, for every matrix A;, Ni;, B; and
C; a manifold for the interpolation needs to be chosen. Here, we
choose the manifold of real n x n matrices for the interpolation
of A; and Ny,, the manifold of real n x m matrices for the in-
terpolation of Ej and the manifold of real p x n matrices for the
interpolation of EJ- The interpolation is now conducted on the
tangential space to the matrix in the reference point. (l.e. in
T M for the interpolation of the matrices A .) A linear interpo-

Iat|on between the matrices is used. Details for the choice of the
manifold are given in Section 5.3.1.2.

Like (A1), just use the manifold of the non-singular nx n matrices
for the interpolation of the matrices A;.
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Two-step methods:
The second class of methods will be called two-step methods. They can
be used only if at least one affine parameter is present.
o First step: First, the non-affine parameters are fixed in one point
J and only the affine parameters will be varied, i.e. (0, i, Y5, 07),

k=1,..., Kl=1,..., L. A global projection matrix is calcu-
lated by using a SVD:
Vaiobat, = svd ([V(61, w1, 75, 05) V(01 p2,v5.05) - V(Ok ke v5p5)]) -

The global projection matrix is calculated such that V.., ; € R™"
with the same reduced order r as for the matrices V (6, k. v; £)-
In a new parameter point (new, tnew, ¥j, P7) the reduced model
can now easily be obtained. For example for the reduced mass
matrix E:

E((eneWr Hnew, V3. 07)) = Vg@bal,jEO("Yjv pj)\/g;\obal,j

+ BnewV,lopar 1B (Y7 £)Vytopa 7 + HnewViopar 16 (V7 0)Voopar 5 (8-4)
The calculation of a global projection matrix is now done for all
points (vyj, pj), and results in reduced models where Onew and finew,
the affine parameters, are already fixed. Hence for the affine
parameters in prew NO interpolation needs to be done, it remains
only to interpolate the non-affine parameters.
e Second step: The interpolation of the non-affine parameters, i.e.
matrices E((eneWr Mnew, Y5 pj))r A((eneWx Mnew, Y; pj)),
Nk((eneWr Hnew, Y; pj))r é((GneWr Knew, Y; pj‘)) and
C((Bnew, tnew, Y3 p7)). J=1,..., J is done using the interpolation
methods stated during the explanation of the one-step methods.
We will refer to this approach as (Af-Al), (Af-A2), (Af-P1) or (Af-P2)
depending on the method that is used for the interpolation in the second
step. In the case where all parameters are affine and only the first step
needs to be done we call the method (Af).
For a quick reference, all methods are summarized in Tables 8.2 and
8.3.



Table 8.2. One-step methods for the interpolation of reduced order models.

| | (P1) | (P2) | (A1) | (A2)
reference Rv =| Ry = | Rv = V(pj,). projec- | Rv = V(pj,). projec-
subspace svd([V(p1), . .. svd(JwiV(p1), ... tion matrix of chosen | tion matrix of chosen
V(D). SVD | .. wkV(pK)]D), reference model reference model
of the projection | weighted SVD
matrices of the projection
matrices
trans- T, = M =|T, = M =]|T, =UZ isgven | T; = UZ is given
formation || (R}V/(p;))~! (RLV(p)) ! by the SVD of |by the SVD of
matrices Vi) Ry = UL Z], | V(p) R = UL, Z],
and the matrix M, | and the matrix M,
is obtained as M, = | is obtained as M, =
(VO E@IVE)) | (VeI E@IV(E))
manifolds no manifold is cho- | no manifold is cho- | the manifold of real | the manifold of real
for inter- || sen sen nxn nxmandpx | nxn nxmandp X
polation n matrices, depending | n matrices, depending

on which matrix to in-
terpolate

on which matrix to in-
terpolate - for A(p;)
the manifold of the
non-singular matrices
is chosen

ST13A0ONW d3dNA3d IHL 40 NOILVIOddILNI IHL 404 SAOHLINW T8

€61



154 8. RESULTS - GEOMETRIC VARIATIONS

Table 8.3. Two-step methods for the interpolation of re-
duced order models.

| | (Af-P1) | (Af-P2) | (Af-A1) | (Af-A2) | (Af)

First step Calculation of reduced order models for the affine param-
eters in the new parameter point prew See 8.2.

