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Zusammenfassung

Wird in der Industrie eine neue Komponente entwikelt, so spielen Com-

putersimulationenmittlerweile eine wihtige Rolle. Immer shnellere und im-

mer genauere Simulationsmodelle werden gewünsht, damit Zeit und Kosten

gespart werden können. Mit Hilfe von Modellordnungsreduktion (MOR)

kann man aus groÿen, mit der Finite Elemente Methode erstellten Mod-

ellen kleine und genaue Modelle erhalten, die dann in kurzer Zeit simuliert

werden können. Immer häu�ger wird auh gefordert, die Variation von Pa-

rametern im groÿen Finite Elemente Modell auf die kleinen reduzierten Mod-

elle zu übertragen. Diese Parameter beshreiben beispielsweise vershiedene

Randbedingungen, die im Modell abgebildet werden, genauso wie Änderun-

gen in der Geometrie (z.B. Variation von Längen). Mit Hilfe von Methoden

aus der parametrishen Modellordnungsreduktion (pMOR) können diese Pa-

rameterabhängigkeiten auh im reduzierten Modell erhalten und zur Simu-

lation von untershiedlihen Szenarien genutzt werden.

Anstatt die heute üblihen Verfahren zur pMOR zu benutzen, werden in

dieser Arbeit die parametrishen Modelle, die eine spezielle Parameterab-

hängigkeit zeigen, in bilineare Modelle umgeshrieben. Nun können auh

Verfahren zur bilinearen Modellordnungsreduktion angewandt werden, ins-

besondere Verfahren zur H2-optimalen Reduktion. Ziel dieser H2-optimalen

Verfahren ist es, den Fehler zwishen dem Ausgangsmodell und dem re-

duzierten Modell in der H2-Norm zu minimieren. Wir verwenden zum einen

den sogenannten Bilinear Interpolatory Rational Krylov Algorithm (BIRKA)

von Benner und Breiten [12℄. Auÿerdem entwikeln wir neue bilineare H2-

optimale Algorithmen, die auf Optimierungsverfahren auf Grassmann-Man-

nigfaltigkeiten beruhen.

Die theoretishen Grundlagen der thermishen Modellierung werden erklärt

und auf die erstelltenModelle von Elektromotoren angewandt. Parametrishe
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x ZUSAMMENFASSUNG

Modelle können aus den Finite Elemente Modellen durh eine Analyse der

Gleihungen abgeleitet werden. Die Parameter sind einerseits Gröÿen, die

das thermishe Verhalten während des Betriebs erklären und andererseits

Gröÿen, die Variationen in der Geometrie des Motors beshreiben. Diese

Parameter sollen in den reduzierten Modellen erhalten bleiben.

Während die neu entwikelten Algorithmen noh niht reif für die Reduktion

von groÿen Modellen sind, wird in der Arbeit gezeigt, dass die Reduktion mit

BIRKA zu guten reduzierten Modellen führt. Allerdings müssen dazu ver-

shiedene Nahbesserungen an der Reduktionsmethodik vorgenommen wer-

den, beispielsweise müssen Methoden zur Stabilitätserhaltung angewandt

werden. In Modellen mit Variationen in der Geometrie, werden zusätzlih

zum ursprünglihenBIRKA nah der Reduktion noh Interpolationsverfahren

verwendet, um reduzierte Modelle mit der Parameterabhängigkeit des Orig-

inalmodells zu erhalten.



Summary

The design proess of a new omponent in industry is nowadays al-

most always aompanied by omputer simulations. In order to save time

and money, fast and aurate models for the simulation of the omponent

are required. Using Model Order Redution (MOR) large models obtained

by Finite Element simulations an be redued to small models possessing

the same behavior as the original. Often it is required to obtain redued

models, where the dependene in one or several parameters (for example

the length or width of a part) of the original model is preserved. Using so

alled parametri Model Order Redution (pMOR) the parameters in the

redued model an be varied and the models an be used for fast simulation

of several senarios.

Instead of using the ommonly employed methods from pMOR, methods

from bilinear Model Order Redution will be used within this work, as para-

metri models with a ertain form of parameter dependene an be rewritten

as bilinear models. We fous on methods from bilinear H2-optimal Model

Order Redution, as their objetive is to minimize the error between the orig-

inal and the redued model measured in the H2-norm. First, the Bilinear

Interpolatory Rational Krylov Algorithm (BIRKA) developed by Benner and

Breiten [12℄ is used. Seond, we derive new bilinear H2-optimal algorithms

based on optimization on Grassmann manifolds.

The foundations of thermal modeling and their appliation to thermal sim-

ulations of eletrial motors using Finite Element software will be explained.

Parametri models suitable for pMOR an be derived from a Finite Element

software analyzing the underlying equations. Two lasses of parameters will

be onsidered: Constants in�uening the thermal behavior of the model and

hanges in the geometry of the model.

Using the newly developed optimization algorithms for H2-optimal MOR,
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xii SUMMARY

we �nd that they are not yet ready for the redution of large parametri

models as enountered in our thermal simulations. In ontrast, the BIRKA

performs well for the redution of these models. However, several modi�a-

tions on the redution methods need to be performed to assure, for example,

the preservation of stability during the redution. For the redution of mod-

els with parameters resulting from hanges in the geometry, interpolation

proedures need to be applied after the redution to transfer the parameter

dependene of the original to the redued model.
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CHAPTER 1

Introdution

1.1. Motivation

In industry, simulations are an important tool in the design proess of

a new omponent. In order to save time and money, fast and aurate

models for simulation are needed. Model Order Redution (MOR) is a pow-

erful method to obtain small and aurate models from large Finite Element

models. More and more often, Finite Element models are used, whih on-

tain several parameters. Suh parameters an be lengths and heights as

well as physial behavior. These parametrized models will often be used to

�nd optimal designs by using optimization w.r.t. the given parameters. As

the Finite Element models are large, optimization runs an easily exeed the

omputation apaities. It is hene desirable to redue models while preserv-

ing the parameter dependeny. This is the objetive of parametri Model

Order Redution (pMOR). Reently, Benner and Breiten [11℄ presented a

method to rewrite linear parametri models into bilinear models. This allows

bilinear Model Order Redution methods to be used for parametri Model

Order Redution. The resulting redued order model should be a good ap-

proximation of the original model. Within the framework of H2-optimal

Model Order Redution, the error an be measured and minimized in the

H2-norm. In this work, we will examine bilinear H2-optimal methods for

the redution of linear parametri systems, whih have been applied to and

further developed on thermal models of eletrial motors.

1



2 1. INTRODUCTION

1.2. Dissertation overview

In Chapter 2, we review results from Linear Algebra, Di�erential Geom-

etry and Systems Theory. The onepts will be stated for linear and bilinear

systems.

Chapter 3 provides the reader with the foundations of heat transfer mod-

eling. The underlying physial e�ets (heat ondutane, onvetive heat

transfer, radiation) will be reviewed and the mode of operation and the

thermal modeling of an eletrial motor will be desribed. Three di�erent

eletrial motor models have been built and will be presented. Chapter 4

gives an overview over the equations that are solved during heat transfer

modeling, and the proedure to obtain parametri models by areful analysis

of these equations.

In Chapter 5, methods for Model Order Redution (MOR) will be disussed.

First, methods for linear MOR will be reviewed, followed by a disussion

of methods for the redution of parameter dependent models (parametri

MOR). It is possible to rewrite parametri models with a ertain parameter

dependeny as bilinear models, and hene methods from bilinear MOR will

be onsidered. Of partiular interest are methods from the lass of H2-

optimal bilinear MOR, as their objetive is to minimize the error between

original and redued model. First, we review existing methods and state the

Bilinear Interpolatory Rational Krylov Algorithm (BIRKA) [12℄. Seond,

we develop algorithms for the redution of bilinear systems via optimization

on Grassmann manifolds. These methods are of interest, as they preserve

stability during the redution proess.

The objetive of Chapter 6 is the disussion of several issues that were

enountered while applying BIRKA to thermal models. These issues are

examined, and strategies for their mitigation will be developed. Espeially

preservation of stability during the alulation is ruial. Results for BIRKA

and the new H2-optimal methods will be given in Chapters 7 and 8. Whereas

the new methods are not yet appliable to large systems, BIRKA performs

well on bilinear systems that have been obtained from linear parametri sys-

tems. First, only physial parameters are onsidered. Seond, we present

results for systems with a parameter dependeny resulting from hanges in

geometry, whih an only be rewritten partially as bilinear systems. For

suh systems, parametri redued order models an then be obtained by an

interpolation proedure.



1.3. THESIS CONTRIBUTIONS 3

1.3. Thesis ontributions

The main ontributions of this thesis are:

• One objetive of this thesis is MOR of thermal eletrial motor

models. Hene, it is shown how matries suitable for pMOR an

be obtained from Comsol

R©
, a Finite Element Software. To do so,

the equations whih are solved by the Software are used to theo-

retially reonstrut the dependene in parameters of the model

(f. Chapter 4).

• In ontrast to other works about pMOR, in this thesis the redu-

tion of the parametri models is done using BIRKA [12℄. Several

issues where enountered when the algorithm was applied: One

lass of parameters leads to a non-singular sti�ness matrix, in sev-

eral ases there is the need to sale other system matries to ful�ll

a Kroneker produt approximation and in addition, BIRKA does

not preserve stability. All these issues have been resolved, and we

show results for the redution of a motor model from n = 41, 199

degrees of freedom to a redued order of r = 300. This has been

done for 13 physial parameters.

• In addition, models with geometrial variations are onsidered.

After the redution with BIRKA, several interpolation strategies

between the redued order models obtained in several parameter

points have been ompared.

• Finally, we develop new H2-optimal bilinear methods for MOR

using optimization on Grassmann manifolds. These methods an

preserve stability for symmetri systems matries, and their appli-

ability to small models will be proved.





CHAPTER 2

Mathematial prerequisites

2.1. Linear Algebra 5

2.2. Di�erential geometry 8

2.3. Systems theory 10

In this �rst theoretial hapter, some results from di�erent areas of

mathematis are reviewed. First, general results from Linear Algebra will be

presented, followed by a loser look on some de�nitions from Di�erential

Geometry. The last setion provides the reader with an introdution to

linear and bilinear systems theory.

2.1. Linear Algebra

Within this setion we review the deomposition of matries, the prop-

erties of the Kroneker produt and provide the reader with basi knowledge

on matrix pertubation theory.

2.1.1. Matries and their deompositions. Most of the matries in

this work are symmetri, whih is why we state the de�nition here.

De�nition 2.1.1. A matrix A ∈ Rn×n is alled symmetri if A = AT . A

symmetri matrix is positive (semi)de�nite, denoted by A > (≥)0, if xTAx >

(≥)0 for all vetors 0 6= x ∈ Rn. It is negative (semi)de�nite, denoted by

A < (≤)0, if xTAx < (≤)0 for all vetors 0 6= x ∈ Rn.

5



6 2. MATHEMATICAL PREREQUISITES

We will often refer to the following two matrix deompositions, the

eigenvalue and the singular value deomposition.

De�nition 2.1.2 (Generalized eigenvalue deomposition [38, Setion 7.7℄).

If A,B ∈ Cn×n , then the set of all matries of the form A− λB with λ ∈ C

is a penil. The generalized eigenvalues of A − λB are elements of the set

λ(A,B) de�ned as

λ(A,B) = {z ∈ C : det(A − zB) = 0}.

If λ ∈ λ(A,B) and 0 6= x ∈ Cn satis�es

Ax = λBx, (2.1)

then x is an eigenvetor of A − λB. The problem of �nding nontrivial

solutions to (2.1) is the generalized eigenvalue problem. If B is nonsingular,

λ(A,B) = λ(B−1A) holds.

Theorem 2.1.3 (The singular value deomposition (SVD) [38, Theorem

2.4.1℄). If A ∈ Rm×n, then there exist orthogonal matries U = [u1, . . . , um] ∈
R
m×m

and V = [v1, . . . , vn] ∈ R
n×n

suh that

UTAV = diag(σ1, . . . , σp) ∈ R
m×n, (2.2)

with p = min (m, n) where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

The σj will be alled singular values. If it shall be lari�ed that they

result from a singular value deomposition of the matrix A, we denote them

by σj(A). Let r be suh that σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

Then rk(A) = r and A an be deomposed in the following way:

A =

r∑

i=1

σiuiv
T
i .

Using matries, we will write this deomposition as follows:

A = UrΣrV
T
r , (2.3)

with Ur ∈ R
m×r

, Σr ∈ R
r×r

and Vr ∈ R
n×r

and refer to it as the ompat

singular value deomposition.



2.1. LINEAR ALGEBRA 7

2.1.2. Properties of the Kroneker produt. The following matrix

produt is referred to as the Kroneker produt:

De�nition 2.1.4. For two matries A ∈ Cn×m and B ∈ Ck×l , the Kroneker
produt is de�ned as:

A⊗ B =



a11B . . . a1mB
.

.

.

.

.

.

an1B anmB


 .

The Kroneker produt has the following properties (see for example

[38℄, Setion 12.3):

(A⊗ B)T = AT ⊗ BT , with A ∈ Cn×m, B ∈ Ck×l ,

(A⊗ B)−1 = A−1 ⊗ B−1, with A ∈ Cn×m, B ∈ Ck×l ,

(A⊗ B)⊗ C = A⊗ (B ⊗ C), with A ∈ Cn×m, B ∈ Ck×l and C ∈ Cs×q,

(AC ⊗ BD) = (A ⊗B)(C ⊗D),

with A ∈ Cn×m, B ∈ Ck×l , C ∈ Cm×s and D ∈ Cl×q,

but in general A⊗B 6= B⊗A! In addition one obtaines (with A ∈ Cn×m, B ∈

C
k×l

):

rk(A⊗ B) = rk(A) · rk(B),

det(A⊗ B) = det(A)n · det(B)m for A ∈ Rm×m and B ∈ Rn×n,

tr(A⊗ B) = tr(A) · tr(B),

||A ⊗B||2 = ||A||2 · ||B||2.

If C = AXB for C ∈ Rn×m, A ∈ Rn×k , X ∈ Rk×l and B ∈ Rl×m then

one obtains for the Kroneker produt and the ve operator:

ve(C) = (BT ⊗ A) ve(X). (2.4)

2.1.3. Matrix pertubation theory. The onnetion between the eigen-

values of two matries will be needed within this work. The following results

have been established in the ontext of matrix pertubation theory, the re-

lation of the eigenvalues of a pertubed Matrix M + S and the unpertubed

matrix M will be examined.



8 2. MATHEMATICAL PREREQUISITES

Theorem 2.1.5 (Bauer-Fike,[38, Theorem 7.2.2℄). If µ is an eigenvalue of

M + S ∈ Cn×n and X−1MX = diag(λ1, . . . , λn), then

min
i=1,...,n

|λi − µ| ≤ κ2(X)||S||2. (2.5)

Corollary 2.1.6. Let X−1MX = diag(λ1, . . . , λn), and M + S ∈ C
n×n

. For

every eigenvalue λ(M + S) an eigenvalue λi(M) exists suh that |λi(M) −

λ(M + S)| ≤ κ2(X)||S||2.

The next results show the onnetion between the eigenvalues of two

real symmetri matries A and B.

Proposition 2.1.7 (Weyl,[60, Theorem 4.8, Corollary 4.9℄). Let A,B ∈

R
n×n

be two symmetri matries. Let λi(A) and λi(B) for i = 1, . . . , n be

the eigenvalues of A and B with λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥ · · · ≥

λn(B). Then it holds:

λi(A+ B) ∈ [λi(A) + λn(B), λi(A) + λ1(B)] for i = 1, . . . , n. (2.6)

Corollary 2.1.8 ([60, Corollary 4.10℄). Under the assumptions of Proposi-

tion 2.1.7 it holds

|λi(A +B)− λi(A)| ≤ ||B||2 for i = 1, . . . , n. (2.7)

2.2. Di�erential geometry

In Setion 5.5.4, several algorithms based on optimization on manifolds

will be derived. For a more detailed presentation of this topi, we refer to

[1℄ and [30℄. Let Or denote the set of the orthogonal matries in R
r×r .

De�nition 2.2.1 (Stiefel manifold [1, Setion 3.3.2℄). For r ≤ n, the Stiefel

manifold is de�ned as the set of all n × r orthonormal matries:

St(r, n) := {X ∈ Rn×r |XTX = Ir}.

Clearly, St(r, n) ⊂ Rn×r . It an be shown that St(r, n) is a ompat

submanifold of R
n×r

(f. [1, Setion 3.3.2℄). The tangent spae of a Stiefel

manifold at X ∈ St(r, n) is de�ned as follows (f. [1, Example 3.5.2℄):

TXSt(r, n) = {Z ∈ R
n×r |XTZ + ZTX = 0}.

Heading for an algorithm for the gradient �ow, the gradient of a funtion

on the manifold has to be alulated. Therefore, we �rst have to provide

a onept of diretion and length of a tangent vetor. This leads to the
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de�nition of an inner produt on the tangent spae. For a Stiefel manifold,

the inner produt is de�ned as

〈ξ, η〉 = tr(ξTη) with ξ, η ∈ TXSt(r, n). (2.8)

The gradient in X of a funtion F on a Stiefel manifold is de�ned to be the

tangent vetor ∇F suh that

tr(F TX Y ) = tr((∇F )
T (I −

1

2
XXT )Y ), (2.9)

holds for all tangent vetors Y ∈ TXSt(r, n). Here, FX is the matrix of all

partial derivatives of F with respet to X, i.e.:

(FX)i j =
∂F

∂Xi j
. (2.10)

Solving equation (2.9) leads to the following expression for the gradient:

∇F = FX − XF
T
XX. (2.11)

The Grassmann manifold Gr(r, n), r ≤ n, is de�ned as the set of all r -

dimensional subspaes of R
n
. Following [30℄, it an be seen as a quotient

manifold in the following way: Two matries U1 and U2 in St(r, n) are equiv-

alent, if they span the same r -dimensional subspae. This holds if and only

if U1 = U2Q for an orthogonal matrix Q ∈ Rr×r . The equivalene lass [U]
of a point U ∈ St(r, n) an be de�ned as:

[U] = {UQ|Q ∈ Or} .

The map

G : Gr(r, n)→ St(r, n)/Or

is a bijetion. We will therefore onsider the Grassmann manifold as this

quotient manifold of St(r, n). A matrix U ∈ St(r, n) represents a whole

equivalene lass in Gr(r, n). The tangent spae of the Grassmann manifold

an be desribed as follows [30, Setion 2.5℄:

TXGr(r, n) = {Z ∈ R
n×r |XTZ = 0}. (2.12)

On a manifold, the shortest onnetion between two points is alled a ge-

odesi. Let X(0) = X and Ẋ(0) = H. Let H = WΣV T be the ompat

singular value deomposition (f. equation (2.3)) of H with W ∈ Rn×r ,
Σ, V ∈ Rr×r . The geodesi an be desribed as [30, Setion 2.5.1℄:

X(t) =
[
XV W

] [cosΣt
sinΣt

]
V T . (2.13)
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For a Grassmann manifold, the inner produt is de�ned as

〈ξ, η〉 = tr(ξTη), with ξ, η ∈ TXGr(r, n). (2.14)

The gradient in X of a funtion F on the Grassmann manifold is de�ned to

be the tangent vetor ∇F suh that

tr(F TX Y ) = tr((∇F )
T Y ), (2.15)

holds for all tangent vetors Y ∈ TXGr(r, n). Solving equation (2.15) leads

to the following expression for the gradient [30, Setion 2.5.3℄:

∇F = FX − XX
TFX . (2.16)

We will also need the following de�nition:

De�nition 2.2.2 ([1, De�nition 4.2.1℄). Given a funtion F on St(r, n) or

Gr(r, n), a sequene {ηk}, ηk ∈ TxkSt(r, n) or ηk ∈ TxkGr(r, n) is gradient-

related if, for any subsequene {xk}k∈K of {xk} that onverges to a non-

ritial point of F , the orresponding subsequene {ηk}k∈K is bounded and

satis�es

lim
k→∞
sup
k∈K
〈∇F (xk), ηk〉 < 0. (2.17)

2.3. Systems theory

Many physial phenomena, hemial reations, biologial proesses or

models for the foreast of �nanial proesses an be mathematially de-

sribed by the same lass of systems, so alled dynamial systems. External

in�uenes that have a diret impat on the behavior of the system are alled

inputs. The behavior of the systems will be monitored within a ertain time

range and at ertain points, the system's outputs. The onnetion between

the inputs and the outputs will often be measured and referred to as the

system's input-output-relationship. A dynamial system an be desribed by

a di�erential equation. In this work, two kinds of dynamial systems will be

onsidered: linear and bilinear systems.
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2.3.1. Linear Systems. In the following setion some basi knowledge

on linear dynamial systems will be reviewed, suh as stability, observability,

ontrollability, balaned systems, norms of systems and the input-output

relationship.

De�nition 2.3.1. A linear system Σlin of order n is a system of ordinary

di�erential equations of the following form:

Σlin :

{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,
(2.18)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. The input u(t) ∈ Rm an be

time-dependent just as the states x(t) ∈ Rn and the output y(t) ∈ Rp are.

The value of x(0) = x0 is alled initial value. The spae X ontaining all

states x(t) is alled state spae.

2.3.1.1. Stability. Systems with bounded solution trajetories x(t) are

of speial importane. This harateristi of a system is referred to as

stability. For linear systems (.f. system (2.18)) with nonsingularE, stability

is de�ned as follows:

De�nition 2.3.2 (.f. [63℄ Chapter 2.7,[5℄ Chapter 5.8,[61℄ Chapter 3.2.1).

The system

Eẋ(t) = Ax(t), E nonsingular,

is asymptotially stable if

(i) For all x0 ∈ Rn the initial value problem Eẋ(t) = Ax(t), x(0) =

x0, has a solution and for every ε > 0 there exists a δ > 0 suh

that ||x(t)||2 < ε for all t ≥ 0 and for all ||x(0)||2 < δ (Lyapunov

stability).

(ii) There exists δ > 0 suh that x(t)→ 0 as t →∞ if ||x(0)||2 < δ.

Theorem 2.3.3 ([63℄ Corollary 2.11, [61℄ Theorem 3.7). The system

Eẋ(t) = Ax(t), E nonsingular,

is asymptotially stable if and only if all the eigenvalues of λE−A lie in the

open left half-plane.

We will therefore speak of a stable system, if all the eigenvalues of

λE − A, E nonsingular, lie in the open left half-plane. In this ase, the

eigenvalues of the penil λE − A are those of the matrix E−1A.
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2.3.1.2. Controllability, Observability and Balaned Systems. During

the analysis of a linear system (2.18) one might ask how the system is

a�eted by the input u(t). The following two haraterisations will be on-

sidered.

De�nition 2.3.4 ([5℄). x∗ ∈ Rn is reahable (from the origin x(0) = 0) if

there exist an admissible input funtion and te < ∞ suh that x(te) = x∗

holds (and hene x(te) = x
∗
belongs to the state spae of a linear system

(2.18)).

De�nition 2.3.5 ([5, 46℄). A nonzero state x(0) = x0 is ontrollable if there

exists an admissible input funtion suh that the system an be transformed

from x0 to any given end state x(te) within a �nite time [0, te ].

For linear ontinuous time systems the onepts of ontrollability and

reahability oinide (f. [5℄, Theorem 4.18). Hene, the following onepts

will be developed for the ontrollability of a linear system. In the following

hapters we will need the onept of the ontrollability Gramian.

De�nition 2.3.6 ([61℄ Lemma 4.57). Consider a stable linear system (2.18)

with E nonsingular. The ontrollability Gramian an be de�ned as follows:

P =
1

2π

∫ ∞

−∞
(iωE − A)−1 BB∗ (iωE − A)−∗ dω. (2.19)

If one onsiders the eigenvalue deomposition of P , the eigenvalues

measure the degree of ontrollability, whereas the eigenvetors orrespond-

ing to the largest eigenvalues an be understood as the diretions in whih

the system is easy to ontrol.

Proposition 2.3.7 ([61℄ Corollary 4.58). Consider a stable linear system

(2.18) with E nonsingular. The ontrollability Gramian P (2.19) exists and

is the unique Hermitian solution to the following Lyapunov equation:

AXET + EXAT + BBT = 0. (2.20)

In addition, P is positive de�nite if and only if the system is ontrollable.

In pratie, we will often be able to measure the output y(t) of a linear

system (2.18). If the input u(t) and the output y(t) are known, we want

to reonstrut the states x(t). This leads to the onept of observability.

De�nition 2.3.8 ([46℄). A linear system (2.18) is ompletely observable, if

the initial state x0 an be reonstruted from the behavior of the input u(t)

and the output y(t) within a �nite time interval [0, te ].
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Again, we will need the onept of the systems observability Gramian.

De�nition 2.3.9. Consider a stable linear system (2.18) with E nonsingular.

The observability Gramian Q is de�ned as follows:

Q = ET Q̃E,

with

Q̃ =
1

2π

∫ ∞

−∞
(iωE − A)−∗ C∗C (iωE − A)−1 dω. (2.21)

The interpretation is similar to the ontrollability ase: If one onsiders

the eigenvalue deomposition of Q, the eigenvalues measure the degree of

observability, whereas the largest eigenvetors an be understood as the

diretions in whih the system is easy to observe.

Proposition 2.3.10 ([61℄ Corollary 4.58). Consider a stable linear system

(2.18) with E nonsingular. The matrix Q̃ (see De�nition 2.3.9) exists and

is the unique Hermitian solution to the following Lyapunov equation:

ATXE + ETXA+ CTC = 0. (2.22)

In addition, Q̃ and therefore also the observability Gramian Q is positive

de�nite if and only if the system is observable.

A balaned representation of a linear dynamial system is a representa-

tion of the system in whih every state is �equally" reahable and observable.

This setion introdues the onepts whih will be needed for the Balaned

Trunation Model Order Redution in Setion 5.2.1. The reader should

note that there exist several other balaned representations beside the one

presented here. They an be found in the work by Gugerin and Antoulas

[40℄ and the referenes therein.

De�nition 2.3.11 ([61, De�nition 7.5℄). The Hankel singular values, de-

noted by ςj , of a stable linear system (2.18) with E nonsingular are the

square-roots of the eigenvalues of PQ.

Proposition 2.3.12 ([61, Corollary 7.7℄). A stable linear system (2.18) with

E nonsingular is ontrollable and observable if and only if its Hankel singular

values are non-zero.

De�nition 2.3.13 ([61, De�nition 7.10℄). A stable linear system (2.18) with

E nonsingular is alled balaned, if the ontrollability and the observability

Gramians are equal and diagonal.
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Every stable, ontrollable and observable linear system with E nonsin-

gular an be transformed into a balaned representation. To do so, one

omputes the Cholesky fatorization of the Gramians

P = RRT and Q̃ = LTL,

whih exists due to the positive de�niteness of P and Q̃ (f. Propositions

2.3.7 and 2.3.10). Computing the QR deomposition of the Cholesky fa-

tors L and R leads to the following deomposition with orthogonal matries

Qc and Qo :

RT = Qc R̃
T
and L = Qo L̃.

It is obvious that P = RRT = R̃R̃T and Q̃ = LTL = L̃T L̃. The Hankel

singular values an now be omputed via the singular values of L̃ER̃:

ς2j = λj (P E
T Q̃E︸ ︷︷ ︸
Q

) = λj(R̃R̃
TET L̃T L̃E) = λj(R̃

TET L̃T L̃ER̃) = σ2j (L̃ER̃),

with the singular value deomposition

L̃ER̃ = UbΣV
T
b ,

and orthogonal Ub, Vb and Σ = diag(ς1, . . . , ςn). The matries of the linear

system an now be transformed to a balaned system representation:

W T
b ETb, W

T
b ATb, W

T
b B, CTb,

where

Wb = L̃
TUbΣ

−1/2, Tb = R̃VbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

The Gramian (as the observability and the ontrollability Gramian oinide

f. De�nition 2.3.13) of the balaned system is obtained from those of the

original system in the following way:

T−1b PT−Tb = Σ = W−1
b Q̃W−T

b = T Tb QTb.

2.3.1.3. Systems norms and spaes and input-output relationship. As

the objetive is to approximate the given original models, one needs to be

able to quantify the di�erene between the original and the redued system,

or generally speaking, between two dynamial systems. To do so, several

di�erent spaes and their norms, both in the time and in the frequeny

domain, need to be onsidered.
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De�nition 2.3.14 ([5, Setion 5.1.2℄). Let f : I → Rn, with I ∈ {R,R−,

R+, [a, b]} be a vetor valued funtion. The Lebesgue spae L
n
2(I) is de�ned

as:

Ln2(I) =

{
f : I → Rn :

(∫

t∈I
||f (t)||22

) 1
2

<∞

}
. (2.23)

In our models, input and output will be onsidered as funtions in these

spaes: u(t) ∈ Lm2 (I) and y(t) ∈ L
p
2(I) with t ∈ I (f. the de�nition of

a linear system (2.18)). Usually, one is interested in a relationship between

input and output. As suh a relationship in the time domain is desribed

by a onvolution whih is often di�ult to alulate, the relation is often

examined in the frequeny domain. There, it an easily be determined by a

produt of matries, as we will see in this setion. For the transformation

from time to frequeny domain the Laplae transformation is used.

De�nition 2.3.15 ([18, Setion 15.2℄). The Laplae transform of a funtion

f : R+ → R is de�ned as

F (s) = L{f (t)}(s) =

∫ ∞

0

f (t)e−stdt, (2.24)

with

L{f ′(t)}(s) = sF (s)− f (0). (2.25)

For a vetor, the Laplae transform has to be seen element wise. We

transform the linear system (assuming x(0) = x0 = 0):

L{Eẋ(t)}(s) = L{Ax(t) + Bu(t)}(s)

⇒ EL{ẋ(t)}(s) = AL{x(t)}(s) + BL{u(t)}(s)

⇒ sEX(s) = AX(s) +BU(s)

⇒ X(s) = (sE − A)−1BU(s),

and Y (s) = CX(s). This leads to the following onnetion between the

input and the output:

Y (s) = C(sE − A)−1BU(s).

De�nition 2.3.16. The transfer funtion H : C→ Cp×m of the linear system

(2.18) is de�ned as

H(s) := C(sE − A)−1B. (2.26)
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Funtions in frequeny domain will often be interpreted as funtions

of a omplex variable. A detailed desription of frequeny domain spaes

for linear systems an be found in [5℄. Here we use Hardy spaes H2 and

H∞. The following system norms an then be established using the transfer

funtion H(s) and the orresponding Hardy spae norms:

De�nition 2.3.17 ([5, Setion 5.1.3℄). The H2 norm of a stable system is

de�ned as

||Σlin||H2 :=

(∫ ∞

−∞
tr(H∗(−iy)H(iy))dy

) 1
2

. (2.27)

The H∞ norm of a stable system is de�ned as

||Σlin||H∞ := sup
y∈R
(σmax(H(iy))) , (2.28)

with maximal singular value σmax.

Proposition 2.3.18 ([5℄). It holds:

||Σlin||H2 =
√
tr(B∗QB) =

√
tr(CPC∗), (2.29)

for the systems Gramians as de�ned in (2.21) and (2.19).

2.3.2. Bilinear Systems. The seond lass of dynamial systems whih

will be onsidered in this thesis are bilinear systems. An overview and exam-

ples an be found in [49℄.

De�nition 2.3.19. A bilinear system of order n is a system of di�erential

equations of the following form:

Σbil :




Eẋ(t) = Ax(t) +

m∑

k=1

Nkuk(t)x(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

(2.30)

where E, A,Nk ∈ R
n×n

, B ∈ Rn×m, C ∈ Rp×n. The input u(t) ∈ Rm an be

time-dependent just as the states x(t) ∈ Rn and the output y(t) ∈ Rp are.

The value of x(0) = x0 is alled initial value.