Second (P1), (P2), (A1), (A2), no inter-

step — in- || see see see see polation

terpolation || Table Table Table Table necessary

method 8.2 8.2 8.2 8.2 - only

used affine  pa-
rameters

8.3. Reduction and interpolation using reformulation one

To simplify the presentation, we fix the parameters u, 7y, p, SO only one
affine parameter 6 remains. After the reformulation (R1) and a scaling of
the matrices N; and N> as explained in Section 8.1.1, the following system
is obtained:

6
(Eo + 0E0) x(t) = Aox(t) + Y gNetf (£)x(t) + Bu?(t),

k=1

men (9) :

y(t) = Cx(t),
(8.5)
with

;
()= [sam 5 To Te 0Tw (1+6)S(t)] .

1
Ao = Ao(7, p) + hAno (7, p) + mAﬁ(w, p) + AL(Y, p),
Ny = Al_ie(’y,p),

No = Ag(y, p) + hAws (7. p).
N3 =---= Ne(v.p) =0,
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. 1
B=|: : 1+u8ﬁ(%p)+u8u(%p)+Bo(w,p)

hBro(v, p)  hBre(v,p) Bs(v.p)|.

Now the results for the large model with n = 71, 978 degrees of free-
dom from Section 4.3 are discussed. As noted before, the Ny are large
and need to be scaled before a reduction of the scaled system (8.5) can be
performed.

Using BIRKA as given in Algorithm 3 and the Kronecker product approxi-
mation (cf. Section 6.1), we reduce the model as given by equation (8.5)
at five different sampling points 6 € {0, 0.5, 1, 1.5, 2} to a reduced order of
r = 700. After the reduction, stable models are obtained by using a one
sided projection V in the last model (cf. BIRKA-0S in Section 7.2.1.2).
The interpolation between the reduced models at the sampling points is
conducted using methods (P2), (A1) and (Af) from Section 8.2.

We examine the temperature distribution at four different points in the
model: At the bottom of the housing, on the coil, in the upper bearing
and at the bottom of the rotor. Results for the interpolated models at two
different parameter points Bnew € {0.45, 1.65} for two {0, 2}, three {0, 1, 2}
and five {0, 0.5, 1, 1.5, 2} sampling points can be found in the Figures 8.1
and 8.2, for the first and the fourth output, respectively.

The quality of the approximation improves with increasing the number
of sampling points. When using five sampling points, the interpolated re-
duced models for Onew € {0.45, 1.65} yield good results for the first three
outputs. It seems however difficult to approximate the fourth output, which
— even with five sampling points — only leads to good models for the ap-
proach via a global projection matrix (Af), as it can be seen in Figure 8.2.
This might be related to the fact that this output lies on the bottom of
the rotor and is not directly attached to the stator (as main heat source).
Hence the heat can only be transferred via housing and flange.
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Figure 8.1. First output (bottom of the housing), inter-

polation of reduced order models (r=700) in a different
number of sampling points, with results in different inter-
polation points.
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polation of reduced order models in a different number
of sampling points, with results in different interpolation
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Table 8.4. Costs for the reduction and interpolation of
the model with one affine parameter.

| Method | Costs
Offline — Reduction in one parameter point 1 week per sam-
pling point

Online — Interpolation with (A1) or (A2) 20-25min
Online — Interpolation with (P1) or (P2) 10-15min
Offline — Calculation of the global projection | 20min

matrix
Online — Assembling of the model in the new | <1min
parameter point

As we have considered a model in one affine parameter, it was possible

to use the method via a global projection matrix (Af) and no (additional)
interpolation between the reduced order models. This method always leads
to good results, and hence it can be recommended whenever the parameter
dependency is affine and the calculation of the SVD of all matrices V/(6;)
does not exceed the computational capacity. Method (A1) outperforms
(P2) in approximation of the first output (five sampling points), whereas
(P2) performs better for the outputs two to four. Hence, one cannot state
that one interpolation method is better than the other.
The reduction of the large model for one sampling point required up to
one week on 12 CPUs with 3GB RAM each. So sampling in more than one
parameter will easily exceed the available resources or lead to extremely long
simulation times 2. Hence, the interpolation methods will now be tested on
the smaller model with n = 2,969 degrees of freedom from Section 4.3.
In addition, we will change the reformulation method, and use the second
reformulation (cf. Section 8.1.2, (R2)), as there will be no need to scale
the models prior to the reduction, as we have noted that a scaling in the Ny
increases the reduced order (cf. Remark 6.3.2).

Costs for the reduction and interpolation can be found in Table 8.4.
Except for the reduction that has been performed on 12CPUs with 3GB
RAM each, the calculations have been performed on visualization nodes

2A discussion explaining the long simulation times can be found in Section 7.2.3.
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that are used simultaneously by different users. Depending on the memory
demands and the loads of the other users, the calculation times can differ.

8.4. Reduction and interpolation using the second reformulation

For the presentation of the results obtained by using the second refor-
mulation (R2) (cf. Section 8.1.2), the model with n = 2,969 will be used.
It has been presented in Section 4.3 and is shown in Figures 4.7 and 4.8. For
three different points the temperature profile is monitored: On the bottom
of the housing (output 1), on the stator (output 2) and on the upper part
of the rotor (output 3).

To obtain stable reduced order models the one-sided approach only
V (cf. Chapter 7.2) is chosen. This leads to larger reduced orders as an
original BIRKA — however stability is preserved automaticly, which is crucial
for the interpolation steps. For every sampling point p; = (6;, i, ;. pj) the
original model was reduced to an order of r = 100. The parameters (6, ;)
are affine, and the parameters (vy;, pj) are non-affine, hence our explained
two-step approach applies. The sampling points are given as:

2sp: 6, u; € {0,2} and «;, p; € {1,3}; 2* sampling points

3sp: 6,1 € {0,1,2} and ;, p; € {1,2,3}; 3* sampling points

5sp: 6, € {1,0.5,1,1.5,2} and vy, p; € {1,1.4122,2,2.5878, 3};

5% sampling points

where {1.0489, 1.4122,2,2.5878,2.9511} are the Chebychev points within
[1,3]. We use 1 and 3 instead of 1.0489 and 2.9511 as each of the param-
eters is in the closed interval [1, 3].
For the interpolation of the models, we will use four different methods.
First, an interpolation in all four parameters (6, i, y;, p;) will be performed
directly (one-step approach) by using the two interpolation methods (A1)
and (P2). In addition, a two-step approach will be applied by using the
methods (Af-P2) and (Af-Al) - see Section 8.2.
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Figure 8.3. Temperature curves from reduced models ob-
tained by interpolation with different methods and num-
bers of sample points in point 6 = 1.67,u = 1.78,v =
2.36, p = 1.22.

In Figure 8.3 the results for two, three and five sampling points in the
first output for the interpolation point

Prewo = (0= 1.67, 4= 178,y = 2.36, p = 1.22),

and reduced order r = 100 are shown. For two sampling points (dotted
lines) the two-step methods (i.e. (Af-P2) and (Af-Al)) lead to better re-
sults than the one-step methods (i.e. (P2) and (A1)). For three sampling
points (dashed lines), the one-step methods get better in general, and for
five sampling points (dashdotted lines), the approximation using the one-
step methods is sufficiently accurate — especially for the approach (A1l).

Considering three other interpolation points

Prew, = (0 =1.67, 4= 1.78,y = 2.976, p = 2.73),
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Prew, = (0 =156, u = 1.2,y = 1.47, p = 1.634),
and Prews, = (6 = 0.34, = 0.13,y = 1.134, p = 1.22),

the results for the interpolated models can be found in Figures 8.4 to 8.6.
One observes that one obtains good results for five sampling points in all
four different interpolation points prew;. There are however differences in the
quality of the approximation. The point pnew, is for example not perfectly
approximated by the approaches (Af-P2) and (Af-Al). In addition, one can
observe oscillations in the approximations by (Af-P2) and (Af-Al). They
occur whenever there is a significant change in the dynamics of the model.