In this setion, only systems with E 6= In, E nonsingular, will be on-

sidered.
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2.3.2.1. Volterra series representation. A onnetion between the sys-

tems input and output an be established by using the following Volterra

series representation for the states of bilinear systems established by Mohler

[49℄. We will onsider systems with E nonsingular.

x(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

eE
−1A(τ1)E−1Nk1 ·

· eE
−1A(τ2−τ1)E−1Nk2e

E−1A(τ3−τ2) · · ·E−1Nki−1e
E−1A(τi−τi−1)E−1bki ·

· uk1(t − τ1) · · · uki (t − τi)dτ1 . . . dτi . (2.31)

The input-output relationship of the system an then be de�ned as:

y(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2 ,...,ki=1

CeE
−1A(τ1)E−1Nk1 ·

· eE
−1A(τ2−τ1)E−1Nk2e

E−1A(τ3−τ2) · · ·E−1Nki−1e
E−1A(τi−τi−1)E−1bki

· uk1(t − τ1) · · · uki (t − τi)dτ1 . . . dτi , · (2.32)

with olumns bki of B and Volterra kernels de�ned as:

h
(k1,...,ki )
i (τ1, . . . , τi) = Ce

E−1Aτ1E−1Nk1e
E−1A(τ2−τ1) · . . . (2.33)

. . . · E−1Nki−1e
E−1A(τi−τi−1)E−1bki ,

where i = 1, 2, . . . , ki = 1, . . . , m, and τi+1 ≥ τi ≥ 0. The input-output

relation an now be written as:

y(t) =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

h
(k1,...,ki )
i (τ1, . . . , τi) (2.34)

·

(
i∏

j=1

ukj (t − τj)

)
dτ1 . . . dτi .

In pratie, the Volterra kernels h
(k1,...,ki )
i (τ1, . . . , τi) need to be exam-

ined in the frequeny domain as well. Therefore we need a multivariate

Laplae transform:
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De�nition 2.3.20 ([24℄). Given a funtion f (t1, . . . , tn) de�ned on R
n
de�ne

its Laplae transform F (s1, . . . , sn) by:

F (s1, . . . , sn) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (t1, . . . , tn)exp

(
−

n∑

k=1

tksk

)
dt1 . . . dtn.

(2.35)

We an now transform the Volterra kernels.

De�nition 2.3.21. The i-th order transfer funtion of the Volterra kernel

h
(k1,...,ki )
i (τ1, . . . , τi)

= CeE
−1Aτ1E−1Nk1e

E−1A(τ2−τ1) . . . E−1Nki−1e
E−1A(τi−τi−1)E−1bki ,

is de�ned as

H
(k1,...,ki )
i (s1, . . . , si)

= C(siE − A)
−1Nk1(si−1E − A)

−1 . . . Nki−1(s1E − A)
−1bki . (2.36)

By taking N = [N1 . . . Nm], this de�nition an be rewritten simultane-

ously for all Nk by using Kroneker produts:

Hi(s1, . . . , si) =C(siE − A)
−1N[Im ⊗ (si−1E − A)

−1](Im ⊗ N) . . .

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−2 times

⊗(s2E − A)
−1)](Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i−2 times

⊗N)

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−1 times

⊗(s1E − A)
−1)](Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

i−1 times

⊗B).

(2.37)

In addition, Bruni et al. [19℄ examined the onvergene of the Volterra

series and established the following result:

Proposition 2.3.22. If the Volterra series in (2.31) onverges, then it uni-

formly onverges to the solution of the bilinear system (2.30). For bounded

inputs the Volterra series (2.31) onverges on any �nite time interval [0, te ].

The onvergene of the Volterra series is onneted to the stability of

the system.
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2.3.2.2. Stability. The notion of stability for bilinear systems di�ers

from that for linear systems. For bounded inputs, the following de�nition of

stability applies:

De�nition 2.3.23 ([72, 59℄). The bilinear system (2.30) is alled bounded-

input-bounded-output (BIBO) stable, if for any bounded input, the output

is bounded on [0,∞). An input/output is alled bounded if it satis�es the

following ondition: ||u||∞ = maxjsupt∈[0,∞)|uj(t)| < M.

Siu and Shetzen [59℄ ombined onvergene of the Volterra series with

BIBO stability. They showed the following su�ient ondition for BIBO

stability.

Theorem 2.3.24 ([59℄). Let a bilinear system (2.30) with nonsingular E

be given, and let the penil A − λE be stable, i.e. there exist real salars

β,α ∈ R with β > 0 and 0 < α ≤ −maxi(Re(λi((A, E)))) suh that

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0. (2.38)

Assume ||u(t)|| =
√∑m

k=1
|uk(t)|2 ≤ M uniformely on [0,∞) with M > 0

and denote Γ =
∑m

k=1
||E−1Nk ||2. Then the system is BIBO stable if Γ <

α
Mβ

.

The bilinear system is hene stable if the matries Nk are su�iently

bounded.

2.3.2.3. Reahability, observability and balaned representation. As for

linear systems, the onepts of reahability, observability and balaned rep-

resentation exist for bilinear systems. However, the onepts need to be

generalized, whih will be done in the following setion.

De�nition 2.3.25 ([25, 56℄). A state x(te) of a bilinear system (2.30) is

reahable (from the origin x(0) = 0) if there exists an admissible input

funtion that maps the origin of the state spae into the state x(te) in a

�nite interval of time [0, te ].

De�nition 2.3.26 ([56℄). A bilinear system (2.30) is alled (span) reahable

if the spae of all reahable states X reach spans Rn.

For a bilinear system (2.30) with E 6= I nonsingular, the following

statements for reahability an be derived. Let

P1(t1) = e
E−1At1E−1B,

Pi(t1, . . . , ti) = e
E−1AtiE−1[N1Pi−1 N2Pi−1 . . . NmPi−1], i = 2, 3, . . .
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De�nition 2.3.27 ([72℄). If it exists, the reahability Gramian is de�ned as

P =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

PiP
∗
i dt1 . . . dti . (2.39)

Zhang and Lam [72℄ established the following theorem for the existene

of the reahability Gramian:

Theorem 2.3.28 ([72℄). The reahability Gramian (2.39) exists, if

(i) the penil A− λE is stable, with

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0, (2.40)

where β > 0 and 0 < α ≤ −maxi(Re(λi(A, E)), β,α ∈ R.

(ii) Γ1 <
√
2α
β , with Γ21 = ||

∑m

k=1
E−1NkN

T
k E

−T ||2.

The onnetion of P to the bilinear Lyapuonv equations and the reah-

ability of the system an now be established:

Theorem 2.3.29 ([72℄). Suppose A − λE is stable, and the reahability

Gramian P exists. Then

(i) P satis�es the following bilinear Lyapunov equation:

AXET + EXAT +

m∑

k=1

NkXN
T
k + BB

T = 0. (2.41)

(ii) The bilinear system (2.30) is reahable if and only if P is positive

de�nite.

Proposition 2.3.30 ([72℄). If (2.41) has a unique solution, then the solution

P is symmetri.

For linear stable systems, it is known that if the Lyapuonv equation has

a unique solution it is the reahability (ontrollability) Gramian. For bilinear

systems, however, it is possible that a unique solution to the Lyapunov

equation is not the reahability Gramian. Consider for example the following

bilinear system (f. [72℄):

ẋ = −x + 2xu + u.

This leads to the solution of the Lyapunov equation p = − 12 . But the

integrals p̃i =
∫
pip

T
i lead to p̃i = 2

i−2
, whih gives p =

∑∞
i=1
2i−2 whih

does not onverge � hene the reahability Gramian does not exist.

This behavior is summarized in the following theorem:
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Theorem 2.3.31 ([72℄). Suppose A− λE is stable.

• (2.41) has a positive (semi) de�nite solution X if and only if the

reahability Gramian (2.39) exists and onverges to a positive

semide�nite matrix X̂ satisfying (2.41).

• If (2.41) has a unique positive (semi) de�nite solution X, then

(2.39) onverges toX and thereforeX is the reahability Gramian.

For a bilinear system (2.30) with E nonsingular the following statements

for observability an be derived. Let

Q1(t1) = Ce
E−1At1 ,

Qi(t1, . . . , ti) = [Qi−1E
−1N1 Qi−1E

−1N2 . . . Qi−1E
−1Nm]

T eE
−1Ati , i = 2, 3, . . .

De�nition 2.3.32 ([72℄). If it exists, the observability Gramian is de�ned as

Q =

∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

Q∗i Qidt1 . . . dti . (2.42)

Zhang and Lam [72℄ established the following theorem for the existene

of the observability matrix:

Theorem 2.3.33 ([72℄). The observability matrix (2.42) exists, if

(i) the penil A− λE is stable, with

||eE
−1At ||2 ≤ βe

−αt , t ≥ 0, (2.43)

where β > 0 and 0 < α ≤ −maxi(Re(λi(A, E)), β,α ∈ R.

(ii) Γ1 <
√
2α
β , with Γ21 = ||

∑m

k=1
E−1NkN

T
k E

−T ||2.

Theorem 2.3.34. Suppose A− λE is stable, and the observability Gramian

exists. Then

(i) E−TQE−1 satis�es the following bilinear Lyapunov equation:

ATY E + ET Y A+

m∑

k=1

NTk Y Nk + C
TC = 0. (2.44)

(ii) The bilinear system (2.30) is observable if and only if Q is positive

de�nite.



22 2. MATHEMATICAL PREREQUISITES

Theorem 2.3.35 ([72℄). Suppose A− λE is stable.

• (2.44) has a positive (semi) de�nite solution Y if and only if the

observability Gramian (2.42) exists and onverges to a positive

semide�nite matrix Q̂ satisfying (2.44) for E−T Q̂E−1.

• If (2.44) has a unique positive (semi) de�nite solution Y , then

(2.42) onverges toQ = ET Y E andQ is the reahability Gramian.

A balaned representation of a bilinear system an be obtained in the

same way as in the linear ase. Assume the bilinear system is BIBO stable,

and the Gramians P and Q exist and are positive de�nite. They an be

deomposed as

P = RRT and Q = LTL.

By using the singular value deompositon of

LER = UbΣV
T
b ,

one obtains

W T
b ETb, W

T
b ATb, W

T
b NkTb, W

T
b B, CTb,

where

Wb = L
TUbΣ

−1/2, Tb = RVbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

Details an be found in [42, 2℄ and the referenes therein.

2.3.2.4. H2-norm of a bilinear system.

De�nition 2.3.36. The H2-norm of a bilinear system is de�ned as

||Σbil||
2
H2
= tr

(
∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2 ,...,ki=1

h
(k1,...,ki )
i (s1, . . . , si) ·

·(h
(k1,...,ki )
i (s1, . . . , si))

T ds1 . . . dsi
)
,

(2.45)

with Volterra kernels h
(k1,...,ki )
i (s1, . . . , si) de�ned in (2.33).

Zhang and Lam [72℄ showed, that the bilinear H2-norm satis�es the

same property as the linear norm:
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Theorem 2.3.37. For a bilinear system (2.30) if A − λE is stable and the

reahability Gramian P (or the observability Gramian Q) exists, then its

H2-norm an be omputed from

||Σbil||H2 =
√
tr(CPCT ) ( or =

√
tr(BTQB)), (2.46)

where P (or E−TQE−1) satis�es (2.41) (or (2.44)).

Benner and Breiten [12℄ showed that the bilinear H2-norm an equiv-

alently be written as:

Theorem 2.3.38 ([12℄). Let Σbil be a stable bilinear system. Then it holds

that

||Σbil||
2
H2
= vec(Ip)

T (C ⊗ C)·

·

(
−A⊗ E − E ⊗ A−

m∑

k=1

Nk ⊗ Nk

)−1
(B ⊗ B)vec(Im).

(2.47)
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The design of a new produt is a omplex proess with many experts

involved. From the idea to the �nal onept, a lose ooperation between

design engineers, simulation experts, test engineers and manufaturing spe-

ialists is required. After setting up a �rst design, this design is examined

by a team of simulation experts. Depending on the requirements, di�erent

analyses need to be onduted. Several physial aspets need to be taken

into aount, like mehanial deformations, �uid �ows, eletromagneti ef-

fets and thermal analyses. Depending on the evaluation of the simulation

results, the design will be improved. A prototype of the optimized produt

is then fabriated and thoroughly tested in a series of experiments. Until

arriving at the �nal produt, all new designs will be simulated � hene sim-

ulation plays a major role. In the �nal stage of the produt development,

simulation and experiment should oinide. The main part is now designing

the manufaturing proess, whih also might involve hanges in the design,

whih again need to be examined by simulation and experiment. Finally, the

25
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new omponent is arefully designed, an be manufatured and the produ-

tion an start!

As explained above, simulation is an important part of the produt design

proess. Having the ability of simulating di�erent designs instead of building

them an save a lot of time and money. It is desirable to obtain models of

the produt that lead to aurate results. The more omplex the models

get the longer the simulations take. This � in turn � shows the need for

small and aurate models, whih an, for example, be obtained by Model

Order Redution (f. Chapter 5).

This work fouses on the thermal modeling of eletrial motors. The under-

lying physial e�ets, the mode of operation of an eletrial motor and the

model parametrization and reation will be the key aspets of this hapter.

3.1. Thermal Modeling

For a thermal analysis, several physial e�ets have to be onsidered

and an be modeled based on the three main types of heat transfer: heat

ondutane, onvetion and radiation. For a broad overview of heat and

mass transfer see for example the book of Baehr and Stephan [7℄.

3.1.1. Heat Condutane. Temperature gradients lead to energy trans-

fer by heat ondutane. The heat �ux q̇(x, t) (in W
m2

at time t and loation

x) desribes the energy transfer in a ondutive material. The heat �ux

quanti�es the amount of heat whih �ows through a ertain area. Fourier's

law states the proportionality between heat �ux and the temperature gradi-

ent:

q̇ = −k · grad(T ). (3.1)

The onstant k is alled thermal ondutivity. Stritly speaking, it depends

on temperature, but in many appliations it is well approximated by a on-

stant. Thermal ondutivities are known for many materials: Metals usually

have high thermal ondutivities (10 WmK−10
3 W
mK ), while the thermal ondu-

tivities of �bres and foams are small (10−2 WmK − 1
W
mK ). They an therefore

be used as insulators.

For two solids in ontat, the heat leaving one body has to be absorbed by

the other. For the heat �ux, this leads to the following equation on the

interfae: (
k1
∂T1

∂n

)
I
=
(
k2
∂T2

∂n

)
I
,
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where T1 and T2 are the temperature on the �rst and seond solid, and
∂
∂n

is

the derivative in normal diretion. If the two materials are losely attahed

to eah other, the temperature on the interfae is the same:

(T1)I = (T2)I .

In some situations, the two surfaes are not diretly onneted, but sepa-

rated by a small gap. This gap is �lled with air or an insulation material

and leads to a low thermal ondutane. This thermal resistane an be

modeled on the interfae by a thermal ontat ondutane oe�ient (or

ontat heat transfer oe�ient) hc leading to the following equation for

the �ux: (
k1
∂T1

∂n

)
I
= hc [(T1)I − (T2)I ].

T1

T2material 1

material 2

(T1)I = (T2)I

interface I
A

T1

T2material 1

material 2

interface I

(T1)I 6= (T2)I

B

Figure 3.1. Temperature on the interfae between two

solids in ontat with eah other. A: no ontat resis-

tane, B: ontat resistane

3.1.2. Convetive Heat Transfer. In a �uid, heat is not only trans-

ferred by ondution, but also by the movement of the moleules within

the �uid. These two e�ets are summarized as onvetive heat transfer,

whih is often referred to as onvetion. A speial ase is the heat trans-

fer between a �uid and a solid. The harateristis of the �uid layer lose

to the solid have the greatest e�et on the heat transfer between the two

materials. Hene, the veloity and the temperature within this layer have

to be modeled and analyzed, whih is not a trivial task. The modeling of

heat transfer in ombined solid and �uid systems is often alled onjugate
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heat transfer modeling. For large and omplex models, a onjugate heat

transfer analysis an be too time onsuming, beause a �ne disretisation of

the boundary layer is required. Hene, a heat transfer oe�ient h is intro-

dued, whih desribes the heat transfer between �uid and solid. It allows

an analysis of the heat transfer without expliit treatment of the �uid. The

heat �ux on the boundary between �uid and solid is then modeled by the

following equation:

q̇I = h(Tsolid − Tfluid).

The values of the heat transfer oe�ients h an be determined by mea-

surements or simulations of the �uid �ow. Di�erent �uids (air, water) and

di�erent types of onvetion result in di�erent values for the heat transfer

oe�ients. Fored onvetion ours whenever the �uid is fored to �ow

in a ertain diretion in ontrast to free (or natural) onvetion. For free

onvetion between air and a solid, the values of the heat transfer oef-

�ients range from 5 W
m2K
− 25 W

m2K
, while for fored onvetion in hot air

they range from 20 W
m2K

to 300 W
m2K

. The highest heat transfer oe�ients

an be measured in boiling water or ondensating vapor, with values up to

105 W
m2K
− 106 W

m2K
.

3.1.3. Radiation. Every material emits energy to its environment by

eletromagneti waves. This type of energy transfer is alled thermal ra-

diation or heat radiation. The internal energy of a body is onverted into

eletromagneti waves and transmitted to its surroundings. Similarly, a body

simultaneously absorbs energy in the form of radiation and transforms it to

internal energy. If a heat �ux by radiation is modeled, it is done by the

following equation:

q̇ = ǫσ(T 4 − T 4s ),

where σ is the Stefan-Boltzmann onstant (5.67 · 10−8 W
m2K4

), and ǫ is the

emissivity � the ability of a body to emit radiation. Stritly speaking, this

material property is dependent on the temperature and the ondition of

the body's surfae. Typial values are 0.90 for wood at 293K or 0.049 for

aluminum at 443K. As the temperatures T of the material and Ts of the

surroundings are raised to the power of four, the e�et of the radiation is

large at high temperatures.
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3.2. The heat equation

The law of energy onservation for thermal systems an be stated in

terms of the �rst law of thermodynamis [28, 62℄: The hange in internal

energy of a losed system is the sum of the heat supplied and the work

added to the system.

In this setion, Ġ will denote the amount of the quantity G supplied to the

system during a time dt. First, the expression for the heat supplied to the

system is derived. The governing equation for the heat �ux into a surfae

element dA, aused by the heat Q̇(x, t) (at time t and loation x) is the

following [7℄:

dQ̇(x, t)

dA
= −q̇(x, t) · n. (3.2)

Integration over the surfae and using the Gauss theorem leads to the fol-

lowing equation for the heat:

Q̇(x, t) = −

∫

(A)

q̇(x, t) · ndA = −

∫

(V )

div(q̇(x, t))dV. (3.3)

The work added to the system an be desribed by a time dependent power

density S(x, t) per volume area (measured in

W
m3
). Integration leads to the

following expression for the work [7℄:

Ẇ =

∫

(V )

S(x, t)dV. (3.4)

The hange in internal energy U(x, t) an be stated using the spei� heat

apaity C. It spei�es the heat that must be supplied to inrease the

temperature by dT . The hange in internal energy for this temperature

hange an then be alulated from the heat apaity and the mass of the

body [7℄:

dU(x, t) = mCdT (x, t) =

∫

(V )

ρdV · CdT (x, t). (3.5)

As heat ondution in a solid body is onsidered, the hanges in volume

and density due to temperature and pressure hanges are small and an be

negleted, leading to:

dU(x, t)

dt
=

∫

(V )

ρC
∂T (x, t)

∂t
dV. (3.6)
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Using the law of energy onservation for thermal systems, the equations

(3.3),(3.6) and (3.4) result in:

∫

(V )

(
ρC
∂T (x, t)

∂t
+ div(q̇(x, t))− S(x, t)

)
dV = 0. (3.7)

This integral is equal to zero for any hosen region only when the integrand

is zero. Therefore the following equation an be derived:

ρC
∂T (x, t)

∂t
= −div(q̇(x, t)) + S(x, t). (3.8)

Using Fourier's law (3.1) the so alled heat equation is obtained:

ρC
∂T (x, t)

∂t
= k∆T (x, t) + S(x, t). (3.9)

3.3. Boundary and Interfae onditions

To determine the thermal behavior of a omponent, the temperature

�eld T (x, t) (dependent on loation x and time t) has to be examined. The

temperature �eld T (x, t) within a domain Ω ⊂ R3 for times t ∈ [0, tend ] an

be alulated using the heat equation (3.9) with onstant material properties

ρ, C, k and a heat soure S. The derivation of the heat equation an be

found in Setion 3.2.

On interfaes and outer surfaes, now alled boundaries and denoted as

Γ ⊂ R2, di�erent onditions have to be spei�ed, depending on the situation

of interest. They are mathematially formulated as follows:

• Dirihlet boundary onditions:

T (x, t) = TD(t) on the boundary ΓD.

These onditions orrespond to �xed temperatures on surfaes.

• Neumann boundary onditions:

−k
∂T (x, t)

∂n
= q̇N in ΓN ,

where q̇N is a given heat �ux on the boundary.

• Robin boundary onditions:

−k
∂T (x, t)

∂n
= h(T − T∞) in ΓR,

where h denotes the heat transfer oe�ient de�ned in Setion

3.1.2. T∞ is the temperature of the surrounding domain.
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• Interfae onditions: A thermal resistane between two surfaes

an be modeled on the interfae by a thermal ontat ondutane

oe�ient, as shown in Setion 3.1.1. The interfae I will be

onsidered as two surfaes: I1 with temperature T1 and I2 with

temperature T2. The following equation applies:

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n

= hc
(
T (x, t) |I1 − T (x, t)|I2

)
.

3.4. Mode of operation of an eletrial motor

An eletrial motor onverts eletrial energy into mehanial work,

whih is produed by the interation of an eletrial urrent and a magneti

�eld. One part of the motor � the so alled stator � onsists of sev-

eral oils wound around an iron ore. When a voltage is applied, a urrent

is indued in the oil. Inside the ounterpart � the so alled rotor � a

magneti �eld is generated either by a permanent magnet or by an eletro-

magnet. The interation of this magneti �eld with the urrent in the stator

results in a rotation of the rotor.

Atuating the motor with eletrial urrents leads to an inrease in tem-

perature in its di�erent omponents due to thermal losses. It is important

to analyze the in�uene of this temperature hange on the materials of the

motor, as it a�ets its life-span. This is done by arrying out a thermal

analysis.

rotor

stator

coil

magnets

Figure 3.2. Drawing of a slie through an eletrial motor.



32 3. MODELING OF HEAT TRANSFER PROBLEMS

(a) Drive unit and generator in one:

the Bosh integrated motor genera-

tor.

(b) Generator for ommerial vehi-

les. The on�guration of the oils

is the same as for an eletrial mo-

tor.

Figure 3.3. Two omponents manufatured by Robert

Bosh GmbH illustrating the struture of an eletrial

motor. Photos by ourtesy of Robert Bosh GmbH.

3.5. Thermal modeling of an eletrial motor

The main heat soure in the eletrial motor are thermal losses, result-

ing from the urrent in the oil of the stator and/or rotor. The motor has to

ful�ll various operational requirements and therefore di�erent urrent pro-

�les have to be onsidered. The temperature on ertain parts of the motor

(for example the �ange) should not exeed a spei�ed upper limit beause

these parts are in ontat with other temperature sensitive omponents.

This upper limit is built into the model as a �xed temperature (Dirihlet

boundary ondition, f. Setion 3.3).

The motor is surrounded by air, therefore onvetion has to be onsidered.

The motor needs to work in a large temperature range (arti winter, trop-

ial summer), therefore di�erent ambient temperatures are examined in the

model. Varying the heat transfer oe�ients represent di�erent ooling

strategies or di�erent interation senarios of the motor with its environ-

ment (Robin boundary ondition, f. Setion 3.3).

Various parts of the motor are not diretly attahed to eah other and the

resulting thermal resistane has to be modeled by a ontat heat transfer

oe�ient. Varying this parameter, the small gap between the two mate-

rials an be onsidered as �lled with air or an insulation material (Interfae
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ondition, f. Setion 3.3). The motor is built from various materials suh

as steel, opper and plastis. These materials have di�erent properties,

among others the density ρ, the spei� heat C and the thermal ondu-

tivity k. Here, these material parameters will not be varied. As the motor

temperature remains relatively small, the e�et of radiation is not of great

importane, and will therefore be negleted.

The thermal analyses within this work have been onduted using Comsol

Multiphysis

R©
, version 3.5a. This software provides the user with an en-

vironment for the modeling of dynamial systems. In our ase, the heat

equation (3.9) on the eletrial motor model is solved, using the boundary

onditions and interfae onditions as explained above.

Di�erent motor models have been examined. First, only one oil and parts

of the stator are onsidered. The resulting geometry, whih is provided with

the di�erent boundary and interfae onditions as well as heat soures and

material properties, an be seen in Figure 3.4.

Figure 3.4. The Comsol

R©
model simulates the heat

transfer in a stator slie, without the rotor.

Seond, a omplete motor is modeled. Details for this model are given

in the next hapter, as on top of the underlying physis, hanges in geometry

are inorporated.
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The heat dissipation in a omponent an be determined by a Comsol

R©

simulation as explained in Chapter 3. Comsol

R©
is based on the Finite El-

ement Method. Having knowledge of the mathematial bakground allows

one to onstrut parametrized models, whih an then be treated by Model

Order Redution. In this Chapter, we fous on the parametrization of ther-

mal models. Two types of parameters will be onsidered: physial parame-

ters and parameters resulting from variations in geometry. The latter require

a detailed analysis of the underlying equations, whih will be the main subjet

of this hapter.

4.1. Disretization of the heat equation

As given in Setion 3.3, the temperature �eld of a omponent an be

determined by solving the heat equation (3.9). This is done by a spatial

disretization using the Finite Element Method (f. for example [16℄). To

do so, the domain on whih the equation is solved is divided into smaller

domains, so alled elements. On these elements, speial basis funtions

ψj(x) will be onsidered. By using them, inorporating the boundary and

interfae onditions and the weak formulation of the heat equation, one is

35



36 4. MODEL PARAMETRIZATION

able to disretize the equation.

∫

Ω

ψj(x)ρC
∂T (x, t)

∂t
dx +

∫

Ω

∇ψj(x) · k∇T (x, t)dx

+

∫

ΓR

ψj (x)hT (x, t)ds

+

∫

I1

ψj(x)hcT (x, t)ds −

∫

I2

ψj (x)hcT (x, t)ds

=

∫

Ω

ψj(x)S(x, t)dx +

∫

ΓN

ψj(x)(−q̇N)ds +

∫

ΓR

ψj (x)hT∞ds.

(4.1)

The material parameters ρ, C and k are taken as onstant. With �nite

element basis funtions ψk(x) the temperature is approximated as follows,

T (x, t) ≈

N∑

k=1

Tk(t)ψk(x).

By plugging this into equation (4.1), the following disretized equation is

obtained:

EṪ (t) = (A+ hN1 + hcN2)T (t) + B ·



S(t)

hT∞
q̇N
TD


 , (4.2)

where the entries of the matries are given as:

Ekj = ρC

∫

Ω

ψk(x)ψj (x)dx,

Akj = k

∫

Ω

∇ψk(x) · ∇ψj(x)dx,

(N1)kj =

∫

ΓR

ψk(x)ψj (x)dx,

(N2)kj =

∫

I1

ψk(x)ψj (x)dx −

∫

I2

ψk(x)ψj (x)dx,
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Bj1 =

∫

Ω

ψj (x)dx,

Bj2 = −

∫

ΓN

ψj (x)ds,

Bj3 =

∫

ΓR

ψj (x)ds.

The entries of the fourth olumn Bj4 are obtained from an elimination of

the orresponding Dirihlet boundary nodes after the disretization. As∫
ψk(x)ψj (x)dx =

∫
ψj (x)ψk(x)dx and

∫
∇ψk(x)·∇ψj(x)dx =

∫
∇ψj (x)·

∇ψk(x)dx , the matries E, A and Nk for the onsidered lass of systems

are symmetri and E is in addition positive de�nite.

4.2. Physial parametrization

In the disretized form of the heat equation (4.2), two types of physial

parameters appear: Heat transfer oe�ients h resulting from onvetion

(f. Setion 3.1.2) and given as Robin boundary onditions (f. Setion

3.3), and the ontat heat transfer oe�ients hc , resulting from heat on-

dution (f. Setion 3.1.1) on the interfae of two model parts (f. Setion

3.3).

4.3. Geometri variations

For a hange in geometry, Comsol

R©
3.5a uses the so alled �moving

mesh" [51℄. The mesh an be deformed, moved and saled using transfor-

mations given by the user, or � in the ase where the physial proesses

transform the model � are alulated by Comsol

R©
. The underlying equa-

tions are those of an arbitrary Lagrangian-Eulerian (ALE) framework. It

basially transforms the mesh from a referene frame to a material or spa-

tial frame. A more detailed desription of this framework an be found in

[29℄ and the referenes therein. In our speial ase, we will inorporate

saling funtions in order to sale the model, and just sale the mesh, not

deform or move it (often alled �mesh morphing").

4.3.1. Modeling of salings in the motor model. The model of an

eletrial motor requires essentially two di�erent saling funtions. The

�rst one is a simple linear saling, whih is used to sale the model in z-

diretion. The seond one is the nonlinear saling of an annulus. The inner
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radius is kept onstant and the outer radius is saled. It will be used for

the saling of housing and stator. The two di�erent salings are illustrated

in Figures 4.1 and 4.2a, whereas Figure 4.2b gives an idea how a omplete

saling of the housing would look like. The salings an be desribed via the

following funtions:

De�nition 4.3.1. Let Ω = [0, a] × [0, b] ∈ R2 and µ ≥ 0. A linear saling

funtion to inrease the size of the retangle Ω in x-diretion is de�ned as

follows:

Gµ : Ω→ Ωs ⊂ R
2,

(
x

y

)
7→

(
(1 + µ)x

y

)
. (4.3)

De�nition 4.3.2. Let Ω be an annulus with inner radius R. Let γ ≥ 1. The

annulus saling funtion will be de�ned as follows:

Fγ : Ω→ Ωs ⊂ R
2,

(
x

y

)
7→

[
γ + (1− γ)

R√
x2 + y 2

](
x

y

)
. (4.4)

These saling funtions need to be inserted in the Comsol

R©
model to

sale the modeled motor parts.

Gµ,ν

x

y

(0,0)

Ω

z

y

(0,0)

Ωs

Figure 4.1. Simple linear saling of a retangle.

The variation of the height of the stator, rotor and housing will be

modeled by a linear saling de�ned by a linear funtion Gθ. The �ange

will also hange the height, it is modeled by a funtion Gµ. The stator

and housing will be saled using nonlinear funtions Fγ and Fη, respetively.

This is shown in Figure 4.3. For the modeling of geometri variations, the

stator will in addition be simpli�ed as a hollow ylinder. In ontrast to our

�rst model (f. Figure 3.4) the oils will be modeled as uboids within the

stator. This an be seen in Figure 4.4, a top view of the Comsol model.
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y

x
(0, 0) R rold rnew

(a) Saling of an annulus R

- rold to the annulus R - rnew

z

x y

(b) Saling of the housing

both in z and x, y -diretion

Figure 4.2. Two salings needed for the geometry varia-

tion of an eletrial motor

housing

flange

bearing

rotor stator

bearing

shaft

x

zFγ

Fη

Gθ

Gµ

Figure 4.3. Rotationally symmetri slie through the

omplex Comsol motor model showing the di�erent sal-

ing funtions
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4.3.2. Parametrized system formulation. Using the weak formulation

of the heat equation as given in equation (4.1), it is possible to obtain a

parametrized model depending on the di�erent salings. Moosmann [50℄

showed in his thesis, that salings an be inorporated in the model by

transforming the basis funtions from an unsaled to a saled element and

additionally use substitution in the integrals. We will basially use this ap-

proah for the saling of our models. First, we state that for the de�ned

linear salings (4.3) it holds:

ψ = ψs ◦ Gµ. (4.5)

However, for the nonlinear saling Fγ given in equation (4.4) this is not true

anymore. To overome this di�ulty, we will need to onsider only the sal-

ing of the �nite element mesh. In our Comsol

R©
model, we use triangular

mesh elements in the saled annuli. Hene we need to sale triangles as

illustrated in Figure 4.5.

coils

Figure 4.4. Model parametrized in geometry, top view.