In general: For few sampling points, the two-step methods (Af-Al)
and (Af-P2) (i.e. using a global projection matrix for the affine parameter
dependency and then interpolating the non-affine parameters) lead to bet-
ter results than a direct interpolation. However, as the number of sampling
points increases, the approaches with direct interpolation (i.e. (A1), (P2))
perform as good as the ones with a global projection matrix for the affine
parameters, or even better. Hence, if the reduction in one sampling point is
time consuming (as it is using BIRKA — cf. Section 7.2.3), it is desirable
to sample as few points as possible. If the calculation of a global projection
matrix in the affine parameters is not too time consuming, using few sam-
pling points and one of the two-step methods ((Af-Al) and (Af-P2)) yields
satisfactory results.
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Table 8.5. Costs for the reduction and interpolation of
the model with two affine and two non-affine parameters

offline | reduction in one parameter point: &~ 30min.

gii:J;ﬁInOQn " for 2 sp: 24 . 30min= 8h,
. 4 . . ~
points (sp) for 3 sp: 3* . 30mina 1.7days,

for 5 sp: 5% - 30min~ 13days.

online | Interpolation with (A1) < 10min,

(A2) < 15min,

(P1) < 10min,

(P2) < 5min.

offline | one global projection matrix for fixed non-
affine parameters (6, s, 7v;, p;): ~ 1min,
for 2 sp: 22 - 1min= 4min,

for 3 sp: 32 - 1min~ 6min,

two-step method for 5 sp: 52 - 1min~ 25min.

online | interpolation of non-affine parameters with:
(A1) <5s,

(A2) <10s,

(P1) <20s,

(P2) <5s.

one-step method

In Table 8.5 approximate costs for the reduction and interpolation are
summarized. Again the calculations have been performed on visualization
nodes used simultaneously by different users. The calculation times are
therefore only approximations depending on load and available memory on
the nodes. It is not surprising, that the interpolation using all parameter
points is slower that the one, where only the non-affine parameters need
to be interpolated. In general, (Al) is faster than (A2) and (P2) is faster
than (P1). This is due to the following behavior: The reduction in (P2) is
performed using a weighted SVD. We use the weights that will be used for
the linear interpolation of the models afterwards. As only the nearest models
with respect to the new parameter point are used in the interpolation, only
the projection matrices V/(p;) from these models are used for the calculation
of the reference subspace Ry. In contrast, all matrices V/(p;) are used
for the SVD in (P1). This explains longer calculation times. During the
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execution of (A1) and (A2), the interpolation is done on tangential spaces
of matrix manifolds. The matrices need to be mapped to these spaces by
using different logarithms (see Table 5.1). Whereas the manifold of n x m
matrices only involves a subtraction, the manifold of nonsingular matrices
requires an inversion and a matrix logarithm. This leads to longer calculation
times.

8.4.0.1. Interpolation methods (A2) and (P1). So far, only results for
the interpolation methods (A1) and (P2) have been presented. This is due
to the fact that the obtained results for the approaches (A2) and (P1)
are in most cases not as good as the results for the other approaches. A
comparison of the approaches (P1) and (P2) for the interpolation point

Prew, = (0 = 1.67, 1w =1.78,y = 2.36, p = 1.22),

can be found in Figure 8.7, and results for the approach (A2) for the in-
terpolation point pnew, are shown in Figure 8.8. Whereas the method (P1)
usually gives reasonable results, the method (A2) has significant problems
in the approximation of the third output of the model.

Method (A2) fails to provide a reasonable approximation. This might
be related to the interpolation procedure. First, all matrices in the sampling
points A(p;) (which belong to the manifold M of the non-singular matrices)
need to be transferred to the tangential space regarding the reference model
Ta(r;,)M. then a “classic" interpolation — in our case linear interpolation —
is performed on these elements of Ta(,, M. Itis not clear, that the “classic"
interpolation stays in the tangential space, and hence the interpolated matrix
A(prew) might lead to inaccurate results.
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8.4.1. Discussion of results. In this chapter, results for the reduction
and interpolation of thermal models with geometric variations have been
presented. Linear parametric models have been reformulated as bilinear
models in two different ways (cf. Section 8.1.1 and 8.1.2) and then reduced
using BIRKA with one-sided projections (cf. Sections 6.2.2 and 7.2.1.2).
First, results for the first reformulation (R1) (cf. Section 8.1.1), for a
model with n = 71,978 and one geometrical parameter have been shown
(cf. Figures 8.1 and 8.2). An additional preprocessing step was necessary
to avoid problems resulting from the fact, that the norms of Ny and A
are of the same magnitude. A scaling was introduced and lead to a large
reduced order r = 700. The second reformulation (R2), Section 8.1.2, does
not require this preprocessing. Due to high computational demands (cf.
Section 7.2.3), all results for the second reformulation and four parameters
have been presented for a smaller model with n = 2,969. Interpolation
of this model using different numbers of sampling points and interpolation
methods (cf. Section 8.2) have been performed. In general, all methods give
reasonable results. However, the method (P2) — using a weighted SVD
to obtain the reference subspace — usually outperforms the method (P1)
— the non-weighted SVD. In addition, it was not possible to obtain good
results for the interpolation method on tangential spaces of non-singular
matrices (A2), whereas the interpolation on tangential spaces of R**/ leads
to good results (Al). The two approaches (Al) and (P2) usually give
comparable results, hence it is not possible to favor one method over the
other. Having two affine and two non-affine parameters, it is recommended
to use a two-step method — first calculate a global projection matrix for
the affine parameters and then interpolate the reduced order models in the
non-affine parameters. For few sample points these methods yield usually
better results than the one step methods.
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9.1. Summary and Conclusions