Simpli�ed modeling of the stator with oils.
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R

rnew

rold

A

B

C

Figure 4.5. Saling of a triangular mesh element in the annulus.

Knowing how the verties of the triangles will be saled using the non-

linear funtion Fγ (f. equation (4.4)), it is possible to alulate linear

funtions Gγ,j for the saling of the mesh in the annuli in the following way:

The verties of the triangle (xA,j , yA,j ), (xB,j , yB,j ) and (xC,j , yC,j ) lie on ir-

les with radii rA,j ,rB,j and rC,j . Using the saling funtion Fγ leads to the

following saling of the vertex A, whih an be alulated for B and C in

the same way:

(
xA,j
yA,j

)
7→

(
γ +

(1− γ)R

rA,j

)

︸ ︷︷ ︸
=:DA,j (γ)

(
xA,j
yA,j

)
.

We are now able to alulate a linear funtion Gγ,j that maps the verties of a

triangle Tj = ((xA,j , yA,j), (xB,j , yB,j ), (xC,j , yC,j )) to the verties of the saled

triangle T sj = (DA,j(γ)(xA,j , yA,j ), DB,j(γ)(xB,j , xB,j ), DC,j(γ)(xC,j , xC,j)):

Gγ,j : Tj → T
s
j ⊂ R

2

(
x

y

)
7→

(
γK1,j +K2,j
γK3,j +K4,j

)
+

(
γK5,j +K6,j γK7,j +K8,j
γK9,j +K10,j γK11,j +K12,j

)(
x

y

)
,

with onstants K1,j to K12,j depending on the vertex oordiantes (xA,j , yA,j ),

(xB,j , yB,j ), (xC,j , yC,j) and the radii rA,j , rB,j , rC,j , R. The reader should note,

that for every triangular mesh element a di�erent saling funtion Gγ,j is

needed, as it depends on the verties. For later alulations, we state here
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the Jaobian matrix of the inverse funtions and the Jaobian determinant

of the funtions Gγ,j :

(
JGγ,j

)−1
=

1

det JGγ,j

(
γK11,j +K12,j −γK9,j −K10,j
−γK7,j −K8,j γK5,j +K6,j

)
, (4.6a)

det JGγ,j = γ
2(K5,jK11,j −K9,jK7,j) +K6,jK12,j −K10,jK8,j (4.6b)

+ γ(K5,jK12,j +K6,jK11,j −K9,jK8,j −K10,jK7,j)

= γ2d2,j + γd1,j + d0,j

=: dj(γ).

For the linear saling (f. equation (4.3)) the orresponding inverse Jaobian

and determinant are given by:

(
JGµ
)−1
=

(
1
1+µ 0

0 1

)
, (4.7a)

det JGµ = 1 + µ. (4.7b)

In most of the motor parts, both salings need to be inorporated. For

example, the stator is saled linearly in z and nonlinearly in x, y -diretion.

Hene a funtion in R
3
will be used:

Gγ,θ,j ((x, y , z))

=



γK1,j +K2,j
γK3,j +K4,j

0


+



γK5,j +K6,j γK7,j +K8,j 0

γK9,j +K10,j γK11,j +K12,j 0

0 0 1 + θ





x

y

z


 .

The orresponding inverse Jaobian and Jaobian determinant are:

(
JGγ,θ,j

)−1
=




γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ




det JGγ,j = (1 + θ)dj (γ),

with dj(γ) as given in (4.6b). Let x = (x, y , z) and x
s = (x s , y s , z s) be

saled oordinates. Using the weak formulation of the heat equation (4.1),
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the equation (4.5) and substitution, one obtains for one entry of the saled

matrix Es with a linear funtion G:

Eskl = ρCp

∫

Ωs

ψsk(x
s)ψsl (x

s)dxs (4.8)

= ρCp

∫

Ωs

(ψk ◦ G
−1)(xs )(ψl ◦ G

−1)(xs)dxs

= ρCp

∫

G−1(Ωs)
ψk(G

−1(G(x)))ψl (G
−1(G(x)))| det JG(x)|dx

= ρCp

∫

Ω

ψl(x)ψk(x)| det JG(x)|dx.

Considering the funtion Gγ,θ,j one obtains | det JGγ,θ,j (x)| = (1 + θ)dj (γ),

depending on the mesh element Tj . However, as for all j every dj(γ) is a

polynomial of degree two in γ, the matrix Es an be written as

Es = (1 + θ)(γ2E2 + γE1 + E0).

For the matrix A the alulation of a dependeny in the parameter for one

entry of the saled matrix As is more ompliated:

Askl = λ

∫

Ωs

∇ψsk(x
s)∇ψsl (x

s)dxs (4.9)

= λ

∫

Ωs

∇
(
(ψk ◦ G

−1)(xs )
)
∇
(
(ψl ◦ G

−1)(xs)
)
dxs

= λ

∫

Ωs

∇ψk(G
−1(xs))JG−1(x

s)∇ψl(G
−1(xs))JG−1(x

s)dxs

= λ

∫

Ω=G−1(Ωs )
∇ψk(x)JG−1(G(x))∇ψl (x)JG−1(G(x))| det JG(x)|dx.

For the funtions Gγ,θ,j , the alulation of the integral (4.9) needs to be

done in the mesh elements on whih the basis funtions ψsk and ψsl are

supported, i.e.

Askl = λ

∫

T s
1
∪···∪T s

end

∇ψsk(x
s)∇ψsl (x

s)dxs

= λ
∑

j

∫

T s
j

∇ψsk(x
s)∇ψsl (x

s)dxs .
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The integral on one mesh element leads to (using equation (4.9)):

Askl j

=

∫

T s
j

∇ψsk(x
s)∇ψsl (x

s)dxs

=λ

∫

Tj=G−1γ,θ,j (T
s
j
)

∇ψk(x)JG−1
γ,θ,j
(Gγ,θ,j (x))∇ψl(x)JG−1

γ,θ,j
(Gγ,θ,j (x))| det JGγ,θ,j (x)|dx

=λ

∫

Tj

[
∂1ψl(x) ∂2ψl(x) ∂3ψl(x)

]



γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ




·



[
∂1ψk(x) ∂2ψk(x) ∂3ψk(x)

]



γK11,j+K12,j
dj (γ)

−γK9,j−K10,j
dj (γ)

0
−γK7,j−K8,j
dj (γ)

γK5,j+K6,j
dj (γ)

0

0 0 1
1+θ







T

· |(1 + θ)dj(γ)|dx

=
1 + θ

dj(γ)
· γ2
∫

Tj
ϕ0kl(x)dx +

1 + θ

dj(γ)
· γ

∫

Tj
ϕ1kl (x)dx

+
1 + θ

dj(γ)

∫

Tj
ϕ2kl(x)dx +

dj(γ)

1 + θ

∫

Tj
ϕ3kl (x)dx,

with funtions ϕikl depending on the derivatives ∂1ψk , ∂1ψl , ∂2ψk , ∂2ψl ,

∂3ψk , ∂3ψl and the onstants Ki ,j . One matrix entry Askl , onsidered as a

funtion of γ depends on di�erent dj(γ) and Ki ,j .

For a di�erent matrix entry Asgh and a di�erent mesh element Tĵ one

obtains:

Asgh =
1 + θ

dĵ(γ)
· γ2
∫

T
ĵ

ϕ0gh(x)dx+
1 + θ

dĵ(γ)
· γ

∫

T
ĵ

ϕ1gh(x)dx

+
1 + θ

dĵ(γ)

∫

T
ĵ

ϕ2gh(x)dx+
dĵ (γ)

1 + θ

∫

T
ĵ

ϕ3gh(x)dx,

with di�erent denominators dj(γ) and dĵ(γ). Hene it is not possible to �nd

an easy a�ne dependeny in the parameter γ like for the matrix E. We
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state now the disretized heat equation with a parametrization in geometry.

For the ease of presentation, we only onsider hanges in two parameters γ

(resulting originally from a nonlinear saling (4.4)) and θ (resulting from a

linear saling (4.3)):

E(γ, θ) = (1 + θ)(γ2E2 + γE1 + E0), (4.10)

A(γ, θ) = (1 + θ)A1(γ) +
1

1 + θ
A2(γ). (4.11)

The matries N1 and N2 (f. equation (4.2)) have the same dependeny in

the parameters as E. The alulation of the parameter dependeny for the

matries B resulting from the right hand side of equation (4.1) an be exe-

uted by using substitution and equation (4.5) for the integral

∫
Γ
ψsk(x

s)dxs .

For the di�erent olumns of B however, it is important to note that only

those boundaries or parts of the model that will be a�eted by the saling

will atually hange. If for example only the height of the stator hanges,

the Dirihlet boundary ondition on top of the �ange will not be a�eted.

Assuming that θ hanges the height of the stator and γ sales it in x, y -

diretion, the orresponding salings will be as follows:

Bh(γ, θ) = (1 + θ)(γ2Bh,2 + γBh,1 + Bh,0), (4.12)

BT0(γ) = (γ2BT0,2 + γBT0,1 +BT0,0), (4.13)

BS(γ, θ) = (1 + θ)(γ2BS,2 + γBS,1 + BS,0), (4.14)

where Bh refers to the outer surfae of the housing with a Robin bound-

ary ondition, BT0 refers to a Dirihlet boundary ondition on the �ange,

whereas BS models the heat soure in the oils and B = [Bh BT0 BS].

For the two additional salings of �ange (original linear saling with pa-

rameter µ) and housing (original nonlinear saling with parameter ν), the

generalization is straightforward.

Figure 4.6 shows results of a simulation of the parametrized model for

t = 600s without any salings. After the disretization one obtains a system

with n = 71, 978 degrees of freedom. It is obvious, that the oils in the

stator are the main heat soures. The temperature on the �ange remains

�xed at T0 = 348.15K, whereas interation between the model and the

environment is given by onvetion.

To simplify the analysis of the geometry variations, it is onvenient to

have a model with the same physial behavior and the same saling funtions

but with fewer degrees of freedom. Therefore a simpli�ed model was built.
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It onsists of rotor, stator, housing and �ange. The geometry an be seen

in Figure 4.7. A result of a simulation of the heat �ux with saling of the

stator in z- and x, y -diretion is shown in Figure 4.8.

Figure 4.6. Simulation of large model � no saling fun-

tion was applied.
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flange

rotor

stator

housing

Figure 4.7. Simpli�ed motor model.

In this hapter we have shown that it is possible to obtain parametrized

models by an analysis of the underlying equations. By inserting saling

funtions into Comsol

R©
, the saling of an eletrial motor model an be

analyzed, and these salings an be represented by parameters. First, linear

salings have been onsidered (f. equation (4.3)). Inserting them in the

�nite element disretization of the heat equation shows that these salings

an be onsidered as a�ne parameters (f. the parameter θ in equations

(4.10) to (4.14)). Seond, nonlinear salings have been examined (f. equa-

tion (4.4)). They an be onsidered as linear salings by using the saling

of the underlying mesh and hene a parameter dependeny an be obtained

by inserting these linear salings into the �nite element disretization of the

heat equation.
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However these originally non-linear salings lead to a non-a�ne param-

eter dependeny for the matrix A (f. parameter γ in equation (4.11)).

Having derived the parameter dependeny of our models, methods from

parametri Model Order Redution (f. Setion 5.3) an be applied to ob-

tain small redued order models. In addition, several Comsol

R©
models for

the thermal analysis of eletrial motors have been built and presented in

this hapter.

Figure 4.8. Simpli�ed motor model after the saling and

a short thermal simulation
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Model Order Redution (MOR) is a powerful method to redue the

dimension of large dynamial systems and therefore the simulation time

signi�antly while guaranteeing a very good approximation of the original

output. The simulation of a linear system

Σlin :

{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,
(2.18)

where E, A ∈ Rn×n , B ∈ Rn×m, C ∈ Rp×n, u(t) ∈ Rm, x(t) ∈ Rn and

y(t) ∈ Rp requires a large amount of time if the number of degrees of

freedom n is large. The main idea of projetion based MOR is to �nd

matries that projet the system onto a low-dimensional subspae and by

that obtain a redued model:

Σ̂lin :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = x̂0
(5.1)

49
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with Ê, Â ∈ Rr×r , B̂ ∈ Rr×m, Ĉ ∈ Rp×r , u(t) ∈ Rm, x̂(t) ∈ Rr and

ŷ(t) ∈ Rp, where r ≪ n. A redued order model is extremely useful,

when not only one, but a large number of simulations needs to be done

with di�erent input senarios (e.g. in optimization, parameter studies or

feedbak ontrol) as it redues the simulation time signi�antly.

In this hapter, the theory of MOR is reviewed. First, methods for MOR of

linear systems are stated (f. Setion 5.2), followed by a short introdution

to parametri Model Order Redution (pMOR), in Setion 5.3. A ertain

lass of linear parametri systems an be reformulated as bilinear systems

(f. Setion 5.3.2) and hene redued using bilinearModel Order Redution.

Methods for bilinear MOR will be reviewed (f. Setions 5.4 and 5.5),

and a new bilinear H2-optimal redution method, based on optimization on

Grassmann manifolds is derived in Setion 5.5.4.

5.1. Projetion-based MOR and the error system

The following two de�nitions state the main properties of a projetor.

De�nition 5.1.1. A projetor is a matrix P ∈ Rn×n with P2 = P. P is the

projetion onto a subspae V ⊂ Rn if range(P) = V. P is an orthogonal

projetor (or Galerkin projetion) if P = PT , otherwise an oblique projetor

(or Petrov-Galerkin projetion).

De�nition 5.1.2. If V = [v1, . . . , vk ] is a basis of V, thenPV = V (V
T V )−1V T

is a projetor onto V. LetW be another k-dimensional subspae of Rn. The

projetor PVW = V (W
T V )−1W T

, projets onto V along W.

Assume that the original state x(t) ∈ Rn approximately lies in a low-

dimensional subspae V with dim(V) = r ≪ n, hene x(t) an be approx-

imated by a linear ombination of basis vetors of V : x(t) ≈ V x̂(t), with

x̂(t) ∈ Rr . By inserting this into the original linear system, one obtains:

EV ˙̂x(t) = AV x̂(t) + Bu(t) + ε(t), (5.2)

y(t) ≈ CV x̂(t).

As EV ˙̂x(t) ∈ span(EV ), one an projet AV x̂(t) + Bu(t) onto EV along

a subspae W whih is orthogonal to the residual (i.e. W T ε(t) = 0 holds)
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and the redued-order model an then be obtained:

Σ̂lin :





Ê︷ ︸︸ ︷
W TEV ˙̂x(t) =

Â︷ ︸︸ ︷
W TAV x̂(t) +

B̂︷ ︸︸ ︷
W TB u(t),

ŷ(t) = CV︸︷︷︸
Ĉ

x̂(t),
(5.3)

where Ê, Â ∈ Rr×r , B̂ ∈ Rr×m, Ĉ ∈ Rp×r and ŷ(t) ∈ Rp. Determining

suitable matries V and W is the main aim of projetive Model Order Re-

dution.

It remains to determine if the redued order model is a good approximation

to the original. The outputs of the redued model and the original model

will therefore be ompared:

y err(t) = y(t)− ŷ(t).

Aordingly, one an derive the following error system:

Σerrlin :





[
E 0

0 Ê

] [
ẋ(t)
˙̂x(t)

]
=

[
A 0

0 Â

][
x(t)

x̂(t)

]
+

[
B

B̂

]
u(t),

y err(t) = Cx(t) − Ĉx̂(t) =
[
C −Ĉ

] [x(t)
x̂(t)

]
.

Let xerr(t) =

[
x(t)

x̂(t)

]
be the states of the error system. The transfer funtion

of the error system an be stated as:

Herr(s) =

Cerr︷ ︸︸ ︷[
C −Ĉ

]
(sEerr−Aerr)−1︷ ︸︸ ︷(

s

[
E 0

0 Ê

]
−

[
A 0

0 Â

])−1
Berr︷︸︸︷[
B

B̂

]

= C(sE − A)−1B − Ĉ(sÊ − Â)−1B̂

= H(s)− Ĥ(s).

In the frequeny domain it holds

Y err(s) = Herr(s)U(s). (5.4)

It is now the objetive to minimize Y err(s), the error between the original

output funtion Y (s) and the redued output Ŷ (s). By using Parseval's

theorem (f. [5℄), one obtains that the L2-norms (f. Setion 2.3.1.3)

of Y err(s) and U(s) in the frequeny domain and y err(t) and u(t) in the
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time domain oinide. To quantify the Model Order Redution error, it is

desirable to �nd an error bound of the following struture:

||y err||Lp
2
≤ ǫ||uerr||Lm

2
.

By using the input-output relationship (5.4) in the frequeny domain, the

ǫ an be given as the di�erene between the transfer funtions H(s) and

Ĥ(s), whih an be measured in the H∞-norm of the error system:

||Σerrlin ||H∞ = ||Σlin − Σ̂lin||H∞ = sup
y∈R

(
σmax(H(iy)− Ĥ(iy))

)
. (5.5)

For the error of the impulse response, the H2-norm an be used, and om-

putated in the following way:

||Σerrlin ||H2 = ||Σlin−Σ̂lin||H2 =
√
tr((Berr)∗QerrBerr) =

√
tr(CerrP err(Cerr)∗),

(5.6)

where P err and Qerr are the Gramians of the error system.

5.2. MOR of linear systems

In the following Setion, several methods for the redution of linear

systems will be shortly reviewed. Numerous researhers have been working

on the redution of this lass of systems in the last three deades. For a

detailed introdution, we refer to the book of Antoulas [5℄ and the referenes

therein. We assume that all linear systems we onsider throughout this

setion are reahable, observable and stable. In addition, the matrix E is

always invertible.

5.2.1. Balaned Trunation. Consider a stable, observable and on-

trollable linear system (f. (2.18), Chapter 2.3.1.2). The basi idea of the

balaned trunation method is to eliminate the states in whih the system

is di�ult to observe and di�ult to reah. The following derivation of Bal-

aned Trunation follows basially the dissertation of Stykel [61℄, whereas

we examine only systems with nonsingularE matrix. As the system is stable,

observable and ontrollable, the ontrollability (2.19) and the observability

Gramian (2.21) exist and are positive de�nite, they an be fatorised by

using a Cholesky fatorization: P = R̃T R̃ and Q = L̃L̃T with R̃ ∈ Rn×n and

L̃ ∈ Rn×n of full rank. The seond step onsists of alulating the singular
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value deomposition of the produt:

L̃ER̃ =
[
U1 U2

] [Σ1 0

0 Σ2

][
V T1
V T2

]
,

with U1, V1 ∈ R
n×r

, U2, V2 ∈ R
n×(n−r)

having orthogonal olumns and Σ1 =

diag(ς1, . . . ςr ) andΣ2 = diag(ςr+1, . . . ςn) are matries ontaining the Hankel

singular values ordered in desending order. A balaned redued realization

an now be omputed using

W = L̃TU1Σ
−1/2
1 ∈ Rn×r and V = R̃V1Σ

−1/2
1 ∈ Rn×r .

The redution of the linear system is then performed using W and V as

projetions in the following way:

Ê = W TEV, Â = W TAV, B̂ = W TB, Ĉ = CV.

The quality of the approximation an be measured in theH∞-norm aording

to the following error bound:

Theorem 5.2.1 ([5℄). The H∞-norm of the error system is bounded by the

sum of negleted Hankel singular values:

||Σlin − Σ̂lin||H∞ ≤ 2(ςr+1 + · · ·+ ςn).

5.2.2. Krylov subspae methods. The main idea behind Krylov sub-

spae methods, whih are widely used for the redution of linear systems,

onsists of omparing the summands of series expansions of the original

and redued systems transfer funtions. Various authors ontributed to the

development of this tehnique, for a deeper insight we refer to the book of

Antoulas [5℄ and the referenes therein.

De�nition 5.2.2. The ℓ-th (blok) Krylov subspae for A ∈ Rn×n and B ∈
R
n×m

is de�ned as follows:

Kℓ(A,B) = span{B, AB, . . . , A
ℓ−1B}. (5.7)

De�nition 5.2.3 ([5, 31, 36℄). The moments of a transfer funtion H(s)

evaluated at s = s0 ∈ C are

mk(s0) = (−1)
k d

k

dsk
H(s)|s=s0 .

It holds

mk(s0) = C((s0E − A)
−1E)k (s0E − A)

−1B, k = 0, 1, . . . .
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The moments mk are the oe�ients of a Laurent series expansion of

the transfer funtion H(s) around s0. Expanding at in�nity leads to the

de�nition of the so alled Markov parameters:

De�nition 5.2.4. The Markov parameters (also alled the moments at in-

�nity) of a system are de�ned as:

Mj = C(E
−1A)jE−1B, j = 0, 1, . . . .

The moments and Markov parameters of the original and the redued

system an now be ompared. The objetive of the so alled �moment

mathing" methods is to �nd projetion matries suh that a ertain number

of these moments are equal for the redued and the original system without

the need of expliitely alulating them. The following theorem shows how

to hoose the projetion matries in order to ahieve moment mathing.

They are formulated for the ase in whih a mathing around s0 = 0 is

desired.

Theorem 5.2.5 ([58℄). If the olumns of the matries V and W used in

(5.3) form bases for the Krylov subspaes Kℓ1(A
−1E, (E−1A)r1A−1B) and

Kℓ2(A
−TET , (E−TAT )r2A−TC), respetively, both with rank q, where q is a

multiple of m and p, then the �rst q−r1m +
q−r2
p moments and

r1
m +

r2
p Markov

parameters of the original and the redued order system math.

A redued model alulated using the Krylov subspaes above leads to

a good approximation of the original model, as long as a su�ient number

of moments and Markov parameters is mathed. This guarantees that the

redued transfer funtion is an approximation of the original one.

The alulation of the matries V and W an be done by using the

Arnoldi or the Lanzos algorithm. They an be found in [5℄.

In the ase where a moment mathing around several di�erent points sk is

onsidered, the following theorem has been shown by Gallivan et al. [36℄:

Theorem 5.2.6 ([36℄). If

K⋃

k=1

KJk ((skE − A)
−1E, (skE − A)

−1B) ⊂ Im(V ),

and

K⋃

k=1

KLk ((skE − A)
−TET , (skE − A)

−TCT ) ⊂ Im(W ).
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where the points sk ∈ C are hosen suh that the penils skE − A are

invertible for all k ∈ {1, . . . , K}, then the Jk + Lk moments at sk of the

original linear system Σlin (2.18) and those of the redued linear system Σ̂lin
math, provided the matries sk Ê − Â are invertible.

Moment-mathing around points sk is nothing else than assuring that

the redued transfer funtion interpolates the original transfer funtion at

points sk .

5.2.3. Rational Interpolation. First, we only onsider so alled single

input single output systems (SISO), i.e. systems with CT , B ∈ Rn. The

projetion matrix V is now obtained by

V = [(s1E − A)
−1B, . . . , (srE − A)

−1B], (5.8)

with distint parameters s1, . . . , sr . Let W be suh that W T V = Ir . The

following interpolation onditions an be established:

Proposition 5.2.7 ([5℄, Proposition 11.6). The transfer funtion of the re-

dued system Σ̂lin as in (5.3) obtained by using V as given in (5.8) and W

withW TV = Ir , interpolates the transfer funtion of the original system Σlin
at the points sk , that is

H(sk) = C(skE − A)
−1B = Ĉ(sk Ê − Â)

−1B̂ = Ĥ(sk), k = 1, . . . , r.

Using the matrix V de�ned as in (5.8) would hene lead to a mathing

of one moment around eah interpolation point sk (f. Theorem 5.2.6).

The interpolation onditions have been examined for two sided projetions

as well. It is possible to establish interpolation onditions for the derivatives:

Proposition 5.2.8 ([5℄). Let Σ̂lin as in (5.3) with

V = [(s0E − A)
−1B, (s0E − A)

−2B, . . . , (s0E − A)
−rB],

andW TV = Ir . It interpolates the transfer funtion of Σ at s0 together with

r − 1 derivatives at the same point:

(−1)k

k!

dk

dsk
H(s)|s=s0 = C(s0E − A)

−(k+1)B

= Ĉ(s0Ê − Â)
−(k+1)B̂ =

(−1)k

k!

dk

dsk
Ĥ(s)|s=s0 ,

where k = 1, 2, . . . , r − 1.
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Consider the following matries

V =
[
(s1E − A)

−1B . . . (srE − A)
−1B

]
, (5.9)

W =
[
(sr+1E − A)

−TCT . . . (s2rE − A)
−TCT

]
. (5.10)

Then the following proposition derives the interpolation onditions for a

system with two projetion matries:

Proposition 5.2.9 ([5℄). Assuming full rank V,W ∈ Rn×r given as in (5.9)

and (5.10), the transfer funtion of the projeted system Σ̂lin de�ned by

(5.3) interpolates the transfer funtion of Σlin at the points si , i = 1, . . . 2r .

Using Theorem 5.2.6, one obtains that V and W as de�ned in equa-

tions (5.9) and (5.10) lead to a mathing of 2 moments around eah point

sk .

For systems with multiple inputs and multiple outputs (MIMO) orrespond-

ing interpolation onditions � the so alled tangential interpolation ondi-

tions � have been examined by several researhers [35, 65, 43, 41℄. The

following theorem an be obtained:

Theorem 5.2.10 ([35, 65, 43, 41℄). Let V,W ∈ Rn×r be of full rank. Let

sk ∈ C, rk ∈ R
m×1

and lk ∈ R
1×p

be interpolation points and left and right

tangential diretions. Let the points sk be hosen suh that skE − A is

non-singular. If for all k = 1, . . . , r it holds

(skE − A)
−1Brk ∈ span(V ),

(skE − A)
−TCT lTk ∈ span(W ),

the redued system (W TEV,W TAV,W TB,CV ) satis�es:

lk Ĥ(sk) = lkH(sk), (5.11)

Ĥ(sk)rk = H(sk)rk , (5.12)

lkĤ
′(sk)rk = lkH

′(sk)rk , for all k = 1, . . . , r. (5.13)

It remains the task of hoosing interpolation points sk and interpolation

diretions rk , lk suh that the obtained redued model is a good approxima-

tion to the original one. This problem has been examined in the ontext

of H2-optimal Model Order Redution, whih we will review in the next

setion.
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5.2.4. H2-optimal Model Order Redution. The objetive of the H2-

optimal MOR is to �nd a redued system (Ê, Â, B̂, Ĉ) suh that the error

of the system examined in the H2-norm ||Σlin − Σ̂lin||H2 is minimized.

5.2.4.1. Interpolation-basedH2-optimality onditions. With the aim of

minimizing the H2-norm of the error system ||Σlin− Σ̂lin||H2 , the derivation

of this norm using the system Gramians representation (2.29) is onsidered,

following the derivation given by van Dooren et al. [64℄.

Let P err =

[
P11 P12
P T12 P22

]
and Qerr =

[
Q11 Q12
QT12 Q22

]
be the solutions of the

Lyapunov equations of the error system:

AerrP err (Eerr)
T
+ EerrP err (Aerr)

T
+ Berr (Berr)

T
= 0,

(Aerr)
T
QerrEerr + (Eerr)

T
QerrAerr + (Cerr)

T
Cerr = 0,

where

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, Eerr =

[
E 0

0 Ê

]
, Cerr =

[
C

−Ĉ

]
.

We aim at minimizing

J := ||Σlin − Σ̂lin||
2
H2
= tr(CerrP err (Cerr)

T
) = tr((Berr)

T
QerrBerr). (5.14)

We an rewrite J as:

J = tr(BTQ11B + 2B
TQ12B̂ + B̂

TQ22B̂)

= tr(CP11C
T − 2CP12Ĉ

T + ĈP22Ĉ
T ).

(5.15)

The gradient of a matrix valued funtion an be de�ned as follows:

De�nition 5.2.11 ([64℄). The gradient of a real salar funtion f (X) of a

matrix variable X ∈ Rn×m is the matrix ∇X f (X) ∈ R
n×m

de�ned by

[∇X f (X)]i j =
d

dXi j
f (X), i = 1, . . . , n, j = 1, . . . , m.

The alulation of the gradient with respet to eah of the system

matries leads to (f. [64℄):

∇ÊJ = 2(Q22ÂP22 +Q
T
12AP12),

∇ÂJ = 2(Q22ÊP22 +Q
T
12EP12),

∇B̂J = 2(Q22B̂ +Q
T
12B),

∇ĈJ = 2(ĈP22 − CP12).
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For an optimal interpolation point, the gradient of the funtion J must be

zero. This leads to the following onditions:

Theorem 5.2.12 (Wilson onditions for systems with E 6= In, E nonsingu-

lar). If the redued transfer funtion Ĥ(s) minimizes J , then the following

holds:

Q22ÂP22 +Q
T
12AP12 = 0,

Q22ÊP22 +Q
T
12EP12 = 0,

Q22B̂ +Q
T
12B = 0,

ĈP22 − CP12 = 0.

(5.16)

One diretly onludes that the following proposition holds:

Proposition 5.2.13 (f. [64℄). For every stationary point of J where P22
and Q22 are invertible, we have the following identities:

Ê = W TEV, Â = W TAV, B̂ = W TB, Ĉ = CV,

with W := −Q12Q
−1
22 and V := P12P

−1
22 , P12, P22, Q12 and Q22 satisfy the

following Sylvester and Lyapunov equations:

AP12Ê
T + EP12Â

T + BB̂T = 0, (5.17)

ATQ12Ê + E
TQ12Â− C

T Ĉ = 0, (5.18)

ÂP22Ê
T + ÊP22Â

T + B̂B̂T = 0, (5.19)

ÂTQ22Ê + Ê
TQ22Â+ Ĉ

T Ĉ = 0. (5.20)

Remark 5.2.14. An H2-optimal redued order model ful�lls the Wilson on-

ditions given in Theorem 5.2.12. A model ful�lling the Wilson onditions is

not neessarily to be H2-optimal!

If one wants to alulate an H2-optimal redued order model, one might

think of iteratively solving the Sylvester equations (5.17) and (5.18) starting

from a (randomly) hosen redued order model and updating V and W (and

hene the redued model) in every step.

It is possible to establish the equivalene between these Wilson ondi-

tions for H2-optimality and reently obtained interpolation onditions (f.

for example [43℄). They have been �rst derived for the SISO ase by

Gugerin and oworkers [41℄ and then independently generalized to the
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MIMO ase not only by Gugerin but also by Van Dooren and owork-

ers [64℄, as well as Bunse-Gerstner and oworkers [21℄. As a �rst derivation

of interpolation onditions was done by Meier and Luenberger in 1976 [48℄,

we will refer to these onditions as the Meier-Luenberger onditions.

Theorem 5.2.15 (Meier-Luenberger onditions). Given a linear stable sys-

tem with transfer funtion H(s), if Ĥ(s) is the best stable approximation

of H with respet to the H2-norm, then the following onditions hold (for

k = 1, . . . , r ):

C̃Tk Ĥ(−λ̂k) = C̃
T
k H(−λ̂k), (5.21)

Ĥ(−λ̂k)B̃k = H(−λ̂k)B̃k , (5.22)

C̃Tk Ĥ
′(−λ̂k)B̃k = C̃

T
k H

′(−λ̂k)B̃k , (5.23)

with C̃ = ĈX and B̃ = B̂T Y , where Y, X are the left and right eigenvetors

of Â − λÊ and have been alulated suh that Y ∗ÂX = diag(λ̂1, . . . , λ̂r )

and Y ∗ÊX = Ir .

The onnetion between Theorems 5.2.10 and 5.2.15 an now be seen:

If

(−λ̂kE − A)
−1BB̃k ∈ span(V ),

and

(−λ̂kE − A)
−TCT C̃Tk ∈ span(W ),

hold for the projetions V and W , the onditions (5.21) � (5.23) are sat-

is�ed. This leads to Algorithm 1, widely known as IRKA (Interpolatory

Rational Krylov Algorithm) [41, 6℄. It has also been derived in a slightly dif-

ferent version as MIRIam (MIMO IterativeRational InterpolationAlgorithm)

by Bunse-Gerstner and oworkers [43, 21℄.

5.2.4.2. H2-optimal models via optimization on manifolds. Another

approah has been developed by Yan and Lam in 1999 [69℄. They as-

sume that the redued order model (5.3) has been generated by a one sided

projetion U = V = W and, hene, J an be pereived as a funtion of U

[69℄:

J (U) = tr(BBT (Q11 + UQ22U
T + 2Q12U

T )) (5.24)

= tr(CTC(P11 + UP22U
T − 2P12U

T )), (5.25)

where J (U) oinides with J as given in equation (5.15) by inserting B̂ =

UTB and Ĉ = CU. Yan and Lam [69℄ have shown that minimizing J (U)
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Algorithm 1 IRKA as given in [6℄.

Input: Initial seletion of interpolation points σ1, . . . , σr and initial left

and right tangential diretions l1, . . . , lr ∈ R
1×p

and q1, . . . , qr ∈ R
m×1

.

Output: Redued order model Ê = W TEV , Â = W TAV , B̂ = W TB,

Ĉ = CV .

1: V = [(σ1E − A)
−1Bq1, . . . , (σrE − A)

−1Bqr ]

2: W = [(σ1E − A)
−TCT l1, . . . , (σrE − A)

−TCT lr ]
3: while not onverged do

4: Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV

5: Compute Y ∗ÂX = diag(λ1, . . . , λr ) and Y
∗ÊX = Ir , where Y

∗
and

X are the left and right eigenvetors of λÊ − Â.

6: Set σk ← −λk and l
∗
k ← eTk Y

∗B̂ qk ← ĈXek
7: V = [(σ1E − A)

−1Bq1, . . . , (σrE − A)
−1Bqr ]

8: W = [(σ1E − A)
−TCT l1, . . . , (σrE − A)

−TCT lr ]
9: end while

an be seen as the following minimization problem on the Stiefel manifold

St(r, n) := {X ∈ Rn×r , r ≤ n|XTX = Ir}:

Minimize J (U) over U ∈ St(r, n) (5.26)

subjet to the stability of the redued system.

Using tools from di�erential geometry, they derived an iterative gradient

�ow algorithm alulating a new projetion matrix U in every step until

a minimum of J (U) is reahed. This method has reently been further

developed by Xu and Zeng [68℄. For a deeper insight in the used theory,

the reader is referred to [69, 68℄ or Setion 5.5.4, where the orresponding

theory will be derived for bilinear systems.

5.3. Parametri Model Order Redution (pMOR)

In appliations, parameters are often inorporated in the linear models,

for example geometri variations or physial e�ets (f. Setion 4). Hene,

it is desirable to �nd methods to redue these models, keeping their pa-

rameter dependeny. An overview of methods for parametri model order

redution an be found in [13℄. A parametri model is de�ned as follows:



5.3. PARAMETRIC MODEL ORDER REDUCTION (PMOR) 61

De�nition 5.3.1. A linear parametri system of order n is a matrix di�er-

ential equation of the following form:

Σlin (p) :

{
E(p)ẋ(t, p) = A(p)x(t, p) + B(p)u(t),

y(t, p) = C(p)x(t, p),
(5.27)

where E(p), A(p) ∈ Rn×n , B(p) ∈ Rn×m, C(p) ∈ Rp×n. The system depends

on p = (p1, . . . , pd ) ∈ Ω ⊂ Rd � a set of parameters in a (usually bounded)

domain Ω. It holds u(t) ∈ Rm, x(t, p) ∈ Rn and y(t, p) ∈ Rp.

The aim of parametri Model Order Redution (pMOR) is to redue

the system (5.27) while preserving the dependeny on the parameters:

Σ̂lin (p) :

{
Ê(p) ˙̂x(t, p) = Â(p)x̂(t, p) + B̂(p)u(t),

ŷ(t, p) = Ĉ(p)x̂(t, p),
(5.28)

with Ê(p), Â(p) ∈ Rr×r , B̂(p) ∈ Rr×m, Ĉ(p) ∈ Rp×r , u(t) ∈ Rm, x̂(t, p) ∈
R
r
and ŷ(t, p) ∈ Rp .

For the one/two parameter ase, early methods were developed by Weile

et al. [67℄ using moment mathing. These methods were transferred to the

multiparameter ase by Daniel et. al [27℄, Farle et al. [32℄ and Feng et

al. [33℄. After a multivariate Taylor series expansion around the param-

eter points and frequenies, projetion matries are then alulated using

moment mathing. However, as the number of parameters inreases, the

order of the model inreases as well whih leads to large redued orders.

In addition to this approah, several other interpolation methods for pMOR

have been proposed. Baur et al. [9℄ extend the statements in Setions 5.2.3

and 5.2.4 to parametri systems. Baur and Benner propose to interpolate

the systems transfer funtion [10℄. Other methods interpolate the redued

system's matries. These methods have been developed independently by

Panzer et al. [53℄ and Amsallem et al. [3℄. Reent researh by Geuss et al.

[37℄ showed that both methods an be seen within the same interpolation

framework. These two interpolation methods will be reviewed within this

setion.

Prior to stating the theory of the interpolation methods, we want to

draw attention to a speial lass of linear parametri systems, having the

following speial parameter dependeny (whih we present for E(p), it is
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valid for all other matries as well):

E(p) = E0 +

M∑

j=1

fj(p)Ej . (5.29)

This is alled an a�ne parameter dependeny and is onvenient in pratie,

as parameters and matries are independent. The system matries an be

redued as follows:

Ê(p) = W TE(p)V = W TE0V +

M∑

j=1

fj(p)W
TEjV. (5.30)

The bene�t of an a�ne parameter dependeny is that the matries Ej an

be redued a priori. For a new parameter pnew = (p
1
new, . . . , p

d
new), only the

funtions fj need to be evaluated and the redued matrix E(pnew) an be

easily alulated.

Instead of using interpolation to obtain redued order models, it is also pos-

sible to establish projetions V and W that are valid in the whole parameter

domain Ω. Often, this is done by onatenating the projetions obtained

for the redution in several parameter points:

V = [V (p1), . . . , V (pK)], W = [W (p1), . . . ,W (pK)].

Certainly, there might be linearly dependent olumns in di�erent V (pi), V (pj )

or W (pi), W (pj ), whih an be eliminated, while �nding an orthogonal basis

of the overall subspae by means of an SVD. After the SVD-step one obtains

V ∈ Rn×r
V
all
with r ≤ r Vall ≤ rK and W ∈ Rn×r

W
all
with r ≤ rWall ≤ rK depending

on the signi�ane of the sampling points p1, . . . , pK . Hene the order of

the redued model for a parameter pnew might inrease. If rWall and r
V
all are

di�erent, for example rWall ≥ r Vall, one an hoose rall = r Vall, taking only the

�rst rall olumns of W . If rWall is muh larger than r Vall, a one-sided projetion

setting V = W an be tried, as using only the �rst rall olumns of W an

lead to a loss of information. In addition, the original model needs to be

assembled in the new point pnew prior to the redution (f. (5.29)) whih is

then performed in the following way:

Ê(pnew) = W
TE(pnew)V, Â(pnew) = W

TA(pnew)V,

B̂(pnew) = W
TB(pnew), Ĉ(pnew) = C(pnew)V.
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In the ase where the parameter dependeny is a�ne (as given in equation

(5.29)), it is not neessary to assemble the matries in the new point pnew,

only the funtions fj need to be evaluated (f. (5.30)). Hene this method

will often be used when an a�ne parameter dependeny is given.

5.3.1. Parametri MOR via interpolation of the systems matries.

In this work, we will fous on the works, where the parametri redued

order models will be interpolated. As reently noted by Geuss et al. [37℄,

the present known methods [53, 3℄ for the interpolation of redued order

models an be seen within a general framework. We are going to follow

Geuss' presentation. It basially onsists of four steps:

(1) Sample the parameter spae and obtain models in points p1, . . . , pK :

Σlin (pj ) with E(pj ), A(pj ), B(pj ), C(pj ) for j = 1, . . . , K.

(2) Calulate redued order models using tehniques from linear MOR

(f. Setion 5.2) in points p1, . . . , pK :

Σ̂lin (pj ) with Ê(pj ), Â(pj ), B̂(pj ), Ĉ(pj ) for j = 1, . . . , K,

using projetion matries V (pj) and W (pj).

(3) Adjust the redued order bases.

(4) Choose the interpolation manifold and the interpolation method

to obtain a redued system Σ̂lin (pnew).

5.3.1.1. Adjusting the redued order bases. The subspaes Vj and Wj
spanned by the olumns of matries V (pj ) ∈ R

n×r
and W (pj ) ∈ R

n×r
need

to be adjusted, as the di�erent redued models Σ̂lin (pj) do not lie in the

same state spae. Hene, one needs to transform the models into the same

oordinate system by using matries Mj ∈ R
r×r

and Tj ∈ R
r×r

prior to the

interpolation:

E j = M
T
j Ê(pj )Tj ,

Aj = M
T
j Â(pj )Tj ,

Bj = M
T
j B̂(pj ),

C j = Ĉ(pj )Tj , for j = 1, . . . , K.
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First, we will onsider the subspaes Vj . After hoosing a referene

subspae RV ∈ R
n×r

, state transformations Tj an be alulated suh

that the redued states an be transferred to the referene subspae, i.e.

x̂(t, pj ) = Tjx(t, pj) holds. There are three main approahes for the hoie

of the referene subspae:

• Single referene subspae:

This �rst method has been developed by Amsallem et al. [3℄. One

of the bases V (pj0) is hosen as referene:

RV = V (pj0 ).

It is not lear for whih j0 ∈ {1, . . . , K} the best interpolated

redued order models will be obtained. A good guess might be

the j0 losest to the interpolation point.

• Non-weighted SVD:

Following Panzer et al. [53℄, �rst an SVD of all given redued

order bases V (p1) to V (pK) needs to be alulated:

UΣZT = [V (p1), . . . , V (pK)].

The referene subspae will then be hosen as: RV = U(:, 1 : r ),

the �rst r olumns of U.

• Weighted SVD [53℄: The referene subspae will now be alu-

lated as:

UΣZT = [ω1(p)V (p1), . . . , ωK(p)V (pK)],

with RV = U(:, 1 : r ), where ωj(p) are parameter dependent

weights. Aordingly, a new referene subspae needs to be al-

ulated for every new parameter. Using this approah, subspaes

where the orresponding pj lie near the interpolation point will be

�automatially" favoured.

Amsallem et al. [3℄ and Geuss et al. [37℄ noted that the matrix Tj an

be alulated under the assumption, that the vetors of V (pj ) = V (pj )Tj
and RV are in good orrelation. They make use of the so alled Modal

Assurane Criterion (MAC):

MAC(u, w) =
|uTw |2

(uTu)(wTw)
,

with vetors w, u ∈ Rn. Details an be found in [37, 3℄ and the referenes

therein. In our ase, we want the vetors v ij , the i-th olumn of V (pj ), and
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RlV , the l-th olumn of R, to be in good orrelation. They are normalized

and hene the MAC redues to:

MAC(v ij , R
l
V ) = |v

i
j , R

l
V |
2.

Aording to Geuss [37℄, there are two possibilities for the ful�llment of the

MACs.

• Strong ful�llment:

Assuming good orrelation for the orresponding vetors, i.e.

MAC(v kj , R
k
V ) = |v

k
j , R

k
V |
2 = 1, k = 1, . . . , r,

and no orrelation between the non orresponding vetors, i.e.

MAC(v ij , R
l
V ) = |v

i
j , R

l
V |
2 = 0, i 6= l , i , l = 1, . . . , r,

one obtains:

T Tj V (pj )
TRV = Ir .

Hene one an hoose Tj as:

Tj = (R
T
V V (pj ))

−1.

Obtained by a di�erent derivation, Panzer et al. [53℄ use the same

matries Tj for the transformation.

• Weak ful�llment:

This approah has been developed by Amsallem et al. [3℄. Instead

of �nding a orrelation for the whole matrix, only the diagonal

elements will be onsidered. They shall be maximized, given by

the following equation:

Tj = argmax
Tj

tr
(
T Tj V (pj )

TRV
)
.

A solution to this problem an be obtained by using the SVD of

V (pj )
TRV = UjΣjZ

T
j for orthogonal matries Tj :

Tj = arg max
Tj∈Or

tr
(
T Tj UjΣjZ

T
j

)

= arg max
Tj∈Or

tr
(
ZTj T

T
j UjΣj

)
,

where Tj = UjZ
T
j solves the problem.
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We have now given the explanations for the adjustment of the right redued

order bases. For the adjustment of the left redued order bases Geuss et

al. [37℄ propose to use the dual systems of the redued order systems and

proeed as for the right redued order bases. Considering the approahes

given by Panzer and Amsallem and oworkers [53, 3℄, they an be inorpo-

rated in this framework as well. The following transformation matries Mj
have been proposed:

• A strong ful�llment of the MACs leads to the hoie

Mj = (R
T
WW (pj))

−1,

with RW obtained by using one of the three given possibilities

given for RV and using W instead of V .

• A weak ful�llment of the MACs leads to

Mj = arg max
Mj∈Or

tr
(
MTj W (pj)

TRW
)

= UjZ
T
j ,

by using the SVD of W (pj )
TRW .

• Panzer et al. [53℄ propose to use RW = RV and hene obtain

Mj = (R
T
VW (pj ))

−1
.

• In the approah by Amsallem et al. [3℄ an adjustment of the

left subspaes is not given. However, the obtained redued order

models an be multiplied by Ê(pj )
−1

whih will lead to the hoie

Mj = Ê(pj )
−T =

(
V (pj )

T (E(pj ))
T W (pj )

)−1
,

where the referene subspae is given by RW = E(pj )V (pj ).

Manifold R
q1×q2

Nonsingular matries

ExpX(Γ) X + Γ exp(Γ)X

LogX(Y ) Y − X log(Y X−1)

Table 5.1. Exponential and logarithm mappings for dif-

ferent manifolds.
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5.3.1.2. Choosing the interpolation manifold. After the adjustment of

the bases, it remains to interpolate the transformed matries E j , Aj , Bj , and

Cj . Amsallem et al. [3℄ propose to interpolate on tangential spaes of a

ertain matrix manifoldM. For a referene point X ∈ M, the exponential

mapping

ExpX : TXM→M (5.31)

and the logarithm mapping

LogX :M⊃ UX → TXM (5.32)

de�ne the onnetion between a manifold and a tangential spae. In our

ase, two di�erent manifolds will be onsidered. The �rst is the manifold

of the real matries with k rows and l olumns: Rk×l . The seond is the

one of nonsingular matries in R
k×k

. The de�nitions for the exponential and

the logarithm mapping an be found in Table 5.1. The maps exp and log

are the matrix exponential and logarithm, respetively. After hoosing one

referene model from all the transformed redued models, the remaining

models will be interpolated in the tangential spae with respet to the refer-

ene model. Hene, for a �xed referene matrix A(pℓ0 ), the other matries

need to be mapped to the tangential spae T
A(pℓ0

)
M by the logarithm map-

ping: Γj = LogA(pℓ0 )
(A(pj )). The obtained Γj will now be interpolated using

a suitable interpolation method whih leads to the matrix Γnew ⊂ TA(pℓ0 )
M

for a parameter sample pnew. This matrix is transformed to the manifoldM

using the exponential mapping and gives A(pnew).

In ontrast to Amsallem et al. [3℄, Panzer et al. [53℄ however simply inter-

polate the matries without mapping the matries on tangential manifolds.

In Chapter 8, we are going to ompare di�erent approahes using this frame-

work and apply them to our bilinear systems (f. Setion 8.2):

• We follow Amsallem et al. [3℄: Use a �xed referene subspae and

obtain Tj by a weak ful�llment of the MACs and Mj by inversion

of Ê(pj ).

• As given by Panzer et al. [53℄, we use a referene subspae given

by a (weighted) SVD of all underlying matries V (pj ), and obtain

Tj = (R
T
V V (pj ))

−1
and Mj = (R

T
VW (pj ))

−1
.

5.3.2. Parametri systems as bilinear systems. For parametri models

with a speial a�ne parameter dependeny, it is possible to transform them
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into bilinear models. This transformation was originally given by Breiten and

Benner in [11℄.

Consider the following a�ne parametri system:

Σlin (p) :




Eẋ(t, p) =

(
A+

m∑

k=1

f (pk)Ak

)
x(t, p) + B̃ũ(t),

y(t, p) = Cx(t, p),

(5.33)

with E, A,Ai ∈ R
n×n

, C ∈ Rp×n, B̃ ∈ Rn×m̃. De�ne Nk = Ak for k =

1, . . . , m and Nk = 0 for k = m+1, . . . , m+m̃. In addition let m := m+m̃,

and let the �rst m olumns of the new B be zero. For the olumns m + 1

to m use the matrix B̃. Finally, set u(t) =
[
f (p1) . . . f (pm) ũ(t)

]T
.

The steps above result in a bilinear system:

Σbil :




Eẋ(t) = Ax(t) +

m∑

k=1

Nkuk(t)x(t) + Bu(t),

y(t) = Cx(t).

(5.34)

The transformation of suh parametri models results in bilinear models,

where all parameters an be seen as inputs. Bilinear Model Order Redution

needs to be applied for the redution, whih is now �parameter free", as in

ontrast to the methods for parametri model order redution whih have

been disussed in the previous setions, there is no interpolation proedure

needed to obtain parametri redued order models, as it is not neessary

to onsider the newly obtained inputs in the redution proess. The linear

parametri models given by a physial parametrization (f. equation (4.2))

of the eletrial motor model have exatly the struture of (5.33) and hene

bilinear model order redution methods an be applied to obtain a parametri

redued order model.

However, onstant inputs uk (as resulting from parametri systems) are not

Lm2 funtions (as the integrals

∫∞
−∞ u

2
kdω do not exist) and hene stritly

speaking not admissible input funtions. During the redution, the system

is redued without �knowing" anything about the inputs. A good redued

order model an hene be alulated using bilinear redution methods. In

addition, the ondition for BIBO-Stability (f. Theorem 2.3.24) an be

ful�lled for onstant inputs as well.
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5.4. Bilinear Model Order Redution

The redution of bilinear systems as given by equation (2.30) (or (5.34))

obtained attention within the last 20 years. The methods developed for lin-

ear systems an often be transferred to bilinear systems.

Throughout this Setion, we assume the bilinear systems (2.30) to be

reahable, observable and BIBO stable. In addition, we assume the existene

of the Gramians of the system, and only systems with E nonsingular will be

onsidered.

5.4.1. The error system. As in the linear ase, we need to quantify

the quality of the approximation. Hene, the error between the original and

the redued order model needs to be measured. The error system is de�ned

as follows:

Σerrbil :





[
E 0
0 Ê

] [
ẋ(t)
˙̂x(t)

]
=
[
A 0
0 Â

] [
x(t)
x̂(t)

]
+

m∑

k=1

[
Nk 0

0 N̂k

] [
x(t)
x̂(t)

]
uk +

[
B
B̂

]
u(t),

y(t)− ŷ(t) =
[
C −Ĉ

] [x(t)
x̂(t)

]
.

(5.35)

The reahability Gramian of the error system P err =
[
P11 P12
PT
12
P22

]
satis�es the

following generalized Lyapunov equation:

[
A
Â

] [ P11 P12
PT
12
P22

] [
ET

ÊT

]
+
[
E
Ê

] [ P11 P12
PT
12
P22

] [
AT

ÂT

]

+

m∑

k=1

[
Nk
N̂k

] [
P11 P12
PT
12
P22

] [
NT
k

N̂T
k

]
+
[
B
B̂

]
[ BT B̂T ] = 0.

(5.36)

Using the observability Gramian Qerr =
[
Q11 Q12
QT
12
Q22

]
one obtains that

Y err =
[
Y11 Y12
Y T
12
Y22

]
=
[
E−T

Ê−T

] [ Q11 Q12
QT
12
Q22

] [
E−1

Ê−1

]
, (5.37)
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satis�es the following Lyapunov equation:

[
AT

ÂT

] [ Y11 Y12
Y T
12
Y22

] [
E
Ê

]
+
[
ET

ÊT

] [ Y11 Y12
Y T
12
Y22

] [
A
Â

]

+

m∑

k=1

[
NT
k

N̂T
k

] [
Y11 Y12
Y T
12
Y22

] [
Nk
N̂k

]
+ [ C −Ĉ ]

[
CT

−ĈT
]
= 0.

(5.38)

The H2-norm of the error system will now be used to measure the error

between the original and the redued order model. Using the error system

Gramians this an be done in the following way:

||Σerrbil ||H2 = ||Σbil − Σ̂bil||H2 =

√
tr
(
[ C −Ĉ ]P err

[
CT

−ĈT
])

=

√
tr
(
[ BT B̂T ]Qerr

[
B
B̂

])
.

(5.39)

In addition, using the de�nition of the H2-norm given by Benner and Breiten

as in (2.47), the norm of the orresponding error system an hene be given

as:

J = ||Σerrbil||
2
H2

= vec(I2p)
T ([ C −Ĉ ]⊗ [ C −Ĉ ])

×

(
−
[
A
Â

]
⊗
[
E
Ê

]
−
[
E
Ê

]
⊗
[
A
Â

]
−

m∑

k=1

[
Nk
N̂k

]
⊗
[
Nk
N̂k

])−1

×
([
B
B̂

]
⊗
[
B
B̂

])
vec(I2m).

(5.40)

5.4.2. Bilinear Balaned Trunation. Already in 1993, Al-Baiyat and

Bettayeb [2℄ applied balaning methods to speial (so alled k-power) bilin-

ear systems. Reent results have been obtained by Hartmann et al. [42℄.

As given in Setion 2.3.2.3, the bilinear Gramians an be deomposed as

P = RRT and Q = LTL.

By using the singular value deompositon of

LER = UbΣV
T
b ,

one obtains

W T
b ETb, W

T
b ATb, W

T
b NkTb, W

T
b B, CTb,
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where

Wb = L
TUbΣ

−1/2, Tb = RVbΣ
−1/2, W−1

b = T
T
b E

T , T−1b = W
T
b E.

If the Hankel singular values given by Σ = diag(ς1, . . . , ςn) show a deay and

ςd+1 ≪ ςd holds, one an approximate the original model by using

W = LTU1Σ
−1/2
1 , T = RV1Σ

−1/2
1 ,

with

LER =
[
U1 U2

] [Σ1 0

0 Σ2

][
V T1
V T2

]
,

U1, V1 ∈ R
n×r

, U2, V2 ∈ R
n×(n−r)

having orthogonal olumns and Σ1 =

diag(ς1, . . . ςd), Σ2 = diag(ςd+1, . . . ςn).

5.4.3. Bilinear Krylov Subspae Methods. Model Order Redution

for bilinear systems via Krylov subspaes has been examined by several re-

searhers suh as Philipps [54℄, Condon and Ivanov [23℄, Breiten and Damm

[17℄, Bai and Skoogh [8℄, and Lin and oworkers [45℄. Moment mathing

an be ahieved by series expansions of the multivariate transfer funtions

as given in (2.37). For ease of presentation, we assume E = In throughout

the following setion. A multimoment an be de�ned as:

De�nition 5.4.1 ([45℄,[34℄). Let Σbil be a bilinear system as given in (2.30).

For nonnegative integers m1, . . . , mi , a multimoment H
(m1,...,mi )
i (s1, . . . , si)

of the transfer funtion Hi(s1, . . . , si) as given in (2.37) is de�ned as

H
(m1,...,mi )
i (s1, . . . , si) =(−1)

iC(si In − A)
−miN[Im ⊗ (si−1In − A)

−mi−1N] . . .

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−2 times

⊗(s2In − A)
−m2N]

· [Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
i−1 times

⊗(s1In − A)
−m1B],

(5.41)

where N = [N1 . . . Nm].

To ensure moment mathing, Krylov subspaes (f. 5.2.2) need to be

built. Often (see f.e. [8, 45, 17℄), the following Krylov subspaes are used

for moment mathing around s = 0:
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span(V (1)) = Kq(A
−1, A−1B),

span(V (i)) =

m⋃

k=1

Kq(A
−1, A−1NkV

(i−1)),

span(V ) = span

(
r⋃

i=1

span(V (i))

)
.

Moment mathing in points other than the origin an be guaranteed by the

following result given by Flagg [34℄:

Theorem 5.4.2 ([34℄, Subsystem Interpolation). Let {ξj}
k
j=1, {ζj}

k
j=1 ⊂ C

and vetors cT ∈ Cp and b ∈ Cm be given. De�ne bj = 1j ⊗ b and N
⊕T =[

NT1 , . . . , N
T
m

]
where 1j is a olumn of mj−1 ones. To onstrut a redued

order system that mathes all the multimoments H
(l1 ,...,lj )

j (ξ1, . . . , ξj )bj and

cH
(l1,...,lj )

j (ζj , . . . , ζ1) for j = 1, . . . , k and l1, . . . , lj = 1, . . . , q, onstrut the

matries V and W as follows:

span(V (1)) = Kq{(ξ1I − A)
−1, (ξ1I − A)

−1Bb},

span(W (1)) = Kq{(ζ1I − A)
−∗, (ζ1I − A)

−∗C∗c∗},

span(V (j)) = Kq{(ξj I − A)
−1, (ξj I − A)

−1
N(Im ⊗ V

(j−1))} for j = 2, . . . , k,

span(W (j)) = Kq{(ζj I − A)
−∗, (ζj I − A)

−∗
N
⊕T (Im ⊗W

(j−1))} for j = 2, . . . , k,

span(V ) = span{

k⋃

j=1

span(V (j))},

span(W ) = span{

k⋃

j=1

span(W (j))}.

Provided W̃ T = (W T V )−1W T
is de�ned, the redued system Â = W̃ TAV ,

N̂k = W̃
TNkV , Ĉ = CV and B̂ = W̃ TB satis�es:

H
(l1,...,lj )

j (ξ1, . . . , ξj)bj = Ĥ
(l1,...,lj )(ξ1, . . . , ξj)bj

and

cH
(l1,...,lj )

j (ζ1, . . . , ζj) = cĤ
(l1,...,lj )(ζ1, . . . , ζj)

for j = 1, . . . , k and l1, . . . , lk = 1, . . . , q.
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Using this moment mathing of multimoments would involve a strategy

for �nding points {ξj}
k
j=1, {ζj}

k
j=1 ⊂ C and vetors cT ∈ Cp and b ∈ Cm

suh that the redued model delivers a good approximation to the original

model. The advantage of this approah is that it does not depend on the

onvergene of the underlying Volterra series, whih might not be known

a priori (f. the de�nition of BIBO stability and the onvergene of the

Volterra series given in Setion 2.3.2). In addition to the moment mathing

approah, one might think of the interpolation of the multivariate trans-

fer funtions Hi(s1, . . . , si), or � in other words � the interpolation of

the Volterra series. This approah has been examined by Flagg [34℄ in his

dissertation and resulted in a derivation of interpolation onditions for the

Volterra series representation of a bilinear system. Flagg was able to es-

tablish a onnetion between Volterra series interpolation and the results

onerning the H2-optimal onditions for bilinear systems reently derived

by Zhang and Lam [72℄ and Benner and Breiten [12℄.

5.5. H2 - optimal bilinear Model Order Redution

As in the linear ase, one is interested in H2-optimal bilinear MOR.

Within this setion, neessary H2-optimality onditions for bilinear systems

are obtained by deriving the H2-norm (5.39) of the error system (5.35).

First, the bilinear Wilson onditions originally obtained by Zhang and Lam

[72℄ will be derived. Using a di�erent approah, Benner and Breiten [12℄

obtained the Bilinear Interpolatory Rational Krylov Algorithm (BIRKA), a

generalization to bilinear systems of the linear IRKA (Algorithm 1). In addi-

tion, we will derive a new H2-optimal algorithm relying on optimization on

Grassmann manifolds, whih is a generalization of the methods given in the

linear ase by Yan and Lam [69℄ and Xu and Zeng [68℄.

As the Finite Element Disretisation of industrial models leads to systems

with E 6= In, we need to inorporate E in our derivation. We an not simply

invert the matrix E as due to their large dimension, the inversion would be

numerially expensive or even impossible. Hene, we will derive optimality

onditions for systems with E 6= In, E nonsingular, whih have not been

stated elsewhere. All systems will be assumed to be reahable, observable,

BIBO stable and the Gramians shall exist.
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5.5.1. Wilson onditions for bilinear systems. De�ning

C =
[
CT

−ĈT
]
[ C −Ĉ ], the norm of the error system an be given as:

J = ||Σerrbil ||
2
H2
= tr

(
[ C −Ĉ ]P err

[
CT

−ĈT
])
= tr (P errC) . (5.42)

By di�erentiating the norm (5.42) and using the Lyapunov equations (5.36)

and (5.38) we obtain the following onditions (for a detailed derivation see

Appendix A.1):

Ê = −Y −122 Y
T
12EP12P

−1
22 , (5.43)

Â = −Y −122 Y
T
12AP12P

−1
22 , (5.44)

N̂k = −Y −122 Y
T
12NkP12P

−1
22 , for k = 1, . . . , m, (5.45)

B̂ = −Y −122 Y
T
12B, (5.46)

Ĉ = CP12P
−1
22 , (5.47)

with Yi j as given in (5.37) and Pi j as in (5.36). This leads to the following

theorem:

Theorem 5.5.1 ([72℄). If the redued system Σ̂bil, whih is reahable and

observable, is an H2-optimal redued order model for the system Σbil and

the reahability and observability Gramians P err and Qerr exist, then there

exist matries W,V ∈ Rn×r suh that

Ê = W TEV, Â = W TAV, N̂k = W
TNkV, B̂ = W

TB, Ĉ = CV. (5.48)

They an be obtained by equations (5.43) to (5.44) as W := −Y12Y
−1
22 and

V := P12P
−1
22 .

Remark 5.5.2. Inserting the observability Gramian Qerr in the equations

leads to the projetions for the system multiplied by E−1:

Ê = −Y −122 Y
T
12EP12P

−1
22

= −ÊQ−122 Ê
T Ê−TQT12E

−1EP12P
−1
22 ,

⇒ Ir = −Q
−1
22Q

T
12P12P

−1
22 ,

Â = −Y −122 Y
T
12AP12P

−1
22

= −ÊQ−122 Ê
T Ê−TQT12E

−1AP12P
−1
22 ,

⇒ Ê−1Â = −Q−122Q
T
12E

−1AP12P
−1
22 ,

with analogue alulations for Nk ,B and C.
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5.5.2. The optimality onditions derived by Benner and Breiten. As

in the ase of the Wilson onditions, Benner and Breiten dedue the opti-

mality onditions by di�erentiating the H2-norm of the error system (5.40).

In ontrast to their derivation, we need to onsider E 6= In, E nonsingular.

The obtained redued system an be written as (Â, N̂k , B̂, Ĉ) after multi-

plying with Ê−1 from the left, and hene we will assume Ê = Ir . In addition,

we assume that Â is diagonalizable.

It is possible to rewrite the representation of the H2-norm as given in (5.40)

by using:

Â = SΛS−1, B̃T = S−1B̂, C̃ = ĈS, ÑTk = S
−1(N̂)kS,

whih leads to:

J = ||Σerrbil||
2
H2

= vec(I2p)
T ([ C −C̃ ]⊗ [ C −C̃ ])

×

(
−
[
A
Λ

]
⊗
[
E
Ir

]
−
[
E
Ir

]
⊗
[
A
Λ

]
−

m∑

k=1

[
Nk

Ñk
T

]
⊗
[
Nk

Ñk
T

])−1

×
([

B
B̃T

]
⊗
[
B
B̃T

])
vec(I2m).