The main objective of this work was to investigate the use of bilinear
J5-optimal methods in parametric Model Order Reduction. As shown by
Benner and Breiten [11], it is possible to reformulate a certain class of linear
parametric systems as bilinear systems (cf. Section 5.3.2). The parame-
ters can then be considered as inputs and the reduction can be performed
without any sampling and interpolation in the parameter space, as most of
the other methods for pMOR do [53, 3, 37, 13]. After obtaining a bilinear
model, one can make use of bilinear Model Order Reduction. In this work,
we focused on two methods for bilinear %-optimal Model Order Reduc-
tion, which are described in Chapter 5. BIRKA (cf. Algorithm 3), originally
obtained by Benner and Breiten [12], is stated and new algorithms for the
bilinear s%-optimal reduction have been developed. These algorithms use
optimization on Grassmann manifolds and — as a main advantage — can
preserve stability. We have proven the stability preservation for symmetric,
bilinear systems and analyzed the convergence behavior of the algorithms.

171
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In addition to these theoretical results, several models for the ther-
mal analysis of electrical motors have been built using Comsol® 3.5a (cf.
Chapter 3). Linear parametric systems have been exported from Comsol®
by an analysis of the underlying equations (cf. Chapter 4). For industri-
ally relevant problems, both physical and geometric parameters need to be
considered and the parameter dependency after the reduction must be pre-
served. As the resulting models are usually large (in our case n = 41, 199,
n = 71,978, and n = 2,969), the bilinear %-optimal reduction methods
have to be capable of dealing with these large systems.

The newly developed methods for the reduction using optimization on
Grassmann manifolds are, however, not yet ready (cf. Section 7.1) for the
use with these large systems, but results for the reduction of a heat equa-
tion on a square have been stated. BIKRA (cf. Section 5.5,[12]) is capable
of reducing the large models, but several problems have been identified. In
some cases, the stiffness matrix A is singular, the magnitude of the N is
too large and a scaling needs to be introduced. Also unstable models have
been obtained after the reduction. All these issues haven been examined
and solutions have been proposed (cf. Chapter 6).

Numerical results for the reduction of two different types of models
have been obtained. On one hand, a part of an electrical motor model,
incorporating physical parameters, has been considered. These models are
parametrized with physical parameters and have a structure that easily al-
lows to reformulate them as a bilinear model. Reduction with BIRKA yields
good results, not only in a certain parameter interval, but globally in the
whole parameter range (cf. Chapter 7.2, Figure 7.8). The second type of
models are electrical motor models, that in addition to the physical parame-
ters use parameters that describe changes in geometry. This leads to models
with a structure that can not easily be rewritten as a bilinear system. Hence
one can reformulate the model as a bilinear model for certain parameters
and interpolate the other parameters (cf. Chapter 8). For the interpolation,
several well known methods from pMOR have been used (cf. [53, 3, 37]),
which generally lead to good results. There are, however, differences in the
quality of the approximation. For models with an affine parameter depen-
dence in certain parameters, using a global projection matrix for the affine
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parameter dependence leads to good results and can outperform a direct
interpolation, especially for few sampling points.

9.2. Future research

Based on the work that has been presented in this thesis, several op-
portunities for future research have been identified:

e The new methods for the bilinear %-optimal MOR using op-
timization methods on the Grassmann manifold as developed in
Sections 5.5.4 and 7.1 still require some investigation:

— The Algorithms bilGFA, bilFGFA and bilSQA have not yet
been tested on large problems, due to the fact that one needs
to solve large bilinear Sylvester equations. In the future, low-
rank approximations to the solutions should be applied such
as the ADI iteration (cf. [57, 14]), to allow treatment of
large systems.