(5.49)

Derivations with respet to the eigenvalues of the redued system

Λ = diag(λ̂1, . . . , λ̂r ) and the matries Ñk , B̃, and C̃ lead to the follow-

ing optimality onditions (their derivation an be found in Appendix A.2):

vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

(eie
T
i ⊗ E)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
i ⊗ Ir)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im),

(5.50)
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vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

(eie
T
j ⊗ N)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
j ⊗ N̂)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im),

(5.51)

vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

· (eje
T
i ⊗ B)vec(Im)

= vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

· (eje
T
i ⊗ B̂)vec(Im), (5.52)

vec(Ip)
T (eie

T
j ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1

· (B̃T ⊗ B)vec(Im)

= vec(Ip)
T (eie

T
j ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

· (B̃T ⊗ B̂)vec(Im). (5.53)

The following theorem shows the onnetion between an optimal redued

order model and the onditions (5.50) � (5.53).
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Theorem 5.5.3 ([12℄). Let Σbil denote a BIBO stable bilinear system. As-

sume that Σ̂bil is a redued bilinear system of order r that minimizes the

H2-norm of the error system among all other bilinear systems of dimension

r . Then, Σ̂bil ful�lls the onditions (5.50) � (5.53).

5.5.3. Algorithms resulting from the H2-optimality onditions. Now

it is possible to obtain two di�erent algorithms for the alulation of bilinear

optimal redued order models. First, as seen in the ontext of the Wilson

onditions, optimal models an be obtained by using W = −Y12Y
−1
22 and

V = P12P
−1
22 (f. Theorem 5.5.1). Hene it holds span(Y12) ⊂ W and

span(P12) ⊂ V . It is su�ient to determine Y12 and P12 whih an be done

by solving Sylvester equations obtained by splitting the equations (5.36) and

(5.38). This leads to the following algorithm (for a more detailed insight

we refer to the derivation of Benner and Breiten [12℄):

Algorithm 2 Generalized Sylvester iteration (f. [12℄).

Input: E, A,Nk , B, C, Ê, Â, N̂k , B̂, Ĉ

Output: Êopt, Âopt, N̂optk , B̂optĈopt

1: while not onverged do

2: Solve

AXÊT + EXÂT +

m∑

k=1

NkXN̂k + BB̂
T = 0 (5.54)

3: Solve

AT Y Ê + ET Y Â+

m∑

k=1

NkY N̂k − C
T Ĉ = 0 (5.55)

4: V = orth(X), W = orth(Y ) % orth omputes an orthonormal basis

5: Ê = W TEV , Â = W TAV , N̂k = W
TNkV , B̂ = W

TB,

6: end while

7: Êopt = Ê, Âopt = Â, N̂optk = N̂k , B̂
opt = B̂, Ĉopt = Ĉ
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Theorem 5.5.4 ([12℄). If Algorithm 2 onverges, then Êopt, Âopt, N̂optk , B̂opt

and Ĉopt ful�ll the Wilson optimality onditions (5.43)-(5.47).

Proof. The proof of this Theorem an be found in the Appendix A.3.

�

As we derived the optimality onditions aording to Breiten and Benner

[12℄ by using redued systems assuming Ê = Ir , we obtain for the solution

of the bilinear Sylvester equations (5.54) and (5.55):

vec(X) =

(
−Ir ⊗ A− Â⊗ E −

m∑

k=1

N̂k ⊗ Nk

)−1
vec(BB̂T )

=

(
−SS−1 ⊗ A− SΛS−1 ⊗ E −

m∑

k=1

SÑTk S
−1 ⊗ Nk

)−1
(B̂ ⊗ B)vec(Im)

=

(
(S ⊗ In)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

ÑTk ⊗ Nk

)
(
S−1 ⊗ In

)
)−1

(B̂ ⊗ B)vec(Im)

= (S ⊗ In)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

ÑTk ⊗Nk

)−1
(B̃T ⊗ B)vec(Im)

︸ ︷︷ ︸
vec(V )

,

and

vec(Y ) =

(
ITr ⊗ A

T + ÂT ⊗ ET +

m∑

k=1

N̂Tk ⊗ N
T
k

)−1
(ĈT ⊗ CT )vec(Ip)

=

(
S−TST ⊗ AT + S−TΛST ⊗ ET +

m∑

k=1

S−T ÑkS
T ⊗ NTk

)−1
(ĈT ⊗ CT )vec(Ip)

=
(
−S−T ⊗ In

)
(
−Ir ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗ N
T
k

)−1 (
ST ⊗ In

)
(ĈT ⊗ CT )vec(Ip)

=
(
−S−T ⊗ In

)
(
−Ir ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗ N
T
k

)−1
(C̃T ⊗ CT )vec(Ip)

︸ ︷︷ ︸
vec(W )

,

This leads to the fat that span(X) ⊂ V and span(Y ) ⊂ W . Instead of

solving the Sylvester equations as given in (5.54) and (5.55), we an use the

vetorized form of the Sylvester equations to alulate an optimal redued

model, whih leads to Algorithm 3.
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Algorithm 3 Bilinear IRKA for systems with E 6= I, E nonsingular (f. [12℄).

Input: E, A,Nk , B, C, Â, N̂k , B̂, Ĉ

Output: Âopt, N̂optk , B̂opt, Ĉopt

1: while not onverged do

2: Â = SΛS−1, B̃T = S−1B̂, C̃ = ĈS ÑTk = S
−1N̂kS

3: vec(V ) =
(
−Ir ⊗ A− Λ⊗ E −

∑m

k=1
Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

4: vec(W ) =
(
−Ir ⊗ A

T − Λ⊗ ET −
∑m

k=1
Ñk ⊗ N

T
k

)−1
(C̃T ⊗CT )vec(Ip)

5: V = orth(V ), W = orth(W ) % orth omputes an orthonormal basis

6: Â = (W TEV )−1W TAV , N̂k = (W TEV )−1W TNkV , B̂ =

(W TEV )−1W TB, Ĉ = CV

7: end while

8: Âopt = Â, N̂optk = N̂k , B̂
opt = B̂, Ĉopt = Ĉ

The onvergene of Algorithm 3 will be measured in terms of the hange

in the eigenvalues of the redued system. In every iteration the hange in

the eigenvalues between the last two iterations is heked. If it is su�iently

small, the algorithm stops and returns the �nal redued order model.

5.5.4. H2-optimal MOR by using methods from di�erential geome-

try. We will establish a new result for the derivation of H2-optimal bilinear

redued order models. For ease of presentation we will assume E = In. As a

system with E invertible is equivalent to the system multiplied by E−1, this
is possible. In addition, a generalization to systems with E 6= In should be

possible.

5.5.4.1. The minimization problem. As in the preeding setions we

are going to minimize the H2-norm of the error system. However, we use

a di�erent approah, whih was originally given for linear systems by Yan

and Lam in 1999 [69℄. It is based on minimizing the norm on the Stiefel

manifold. This approah was reently transferred to Grassmann manifolds

by Xu and Zeng [68℄. We will now develop the methods for the bilinear

ase. In ontrast to the methods in the previous setions, these methods

diretly preserve the BIBO stability of the model. Hene there is no need

for stabilization methods that an be used for example to stabilize redued

order models obtained by BIRKA see Setion 6.2.
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First, the objetive funtion for the minimization has to be found. We

de�ne the following funtion:

J (W, V ) = J (W TAV,W TN1V, . . . ,W
TNmV,W

TB,CV )

:= ||Σerrbil ||
2
H2

= tr(
[
C −Ĉ

]
P err

[
CT

−ĈT

]
)

= tr(CP11C
T − 2CP12Ĉ

T + ĈP22Ĉ
T )

= tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

= tr(CTC(P11 − 2P12V
T + V P22V

T )),

with P err as given in equation (5.36), where
[
E
Ê

]
= Inr . The reader should

note that P12 and P22 depend on the redued model and hene are funtions

of V and W . The problem of �nding an H2-optimal redued order model

an be stated as a minimization problem of the form:

Minimize J (W TAV,W TNkV,W
TB,CV ) with respet to

(W, V ) ∈ Rn×r × Rn×r subjet to W TV = Ir and Σ̂bil is BIBO

stable.

(5.56)

If we use W T = V † = (V T V )−1V T or V T = W † = (W TW )−1W T
, the

matries W and V satisfy W T V = Ir if they have full rank. The following

modi�ed problem an therefore be onsidered:

Minimize J (V ) := J (V †AV, V †NkV, V
†B,CV ) over V ∈ Rn×r

subjet to the BIBO stability of Σ̂bil redued with V † and V .
(5.57)

This modi�ed problem is an approximation to the original problem (5.56).

It �nds redued models in a subset of the redued models that would be

onsidered while solving (5.56). It holds:

J (V ) = tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

= tr(CTC(P11 − 2P12V
T + V P22V

T )). (5.58)

De�ne U = V (V T V )−1/2. Let the reahability Gramian of the error system

obtained by reduing the original system with U be

P̃ err =

[
P11 P̃12
P̃ T12 P̃22

]
.
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Let the reahability Gramian of the system redued with V and V † be P err.

If P̃ err and P err are the unique solutions to the Lyapunov equations of the

respetive error systems, then one onludes that

P22 = (V
T V )−1/2P̃22(V

T V )−1/2 and P12 = P̃12(V
TV )−1/2.

This an be seen in the following Lemma.

Lemma 5.5.5. Using V and V † for the redution or using U (one-sided)

respetively, and assuming that the orresponding Lyapunov equations of

the error systems have unique solutions, leads to the following onnetion

between the systems Gramians: P22 = (V
TV )−1/2P̃22(V

T V )−1/2 and P12 =

P̃12(V
T V )−1/2, where the matries with ˜ orrespond to the system with

U.

Proof. If the original model has been redued with U, one obtains

P̃ err =
[
P11 P̃12
P̃T
12
P̃22

]
,

the solution of the following Lyapunov equation:

[
A

(V TV )−
1
2 V TAV (V T V )−

1
2

][
P11 P̃12
P̃ T12 P̃22

] [
ET

(V T V )−
1
2 V TET V (V T V )−

1
2

]

+

[
E

(V T V )−
1
2 V TEV (V T V )−

1
2

][
P11 P̃12
P̃ T12 P̃22

] [
AT

(V TV )−
1
2 V TATV (V T V )−

1
2

]

+

m∑

k=1

[
Nk

(V TV )−
1
2 V TNkV (V

TV )−
1
2

] [
P11 P̃12
P̃ T12 P̃22

][
NTk

(V TV )−
1
2 V TNTk V (V

TV )−
1
2

]

+

[
B

(V TV )−
1
2 V TB

] [
BT BTV (V T V )−

1
2

]
= 0. (5.59)

If the redution has been performed with V and V † = (V TV )−1V T , one ob-

tains:[
A

(V TV )−1V TAV

] [
P11 P12
P T12 P22

][
ET

V TET V (V T V )−1

]

+

[
E

(V TV )−1V TEV

] [
P11 P12
P T12 P22

][
AT

V TATV (V T V )−1

]

+

m∑

k=1

[
Nk

(V TV )−1V TNkV

][
P11 P12
P T12 P22

] [
NTk

V TNTk V (V
T V )−1

]

+

[
B

(V TV )−1V TB

] [
BT BT V (V T V )−1

]
= 0. (5.60)
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Multiplying equation (5.60) with

[
In

(V T V )
1
2

]
from the left and the right

yields:

[
A

(V T V )−
1
2 V TAV (V T V )−

1
2

][
In

(V T V )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
ET

(V TV )−
1
2 V TET V (V TV )−

1
2

]

+

[
E

(V T V )−
1
2 V TEV (V T V )−

1
2

][
In

(V T V )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
AT

(V TV )−
1
2 V TAT V (V TV )−

1
2

]

+

m∑

k=1

[
Nk

(V T V )−
1
2 V TNkV (V

TV )−
1
2

] [
In

(V TV )
1
2

]

·

[
P11 P12
P T12 P22

] [
In

(V T V )
1
2

] [
NTk

(V TV )−
1
2 V TNTk V (V

T V )−
1
2

]

+

[
B

(V T V )−
1
2 V TB

] [
BT BTV (V T V )−

1
2

]
= 0. (5.61)

Under the assumption that (5.61) and (5.59) hold, one obtains (as equation

(5.59) has a unique solution):

[
P11 P̃12
P̃ T12 P̃22

]
=

[
In

(V T V )
1
2

] [
P11 P12
P T12 P22

][
In

(V T V )
1
2

]
, (5.62)

whih leads to

P̃ T12 = (V
TV )

1
2 P T12,

and

P̃22 = (V
T V )

1
2 P22(V

TV )
1
2 .

�
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One an then show that the funtions J (V ) and J (U) are equal:

J (V ) =tr(CTCP11 − 2V
TCTCP12 + V

TCTCV P22)

=tr(CTCP11 − 2(V
TV )−1/2V TCTCP̃12 + (V

T V )−1/2V TCTCV (V TV )−1/2P̃22)

=J (U)

=J (UTAU,UTN1U, . . . , U
TNmU, U

TB,CU).

Hene the following minimization problem is equivalent to (5.57):

Minimize J (U) := J (UTAU,UTNkU,U
TB,CU) over U ∈ Rn×r

with UTU = Ir subjet to the BIBO stability of Σ̂bil the redued

bilinear system alulated with U.

As U is an element of the Stiefel manifold St(r, n) (f. Setion 2.2) the

minimization problem an be stated on this manifold:

Minimize J (U) := J (UTAU,UTNkU,U
TB,CU) over U ∈

St(r, n) subjet to the BIBO stability of Σ̂bil, the redued bi-

linear system alulated with U.

(5.63)

Before we an state the minimization problem on the Grassmann manifold

(f. Setion 2.2), we need the following Lemma:

Lemma 5.5.6. For an orthogonal matrixQ ∈ Rr×r it holds J (U) = J (UQ).

Proof. It holds (f. (2.45)):

J (U) = ||Σerrbil ||
2
H2 = tr

(
∞∑

i=1

∫ ∞

0

· · ·

∫ ∞

0

m∑

k1,k2,...,ki=1

(herr)
(k1,...,ki )
i (s1, . . . , si)

· ((herr)
(k1,...,ki )
i (s1, . . . , si))

T ds1 . . . dsi

)
.

The Volterra kernels of the error system are:
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(herr)
(k1,...,ki )
i (s1, . . . , si)

=
[
C −Ĉ

]
e

([
A

Â

]
si

)
[
Nk1

N̂k1

]
e

([
A

Â

]
si−1

)
[
Nk2

N̂k2

]
. . .

. . .

[
Nki−1

N̂ki−1

]
e

([
A

Â

]
s1

)
[
bki
b̂ki

]

=
[
C −Ĉ

] [eAsiNk1eAsi−1Nk2 . . . Nki−1eAs1
eÂsi N̂k1e

Âsi−1 N̂k2 . . . N̂ki−1e
Âs1

] [
bki
b̂ki

]
.

The Volterra kernels oinide for UQ and U with QQT = QTQ = Ir beause
[
C −CUQ

]

·

[
eAsiNk1 . . . Nki−1e

As1

eQ
T UTAUQsiQTUTNk1UQ . . .Q

TUTNki−1UQe
QT UTAUQs1

]

·

[
bki

QTUT bki

]

=
[
C −CU

]

·

[
eAsiNk1 . . . Nki−1e

As1

QQT eU
TAUsiQQTUTNk1U . . .QQ

TUTNki−1UQQ
T eU

TAUs1

]

·

[
bki

QQTUT bki

]

=
[
C −CU

] [eAsiNk1 . . . Nki−1eAs1
eU
TAUsiUTNk1U . . . U

TNki−1Ue
UTAUs1

][
bki
UT bki

]
,

and we onlude J (U) = J (UQ). �

We an now state the minimization problem on the Grassmann mani-

fold:

Minimize J (U) over [U] ∈ Gr(r, n) subjet to the

BIBO stability of Σ̂bil redued with U.
(5.64)

5.5.4.2. The bilinear fast gradient �ow algorithm. We will now alu-

late the gradients ∇SJ and ∇GJ of the objetive funtion J (U) on the

Stiefel and the Grassmann manifolds. A minimum of the objetive funtion

J (U) needs to satisfy∇SJ = 0 or ∇GJ = 0, respetively. As shown before

(f. Setion 2.2), the gradients need to satisfy the following equations:

∇SJ = JU − UJ
T
U U, (2.11)
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∇GJ = JU − UU
TJU . (2.16)

Hene, one needs the matrix of all partial derivatives of J with respet to

U, i.e.:

(JU)i j =
∂J

∂Ui j
. (5.65)

Let Ei j be the single-entry matrix having a one in entry (i , j) and zeros else-

where. We derive:

(JU)i j =
∂

∂Ui j
tr
(
CTC(P11 − 2P12U

T + UP22U
T )
)

(5.66)

= tr

(
CTC

(
Ei jP22U

T + U
∂P22

∂Ui j
UT + UP22E

T
ij − 2

∂P12

∂Ui j
UT − 2P12E

T
ij

))

= tr



∂P22

∂Ui j
UTCTCU

︸ ︷︷ ︸
(∗)

−2UTCTC
∂P12

∂Ui j︸ ︷︷ ︸
(+)

+2
(
CTCUP22 − C

TCP12
)
ETij


 .

By splitting the Lyapunov equations of the error system ((5.36) and (5.38)),

the following Lyapunov and Sylvester equations an be obtained:

AP11 + P11A
T +

m∑

k=1

NkP11N
T
k + BB

T = 0, (5.67)

ATQ11 +Q11A+

m∑

k=1

NTk Q11Nk + C
TC = 0, (5.68)

UTAUP22 + P22U
TATU +

m∑

k=1

UTNkUP22U
TNTk U + U

TBBTU = 0, (5.69)

UTATUQ22 +Q22U
TAU +

m∑

k=1

UTNTk UQ22U
TNkU + U

TCTCU = 0,

(5.70)

AP12 + P12U
TATU +

m∑

k=1

NkP12U
TNTk U + BB

TU = 0, (5.71)
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ATQ12 +Q12U
TAU +

m∑

k=1

NTk Q12U
TNkU − C

TCU = 0. (5.72)

Di�erentiating the equations (5.69) and (5.71) with respet to U leads to:

ETij AUP22 + U
TAEi jP22 + U

TAU
∂P22

∂Ui j
+
∂P22

∂Ui j
UTATU + P22E

T
ij A

TU + P22U
TATEi j

+

m∑

k=1

ETij NkUP22U
TNTk U +

m∑

k=1

UTNkEi jP22U
TNTk U +

m∑

k=1

UTNkU
∂P22

∂Ui j
UTNTk U

+

m∑

k=1

UTNkUP22E
T
ij N

T
k U +

m∑

k=1

UTNkUP22U
TNTk Ei j + E

T
ij BB

TU + UTBBTEi j = 0,

(5.73)

and

A
∂P12

∂Ui j
+
∂P12

∂Ui j
UTATU + P12E

T
ij A

TU + P12U
TATEi j +

m∑

k=1

Nk
∂P12

∂Ui j
UTNTk U

+

m∑

k=1

NkP12E
T
ij N

T
k U +

m∑

k=1

NkP12U
TNTk Ei j + BB

TEi j = 0. (5.74)

We de�ne

Z = P22E
T
ij A

TU + P22U
TATEi j +

m∑

k=1

ETij NkUP22U
TNTk U

+

m∑

k=1

UTNkEi jP22U
TNTk U + U

TBBTEi j .

For the next step, we use the following Lemma:

Lemma 5.5.7. Let P, X ∈ Rn×m andQ, Y ∈ Rn×m. Let A,Cj ∈ R
n×n

,B,Dj ∈

R
m×m

, j = 1, . . . , h. If P and Q satisfy

AP + PB +

h∑

j=1

CjPDj + X = 0 and A
TQ+QBT +

h∑

j=1

CTj PD
T
j + Y = 0,

then it holds

tr
(
Y TP

)
= tr

(
XTQ

)
.



5.5. H2 - OPTIMAL BILINEAR MODEL ORDER REDUCTION 87

Proof.

tr(Y TP ) = tr((−ATQ−QBT −

h∑

j=1

CTj QD
T
j )
TP )

= −tr(PATQ)− tr(PQBT )−

h∑

j=1

tr(PCTj QD
T
j )

= −tr(PATQ)− tr(BTPQ)−

h∑

j=1

tr(DTj PC
T
j Q)

= tr((−AP − PB −

h∑

j=1

CjPDj)
TQ)

= tr(XTQ).

�

This Lemma together with equations (5.70) and (5.73) gives part (*)

of equation (5.66):

tr(UTCTCU
∂P22

∂Ui j
) = tr((Z + ZT )TQ22) = 2tr(ZQ22),

and together with equations (5.72) and (5.74), the lemma leads to part (+)

of equation (5.66):

tr(−UTCTC
∂P12

∂Ui j
) =tr((P12E

T
ij A

TU + P12U
TATEi j +

m∑

k=1

NkP12E
T
ij N

T
k U

+

m∑

k=1

NkP12U
TNTk Ei j + BB

TEi j)
TQ12).

Now the derivative JU an be alulated:

(JU)i j =2tr

(
ZQ22 + (C

TCUP22 − C
TCP12)E

T
ij

+ UTAEi jP
T
12Q12 + E

T
ij AUP

T
12Q12 + E

T
ij BB

TQ12

+

m∑

k=1

UTNkEi jP
T
12N

T
k Q12 +

m∑

k=1

ETij NkUP
T
12N

T
k Q12

)
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=2tr

(
P22E

T
ij A

TUQ22 + P22U
TATEi jQ22

+

m∑

k=1

ETij NkUP22U
TNTk UQ22 +

m∑

k=1

UTNkEi jP22U
TNTk UQ22

+UTBBTEi jQ22 + A
TUQT12P12E

T
ij + AUP

T
12Q12E

T
ij + BB

TQ12E
T
ij

+

m∑

k=1

NTk UQ
T
12NkP12E

T
ij +

m∑

k=1

NkUP
T
12N

T
k Q12E

T
ij

+(CTCP22 − C
TCP12)E

T
ij

)

=2tr

((
ATUQT12P12 + AUP

T
12Q12 + BB

TQ12 +BB
TUQ22

+

m∑

k=1

NTk UQ
T
12NkP12 +

m∑

k=1

NkUP
T
12N

T
k Q12

+CTCUP22 − C
TCP12 + A

TUQ22P22 + AUP22Q22

+

m∑

k=1

NkUP22U
TNTk UQ22 +

m∑

k=1

NTk UQ22U
TNkUP22

)
ETij

)
.

By de�ning

R = ATU(QT12P12 +Q22P22) + AU(P
T
12Q12 + P22Q22) + BB

T (Q12 + UQ22)

+ CTC(UP22 − P12) +

m∑

k=1

NTk U(Q
T
12NkP12 +Q22U

TNkUP22)

+

m∑

k=1

NkU(P
T
12N

T
k Q12 + P22U

TNTk UQ22), (5.75)

we obtain

JU = 2R. (5.76)

The gradient on the Stiefel manifold an now be determined:

∇SJ = JU − UJ
T
U U

= 2(R − URTU). (5.77)
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The gradient on the Grassmann manifold is:

∇GJ = JU − UU
TJU

= 2(R − UUTR). (5.78)

A minimum point of the funtion J (U) must satisfy the following onditions:

• On St(r, n): (R − URTU) = 0 and UTU = Ir .

• On Gr(r, n): (R − UUTR) = 0 and UTU = Ir .

Using the de�nition of R, one obtains the following lemma.

Lemma 5.5.8. It holds UTR = RTU (i.e. UTR is symmetri), with R as

given in (5.75).

Proof. Using equations (5.69) to (5.72) one obtains:

UTR =

−(ATQ12)T︷ ︸︸ ︷

UT

(
−CTC + ATUQT12 +

m∑

k=1

NTk UQ
T
12Nk

)
P12

+

−Q22UTAU︷ ︸︸ ︷

UT

(
CTCU + ATUQT22 +

m∑

k=1

NTk UQ22U
TNkU

)
P22

+

(−AP12)T︷ ︸︸ ︷

UT

(
BBT + AUP T12 +

m∑

k=1

NkUP
T
12N

T
k

)
Q12

+

−P22UTAT U︷ ︸︸ ︷

UT

(
BBTU + AUP22 +

m∑

k=1

NkUP22U
TNTk U

)
Q22

= −QT12AP12 −Q22U
TAUP22 − P

T
12A

TQ12 − P22U
TATUQ22

= QT12

(
P12U

TATU +

m∑

k=1

NkP12U
TNTk U +BB

TU

)

+Q22

(
P22U

TATU +

m∑

k=1

UTNkUP22U
TNTk U + UBB

TU

)
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+ P T12

(
Q12U

TAU +

m∑

k=1

NTk Q12U
TNkU − C

TCU

)

+ P22

(
Q22U

TAU +

m∑

k=1

UTNTk UQ22U
TNkU + U

TCTCU

)

= RTU.

�

Using the previous shown lemma, the following theorem results:

Theorem 5.5.9. A minimum point U ∈ Rn×r of the funtion J (U) must

satisfy the onditions

(R − UUTR) = 0 and UTU = Ir , (5.79)

regardless of whether the minimization is performed on the Stiefel or the

Grassmann manifold.

It is now the objetive to �nd a zero of the gradient, i.e. a zero of

(R − UUTR) = 0. Following [69℄ and [68℄ this is done by using a gradient

�ow on the manifolds:

U̇ =
∂U

∂t
= U(t)U(t)TR(t)−R(t). (5.80)

Yan and Lam [69℄ propose to rewrite the equation (5.80) using the symmetry

of UTR with Γ = URT − RUT skew-symmetri:

U̇ = ΓU. (5.81)

They then suggest the following iteration for updating U:

Uj+1 = exp (tjΓj)Uj . (5.82)

Xu and Zeng [68℄ �nd the new projetion matrix Uj+1 by using the geodesi

(i.e. the shortest onnetion of two points) on the Grassmann manifold:

Uj+1 = UjVj cos(tjΣj )V
T
j +Wj sin(tjΣj )V

T
j , (5.83)

with −∇GJ (Uj) = WjΣjV
T
j (the SVD of −∇GJ (Uj )). In addition they

show that

exp (tΓ)U = UV cos(tΣ)V T +W sin(tΣ)V T , (5.84)
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whih is also true in the bilinear ase. Hene, the alulation of Uj+1 is the

same in both approahes.

Remark 5.5.10. As the alulations of Uj+1 using (5.82) or (5.83) lead to

the same updated matrix, the optimization Yan and Lam performed in [69℄

was already based on a geodesi on a Grassmann manifold, whih they were

probably not aware of. Hene from a present point of view, they were in

fat performing a redution on a Grassmann manifold.

It now remains to hoose the time step tj suh that a step in desent

diretion is performed, i.e. the ondition

J (Uj ) ≥ J (Uj+1), (5.85)

needs to be omplied. In the linear ase, Yan and Lam [69℄ propose two

di�erent time steps. One is based on the original matries and hosen a

priori, the other one is hosen in every step based on the original matries

and the orresponding matrix Uj . For linear systems and these time steps,

the ondition (5.85) is always satis�ed. It is now possible to state the

general optimization algorithm 4 for bilinear systems, inspired by the linear

algorithm given by Yan and Lam [69℄.

Algorithm 4 GFA for bilinear systems (bilGFA).

Input: (A,Nk , B, C), maxIt : maximal number of iterations.

Output: Redued model (Â, N̂k , B̂, Ĉ).

1: Choose a matrix U0 ∈ R
n×r

suh that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Rj by using equation (5.75).

5: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

6: Compute Γj = UjR
T
j − RjU

T
j .

7: Choose tj .

8: Set Uj+1 = exp(tjΓj)Uj .

9: end for

10: Calulate the redued model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.
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For bilinear systems, the alulation of adaptive time steps tj is not a

straight forward generalization and requires further investigation. However,

hoosing an appropriate time step an be done by using the Armijo step size

as proposed by Xu and Zeng [68℄. With

Uj (t) = UjVj cos(tΣj)V
T
j +Wj sin(tΣj )V

T
j ,

the Armijo stepsize is tA = δ
iγ where i is the smallest nonnegative integer

suh that

J (Uj )− J (Uj(tA)) ≥ −ǫδ
iγ 〈∇J (Uj ),−∇J (Uj)〉 , (5.86)

holds for δ, ǫ ∈ (0, 1), γ > 0. As −ǫδiγ 〈∇J (Uj ),−∇J (Uj)〉 is positive, it is

obvious that

J (Uj) ≥ J (Uj (tA)) = J (Uj+1). (5.87)

We are now at the point where all steps have been taken to de�ne the

optimization algorithm for a bilinear model. It is a further development

of the linear fast gradient �ow algorithm (FGFA) established by Xu and

Zeng [68℄. We will therefore all it the bilinear fast gradient �ow algorithm

(bilFGFA). Its main steps an be found under Algorithm 5.

The algorithm ends when the maximal number of iterations maxIt is

reahed. However this does not mean that the obtained redued system

(Â, N̂k , B̂, Ĉ) is an optimal model. Therefore, it is reasonable to hek if the

gradient ∇J (U) onverges to zero. If it is su�iently small, the algorithm

should stop.

5.5.4.3. Analysis of the onvergene behavior of the bilFGFA. Starting

from a BIBO stable original system, and reduing with bilFGFA, the resulting

redued system is not known to be BIBO stable. For symmetri matries A

and Nk , we an prove the following result, whih ensures the BIBO stability

of the redued system:

Proposition 5.5.11. Let ||u(t)||2 =
√∑m

k=1
|u(t)|2 ≤ M. Let (A,B,Nk , C)

be a bilinear system with

m∑

k=1

||Nk ||2 <
α

βM
, where ||eAt ||2 ≤ βe

−αt , max
i=1,...,n

(Re(λi (A))) < −α(5.89)

(=⇒ system is BIBO stable, f. Theorem 2.3.24) and symmetri A,Nk . Let

U ∈ Rn×r be orthogonal. Then the redued system Σ̂errbil with Â = UTAU,

B̂ = UTB, N̂k = U
TNkU, Ĉ = CU is BIBO stable.
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Algorithm 5 FGFA for bilinear systems (bilFGFA).

Input: (A,Nk , B, C), maxIt : maximal number of iterations.

Output: Redued model (Â, N̂k , B̂, Ĉ).

1: Choose a matrix U0 ∈ R
n×r

suh that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Rj by using equation (5.75).

5: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

6: Compute the new searh diretion Fj = −∇J (Uj ) and its SVD

Fj = WjΣjV
T
j .

7: Minimize J (Uj (t)) over t ≥ 0, where

Uj(t) = UjVj cos(tΣj )V
T
j +Wj sin(tΣj )V

T
j . (5.88)

8: Set tj = tmin and Uj+1 = Uj (tj ).

9: end for

10: Calulate the redued model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.

Proof. As the redued matrix Â and the original matrix A are symmet-

ri, their eigenvalues are real and the following ondition for the eigenvalues

hold [60℄:

λi(A) ≥ λi(Â) ≥ λi+n−r (A), i = 1, . . . , r.

As A is stable, this leads to the ondition

−α > λi(A) ≥ λi(Â), i = 1, . . . , r. (5.90)

Therefore, one an hoose α̂ = α. As A and Â are symmetri, they an be

diagonalized by orthogonal matries, and it holds:

||eAt ||2 ≤ ||e
QT ΛQt ||2 = ||Q

T eΛtQ||2 ≤

=1︷ ︸︸ ︷
||QT ||2

=1︷ ︸︸ ︷
||Q||2︸ ︷︷ ︸

=β

||eΛt ||2 ≤ e
−αt

with β = 1.

The same alulation leads to ||eÂt ||2 ≤ e
−α̂t . Hene β = β̂ = 1 and α̂ = α.
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For Nk and N̂k symmetri, one knows that

||Nk ||2 = max
l=1,...,n

|λl(Nk)| and ||N̂k ||2 = max
l=1,...,r

|λl(N̂k)|.

It also holds:

λi(Nk) ≥ λi(N̂k) ≥ λi+n−r (Nk), i = 1, . . . , r.

Therefore we onlude with |λi (N̂k)| ≤ max{|λ1(Nk)|, |λn(Nk)|}:

||N̂k ||2 = max
l=1,...,r

{|λl(N̂)|} ≤ max{|λ1(Nk)|, |λn(Nk)|} = ||Nk ||2.

We �nish by alulating

m∑

k=1

||N̂k ||2 ≤

m∑

k=1

||Nk ||2 <
α

Mβ
=

α̂

Mβ̂
,

from whih it follows that the redued system is BIBO stable. �

Corollary 5.5.12. If A and Nk are symmetri and the ondition (5.89) holds,

the error system is BIBO stable and it holds αerr = α = α̂, βerr = β = β̂ = 1

if the redution is performed with an orthogonal U ∈ Rn×r .

Proof. If the redution is performed by an orthogonal U, then Aerr and

Nerrk are symmetri, as Â and N̂k stay symmetri. For a system ful�lling

ondition (5.89), it holds α = α̂ and β = β̂ = 1 as shown in Proposition

5.5.11. As

λmax(A
err) = λmax

([
A
Â

])
= max{λmax(A), λmax(Â)} ≤ max{−α,−α̂},= −α,

one an hoose αerr = α = α̂. The symmetri matrix Aerr an be diagonal-

ized by an orthogonal matrix, and it holds

||eA
errt ||2 ≤ ||e

QT ΛerrQt ||2 = ||Q
T eΛ

err tQ||2 ≤

=1︷ ︸︸ ︷
||QT ||2

=1︷ ︸︸ ︷
||Q||2︸ ︷︷ ︸

=βerr

||eΛ
err t ||2 ≤ e

−αerr t ≤ e−αt ,

with βerr = β = β̂ = 1. Using ||N̂k ||2 ≤ ||Nk ||2 (f. Proposition 5.5.11) one

an onlude that ||Nerrk ||2 = max{||Nk ||2, ||N̂k ||2} = ||Nk ||2. As the original

system satis�es the ondition (5.89), one onludes

m∑

k=1

||Nerrk ||2 =

m∑

k=1

||Nk ||2 <
α

Mβ
=

αerr

Mβerr
,
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and hene the error system is BIBO stable. �

The following theorem states, that the gradient of the funtion on-

verges to zero while using Algorithm 5.

Theorem 5.5.13. Let A and Nk be symmetri and let

||u(t)||2 =

√√√√
m∑

k=1

|u(t)|2 ≤ M.

For a bilinear system (A,B,Nk , C) with

m∑

k=1

||Nk ||2 <
α

βM
, where ||eAt ||2 ≤ βe

−αt , max
i=1,...,n

(Re(λi(A))) < −α (5.89)

(=⇒ system is BIBO stable), the Algorithm 5 provides BIBO stable redued

models and is globally onvergent in the sense that for any initial projetion

matrix U0 it holds

lim
j→∞
||∇J (Uj )|| = 0. (5.91)

Proof. The redued systems are BIBO stable (f. Proposition 5.5.11).

Hene Â in partiular is stable and therefore (as we assume all Grami-

ans to exist), the H2-norm of the error system an be alulated using

equation (5.42). It holds J (U) = ||Σerr||2H2
and the funtion J (U) =

tr(CTC(P11 − 2P12U
T + UP22U

T )), seen as a funtion from R
n×r → R,

is smooth. As St(r, n) ⊂ Rn×r is an embedded submanifold of R
n×r

and

G(r, n) ∼= St(r, n)/Or , J an be seen as a smooth funtion on the Grass-

mann manifold.

Using the ondition for the Armijo stepsize,

J (Uj )− J (Uj (tA)) ≥ −ǫδ
iγ 〈∇J (Uj ),−∇J (Uj )〉 , (5.92)

one an onlude, that

J (Uj) ≥ J (Uj (tA)) = J (Uj+1). (5.93)

Using the onvergene analysis provided by Absil et al. ([1℄ 4.3.1,4.3.2), the

remaining steps of the proof an be exeuted:
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First it will be shown, that for an in�nite sequene {Uj} generated by

Algorithm 5, every aumulation point of {Uj} is a ritial point of J .

We proeed by ontradition. Let there be a subsequene {Uj}j∈K whih

onverges to an U∗ with ∇J (U∗) 6= 0. As it holds

J (Uj ) ≥ J (Uj+1), (5.94)

it follows that the sequene J (Uj ) onverges to J (U∗). Using Algorithm 5

we know that the ondition

J (Uj )− J (Uj+1) ≥ −ǫt
j
A 〈∇J (Uj ),−∇J (Uj )〉 ,

holds. The sequene −∇J (Uj ) is gradient related (f. De�nition 2.2.2) and

we know that J (Uj)−J (Uj+1) must onverge to zero, hene {t jA}j∈K → 0.

As t jA = δ
mjγ is the Armijo stepsize, there exists a j suh that everyK ∋ j ≥ j

satis�es the Armijo ondition. Hene, for

t j
A
δ
the Armijo ondition is not full-

�lled and it holds:

J (Uj)− J

(
Uj

(
t jA
δ
,−∇J (Uj )

))
< −ǫ

t jA
δ
〈∇J (Uj ),−∇J (Uj )〉 ∀j ∈ K, j ≥ j .

We de�ne ηj =
−∇J (Uj )
||−∇J (Uj )|| and αj =

t j
A
||−∇J (Uj )||

δ . It an be shown by a simple

alulation that Uj

(
t j
A
δ
,−∇J (Uj )

)
= Uj (αj , ηj). We de�ne the funtion

ĴUj = J ◦ Uj : TUj → Gr(r, n) (5.95)

whih allows us to rewrite the inequality above as:

ĴUj (0)− ĴUj (αj , ηj)

αj
< −ǫ 〈∇J (Uj ), ηj〉 ∀j ∈ K, j ≥ j .

We an now use the mean value theorem to obtain for t ∈ [0, αj ]:

−DĴUj (t, ηj)[ηj ] < −ǫ 〈∇J (Uj), ηj〉 ∀j ∈ K, j ≥ j . (5.96)

A detailed explanation of the di�erential an be found in the book of Absil

[1℄. We already stated that {t jA}j∈K → 0. As −∇J (Uj) is gradient related
and hene bounded, it holds {αj}j∈K → 0 as well. Every ηj has unit norm,

and therefore they belong to a ompat set. Hene there exists K̃ ⊂ K suh

that {ηj}j∈K̃ → η∗ for η∗ with ||η∗|| = 1. Sine the metri on the tangential

spae is ontinuous, it holds DĴUj (0, ηj)[ηj ] = 〈∇J (Uj), ηj〉 (f. Absil [1℄,
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Chapters 3.6 and 4.4) and J is smooth, we take the limit over K̃ in (5.96)

whih leads to:

−〈∇J (U∗), η∗〉 ≤ −ǫ 〈∇J (U∗), η∗〉 . (5.97)

Sine ǫ < 1, it follows that 〈∇J (U∗), η∗〉 ≥ 0. But as −∇J (Uj ) is gradient

related, one has 〈∇J (U∗), η∗〉 < 0 whih leads to a ontradition. Hene

every aumulation point of {Uj} is a ritial point of J .

It is left to show that limj→∞ ||∇J (Uj )|| = 0 holds.

As Gr(r, n) is a ompat manifold, the following set is ompat (f.

[1℄):

L = {U ∈ Gr(r, n) : J (U) ≤ J (U0)}.

We proeed by ontradition and assume that there is a subsequene {Uj}j∈K
and σ > 0 suh that ||∇J (Uj )|| > σ for all j ∈ K. We see that {Uj}j∈K ⊂ L
and sine L is ompat the sequene has an aumulation point U∗ in L. As

the gradient is ontinuous it follows ||∇J (U∗)|| ≥ σ and U∗ is not a ritial
point, whih ontradits the statement shown before.

�

5.5.4.4. The sequentially quadrati approximation. In addition to their

FGFA algorithm, Xu and Zeng [68℄ proposed a seond algorithm, whih they

all sequentially quadrati approximation (SQA). The idea is to �nd a searh

diretion by minimizing the funtion

J̃ (U) = tr(CTC(P11 + UP
j
22U

T − 2P j12U
T )), (5.98)

in every iteration j and then to projet the di�erene of Uj and the obtained

minimal matrix Ũ on the tangential spae T[Uj ]Gr(r, n) and use this projetion

as the new searh diretion. Considering the bilinear Wilson onditions as

given in Theorem 5.5.1, a minimum of J̃ (U) ould be obtained by using

Ũ = P j12(P
j
22)
−1
. The di�erene between Uj and Ũ shall now be used as

searh diretion. One has to note that [Ũ] /∈ Gr(r, n) in most ases, and

hene Ũ − Uj is a di�erene de�ned in R
n×r

. Nevertheless, after projeting

onto T[Uj ]Gr(r, n) with Π = (In − UjU
T
j ) one obtains:

∆j = Π(Ũ − Uj) = Ũ − Uj(U
T
j Ũ). (5.99)

Using this ∆j and the negative gradient−∇J (Uj ), one an de�ne a gradient

related sequene (f. De�nition 2.2.2).
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Proposition 5.5.14. If the sequene (∆j )j is bounded and it holds c1 < ||∆j ||

and

〈∇J (Uj ),∆j〉
||∇J (Uj )||·||∆j || < c2 with c1 > 0 and c2 ∈ (−1, 0), then the sequene (∆j )j

is gradient related.

Proof. Let (Uj )j∈K be a subsequene that onverges to a non ritial

point of J . One needs to show that the subsequene (∆j )j∈K is bounded

and it holds

lim
j→∞

sup
j∈K
〈∇J (Uj ),∆j〉 < 0. (5.100)

As the sequene (−∇J (Uj ))j is gradient related, it holds

lim
j→∞

sup
j∈K
〈∇J (Uj ),−∇J (Uj )〉 < 0

⇔ lim
j→∞

sup
j∈K
||∇J (Uj )|| > 0.

It is assumed that

〈∇J (Uj ),∆j〉

||∇J (Uj )|| · ||∆j ||
< c2,

with c2 ∈ (−1, 0). Hene we obtain

〈∇J (Uj),∆j〉

||∇J (Uj)|| · ||∆j ||
< c2

⇔ 〈∇J (Uj ),∆j〉 < c2||∇J (Uj )|| · ||∆j ||

⇔ lim
j→∞
sup
j∈K
〈∇J (Uj ),∆j〉 < c2 c1 lim

j→∞
sup
j∈K
||∇J (Uj)||

︸ ︷︷ ︸
>0

⇔ lim
j→∞
sup
j∈K
〈∇J (Uj ),∆j〉 < 0.

�

As long as ||∆j || > c1 and

〈∇J(Uj ),∆j〉
||∇J(Uj )||·||∆j || < c2 are ful�lled, the gener-

ated sequene {Uj} is gradient related. If the inequalities are not ful�lled

anymore, one an keep the sequene of the Uj gradient related by taking

−∇J(Uj ) as new searh diretion. The following Algorithm 6 an be estab-

lished.



5.5. H2 - OPTIMAL BILINEAR MODEL ORDER REDUCTION 99

Algorithm 6 SQA for bilinear systems (bilSQA).

Input: (A,Nk , B, C), parameters c1 > 0, and c2 ∈ (−1, 0),

maxIt : maximal number of iterations.

Output: Redued model (Â, N̂k , B̂, Ĉ)

1: Choose a matrix U0 ∈ R
n×r

suh that UT0 U0 = Ir . Set j = 0.

2: for j = 0→ maxIt− 1 do

3: Compute P j22, Q
j
22, P

j
12, Q

j
12 by solving the equations (5.69) - (5.72)

for Uj .

4: Compute Ũ = P j12(P
j
22)
−1

and alulate ∆j .

5: Compute Rj by using equation (5.75).

6: Compute the gradient ∇J (Uj) = Rj − Uj (U
T
j Rj).

7: if ∆j satis�es ||∆j || > c1 and
〈∇J (Uj ),∆j〉
||∇J (Uj )||·||∆j || < c2 then.

8: Compute the searh diretion Fj = ∆j .

9: else

10: Use Fj = −∇J (Uj ) .

11: end if

12: Compute Fj = WjΣjV
T
j .

13: Minimize J (Uj (t)) over t ≥ 0 where

Uj(t) = UjVj cos(tΣj )V
T
j +Wj sin(tΣj )V

T
j . (5.101)

14: Set tj = tmin and Uj+1 = Uj (tj).

15: end for

16: Calulate the redued model: Â = UTmaxItAUmaxIt, N̂k = UTmaxItNkUmaxIt,

B̂ = UTmaxItB, Ĉ = CUmaxIt.

In this Chapter, we have reviewed and stated methods from linear MOR

(Balaned Trunation, Krylov Subspae Methods and H2-optimal MOR),

parametri MOR and bilinear MOR, with a speial fous on bilinear H2-

optimal MOR. Two main approahes for bilinear H2-optimal MOR have

been presented. First, the interpolatory approah leading to the Bilinear

Interpolatory Krylov Algorithm (BIRKA, f. Algorithm 3, [12℄) has been

stated. It has been extended to systems with E 6= In, E nonsingular. Se-

ond, new algorithms for the H2-optimal MOR have been derived. They rely

on methods from optimization on Grassmann manifolds and their main ad-

vantage is the preservation of stability. For bilinear systems with A and Nk
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symmetri, both onvergene and stability preservation of the algorithms

have been proven. However, for non-symmetri systems this remains an

open problem and an be the objetive of future researh.



CHAPTER 6

Challenges when applying BIRKA to thermal

industrial models
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6.3. Singular sti�ness matrix A and large norm matries Nk 115

In this hapter we will fous on the appliability of BIRKA to the pre-

sented thermal models. Several strategies need to be developed to overome

the hallenges that aompany the adoption of a new algorithm within an

industrial ontext. They an be found in the next setions.

6.1. Kroneker produt appproximation

The original BIRKA (f. Algorithm 3) alulates the projetion matries

for model order redution via the following Kroneker produts:

ve(V ) =

(
−In̂ ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B) ve(Im),

(6.1a)

ve(W ) =

(
−In̂ ⊗ A

T − Λ⊗ ET −

m∑

k=1

Ñk ⊗N
T
k

)−1
(C̃T ⊗ CT ) ve(Ip).

(6.1b)

101
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However � for large systems� this alulation of the projetion matries V

and W is not feasible due to the Kroneker produt, whih rapidly inreases

the number of the equations to be handled. Benner and Breiten [12℄ propose

an iterative method to overome this di�ulty. For the alulation of the

projetion matries, a Neumann Series is employed in the following way:

ve(V ) =

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗Nk

)−1
(B̃T ⊗ B) ve(Im)

=︸︷︷︸
(×)

∞∑

i=0

[
(−Ir ⊗ A− Λ⊗ E)

−1(

m∑

k=1

Ñk
T
⊗ Nk)

]i

· (−Ir ⊗ A− Λ⊗ E)
−1(B̃T ⊗B) ve(Im)

= (−Ir ⊗ A− Λ⊗ E)
−1(B̃T ⊗ B)vec(Im)︸ ︷︷ ︸

ve(V 1)

+ (−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗ Nk) ve(V

1)

︸ ︷︷ ︸
ve(V 2)

· · ·+ (−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗ Nk) ve(V

j−1)

︸ ︷︷ ︸
ve(V j )

+ · · ·

=

∞∑

j=1

ve(V j), (6.2)

where (×) is only valid if ||(−Ir ⊗ A − Λ ⊗ E)
−1(
∑m

k=1
Ñk
T
⊗ Nk)||2 < 1

holds. In pratie, the in�nite sum is trunated after an appropriate number

of additions. The olumns of the summands V j are now alulated without

using any Kroneker produts:

V 1i = (−λiE − A)
−1BB̃i ,

V 2i = (−λiE − A)
−1

(
m∑

k=1

NkV
1(Ñk)i

)
,
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.

.

.

V ji = (−λiE − A)
−1

(
m∑

k=1

NkV
j−1(Ñk)i

)
, for i = 1, . . . , r.

This alulation an be exeuted in the same way for ve(W ). The same

projetion matries are alulated using the Trunated BIRKA proposed

by Flagg [34℄. The large matries (−λiE − A) an be fatorized by an

LU-deomposition so that V ji an be alulated e�iently. In any ase,

approximating the Kroneker produt as in (6.2) an lead to divergene if

||(−Ir ⊗ A− Λ⊗ E)
−1(

m∑

k=1

Ñk
T
⊗Nk)||2 ≥ 1.

It is advisable to hek if this norm remains smaller than 1 during the ex-

eution of BIRKA, as divergene might lead to poor redued order mod-

els. However, a diret alulation of the norm involves the inversion of

(−Ir ⊗ A − Λ ⊗ E) ∈ R
rn×rn

, whih is not feasible for large systems due

to high memory demands. Hene, the alulation of the Kroneker produt

has to be avoided. To this aim, we introdue the following norm estimation:

∣∣∣∣∣

∣∣∣∣∣(−Ir ⊗ A− Λ⊗ E)
−1

(
m∑

k=1

Ñk
T
⊗Nk

)∣∣∣∣∣

∣∣∣∣∣
2

≤ ||(−Ir ⊗ A− Λ⊗ E)
−1||2||

m∑

k=1

Ñk
T
⊗Nk ||2

≤ ||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
⊗Nk ||2

≤︸︷︷︸
see below

1

||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
||2||Nk ||2.

(6.3)

If the last expression is smaller than 1, the algorithm is de�nitly usable. We

have thus derived a su�ient ondition.

The norm ||(−Ir ⊗A− Λ⊗E)
−1||2 an be alulated without expliit inver-

sion of the matrix. The following Lemmata (f. [60℄ Chapter I.4 and [5℄

Chapter 3) will be used to establish the new result for the alulation of the

orresponding norm in Proposition 6.1.3.

1 ||M1 ⊗M2||2 = ||M1||2||M2||2[44℄, Corollary 13.11.
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Lemma 6.1.1. For M ∈ Cn×n nonsingular:

||M−1||2 =
1

mini=1...n

√
λi(MM

T
)

.

Lemma 6.1.2. For a normal matrix M:

||M−1||2 =
1

mini=1...n |λi(M)|
.

By using the two Lemmata 6.1.1 and 6.1.2, we derive the following

proposition, whih will be used for the alulation of the norm of (−Ir ⊗A−

Λ⊗ E)−1.

Proposition 6.1.3. For A,E ∈ Rn×n , symmetri, D = diag(d1, . . . , dr ),

dk ∈ C:

||(−Ir ⊗ A−D ⊗ E)
−1||2 =

1

θ
,

where

θ = min
k=1...r

{
|λmin(−A− dkE)| for Im(dk) = 0√
λmin((−A− dkE)(−A − dkE)

T
) else

Proof. The above matrix an be written as follows:

(−Ir ⊗ A−D ⊗ E) =




−A− d1E 0 . . . 0

0 −A− d2E . . . 0
.

.

.

.

.

.

0 . . . 0 −A− drE


 ,

with dk ∈ C. For dk ∈ R it is obvious that (−A − dkE) is normal due

to A and E symmetri, and thus Lemma 6.1.2 an be used for alulating

λmin(−A−dkE). For dk ∈ C the eigenvalue λmin((−A−dkE)(−A − dkE)
T
)

is determined using Lemma 6.1.1. Taking the minimum of all alulated

eigenvalues and inverting it onludes the proof. �

The alulation of ||(−Ir ⊗A−Λ⊗E)
−1||2 an now be done by Propo-

sition 6.1.3 using the MATLAB

R©
[47℄ funtion eigs. For the estimation of

the norm as given in equation (6.3), it remains to alulate the norms of Nk
and Ñk , whih is done in MATLAB with the funtions normest and norm,

respetively.

For randomly hosen initial values, the norm estimate is possibly greater
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than 1. However, as Λ and Ñk hange towards their optimal values, the

norm estimate improves. For this reason, at least two or three iterations

should be performed to hek if the norm is smaller than 1 with better

approximations of Λ and Ñk .

6.2. Stability

In ontrast to the observations in [12℄, unstable systems have been

enountered when applying BIRKA to industrial problems. Hene, a onept

for stability preservation for the redution with BIRKA is needed. Stability

for linear and bilinear systems has been disussed in Setions 2.3.1.1 and

2.3.2.2. Whenever we speak of a linear stable system, we refer to a system

with Re(λi(A,E)) < 0 for the eigenvalues λi of a system.

For the speial bilinear systems that result from parametri systems (f.

Setion 5.3.2), it is possible to dedue a relation between the eigenvalues

of the matries A and A+
∑m

k=1
ukNk . As Nk = 0 for uk resulting from the

original linear inputs, only the inputs that are time independent will be taken

into aount and thus a omparison of the linear and bilinear eigenvalues is

reasonable. In other words it holds (f. Setion 5.3.2):

m∑

k=1

ukNk =

m∑

k=1

ukNk ,

and we use the latter for our omparison. Theorem 2.1.5 and Corollary

2.1.6, originally due to Bauer and Fike [38℄, allow us to show Proposition

6.2.1, providing results for the distane between the onsidered eigenvalues

and the stability of the bilinear system in terms of the eigenvalues:

Proposition 6.2.1. Let A = Xdiag(λ1, . . . , λn)X
−1

with Re(λi(A)) < −c <

0 for all i = 1, . . . , n. If

||u||2

m∑

k=1

||Nk ||2 <
c

κ2(X)
, (6.4)

then for any j ∈ {1, . . . , n}, there exists an i ∈ {1, . . . , n} suh that

|λi(A)− λj(A+

m∑

k=1

ukNk)| < c.

In addition Re(λj (A+
∑m

k=1
ukNk)) < 0 for j = 1, . . . , n.
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Proof. With Corollary 2.1.6 one onludes:

|λi (A)− λj(A +

m∑

k=1

ukNk)| ≤ κ2(X)||

m∑

k=1

ukNk ||2

≤ κ2(X)||u||2||

m∑

k=1

Nk ||2

< c.

Assume Re(λj(A +
∑m

k=1
ukNk)) ≥ 0 for one �xed j ∈ {1, . . . , n}. As

c < |Re(λi(A))| for all i = 1, . . . , n and for j there exists i suh that

|λi(A)− λj(A +
∑m

k=1
ukNk)| < c one alulates:

c < |Re(λi(A))|

≤ |Re(λi(A))| +Re(λj(A +

m∑

k=1

ukNk))

= |Re(λi(A))− Re(λj (A+

m∑

k=1

ukNk)|

≤

√(
Re(λi (A))− Re(λj(A +

∑m

k=1
ukNk))

)2
+
(
Im(λi(A))− Im(λj (A+

∑m

k=1
ukNk))

)2

< c,

whih leads to a ontradition. Therefore Re(λj (A +
∑m

k=1
ukNk)) < 0

holds. �

For systems with E = In and su�ently small inputs uk and matri-

es Nk (f. (6.4)), the bilinear system remains stable and every eigenvalue

of the bilinear system lies in a neighbourhood of an eigenvalue of the lin-

ear system. For E nonsingular, Proposition 6.2.1 remains valid for E−1A
and

∑m

k=1
ukE

−1Nk . Hene, it will be assumed that the eigenvalues of

E−1A +
∑m

k=1 ukE
−1Nk and E

−1A are su�iently lose. This leads to the

fat that stability preserving methods for the linear systems will be used, as

we assume the pertubation in the eigenvalues of E−1A resulting from adding∑m

k=1
ukE

−1Nk to be small.
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6.2.1. Stability preservation using the systems Gramians. For linear

systems (i.e. Nk = 0, k = 1, . . . , m), stability an be preserved by using the

following result due to Youse� [70℄. Basially, Villemagne and Skelton [66℄

have stated it even earlier, whereas Gugerin [39℄ used it in ontext of an

interpolatory approah. Youse� inorporated the fat that the eigenvalues

of the redued model will not exeed a ertain value σ.

Proposition 6.2.2. Given a linear stable system (A,B,C) with Re(λi(A)) <

−σ < 0 for i = 1, . . . , n. Then for any arbitrary full row rank matrix

V ∈ Rn×k and W = QV (V TQV )−1, where Q = QT > 0 satis�es ATQ +

QA + 2σQ < 0, the redued model (Â, B̂, Ĉ) is stable and Â = W TAV

satis�es Re(λi(Â)) < −σ for i = 1, . . . , r .

For positive semide�nite Q, the proposition remains valid, if one as-

sumes V TQV to be invertible. We generalize this for a system with E 6= I,

E nonsingular, Q positive semide�nite and Q̂ = V TETQEV nonsingular,

whih � up to the author's knowledge � has not been stated elsewhere.

Proposition 6.2.3. Given a linear stable system (E, A,B, C) with E non-

singular and Re(λi(A, E)) < −σ < 0 for i = 1, . . . , n. Let Q = QT ≥ 0

satisfy

ATQE + ETQA+ 2σETQE ≤ 0. (6.5)

Then for any arbitrary full rank matrix V ∈ Rn×r with Q̂ = V TETQEV non-

singular (and therefore Q̂ > 0), the redued model (Ê, Â, B̂, Ĉ) generated

with

W = QEV (V TETQEV )−1,

is stable and satis�es Re(λi(Â, Ê)) ≤ −σ for i = 1, . . . , r .

The proof of the Proposition follows exatly the proof of Youse� (f.

Proposition 6.2.2). However, as we have introdued two generalizations �

the presene of the E matrix and the non-strit Lyapunov inequality (f.

equation (6.5)) � we state it here for ompleteness.
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Proof. Multiplying equation (6.5) with V T and V and making use of

Ir = (V
TETQEV )−T (V TETQEV )T = (V TETQEV )−1(V TETQEV ),

leads to:

V TATQEV + V TETQAV + 2σV TETQEV ≤ 0

⇒V TAT QEV (V TETQEV )−T︸ ︷︷ ︸
W

(V TETQEV )T︸ ︷︷ ︸
Q̂

(V TETQEV )−1(V TETQ︸ ︷︷ ︸
W T

EV )

+ V TET QEV (V TETQEV )−T︸ ︷︷ ︸
W

V TETQEV︸ ︷︷ ︸
Q̂

(V TETQEV )−1V TETQ︸ ︷︷ ︸
W T

AV

+ 2σV TET QEV (V TETQEV )−T︸ ︷︷ ︸
W

(V TETQEV )T︸ ︷︷ ︸
Q̂

· (V TETQEV )−1V TETQ︸ ︷︷ ︸
W T

EV ≤ 0

⇒V TATWQ̂W TEV + V TETWQ̂W TAV + 2σV TETWQ̂W TEV ≤ 0

⇒ÂT Q̂Ê + ÊT Q̂Â+ 2σÊT Q̂Ê ≤ 0

⇒(Â+ σÊ)T Q̂Ê + ÊT Q̂(Â+ σÊ) ≤ 0.

Using the identity Ê = W TEV = (V TETQEV )−T V TETQEV = Ir , let λ
r
i

and vi be any eigenvalue and eigenvetor of Â+ σIr , then:

(Â + σIr )
T Q̂+ Q̂(Â + σIr ) ≤ 0⇒v

∗
i (Â+ σIr )

T Q̂vi + v
∗
i Q̂(Â + σIr )vi ≤ 0

⇒λri v
∗
i Q̂vi + λ

r
i v
∗
i Q̂vi ≤ 0

⇒(λri + λ
r
i )v

∗
i Q̂vi ≤ 0

⇒2Re(λri )v
∗
i Q̂vi ≤ 0

(v ∗i Q̂vi > 0)⇒Re(λ
r
i ) ≤ 0.

The eigenvalues of the redued system are the eigenvalues of Â as Ê = Ir .

Using λri vi = (Â + σIr )vi this leads to Âvi = λri vi − σvi = (λ
r
i − σ)vi .

As Re(λri ) ≤ 0 and −σ < 0, one an onlude that Re(λri − σ) < 0 and

therefore the redued system is stable. �

The dual result is also true:
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Proposition 6.2.4. Given a linear stable system (E, A,B, C) with E nonsin-

gular and Re(λi(A, E)) < −σ < 0 for i = 1, . . . , n, then for any arbitrary

full row rank matrix W ∈ Rn×r and P = P T ≥ 0 whih satisfy

APET + EPAT + 2σEPET ≤ 0, (6.6)

and nonsingular P̂ = WEPETW T
, the redued model (Ê, Â, B̂, Ĉ) gener-

ated with

V = PETW T (WEPETW T )−1,

is stable and satis�es Re(λi(Â, Ê)) ≤ −σ for i = 1, . . . , r .

Proof. The proof is analogous to the one of Proposition 6.2.3. �

For the alulation of the projetion matrix W the following Lyapunov

equation is solved:

(A+ σE)TQE + ETQ(A + σE) = −CTC ≤ 0, (6.7)

for a σ < |Re(λmax(A, E))|. Hene one obtains

W = QEV (V TETQEV )−1,

as in Proposition 6.2.3. The solution of the Lyapunov equation (6.7) is pos-

itive semide�nite, as the shifted system (A+σE, E) remains asymptotially

stable.

Equation (6.7) an be solved by using the low rank ADI iteration (f. for

example [15, 57℄) whih generates a low rank fator Z, suh that Q ≈ ZTZ.

The alulated low rank matrix Q̂ ≈ V TETZTZEV an be singular. This

always ours if rk(Z) < rk(V ) = r . Even if rk(V ) ≤ rk(Z) one an not

onlude that V TETQEV is nonsingular

2

, but for rk(V ) relatively small om-

pared to rk(Z) it is often true.

Solving large Lyapunov equations is numerially demanding. For large sys-

tems (n > 500, 000) it might be impossible � even with highly developed

methods suh as the ADI algorithm. Hene, this stability preserving method

will reah its limitations when the system's dimensions get too large.

2n = 4, E = I4, V TETZT =

(
1 1 0 0
0 0 1 1

)( 1 0 1
−1 0 0
0 −1 0
0 1 0

)
=

(
0 0 1
0 0 0

)
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6.2.2. Stability preservation via one-sided projetions. In the speial

ase of symmetri matries E,A and Nk and positive de�nite E, another

possibility for preserving stability is to use only a single projetion matrix

(this is alled one-sided method). The matries of thermal systems provided

in Setion 4.1 have exatly these properties, and therefore this stability

preservation approah is of interest.

Proposition 6.2.5 ([22℄). Given a linear system (i.e. Nk = 0) with A,E

symmetri. If E = ET > 0 and A = AT < 0 then the system is asymptoti-

ally stable.

Corollary 6.2.6 (4.4,[60℄). Let A ∈ Rn×n be a symmetri matrix, V ∈ Rn×r

have orthonormal olumns, and Â = V TAV . Then

λi(A) ≥ λi(Â) ≥ λi+n−r (A), i = 1, . . . , r. (6.8)

Corollary 6.2.7 ([22℄). Given a linear system with E = ET > 0 and A =

AT < 0, for i = 1, . . . , n. Let V ∈ Rn×r have orthonormal olumns, Â =

V TAV and Ê = V TEV , then the redued system is asymptotially stable.

Proof. With Corollary 6.2.6 one an onlude that the eigenvalues of

the matrix Â = V TAV are negative. As Â = ÂT and V TEV = Ê =

ÊT > 0 one onludes with Proposition 6.2.5 that the redued system is

asymptotially stable. �

Hene for linear systems with A and E symmetri and E positive de�-

nite, stability an be preserved via one-sided projetions. As shown in Propo-

sition 6.2.1, the eigenvalues of a bilinear system, derived from a linear para-

metri system, an now be related to the eigenvalues of this linear system.