— Convergence and the stability preservation for the Algorithms
bilGFA,bilFGFA and bilSQA have not yet been established for
bilinear systems with non-symmetric A and N.

— For the optimization, one needs to correctly set several pa-
rameters to ensure a descent in the objective function. It
would be an advantage to identify robust criteria based on
which these parameters can be chosen.

e The reduction of the large parametric thermal models has been
done using BIRKA [12]. The reduction times for our large models
are within the range of several hours to a few days for 12 CPUs
with 3GB RAM (see Section for a discussion 7.2.3). However,
the structure of BIRKA would allow a parallelization, which could
significantly reduce the reduction time.

e One interpolation approach by Amsallem [3] shows weak perfor-
mance for some models (cf. Section 8.4.0.1). This could be
caused by the fact that our used interpolation method does not
preserve the membership in the tangential space. This behavior
requires a development of interpolation procedures that do stay
on the corresponding manifold.

e The interpolation methods used for the reduction of the paramet-
ric models require the reduction at several sampling points. The
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number of sampling points has a strong impact on the compu-
tational demands, so it is worthwhile to explore methods to sys-
tematically and optimally sample the parameter space, e.g. using

sparse grids [10] or latin hypercube sampling [4, 20].



APPENDIX A

Derivation of the bilinear 77-optimal
conditions

A.1. Wilson conditions

We start by differentiating the norm

err A~ err CT
J =155 =tr([C =C] P [ A ])

el
=tr(P*" [_C(;} [c ¢ (5.42)
=tr(P°"C),
as given by Zhang and Lam [72] with respect to a parameter +y:
Z—g = tr(agjrc) + tr(Pe”%).

First, we insert the following Lyapunov equation in the derived norm:

(Aerr)TYerrEerr + (Eerr)TYerrAerr + Z(Nfrr)TYerrN:rr + (Cerr)TCerr =0,

k=1 =
(A.1)
and obtain:
aj . aPerr err\ Ty err —err
ary—tr<ary (—(A)TY"E

err €err perr — err err err err aC
—(ET)TY AT =y ()Y /\/k) (P55

(A.2)

k=1
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Second, we will derive the other Lyapunov equation of the error system:

Ael'l' PSI'I'(ESVV) + Eerr PSI'I'(ASI'I') + Z Nerr PSI'I'(NSI'I') + BSI'I'(BSI'I')T — O,

k=1 =
(A.3)
and multiply it from the left by Y (= (E*")'Q®"E"):
aAerr err err err err aperr err\ T\ err
2tr P (E Y 2tr(A E Y
tr( S5 PT(ET)TY ) 4 2t (AT S (ET)TY)
err err a(Ee”)T err aNErr err err err
+2tr(AT P 5 )+2tr(z PET(NETYT Y (A4)

k=1

per
+tl’(z l\lerra Nerr) Yerr) +tl’( Yerr) -0

Adding (A.4) to the derived norm (A.2) leads to the following equation:

aalz 2t (6A PSVV(ESVV) Yerr) + 2t|’( 6E PSI'I'(ASI'I') Yerr)

ac (A.5)

8’y)'

N err err err 66 err err
+Zztr( a»; PETNEYTY ") + tr(2=Y°") + tr(P

k=1 a’Y
Differentiating by the reduced matrices leads to:

8T BAST
_p
25, ~ (55

As an optimal reduced model would fulfill 0‘7, = 0 for all /, j one can conclude

err err err aA\ fa
P (E)TY ):2tr(?(P17;ETY12+P22ETY22)).

P12E Yio + PrETYar = 0. (A.6)
One obtains for the derivative with respect to the ¢;;:
aj aEerr err err\ T\ err aE
=2 P (A Y 2 PLATY, P ATY
B¢, tr( 26, (A") )= tr(6 A:j( 12 12+ P2A' Ya2)),
and again, this leads to:
PLATYis + Py AT Yoy = 0. (A7)
For the matrices Nk one derives:
6\7 aNirr err err err
— =2tr(=———P""(N) ' Y") = 2tr PLN Yo+ PNl Ya0)),
a(nk)lj (a(nk) ( ) ) (8( )J( 121V 12 22 Vg 22))
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forallk=1,..., m. One obtaines:
PLNIYi2 + PolN{ Yoo =0, k=1,...,m. (A.8)
The equations for B and C involve more complicated calculations:

g . %Ye” e 0 Beje! Yii Yo
by - ab; o e,ejTBT e,-ejTéT—&-éeje,T Y Yo

= tr(Bee/ Yio) +tr(eief B Yio + eief B Yoo + Bejel Ya2)
tr(B" Yize; eJT) —+ tr(éTYlge,-ejT) —+ tr(e,-ejTBTYlg) + tr(e,-ejT B Ya)
= 2tr(eie) (B"Yio + B Ya)),

This yields:
B™Yi + B Yn =0. (A.9)

Whereas

— ¢ —Plgeje,TC —PuCTe,ejT + Plgeje,TC + Plnge,ejT
o —ngeje,-C —PSCTe,ejT =+ ngeje,T@ =+ P22€Te/ ef

= tl’(—P12eje,'TC) + tr(—PlzCTe,ejT) + tr(ngeje,TC) + tr(ngéTe,-ejT)
= 2tr((7P17;CT + PzzéT)E/ejT) =0,

yields

— PLCT + Pl =o0. (A.10)

A.2. Derivation of the optimality conditions by Benner and Breiten

Following Benner and Breiten [12], the representation of the J%-norm
will be derived with respect to the eigenvalues of the reduced system A; and
Ny, B, C:
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J =vec(hp) ([ —Cle[c -C])

el el
[t el o)

B B
X [BT} ® [BT} vec(lom).
We will need the following lemma, originally given by Benner and Breiten
[12]:
Lemma A.2.1. Let C(x) € R”*", A(y), E, N« € R™" and B € R™" with
x,y €R. Let

L(y) = (A(y)®E E® A(y) ZM@M) ,

k=1

and assume that C and A are differentiable with respect to x and y. Then

2 vec(le) (Cx) @ CONLG) (B ® Blvec(in)

= 2vec(/,)" (%C(X) ® C(X)) L(y) (B ® B)vec(Im),
and

3_(3, [(VGC(IP)T(C ® C)L(y) M (B® B) vec(/m)}
= 2 [(VGC(/D)T(C ®C)L(y) ™" (aA(y)

Oy

® E) L(y) " (B® B) vec(Im)

Proof. The proof given by Benner and Breiten shows this result for
E =1,. The case E # I, is a straight forward generalization of the proof,
which will therefore be omitted here. O

In addition, we will need the following matrix:

ol o]}



A.2. DERIVATION OF THE OPTIMALITY CONDITIONS BY BENNER AND BREITEN 179

where 0 = zeros(r, n). It holds for M:

(et )

as well as MM = I,2,. We will now start with the differentiation of the
norm with respect to C by making use of Lemma A.2.1:

% =2(vec(l2p))" ([O fe,ﬂeﬂ ® [C 75])

BT G B R o B
1 arlel o)

X {57} ® {ST} vec(lam)

= 2(vec(lgp))T([O —e,eﬂ@[C —(f])

seefootnote

oG S A Y A

/\7kT ® Nk

/\7kT ® /\7kT

X {57} ® {5—} vec(lom)

:2(veC(/2p))T (76,‘67— ® [C —é})

(o (oot e

x B"® {57} vec(lom)
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=2(vec(l2p))" (—e,ejT ® [C fq)

(" ed [ nel]

m ~ T -1
Z Ne @ Ny mT
_ S
N ® Ny

k=1
~ B
x BT ® [BT} vec(lam)
=2(vec(lp)) [~eef ®C eie] ®C]
(_[reA _[reE
I ®A AR I,
T -1
Z Ni" ® Ni
_ o
— Nk & N

B"eB
x| gT © BT vec(lam)

=— 2vec(/p)T(e,-ejT ®C)

k=1

m -1
: </r DA-NDE-) N ® /vk) (B” @ B)vec(Im)

—+ 2vec(/p)T(e,-ejT 2 6)

m -1
. <lr®/ﬁ/\®lr2/\7k7—®/\7k> (§T®é)vec(lm).