Using Proposition 2.1.7 and Corollary 2.1.8, this leads to the following re-

sult:

Corollary 6.2.8. Let uk ∈ R for k = 1, . . . , m, A ∈ Rn×n and Nk ∈ R
n×n

symmetri with eigenvalues 0 > λ1(A) ≥ · · · ≥ λn(A) and λ1(Nk) ≥ · · · ≥

λn(Nk). Given that V ∈ R
n×r

has orthonormal olumns and Â = V TAV and

N̂k = V
TNkV , then it holds

|λi(Â+

m∑

k=1

ukN̂k)− λi(Â)| ≤ ||u||2

m∑

k=1

||Nk ||2. (6.9)
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Proof. Corollary 2.1.8 leads to

|λi(Â +

m∑

k=1

ukN̂k)− λi(Â)| ≤ ||

m∑

k=1

ukN̂k ||2

≤ ||u||2

m∑

k=1

||N̂k ||2.

As Nk and N̂k are symmetri, they are normal and therefore ful�ll

||N̂k ||2 = max
i=1,...,r

|λi(N̂k)| = max{|λ1(N̂k)|, |λr (N̂k)|},

and

||Nk ||2 = max
i=1,...,n

|λi(Nk)| = max{|λ1(Nk)|, |λn(Nk)|}.

With Corollary 6.2.6 one onludes λ1(Nk) ≥ λi(N̂k) ≥ λn(Nk). This leads

to ||N̂k ||2 ≤ ||Nk ||2 and therefore equation (6.9) holds. �

If ||u||2
∑m

k=1
||Nk ||2 is su�iently small, one an assume that λi(Â +∑m

k=1
ukN̂k) ≈ λi(Â) and therefore the redued bilinear system is stable if

the linear system is stable (f. Corollary 6.2.7). In addition it holds:

Corollary 6.2.9. Under the assumptions of Corollary 6.2.8 let c ∈ R+

with c < |λmax(Â)| = |λ1(Â)|. If ||u||2
∑m

k=1
||Nk ||2 < c then λi(Â +∑m

k=1
ukN̂k) < 0.

Proof. Assume λi(Â +
∑m

k=1
ukN̂k) ≥ 0 and alulate using equation

(6.9):

c < |λ1(Â)| ≤ |λi (Â)|

≤ |λi(Â)|+ λi(Â+

m∑

k=1

ukN̂k)

= |λi(Â)− λi(Â+

m∑

k=1

ukN̂k)| < c.

This leads to a ontradition, so λi(Â+
∑m

k=1
ukN̂k) < 0. �
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Remark 6.2.10. Using one-sided projetions for the redution of symmet-

ri matries, one an not only derive onditions for the eigenvalues of the

bilinear rewritten parametri models (as given in 6.2.8 and 6.2.9), but also

derive the BIBO stability preservation of general bilinear systems, as it has

been done in Proposition 5.5.11.

6.2.3. Stability preservation - the work�ow. As the redued models

that have been alulated with the stabilization proess using the Gramians

are in most ases better than those generated by a one-sided approah, the

work�ow in Figure 6.1 applies.

Fix a redued order r . Is solving

equation (6.7) by an ADI iteration

possible?

Yes

Solve the equation (6.7) and determine

the rank rk(Z) = l .

l ≫ r

Stability preservation via Proposi-

tion 6.2.3.

l < r

No

Use a one-sided approah.

Figure 6.1. Proposed work�ow for stabilization.

The reader should note that l ≫ r indiates the fat that the matrix Q̂

(f. Setion 6.2.1) an still be singular, but for the ase of l ≫ r , it is more

likely that Q̂ is invertible.

Remark 6.2.11. For the redution with these stability preserving methods,

the matrix W originally given by BIRKA (f. Algorithm 3) is not used within

the redution. Instead, either the matrix W given by Proposition 6.2.3 or

simply W = V (the one-sided approah) is used. This leads to the fat

that the derived H2-optimality onditions as given in equations (5.43) to

(5.47) or (5.50) to (5.53) are not ompletely ful�lled anymore. Only the
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onditions (5.47) or (5.53) hold, as they only depend on the alulation of

the matrix V .

6.2.4. Stabilization via mirroring of eigenvalues. Reently, Zeng, Chen

and Lu [71℄ proposed a stability preservation for IRKA (f. Algorithm 1).

After reduing the model by a projetion matrix generated during an IRKA

step, the matrix Â = S−1ΛS (assume Ê = Ir ) is diagonalized and its unsta-

ble eigenvalues are mirrored:

λjmir = −|Re(λj)|+ i · Im(λj ).

Finally, set Â = S−1ΛmirS as the stable redued matrix. In the bilinear ase,

this method an be used to obtain Re(λi(Â)) < 0. However with this step,

the BIBO stability will not be onsidered.

In Figure 6.2, results for the redution with stabilization for di�erent orders

are ompared. We redue the simpli�ed motor with n = 2, 952 (f. Setion

4.3.2). However, we will not inorporate geometry variations and simply use

one physial parameter (heat transfer oe�ient) and three loads.

The original BIRKA (f. Algorithm 3) is aurate for a redued order of

r = 20 (if a stable model has been obtained), whereas the redution with

the stabilization onverges to a model, whih � as it an be seen in the

third output � is not a good approximation of the original. After inreasing

the order up to r = 50, BIRKA with the stabilization performs well.

If a stable redued model is generated by a redution, where V as given

by BIRKA is used as one-sided projetion, one obtains aurate results with

r = 100. Hene, the stabilization via the mirroring of the eigenvalues an be

su�iently aurate with a smaller redued order. Nevertheless, one needs

to hek if the redued order model is aurate enough, as a redution with

the stabilization might lead to a onvergene of the algorithm but still pro-

vides an inaurate approximation of the original model.

Remark 6.2.12. This stability preservation only adresses the eigenvalues of

the matrix Â. For a bilinear system, the BIBO stability might not be ful�lled.

Hene, for the redution of thermal models, we use the stability preservation

via the one-sided projetions (even if they result in larger redued orders).

They guarantee BIBO stable models, if the BIBO stability ondition (as

given in 2.3.24) is ful�lled for the original model. This result has been

established in Proposition 5.5.11.
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Figure 6.2. Redution of the small motor model n =

2, 952 using stabilization via mirroring of poles
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6.3. Singular sti�ness matrix A and large norm matries Nk

6.3.1. Singular sti�ness matrix A. The e�et of thermal resistane

between two parts an be modeled by a small gap between them (f. Se-

tion 3.1.1). This an be done using Robin boundary onditions on the inter-

fae surfaes, and then modeling the resistane by a ontat heat transfer

oe�ient hc :

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n
= hc

(
T (x, t) |I1 − T (x, t)|I2

)
.

By onstruting the parametrized heat equation as given in Setion 4.1,

this leads to the following parameter dependent sti�ness matrix:

A+ hcNc .

However, matrix A an be singular (but A+hcNc is not) due to the following

e�et. Assume we are solving the heat equation for a model with two

di�erent parts, separated by a small gap (f. Figure 3.1). In the ase,

where there is no heat �ux between the two parts, the ontat heat transfer

oe�ient is hc = 0 and the boundary onditions beome:

k2
∂T |I1(x, t)

∂n
= −k1

∂T |I2(x, t)

∂n
= 0.

Hene, the heat equations beome

ρC
∂T1(x, t)

∂t
= k∆T1(x, t) and ρC

∂T2(x, t)

∂t
= k∆T2(x, t),

on the two di�erent parts, with

∂T1(x,t)

∂t
= ∂T2(x,t)

∂t
= 0 as the temperature

is onstant (i.e. T1(x, t) = T const1 and T2(x, t) = T const2 ) sine no heat

�ux is present. The disretization of the heat equation with the boundary

ondition yields A1T
const
1 = 0 and A2T

const
2 = 0, whih is only omplied if A1

and A2 are singular matries. In the ase, where a heat �ux between the two

parts is present, a matrix Nc is inluded in the disretization and A+ hcNc
is a nonsingular matrix � whereas A remains singular.

As BIRKA is not de�ned for systems with singular A matrix (and leads to

inaurate results when a redution is performed), one needs to modify the

original systems representation. As A+ hcNc is nonsingular, it is possible to

use a shift s and obtain:
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A+ hcNc

=A+ sNc − sNc + hcNc

=Ã+ h̃cNc where Ã = A+ sNc and h̃c = hc − s.

One an now apply BIRKA, using the nonsingular Ã instead of A. After the

redution, the alulation needs to be reversed: If

ˆ̃A and N̂c are the resulting

redued order matries, one alulates: Â = ˆ̃A− sN̂c . However, for a stable
ˆ̃A the matrix Â is not known to be stable, but one an onnet the stability

of

˜̂A and Â using Proposition 6.2.1, whih leads to the following statement:

Let Re(λi (
˜̂A)) < −c and X−1 ˜̂AX = diag(λ1, . . . , λr ). If |s| · ||N̂c ||2 <

c
κ2(X)

,

then Re(λj (Â)) < 0 for all j = 1, . . . , r .

6.3.2. Large norm matries Nk . It is possible that BIRKA annot be

applied to a system where the norms of Nk are large. First of all, the

Kroneker produt approximation as given in Setion 6.1

||(−Ir ⊗ A− Λ⊗ E)
−1||2

m∑

k=1

||Ñk
T
||2||Nk ||2 < 1, (6.10)

is not neessarily ful�lled. In addition, the BIBO stability ondition

3

as given

in Theorem 2.3.24

m∑

k=1

||E−1Nk ||2 <
α

Mβ
, (6.11)

might not be ful�lled.

3

With β,α ∈ R, β > 0 and 0 < α ≤ −maxi (Re(λi ((A, E)))) and ||eE−1At ||2 ≤
βe−αt , t ≥ 0, ||u(t)|| =

√∑m

k=1
|uk(t)|2 ≤ M.
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One an then apply a simple saling g ∈ R+ to the bilinear model and

try to hoose it suh that (6.10) holds for the saled matries Nk = gNk .

Eẋ = Ax +

m∑

k=1

Nkukx + Bu,

⇒ Eẋ = Ax +

m∑

k=1

Nk
g

g
ukx + B

g

g
u,

⇒ Eẋ = Ax +

m∑

k=1

Nkukx + Bu, with Nk = gNk , B = gB and u =
1

g
· u.

(6.12)

In addition, one might think of hoosing the saling suh that the BIBO

stability ondition holds for the saled model. However this is never the ase:

Lemma 6.3.1. If a bilinear system does not ful�ll the BIBO stability on-

dition (6.11), the saled system (6.12) does not ful�ll the BIBO stability

ondition.

Proof. Set Γ =
∑m

k=1
||E−1Nk ||2. It holds

Γ · |g| = |g|

m∑

k=1

||E−1Nk ||2 =

m∑

k=1

||E−1gNk ||2.

For the saled input u one obtains:

||u|| = ||
1

g
u|| =

1

|g|
||u|| ≤

M

|g|
:= M.

As the BIBO stability ondition does not hold for the original system one

obtains:

Γ ≥
α

Mβ
,

⇒ Γ|g| ≥
α|g|

Mβ
=

α

Mβ
.

This shows, that the BIBO stability ondition is not ful�lled for the saled

system as

∑m

k=1
||E−1gNk ||2 = Γ|g| <

α

Mβ
does not hold. �

In our ase, we mostly onsider bilinear systems, that have been ob-

tained by rewriting a parametri system (see Setion 5.3.2) in the following
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way:

Eẋ = (A+ pN1)x + Bu,

Eẋ = Ax + N1û1x + N2û2 + · · ·+ Nm+1ûm+1 + B̂û,

with N2 = ... = Nm = 0, B̂ = [0 B], B ∈ Rn×m and û = [p u]T . Now the

saling g an be used in a slightly di�erent way than for �originally� bilinear

systems:

Eẋ = Ax +N1u1x + N2u2 + · · ·+ Nm+1um+1 + Bu,

with N1 = gN1, N2 = ... = Nm = 0, [g · 0 B] = B = B̂ = [0 B] and

u =
[
p
g u

]T
. Hene the input u is only saled in the entries whih refer to

N1, and the matrix B is not saled.

Using this saling, one an not only try to sale in suh a way that the

Kroneker produt approximation is ful�lled, but also that the BIBO stability

ondition is omplied. This is possible if one assumes that

||u|| =

√√√√ 1

|g|2

m∑

i=1

|ui |2 +

m∑

i=m+1

|ui |2 ≤ M ≤
1

|g|
||u||.

(In our example m = 1.) Hene

M ≤
1

|g|
M, (6.13)

holds, and in addition one has

|g|

m∑

k=1

||E−1Nk ||2 =

m∑

k=1

||E−1gNk ||2,

as Nk = 0 for k > m. As the BIBO stability ondition does not hold for the

original model, one has:

α|g|

Mβ
≤ |g|

m∑

k=1

||E−1Nk ||2.

But as (6.13) holds, it is possible that

|g|

m∑

k=1

||E−1Nk ||2 <
α

Mβ
,
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is ful�lled (as

α|g|
βM
≤ α

βM
), if g is hosen in the right way.

When saling the matries Nk , we observed that the redued orders

inreased. This e�et an also be seen with linear models in the following

way:

Remark 6.3.2. The saling fator g might a�et the redued order, whih

has to be inreased in order to obtain a good approximation of the original

unsaled model.

For a further investigation of this behavior, we have introdued a saling

in a linear model (as A = A0 + gA1). A redution of this saled model

was performed using a one-sided moment mathing. The obtained matrix

Vscaled has then been used to redue the unsaled model (A = A0 +A1). By

inreasing the order of the saled model, it has been possible to ahieve a

good approximation to the unsaled one.

In this hapter, several issues that oured, while applying BIRKA to

large thermal models, have been examined. First, an approximation of the

Kroneker produt � originally due to Benner and Breiten [12℄ � has been

presented.

Seond, methods for the stability preservation of BIRKA have been derived.

Assuming that the eigenvalues of the linear and the bilinear systems (ob-

tained from parametri systems) are su�iently lose, one an use stability

preservation methods for linear systems. First, a method using the sys-

tem's Gramians has been transferred to systems with E 6= In nonsingular

and positive semide�nite Gramians (f. Setion 6.2.1). Seond, the stabil-

ity preservation using one-sided projetions has been examined, and again

stability preservation has been obtained for systems where the eigenvalues

of the linear and bilinear/parametri system are su�iently lose. Reently,

a stability preservation via mirroring of eigenvalues has been proposed by

Zeng, Chen and Lu [71℄. A short examination of this method has been

added (f. Setion 6.2.4) � providing good results whenever the redued

order is su�iently large. In addition one should note, as it has already

been shown in Proposition 5.5.11, using one-sided projetions for symmet-

ri models leads to BIBO stable models.

Third, one needs to onsider singular A matries, whih an be avoided by

using shifts, and matries Nk that have the same magnitude as the A matrix,

whih need to be saled, in order to obtain good results. Results for these

modi�ations will be presented in Chapters 7.2 and 8.





CHAPTER 7

Redution of physially parametrized

thermal models

7.1. Results for the H2-optimal redution on Grassmann manifolds121

7.2. Results for the redution using BIRKA 131

In this hapter, we present results for the redution of models where

only physial properties are varied. This inludes (ontat) heat transfer

oe�ients (Robin boundary onditions) and �xed temperatures (Dirihlet

boundary onditions). First, we onsider the new bilinear H2-optimal algo-

rithms derived in Setion 5.5.4. They will be tested by reduing a bilinear

heat equation model on a square with n = 100 degrees of freedom. Seond,

we will present results for the redution with BIRKA (f. Algorithm 3) and

the modi�ations given in Chapter 6.

7.1. Results for the H2-optimal redution on Grassmann manifolds

Results for the redution with bilGFA (Algorithm 4), bilFGFA (Algo-

rithm 5) and bilSQA (Algorithm 6) will be analyzed in this setion. The

derivation of the algorithms an be found in Setion 5.5.4. Their main ad-

vantage is that they an preserve stability during redution, if the original

model is BIBO stable. To demonstrate their performane, the algorithms

will be applied to a bilinear heat equation model on a square [26℄:

∂T

∂t
= ∆T in Ω = (0, 1)× (0, 1),

121
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∂T

∂n
= 0.75 · u1,2,3(T − 1) on Γ1,Γ2,Γ3,

T = u4 on Γ4,

with uk(t) =
1
6 cos(kπt) for k = 1, . . . , 4 and one Dirihlet (on Γ4) and

three Robin boundary onditions (Γ1,2,3). The disretization of the above

di�erential equation leads to the following bilinear system:

Σbil :




Ṫ (t) = AT (t) +

4∑

k=1

Nkuk(t)T (t) + Bu(t),

y(t) = CT (t),

(7.1)

with A,Nk ∈ R
100×100

, B ∈ R100×4 and C ∈ R100. We redue the original

model to order r = 8. The system is then BIBO stable, as the alulated A

and Nk are symmetri, and 24.75 =
∑3

k=1
||Nk ||2 <

α
Mβ =

11
1
3 ·1
= 33 holds.

In every step of the algorithms, we are going to measure the error in the

H2-norm as follows: First, we alulate the norm of the original model:

Jo = ||Σbil||
2
H2
= tr(CP11C

T ),

then after eah step we alulate the H2-norm of the error system:

Jerr = ||Σ
err
bil ||

2
H2
= tr(CP11C

T − 2CP12Ĉ
T + ĈP22Ĉ

T ).

The relative error of the system is the square root of the quotient of these

norms:

ERRrel =

√
Jerr
Jo

. (7.2)

First, we apply bilFGFA (Algorithm 5). Seond, we redue with a bilinear

version of the gradient �ow algorithm (bilGFA, Algorithm 4). For the al-

ulation of tj , we use the adaptive stepsize for the linear ase established by

Yan and Lam [69℄, whih turns out to be a good hoie for the time step-

ping in our bilinear model. Third, we will ompare the results with bilSQA

(Algorithm 6).

We will initialize the algorithms with two di�erent senarios:

(I1) The matrix U0 is obtained by generating a random matrix in R
n×r

followed by an SVD to orthogonalize the olumns in order to ful�ll

the ondition UT0 U0 = Ir . The relative H2-error of the starting

model is ERRrel = 0.64524.
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(I2) The matrix U0 is obtained by a redution of the linear model (i.e.

Nk are not onsidered) via a moment mathing approah (f. the

book of Antoulas [5℄, Chapter 11) followed by taking only the

�rst three olumns of the projetion matrix and �lling the rest of

the olumns with basis vetors e1 = [ 1 0 ... 0 ]
T
to er−3. Again, an

orthogonalization is required to satisfy the ondition UT0 U0 = Ir .

The relative H2-error of the starting model is ERRrel = 0.29734.

In addition to the initializations, we start the algorithms bilFGFA and bilSQA

with di�erent parameter hoies:

(P1) ǫ = 0.5, δ = 10−3 and γ = 3, 100.
(P2) ǫ = 0.9, δ = 10−3, γ = 420, c1 = 10

−12
and c2 = −10

−7.

Remark 7.1.1. It should be noted that the hoie of the parameters and of

the initialization has a strong impat on the performane of the algorithms.

During our analysis, several parameter hoies and initializations have been

tested (not only those presented here). Some of them lead to good results,

others do not result in a desent of J (U) or require long simulation times

until a minimum is reahed.

After a user de�ned maximal number of iterations every algorithm stops.

In addition, the following stopping riteria have been implemented: bilGFA

stops after the 2-norm of the iterate Γj (f. equation (5.82)) is smaller than

a user de�ned tolerane, bilFGFA and bilSQA are stopped after the norm

on the Grassmann manifold ||∇J (Uj )|| = 2tr(∇J (Uj )
T∇J (Uj)) is smaller

than a prede�ned tolerane. The results for the di�erent initializations, pa-

rameter hoies, stopping riteria and algorithms are summarized in Tables

7.1 and 7.2.

The results for the redution with the initialization (I1) and di�erent

algorithms and parameter hoies are shown in Figure 7.1.
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Figure 7.1. Redution with bilGFA, bilFGFA and bilSQA

for initialization (I1). Stopping riteria: ||Γj ||2 < 10
−5
,

||∇J (U)|| < 10−9
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The desent in the funtion J (U) for the redution with initialization

(I1) is plotted in Figure 7.2. One observes that bilSQA starts with the

steepest desent � it is obtained by using ∆j as a desent diretion (f.

Setion 5.5.4.4). However, after hanging the diretion to −∇J (Uj ), the

desent is smaller and an lead to large numbers of iterations depending on

the stopping riterion used.

0 100 200 300 400 500
10−4

10−3

10−2

steps taken

J
(U
)

Desent of the objetive funtion J (U)

bilFGFA, (P1)

bilGFA

bilSQA, (P2)

Figure 7.2. Desent in funtion J (U) for di�erent algo-

rithms using the initialization (I1)

Results for di�erent stopping riteria with initialization (I1) are shown

in Figures 7.3, 7.4 and 7.5. bilSQA performs best, whih is onsistent

with Figure 7.2, where this algorithm shows the steepest desent. As

given in Table 7.1 the orresponding relative H2-error for stopping rite-

rion ||∇J (U)|| < 10−6 is 0.04355. To reah omparable auray, more

iterations and a smaller stopping riterion are required for the other two

algorithms.
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Table 7.1. Results using the di�erent algorithms with ini-

tialization (I1) and di�erent stopping riteria.

Algorithm and

parameter hoie

stopping riterion number of

iterations

approx. al-

ulation time

relative H2-error

of the �nal model

bilGFA ||Γ||2 < 10
−2

49 6se 0.484

bilGFA ||Γ||2 < 10
−3

453 40se 0.15143

bilGFA ||Γ||2 < 10
−4

712 1min 0.088272

bilGFA ||Γ||2 < 10
−5

3,415 5min 0.028826

bilFGFA (P1) ||∇J (U)|| < 10−4 5 1se 0.47982

bilFGFA (P1) ||∇J (U)|| < 10−6 391 10se 0.10271

bilFGFA (P1) ||∇J (U)|| < 10−8 4,472 2min 0.037932

bilFGFA (P1) ||∇J (U)|| < 10−9 9,821 4min 0.029936

bilSQA (P2) ||∇J (U)|| < 10−4 8 1se 0.075125

bilSQA (P2) ||∇J (U)|| < 10−6 182 5se 0.04355

bilSQA (P2) ||∇J (U)|| < 10−8 1,771 40se 0.037208

bilSQA (P2) ||∇J (U)|| < 10−9 12,156 4min 0.035788

Table 7.2. Results using the di�erent algorithms with ini-

tialization (I2) and di�erent stopping riteria.

Algorithm and

parameter hoie

stopping riterion number of

iterations

approx. al-

ulation time

relative H2-error

of the �nal model

bilGFA ||Γ||2 < 10
−2

9 1se 0.27289

bilGFA ||Γ||2 < 10
−3

107 9se 0.14657

bilGFA ||Γ||2 < 10
−4

776 1min 0.04425

bilGFA ||Γ||2 < 10
−5

6,901 10min 0.028703

bilFGFA (P1) ||∇J (U)|| < 10−4 4 1se 0.26078

bilFGFA (P1) ||∇J (U)|| < 10−6 316 7se 0.10764

bilFGFA (P1) ||∇J (U)|| < 10−8 3,637 1min30se 0.041569

bilFGFA (P1) ||∇J (U)|| < 10−9 5,864 2min 0.038746

bilSQA (P2) ||∇J (U)|| < 10−4 5 0.2se 0.091838

bilSQA (P2) ||∇J (U)|| < 10−6 85 2se 0.042356

bilSQA (P2) ||∇J (U)|| < 10−8 1,899 40se 0.036458

bilSQA (P2) ||∇J (U)|| < 10−9 44,076 18min 0.030022
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Figure 7.3. Redution with bilGFA for initialization (I1)

with di�erent stopping riteria.
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The algorithms (bilGFA, bilFGFA and bilSQA) perform well on this

simple bilinear model. The quality of the resulting optimal models, however,

depends on the seletion of the initial matrix U0, the stopping riteria and

the optimization parameters (ǫ, δ, γ, c1, c2). If they are not hosen arefully,

it is possible that a large number of iterations is required. This an lead to

long redution times, if the algorithm is applied to larger models, even if one

is able to solve the underlying Lyapunov and Sylvester equations (f. (5.69)

to (5.72)) in a reasonable amount of time.

The following open issues provide interesting opportunities for future re-

searh:

• The solution of the bilinear Lyapunov and Sylvester equations has

been implemented diretly. It remains open if it is possible to

obtain redued order models in a reasonable number of iterations

(and hene time) using tehniques for large systems (for example

the ADI iteration presented among others in [57, 14℄).

• For systems with symmetri A and Nk matries, BIBO stability is

preserved during the redution, and the algorithm is onverging.

However, for systems where A and Nk are not symmetri it re-

mains an open question if stability an be preserved in the redued

model.

• The derivation of an adaptive stepsize for the bilinear ase might

have an in�uene on the number of iterations and on the on-

vergene behavior. For linear systems, Yan and Lam established

Theorem 5.5.13 for their adaptive stepsize. As for bilinear sys-

tems an analogue stepsize is not yet known and the derivation of

a similar theorem remains an open problem.

• In addition, one an think of �nding a way to hoose good opti-

mization parameters (ǫ, δ, γ, c1, c2) a priori. Or to update them

in an e�ient way during the redution.

• The timestep in the algorithms is hosen using an Armijo ondi-

tion. One might think of testing a di�erent ondition to hose the

stepsize, for example a Wolfe ondition on Grassmann manifolds

(refer to Qi [55℄).
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7.2. Results for the redution using BIRKA

In ontrast to the bilinear fast gradient �ow algorithm, whih is not

yet ready for the appliation to large bilinear models as shown in Setion

7.1, BIRKA an be used in the ontext of large models. Nevertheless,

several issues need to be adressed, suh as stability preservation and the

approximation of the Kroneker produt. These issues have been disussed

in Chapter 6. We will now present results for the redution of a thermal

model, where only physial properties are parametrized (f. Setion 3.3).

The thermal analysis is arried out using Comsol Multiphysis

R©
, version 3.5a

[52℄. By exporting several matries from Comsol

R©
and a thorough analysis

of the underlying equations, it is possible to reonstrut a parametri model

with variable parameters and loads of the form:

Σlin :





EṪ (t) =

(
Ã+

q∑

i=1

hiNi +

v∑

k=q+1

(h̃c )kNk

)
T (t) + B ·




h1T∞
.

.

.

hqT∞
T0
L(t)



,

y(t) = CT (t),

(7.3)

where q is the number of heat transfer oe�ients h, and v − q is the

number of ontat heat transfer oe�ients hc . If A is singular, it has been

replaed by a non-singular matrix Ã as desribed in Setion 6.3.1.

In Figure 7.6, the modeled motor part is shown. One an see parts

of stator, oil, housing and some insulation parts. The following loads and

parameters need to be onsidered: On top of the housing a temperature

T0 is �xed to take a spei�ed maximum temperature into aount. The

oil losses L(t) are inorporated into the oil. Heat transfer by onvetion

is modeled at seven di�erent loations, for example on oil and housing,

resulting in 7 heat transfer oe�ients (i.e. q = 7). Thermal resistane

is inorporated at six di�erent loations, for example between insulation

and stator or insulation and oil (i.e. v = 13). The size of the model is

n = 41, 199 and the original transient Comsol R© simulation for one parameter

setting takes about 90 minutes.

Two di�erent models of the eletrial motor have been examined. The �rst

one onsiders only heat transfer oe�ients as parameters and ignores the
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Figure 7.6. The Comsol

R©
model for the heat transfer in

a stator slie, without the rotor.

e�ets of thermal resistane between some parts of the motor. This leads to

a model with 7 parameters and 4 loads. The seond model additionally takes

into aount the thermal resistanes and therefore ontat heat transfer

oe�ients are onsidered, whih leads to a model with 13 parameters and

4 loads. The temperatures at four di�erent loations will be examined:

at the front of the stator, at the oil and at two di�erent points on the

insulation.

Eah of the resulting parametri systems (7.3) is reformulated as a bilinear

system by following the proedure explained in [11℄ (f. Setion 5.3.2) and

afterwards redued using BIRKA (Algorithm 3). The alulation of the

projetion matries V and W is performed as explained in (6.2) and the

in�nite sum is trunated after 10 summands.

The alulations were performed using MATLAB [47℄ on 12CPUs with 3GB

RAM eah.

7.2.1. Model 1 � no ontat heat transfer oe�ients.

7.2.1.1. General results. The stability of the original model is preserved

by alulating the projetion matrix W as desribed in Proposition 6.2.3. It

required 16 iterations to �nish the redution, and the hange in the eigenval-

ues between the last two iterations was less than 10−7. The whole proedure
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took about 11 hours and resulted in a model of order r = 50 whih an be

simulated in 10 seonds. This is a speed-up of over 500 ompared to the

original simulation time of 90 minutes. Compared to the redution time of

11 hours, the original model ould have been simulated about 8 times.

When omparing the solution of the original model to the solution of the

redued model, one obtains only a small deviation, whih an be seen in the

error plots of Figure 7.7. The absolute error in temperature is smaller than

0.07 K, orresponding to a relative error of less than 2 · 10−4. It is impor-

tant to make sure that the redued model gives reliable results over a wide

range of parameter values and inputs. Simulations with the redued model

have been performed where the heat transfer oe�ients are hosen from

a range of 5 to 100, and the oil losses L(t) and the ambient temperature

T∞ have been varied. For all these variations the redued model gives an

exellent approximation of the full model. In Figure 7.8, the behavior of the

temperature for six di�erent heat transfer oe�ients on the oil is shown.

The error plots on the right show that the relative and absolute errors are

su�iently small. In ontrast to the standard pMOR methods (f. Setion

5.3) no training or interpolation in the parameters is required.

7.2.1.2. Stability preserving� omparing the di�erent approahes. As

explained in Setions 6.2.1 and 6.2.2, stability an be preserved by di�erent

proedures. Here, the following approahes will be examined:

• gramianBIRKA: The redued model is alulated using V as in

Algorithm 3 and equation (6.2), and the matrix W is alulated

using Proposition 6.2.3. Results are shown in Figures 7.7 and 7.8.

• BIRKA-tS: The projetion matries V and W are alulated with

Algorithm 3 and equation (6.2). Stability is not preserved. Hene,

in every step of the iterative proess the generated redued system

is saved, and a stable system is hosen from these systems. Suh

a stable system does not always exist, and even if it does, it is

possibly not an optimal redued system, as it is not neessarily

the �nal redued system.

• BIRKA-oS: The redued model is alulated with Algorithm 3

and equation (6.2). Only in the last step a one-sided projetion

with V is used.

• only V: The projetion matrix V is alulated as in Algorithm 3

and equation (6.2). In every step of the algorithm a one-sided

projetion is used to alulate the redued model.
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Figure 7.8. Temperature urve for six di�erent values

(5, 25, 45, 65, 85, 100[W/m2K]) of the heat transfer oef-

�ient on the oil together with the relative and absolute

errors between original and redued order models.
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For the outputs on top of the oil (output 2) and on the insulation

between oil and stator (output 3), all approahes give a su�ient auray

for a redued order of r = 40. However, for the outputs on the stator-front

(output 1) and on the insulation on top of the stator (output 4) the results

di�er. For the original BIRKA (BIRKA-tS), good results for all outputs

are obtained for r = 40 if a stable model is found. The gramianBIRKA

performs well for r = 50 (see Figures 7.7 and 7.8). For the two one-sided

approahes, the order needs to be inreased up to r = 60 for BIRKA-

oS and up to r = 100 for only V to obtain aurate models (f. Figure

7.9). The alulation in BIRKA-tS uses two projetion matries V and

W , suh that the optimality onditions hold. All important informations

about the original model are provided by these matries, and then transferred

to the redued order model. The three other methods will only use V in

their redution, whereas the information ontained in W is lost. BIRKA-oS

alulates matries V and W in every step. In the last step V is used as

a one-sided projetion to obtain a stable redued order model. Hene the

information given by V and W is present during the alulation and gets

lost only in the last step. The gramianBIRKA gets information not only

from V as given by the original BIRKA, but also from the solution of the

Lyapunov equation (6.7) whose solution Q is used for the alulation of W

as given by Proposition 6.2.3. For this reason these methods perform well

for r = 60 and r = 50 respetively. The method only V however, uses

least information, as in every step of the original BIRKA only V is used for

a one-sided redution.