k=1

The differentiation with respect to the eigenvalues i is done as follows.
First, we use Lemma A.2.1:

lusing A = STTAS, ] = SRS, BT =s1B8,& = ¢s.
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—2vec(l,) (<€ [c —€])
x <MMT(/r®{ ] ’\®{E /r]
ARSI NJWMT>1
x (e,e,-T® [E ,D
“(

k=1
T A E
MM (=1, ® { A] -A® { /r]

- T e [Nk Nk] )/\/IMT>

k=1

x BT @ {g] vec(/m)

m -1
= —2vec(/,) (€ ® C) (—/r QA-NQE — Z Nie" ® /vk>

k=1

m -1
x (eie] ® E) (—/r DA-NDE-Y N ® /vk) (BT ® B)vec(Im)

k=1

m -1
+2vec(1,) (€ ® €) (—/, QA-ANRDI, — Z N ® /\Alk>

k=1

m -1
(eie] @ 1) </r QA-AR I, — Z N ® K/k> (B" @ B)vec(Im).

k=1

The conditions for the differentiation with respect to Ny and B can be

derived in exactly the same manner, hence they will be omitted here. Setting
the derived equations to zero leads to the optimality conditions stated in
Section 5.5.2.
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A.3. Proof of Theorem 5.5.4

We demonstrate the following result:
Theorem A.3.1 ([12]). Assume Algorithm 2 converges. Then E°Pt, APt
NEPE, Bt and C° fullfil the Wilson optimality conditions (5.43)-(5.47).

Proof. We denote by E, A, Nk, B, C the matrices corresponding to
the step before the last step. A state space transformation can be used to
transform this model to the optimal model, due to the convergence of the
algorithm:

E=T'E®T, A=T'A™T, Ne=T 'NT,B=T"'B",
C=C"T,
By the orthogonalization step in the Algorithm 2, we know that
Vopt — Xopt,_— Wopt — YoptG

with F, G € R™" nonsingular. The following two Sylvester equations hold:

AXPET + EXP AT + Z NkXoptN: + BB = 0, (A.11)
k=1

ATy Pt E + ETy°rtA + Z NZ'yoptNk —_c'Cc=o. (A.12)
k=1

The first equation (A.11) is multiplied with (W) from the left, and the
expressions for E, A, Ny, B, C are inserted:

(WY AXPEFE 4 (W) EXPFFIAT
+ W) ST MX P FET + (W) BB =,

k=1
Vopt

,—/\ R
- (Wopt)T AXoptF F*lTT(Eopt)TTfT
Vopt
~ = N
+ (Wopt)T EXoptF F*lTT(Aopt)TTfT
+ (W)Y N EFTTT(RTT (W) BB =0,

k=1 vopt
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By multiplying with T7 from the right this leads to the following Lyapunov
equation:

AoptI_—flTT(Eopt)T+EoptI_—flTT(Aopt)T + Z N!c()pthlTT(N!c;pt)T
k=1
+ éopt(éopt)T =0.
Under the assumption that the reduced order system is stable this equation
has an unique solution and hence P, = F*T7T. We multiply the second

Sylvester equation (A.12) with (V°°t)T from the left and insert the given
expressions, which leads to:

(AOpt)TG71T71 Eopt+(éopt)TG~flT71Aopt + Z(N}C{)pt)TGflel N;)pt
k=1
+ (CoPHT &Pt = 0.
Multiplying this equation with —1 gives the solution Yo = —G T~ and
as Ya is a symmetric matrix this leads to: Yo = —T TG~ ". Inserting the

expressions for the overlined matrices into the Sylvester equations (A.11)
and (A.12) yields to the following equations:

AXoptTT(Eopt)T + EXoptTT(Aopt)T + Z NkXoptTT(N!c;pt)T
k=1

+B(B™) =0,

ATYOptT71 Eopt + ETYoptTflA/‘opt + Z NZ—YOptT71 NEpt
k=1
+CTE" =o.

hence one obtains P, = X°P'T7 and Yi» = Y°P'T~1. The Wilson conditions
can now be proven:

YiREPi + Yor B Poy
_ TfT(Yopt)T EXoptTT _ TfTGfT(Wopt)T Evopt I_—flTT
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— T Ty EXPTT — T 76767 (v EXPFFITT — 0.
with similar calculations for conditions (5.44) and (5.45). For the other
conditions one obtains:

YLB + Yo B = TfT(Yopt)TB . TfTGfT(Wopt)TB -0

C Py — CPio = CPF'TT —CXP'TT = 0.
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