Table 7.3. Comparison of simulation times and redution

times for the seond model

redued

order

approah simulation

time of re-

dued model

redution time speed-

up

r = 600 only V 60s 3 days 3 hours 90

r = 300 BIRKA-tS af-

ter only V

15s 3d 3h + 12h 300

r = 300 BIRKA-oS af-

ter only V

15s 3d 3h + 12h 300
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Figure 7.9. One-sided methods.

7.2.2. Model 2 � ontat heat transfer oe�ients. In the seond

model thermal resistane has been taken into aount. Six additional on-

tat heat transfer oe�ients hc are inorporated into the model. Their

values range from 200 W
m2K

up to 3, 600 W
m2K

. These parameters an lead

to a singular matrix A, and a shift s needs to be introdued to obtain a

nonsingular matrix Ã = A + sN as explained in Setion 6.3.1. For every

given hc ∈ [h
min
c , hmaxc ], the enter of the interval is hosen as a shift.

For this model, the stability preservation using Proposition 6.2.3 is not ap-

pliable, beause the size of a redued model will be larger than the rank

of the low rank fator in the ADI iteration. Hene, stability an only be

preserved using a one-sided projetion. This leads to larger redued orders
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ompared to an unmodi�ed BIRKA.

For the redution, the following approahes are used:

• only V: The projetion matrix V is alulated as in Algorithm 3

and equation (6.2). In every step of the algorithm a one-sided

projetion is performed to alulate a redued model.

• BIRKA-tS after only V: The projetion matries V and W are

alulated with Algorithm 3 and equation (6.2) from a redued

model generated by only V. Stability is not preserved. Hene, in

every step of the iterative proess the generated redued system

is saved, and a stable system is hosen from these systems. This

stable system does not always exist, and even if it does, it is

possibly not an optimal redued system, as it is not neessarily

the �nal redued system.

• BIRKA-oS after only V: The redued model is alulated with

Algorithm 3 and equation (6.2) out of a redued model generated

by only V. Only in the last step a one-sided projetion with V is

used.

The redution was performed using the one-sided approah only V and

took about 3 days and 3 hours. The redued model has order r = 600

and an be simulated within 60 seonds, whih orresponds to a speed-up

of about 90 ompared to the original simulation time of 90 minutes. This

redued model leads to a good approximation of the original model over the

whole parameter range. This is illustrated for instane in Figure 7.10, where

the variation of the heat transfer oe�ient on the oil is shown. The two

approahes BIRKA-tS and BIRKA-oS use the redued model alulated

with only V and redue it again. This two step redution has been done for

the following reason: The larger the redued order gets, the more unstable

models are obtained within the redution proess. Hene hoosing a stable

model from the obtained redued order models (as it is done in BIRKA-tS)

is di�ult, and stable models are in most ases not a good approximation

to the original. In addition, a stabilization after the redution (as it is

done in BIRKA-oS) has the same problem � good approximations to the

original model are rare. Hene, after this additional redution proess, whih

takes 12 hours, models of order r = 300 are obtained. These models an

be simulated in 15 seonds, whih orresponds to a speed-up of over 300

ompared to the original simulation time. A summary of these results an
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be found in Table 7.3. Figure 7.11 shows results for the original and the

redued models from the di�erent approahes and the errors for output 3,

whih are the largest errors that oure. The redued models generated

with only V and BIRKA-tS show su�ient auray, whereas BIRKA-oS

performs not aurate enough.

7.2.3. Disussion of the results. As given in Chapter 6, several issues

were enountered when using BIRKA (Algorithm 3) for linear parametri

models. The solution for the �rst issue � the approximation of the Kro-

neker produt, f. Setion 6.1 � is used for all given redutions. In

addition, the matrix A needs to be shifted to obtain a nonsingular Ã (f.

Setion 6.3.1) for the seond model with ontat heat transfer oe�ients.

The third issue had the largest e�et on the redution: The stability of the

redued order models needs to be preserved. Several strategies have been

presented in Setion 6.2 and examined on di�erent models in this setion.

All stability preservation strategies an be used for the �rst model, whereas

the strategy using the Gramian (Setion 6.2.1) is not appliable for the se-

ond model.

It is found that with these strategies it is always possible to obtain stable

redued order models whih give aurate results over a large parameter

range (f. Figures 7.8 and 7.10). This is possible without any sampling of

the parameter spae or interpolation between redued order models, whih

is the standard approah for the redution of parametri models (f. Setion

5.3). These small parametri models an therefore be used e�iently for

optimization, where a large number of simulations for di�erent parameter

values is required.

For the seond model, the model an be redued down to an order of

r = 300. This is, ompared to the �rst model with orders from r = 40

to r = 100, relatively large. This might be due to the fat that the behavior

in six additional parameters needs to be taken into aount, and the matrix

A needs to be shifted as well. In addition, the one-sided approah for the

stabilization leads to higher redued orders as observed also for the �rst

model.
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Figure 7.10. Temperature urves for six di�erent values

(5, 25, 45, 65, 85, 100[W/m2K]) of the heat transfer o-

e�ient on the oil, and the relative and absolute errors
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ferent approahes, together with the errors for output 3,

the most sensitive of the outputs.
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7.2.3.1. Redution times. The main disadvantage of the approah are

the long redution times. This is due to the fat, that for every step of the

redution, several time-onsuming alulations need to be performed.

In every step of the algorithm, the matries V and W need to be al-

ulated by the following formulas:

V 1i = (−λiE − A)
−1BB̃i ,

W 1
i = (−λiE − A)

−TCT C̃i , i = 1, . . . , r,

and for j = 2, . . . ,maxiterS (using the Kroneker produt approximation,

.f. Setion 6.1)

V ji = (−λiE − A)
−1

m∑

k=1

NkV
j−1(Ñk)i ,

W j
i = (−λiE − A)

−T
m∑

k=1

NkW
j−1(Ñk)i , i = 1, . . . , r.

The ruial point is that V j−1 and W j−1
are required in the alulation of V j

and W j
and have to be alulated a priori, so the inversions of (−λiE −A)

and (−λiE − A)
T
need to be performed r · (maxiterS + 1) times.

For the alulations presented in this hapter, the inversion of the ma-

tries (−λiE−A) and (−λiE−A)
T
was done using an LU-fatorization. In

every step of the algorithm, r LU-fatorizations are performed, and all the

matries Li and Ui are stored. The olumns of the matries V and W are

obtained in the following way: Calulate the r olumns of V 1 and W 1
by:

V 1i = (−λiE − A)
−1BB̃i = U

−1
i L

−1
i BB̃i ,

W 1
i = (−λiE − A)

−TCT C̃i = L
−T
i U−Ti CT C̃i . i = 1, . . . , r

For all j = 2, . . . ,maxiterS the r olumns of V j and W j
are then alulated

by:

V ji = U
−1
i L

−1
i

m∑

k=1

NkV
j−1(Ñk)i ,

W j
i = L

−1
i U

−T
i

m∑

k=1

NkW
j−1(Ñk)i , i = 1, . . . , r.
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However using MATLAB, the LU-fatorization is not the fastest pos-

sibility for the alulation of A−1b (if b is a vetor). We will now ompare

redution times for the approah using the LU-fatorization, and the diret

alulation of A−1b via the �bakslash� (written as A\b) funtionality in

MATLAB.

We onsider the model with n = 41, 199 and 13 parameters and 4 loads

and the following assumptions:

1) The sum V =
∑∞
j=1
vec(V j) (.f. 6.2) is trunated at j =

maxiterS = 10 (W is handled in the same way).

2) The algorithm is assumed to onverge after 15 steps and the

redued order is r = 300.

Using the LU-fatorization, one observes for the alulation of one step

(results may di�er depending on the memory and CPUs available):

• 300 LU-fatorizations need to be alulated and saved. Eah

LU-fatorization, takes about 6 seonds, and hene in total 30

minutes.

• The 2r ·maxiterS olumns of V andW need to be alulated using

the matries Li and Ui . For one olumn, this takes 0.7 seond and

hene for 2r ·maxiterS = 6000 this takes 6000 · 0.7sec = 70min.

So the total alulation time for one step is approximately 100min. After

onvergene (15 steps, i.e. 15 · 100min = 25h) this leads to an overall

alulation time of more than a day

1

.

Using the �bakslash� implemented in MATLAB, one observes for the

alulation of one step (results may di�er depending on the memory and

CPUs available):

• The 2r · maxiterS olumns of V and W need to be alulated.

If one olumn requires 0.4sec, one obtains: 2 · 300 · 10 · 0.4 =

2400sec = 40min.

Hene the total alulation time for one step is approximately 40min. Until

onvergene (15 steps) on needs 15 · 40min = 600min = 10h of time.

For this example, the �bakslash� funtionality implemented in MATLAB

1

The large redution times of more than 3 days mentioned in table 7.3 depend on the

following: First, extra LU-fatorizations for (−λiE −A)T have been alulated, whih are not

neessary as those of (−λiE−A) an be used. Seond, more steps than the desribed 15 steps

have been used. Third, the redution order used is r = 600, whih leads to more inversions.
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only needs 40% of the redution time, than the alulation with the LU-

fatorization.

However, for larger models (around n > 100, 000), where loading the

matries Li and Ui is faster than the alulation of A\b, it an be bene�ial to

use the LU-fatorization. All alulations for the small models (n = 2, 952)

in the upoming setions are done using the �bakslash� funtionality in

MATLAB.

Opportunities for further improvement open up for the parallelization

of the alulation of the LU-fatorizations and the olumns, as eah fator-

ization and olumn an be alulated independently from the others. De-

pending on the number of available parallel slots, several fatorizations and

olumns an be alulated at the same time, hene the overall proess of

the redution an be sped up.
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In this hapter, two models of an eletrial motor with geometri vari-

ations will be onsidered. The �rst one is a large model with n = 71, 978

degrees of freedom, the seond one � with a less omplex geometry for

the ease of presentation � is a smaller model with n = 2, 952 degrees of

freedom (f. Setion 4.3.2). The geometri variations are desribed by us-

ing a�ne parameters µ and θ (saling of �ange and housing in z-diretion),

and non-a�ne parameters γ and ρ (saling of housing and stator in (x, y)-

plane)

1

. One physial parameter � a heat transfer oe�ient h on the

housing � will be onsidered here (for more details on the model see Se-

tion 4.3). As in the previous hapter, the redution will be performed using

BIRKA, and stability preservation is obtained by using a one-sided approah

(f. Setion 6.2 and Setion 7.2 as only V). Due to the geometri varia-

tions, the parametri linear models have a di�erent struture than models

1

Stritly speaking, γ and ρ are non-a�ne for the dependeny in A (f. Setion 4.3.2),

but not for the other matries. For the ease of presentation and alulation, we refer to and

treat them as non-a�ne parameters.

145
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with only physial parameters. Two di�erent approahes for reformulating

linear parametri models as bilinear models (f. 5.3.2) will be introdued in

this hapter. In addition to the reformulation step, it will be neessary to

interpolate the bilinear models as the dependene on the parameters stays

present. This will be done by using standard interpolation methods known

from the pMOR literature as desribed in Setion 5.3.1.

8.1. Reformulation of the linear parametri as bilinear systems

The models of the eletrial motors with geometri variations an be

desribed by the following linear parametri system:

Σlin,p :





E(θ,µ, γ, ρ)ẋ(t)

= (A(θ, µ, γ, ρ) + hAh(θ, γ, ρ)) x(t) + B(θ, µ, γ, ρ)u(t),

y(t) = Cx(t).

(8.1)

The parameters are: µ and θ (saling of �ange and housing in z-diretion),

γ and ρ (saling of housing and stator in radial diretion), and a heat transfer

oe�ient h (on the housing). The parameter dependent matries are:

E(θ, µ, γ, ρ) = E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ),

A(θ, µ, γ, ρ) = A0(γ, ρ) +
1

1 + θ
A 1
1+θ
(γ, ρ) + θAθ(γ, ρ)

+
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

Ah(θ, γ, ρ) = Ah0(γ, ρ) + θAhθ(γ, ρ),

B(θ, µ, γ, ρ) =

[
1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

Bh0(γ, ρ) + θBhθ(γ, ρ) (1 + θ)BS(γ, ρ)

]
,

u(t) =
[
T0 hT∞ S(t)

]T
.

(8.2)

These equations show, that the parameters θ and µ (resulting from origi-

nally linear salings in the model f. Setion 4.3) are a�ne, where as the

parameters γ and ρ are not (resulting originally from non-linear salings f.

Setion 4.3). This parametrized linear model an now be reformulated as a

bilinear model in two di�erent ways.
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8.1.1. Complete reformulation as a bilinear model (R1). We want

to make use of the speial struture that allows us to redue a parametri

model as a bilinear model. Here, the struture (f. (8.1) and (8.2)) is how-

ever slightly di�erent from the one desribed in Setion 5.3.2. The matrix

E depends on the parameters and not all parameters are a�ne. Hene, we

an only rewrite the system as a bilinear system with a parameter depen-

deny in E(θ, µ, γ, ρ) and non-a�ne dependenies (parameters γ, ρ) in the

other matries. For our �rst approah, we will �x h and onsider only the

parameter dependeny in geometry:

(E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ)) ẋ(t)

= A0(γ, ρ)x(t) +

m∑

k=1

Nk(γ, ρ)uk(t)x(t) + B(γ, ρ)u(t),

y(t) = Cx(t),

with

u(t) =

[
1

1 + θ
θ

1

1 + µ
µ T0

1

1 + µ
T0 µT0 T∞ θT∞ (1 + θ)S(t)

]T
,

A0(γ, ρ) = A0(γ, ρ) + hAh0(γ, ρ),

N1(γ, ρ) = A 1
1+θ
(γ, ρ), N2(γ, ρ) = Aθ(γ, ρ) + hAhθ(γ, ρ),

N3(γ, ρ) = A 1
1+µ
(γ, ρ), N4(γ, ρ) = Aµ(γ, ρ),

N5(γ, ρ) = · · · = N10(γ, ρ) = 0,

B(γ, ρ) =



0 0 0 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0

B0(γ, ρ) B 1
1+µ
(γ, ρ) Bµ(γ, ρ)

hBh0(γ, ρ) hBhθ(γ, ρ) BS(γ, ρ)

]
.
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Throughout this hapter, we will refer to this reformulation as refor-

mulation one (R1).

Using this reformulation, it is possible that the norms of the matries

N1 to N4 are of the same magnitude as the norm of A0. This an lead to the

fat that the BIBO stability ondition (f. Theorem 2.3.24) is not ful�lled,

whih means that the system is possibly not BIBO stable. In addition, for

the redution of the system with BIRKA it is ruial that the system ful�lls

the ondition (f. Setion 6.1)

||(Ir ⊗ A0 − Λ⊗ E)
−1

(
m∑

k=1

ÑTk ⊗Nk

)
||2 < 1,

as the Kroneker produt needs to be approximated. If the norm is larger

than one, the algorithm might show no onvergene behavior. To overome

these di�ulties, the Nk an be saled with an appropriate saling fator g

(f. Setion 6.3.2). This leads to the redution of the following system:

(E0(γ, ρ)+θEθ(γ, ρ) + µEµ(γ, ρ))ẋ(t)

= A0(γ, ρ)x(t) +

m∑

k=1

gNk(γ, ρ)u
g
k (t)x(t) + B(γ, ρ)u

g(t),

y(t) = Cx(t),

with matries A0, Nk and B given as above, and

ug(t) =

[
1

g(1 + θ)

θ

g

1

g(1 + µ)

µ

g
T0

1

1 + µ
T0 µT0 T∞ θT∞ (1 + θ)S(t)

]T
.

8.1.2. Inomplete reformulation as bilinear model (R2). For the se-

ond approah, the transformation into a bilinear model will only be onduted

for the physial parameter h, whereas the dependeny on the geometry will

be regarded as a parameter dependeny in a bilinear model. This leads to
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the following bilinear, parametri system:

Σbilin (p) :




E(p)ẋ(t) = A(p)x(t) +

4∑

k=1

Nk(p)uk(t)x(t) + B(p)u(t),

y(t) = Cx(t),

(8.3)

where p = (θ, µ, γ, ρ). The matries are as follows:

E(p) = E0(γ, ρ) + θEθ(γ, ρ) + µEµ(γ, ρ),

A(p) = A0(γ, ρ) +
1

1 + θ
A 1
1+θ
(γ, ρ) + θAθ(γ, ρ)

+
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

N1(p) = Ah0(γ, ρ) + θAhθ(γ, ρ),

N2(p) = · · · = N4(p) = 0,

B(p) =

[
0

1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

Bh0(γ, ρ) + θBhθ(γ, ρ) (1 + θ)BS(γ, ρ)

]
,

u(t) =
[
h T0 hT∞ S(t)

]T
.

Throughout this hapter, we will refer to this reformulation as refor-

mulation two (R2). A short summary for both reformulation methods an

be found in Table 8.1.

8.2. Methods for the interpolation of the redued models

For both of the two reformulations, the bilinear models will be redued

with a one-sided version of BIRKA (f. Algorithm 3, Setion 7.2) at dif-

ferent sampling points pj = (θj , µj , γj , ρj), j = 1, . . . , J, in the parameter

spae. In these points, redued order models Ê(pj ), Â(pj ), N̂k(pj ), B̂(pj )

and projetion matries V (pj ) will be obtained. In the upoming setions,

we ompare di�erent interpolation strategies to onstrut redued models

at other parameter points pnew = (θnew, µnew, γnew, ρnew). We will give a

short overview here, for a more detailed presentation, the reader is referred

to Setion 5.3.1.
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Table 8.1. Two reformulation methods � short summary.

(R1) (R2)

Complete reformulation Inomplete reformulation

Dependene in physial parame-

ters h will be ignored. All a�ne

parameters on the right hand side

of (8.1) (see also (8.2)) will be

shifted to the input, whereas ma-

trix E, still depends on them.

Reformulation of the model is only

onduted for the physial param-

eter h. All matries still depend on

the parameters in geometry.

The interpolation methods, that will be used an be arranged into two

di�erent lasses: One-step methods and two-step methods.

One-step methods (see Setion 5.3.1):

After the redued order models in di�erent points pj have been obtained one

needs to

1) Adjust the redued order bases.

Di�erent redued order models do not lie in the same state spae

and hene a transformation to the same state spae is needed.

One needs to �nd a referene subspae RV and transformations

Mj and Tj suh that the states an be transferred to the referene

subspae. One obtains:

Ej = M
T
j Ê(pj )Tj ,

Aj = M
T
j Â(pj )Tj ,

Nkj = M
T
j N̂(pj )kTj ,

Bj = M
T
j B̂(pj ),

Cj = Ĉ(pj )Tj , for j = 1, . . . , J.

2) Choose the interpolation manifold and interpolation method.

Interpolate the matries E j , Aj , Nkj , Bj and C j to obtain the re-

dued order model at pnew.
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Four di�erent methods will be used to ondut the adjusting of the

bases and the interpolation � we will refer to them as the one-step methods:

(P1) This approah was developed by Panzer et al. [53℄. The refer-

ene subspae RV is given by a SVD of the matries V (pj ). As

transformations one uses Tj = Mj = (R
T
V V (pj ))

−1
. After the

transformation to the referene oordinate system, a linear inter-

polation is used to obtain a redued model at the interpolation

point pnew. (No speial manifold is hosen.)

(P2) Like (P1), just use a weighted SVD of the matries V (pj ).

(A1) This approah was introdued by Amsallem et al. [3℄. The ref-

erene subspae is obtained by hoosing the projetion matrix of

a referene model RV = V (pj0 ) from the given redued models.

In our ase, this will be the nearest model with respet to the

new parameter point pnew. The matrix Tj = UjZ
T
j is given by the

SVD of V (pj )
TRV = UjΣjZ

T
j , and the matrix Mj is obtained as

Mj = Ê(pj )
−T =

(
V (pj )

TE(pj )V (pj )
)−1

. Hene it holds E j = Ir

after the transformation. Now, for every matrix Aj , Nkj , Bj and

Cj a manifold for the interpolation needs to be hosen. Here, we

hoose the manifold of real n × n matries for the interpolation

of Aj and Nkj , the manifold of real n × m matries for the in-

terpolation of Bj and the manifold of real p × n matries for the

interpolation of C j . The interpolation is now onduted on the

tangential spae to the matrix in the referene point. (I.e. in

T
Aj0
M for the interpolation of the matries Aj .) A linear interpo-

lation between the matries is used. Details for the hoie of the

manifold are given in Setion 5.3.1.2.

(A2) Like (A1), just use the manifold of the non-singular n×n matries

for the interpolation of the matries Aj .
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Two-step methods:

The seond lass of methods will be alled two-step methods. They an

be used only if at least one a�ne parameter is present.

• First step: First, the non-a�ne parameters are �xed in one point

Ĵ and only the a�ne parameters will be varied, i.e. (θk , µl , γĴ , ρĴ),

k = 1, . . . , K, l = 1, . . . , L. A global projetion matrix is alu-

lated by using a SVD:

Vglobal,Ĵ = svd ([V (θ1, µ1, γĴ , ρĴ) V (θ1, µ2, γĴ , ρĴ) . . . V (θK , µL, γĴ , ρĴ)]) .

The global projetion matrix is alulated suh that Vglobal,Ĵ ∈ R
n×r

with the same redued order r as for the matries V (θk , µk , γĴ , ρĴ).

In a new parameter point (θnew, µnew, γĴ , ρĴ) the redued model

an now easily be obtained. For example for the redued mass

matrix E:

Ê((θnew, µnew, γĴ , ρĴ)) = V
T
global,ĴE0(γĴ , ρĴ)Vglobal,Ĵ

+ θnewV
T
global,ĴEθ(γĴ , ρĴ)Vglobal,Ĵ + µnewV

T
global,ĴEµ(γĴ , ρĴ)Vglobal,Ĵ . (8.4)

The alulation of a global projetion matrix is now done for all

points (γj , ρj), and results in redued models where θnew and µnew,

the a�ne parameters, are already �xed. Hene for the a�ne

parameters in pnew no interpolation needs to be done, it remains

only to interpolate the non-a�ne parameters.

• Seond step: The interpolation of the non-a�ne parameters, i.e.

matries Ê((θnew, µnew, γĵ , ρĵ)), Â((θnew, µnew, γĵ , ρĵ)),

N̂k((θnew, µnew, γĵ , ρĵ)), B̂((θnew, µnew, γĵ , ρĵ)) and

Ĉ((θnew, µnew, γĵ , ρĵ)), j = 1, . . . , J is done using the interpolation

methods stated during the explanation of the one-step methods.

We will refer to this approah as (Af-A1), (Af-A2), (Af-P1) or (Af-P2)

depending on the method that is used for the interpolation in the seond

step. In the ase where all parameters are a�ne and only the �rst step

needs to be done we all the method (Af).

For a quik referene, all methods are summarized in Tables 8.2 and

8.3.
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Table 8.2. One-step methods for the interpolation of redued order models.

(P1) (P2) (A1) (A2)

referene

subspae

RV =

svd([V (p1), . . .

. . . , V (pK)]), SVD

of the projetion

matries

RV =

svd([ω1V (p1), . . .

. . . , ωKV (pK)]),

weighted SVD

of the projetion

matries

RV = V (pj0), proje-

tion matrix of hosen

referene model

RV = V (pj0), proje-

tion matrix of hosen

referene model

trans-

formation

matries

Tj = Mj =

(RTV V (pj ))
−1

Tj = Mj =

(RTV V (pj ))
−1

Tj = UjZ
T
j is given

by the SVD of

V (pj )
TRV = UjΣjZ

T
j ,

and the matrix Mj

is obtained as Mj =(
V (pj )

TE(pj )V (pj )
)−1

Tj = UjZ
T
j is given

by the SVD of

V (pj )
TRV = UjΣjZ

T
j ,

and the matrix Mj

is obtained as Mj =(
V (pj )

TE(pj )V (pj )
)−1

manifolds

for inter-

polation

no manifold is ho-

sen

no manifold is ho-

sen

the manifold of real

n × n, n ×m and p ×

n matries, depending

on whih matrix to in-

terpolate

the manifold of real

n × n, n ×m and p ×

n matries, depending

on whih matrix to in-

terpolate - for Â(pj )

the manifold of the

non-singular matries

is hosen
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Table 8.3. Two-step methods for the interpolation of re-

dued order models.

(Af-P1) (Af-P2) (Af-A1) (Af-A2) (Af)

First step Calulation of redued order models for the a�ne param-

eters in the new parameter point pnew see 8.2.

Seond

step � in-

terpolation

method

used

(P1),

see

Table

8.2

(P2),

see

Table

8.2

(A1),

see

Table

8.2

(A2),

see

Table

8.2

no inter-

polation

neessary

� only

a�ne pa-

rameters

8.3. Redution and interpolation using reformulation one

To simplify the presentation, we �x the parameters µ, γ, ρ, so only one

a�ne parameter θ remains. After the reformulation (R1) and a saling of

the matries N1 and N2 as explained in Setion 8.1.1, the following system

is obtained:

Σbilin (θ) :




(E0 + θEθ) ẋ(t) = A0x(t) +

6∑

k=1

gNku
g
k (t)x(t) + Bu

g(t),

y(t) = Cx(t),

(8.5)

with

ug(t) =
[

1
g(1+θ)

θ
g T0 T∞ θT∞ (1 + θ)S(t)

]T
,

A0 = A0(γ, ρ) + hAh0(γ, ρ) +
1

1 + µ
A 1
1+µ
(γ, ρ) + µAµ(γ, ρ),

N1 = A 1
1+θ
(γ, ρ),

N2 = Aθ(γ, ρ) + hAhθ(γ, ρ),

N3 = · · · = N6(γ, ρ) = 0,
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B =



0 0
.

.

.

.

.

.

0 0

1

1 + µ
B 1
1+µ
(γ, ρ) + µBµ(γ, ρ) + B0(γ, ρ)

hBh0(γ, ρ) hBhθ(γ, ρ) BS(γ, ρ)

]
.

Now the results for the large model with n = 71, 978 degrees of free-

dom from Setion 4.3 are disussed. As noted before, the Nk are large

and need to be saled before a redution of the saled system (8.5) an be

performed.

Using BIRKA as given in Algorithm 3 and the Kroneker produt approxi-

mation (f. Setion 6.1), we redue the model as given by equation (8.5)

at �ve di�erent sampling points θ ∈ {0, 0.5, 1, 1.5, 2} to a redued order of

r = 700. After the redution, stable models are obtained by using a one

sided projetion V in the last model (f. BIRKA-oS in Setion 7.2.1.2).

The interpolation between the redued models at the sampling points is

onduted using methods (P2), (A1) and (Af) from Setion 8.2.

We examine the temperature distribution at four di�erent points in the

model: At the bottom of the housing, on the oil, in the upper bearing

and at the bottom of the rotor. Results for the interpolated models at two

di�erent parameter points θnew ∈ {0.45, 1.65} for two {0, 2}, three {0, 1, 2}

and �ve {0, 0.5, 1, 1.5, 2} sampling points an be found in the Figures 8.1

and 8.2, for the �rst and the fourth output, respetively.

The quality of the approximation improves with inreasing the number

of sampling points. When using �ve sampling points, the interpolated re-

dued models for θnew ∈ {0.45, 1.65} yield good results for the �rst three

outputs. It seems however di�ult to approximate the fourth output, whih

� even with �ve sampling points � only leads to good models for the ap-

proah via a global projetion matrix (Af), as it an be seen in Figure 8.2.

This might be related to the fat that this output lies on the bottom of

the rotor and is not diretly attahed to the stator (as main heat soure).

Hene the heat an only be transferred via housing and �ange.
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Figure 8.1. First output (bottom of the housing), inter-

polation of redued order models (r=700) in a di�erent

number of sampling points, with results in di�erent inter-

polation points.
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Figure 8.2. Fourth output (bottom of the rotor), inter-

polation of redued order models in a di�erent number

of sampling points, with results in di�erent interpolation

points.
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Table 8.4. Costs for the redution and interpolation of

the model with one a�ne parameter.

Method Costs

O�ine � Redution in one parameter point 1 week per sam-

pling point

Online � Interpolation with (A1) or (A2) 20-25min

Online � Interpolation with (P1) or (P2) 10-15min

O�ine � Calulation of the global projetion

matrix

20min

Online � Assembling of the model in the new

parameter point

<1min

As we have onsidered a model in one a�ne parameter, it was possible

to use the method via a global projetion matrix (Af) and no (additional)

interpolation between the redued order models. This method always leads

to good results, and hene it an be reommended whenever the parameter

dependeny is a�ne and the alulation of the SVD of all matries V (θj )

does not exeed the omputational apaity. Method (A1) outperforms

(P2) in approximation of the �rst output (�ve sampling points), whereas

(P2) performs better for the outputs two to four. Hene, one annot state

that one interpolation method is better than the other.

The redution of the large model for one sampling point required up to

one week on 12 CPUs with 3GB RAM eah. So sampling in more than one

parameter will easily exeed the available resoures or lead to extremely long

simulation times

2

. Hene, the interpolation methods will now be tested on

the smaller model with n = 2, 969 degrees of freedom from Setion 4.3.

In addition, we will hange the reformulation method, and use the seond

reformulation (f. Setion 8.1.2, (R2)), as there will be no need to sale

the models prior to the redution, as we have noted that a saling in the Nk
inreases the redued order (f. Remark 6.3.2).

Costs for the redution and interpolation an be found in Table 8.4.

Exept for the redution that has been performed on 12CPUs with 3GB

RAM eah, the alulations have been performed on visualization nodes

2

A disussion explaining the long simulation times an be found in Setion 7.2.3.
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that are used simultaneously by di�erent users. Depending on the memory

demands and the loads of the other users, the alulation times an di�er.

8.4. Redution and interpolation using the seond reformulation

For the presentation of the results obtained by using the seond refor-

mulation (R2) (f. Setion 8.1.2), the model with n = 2, 969 will be used.

It has been presented in Setion 4.3 and is shown in Figures 4.7 and 4.8. For

three di�erent points the temperature pro�le is monitored: On the bottom

of the housing (output 1), on the stator (output 2) and on the upper part

of the rotor (output 3).

To obtain stable redued order models the one-sided approah only

V (f. Chapter 7.2) is hosen. This leads to larger redued orders as an

original BIRKA � however stability is preserved automatily, whih is ruial

for the interpolation steps. For every sampling point pj = (θj , µj , γj , ρj) the

original model was redued to an order of r = 100. The parameters (θj , µj)

are a�ne, and the parameters (γj , ρj) are non-a�ne, hene our explained

two-step approah applies. The sampling points are given as:

2sp: θj , µj ∈ {0, 2} and γj , ρj ∈ {1, 3}; 2
4
sampling points

3sp: θj , µj ∈ {0, 1, 2} and γj , ρj ∈ {1, 2, 3}; 3
4
sampling points

5sp: θj , µj ∈ {1, 0.5, 1, 1.5, 2} and γj , ρj ∈ {1, 1.4122, 2, 2.5878, 3};

54 sampling points

where {1.0489, 1.4122, 2, 2.5878, 2.9511} are the Chebyhev points within

[1, 3]. We use 1 and 3 instead of 1.0489 and 2.9511 as eah of the param-

eters is in the losed interval [1, 3].

For the interpolation of the models, we will use four di�erent methods.

First, an interpolation in all four parameters (θj , µj , γj , ρj) will be performed

diretly (one-step approah) by using the two interpolation methods (A1)

and (P2). In addition, a two-step approah will be applied by using the

methods (Af-P2) and (Af-A1) - see Setion 8.2.



160 8. RESULTS � GEOMETRIC VARIATIONS

0 200 400 600

300

350

400

450

500

Time (s)

T

e

m

p

e

r

a

t

u

r

e

(

K

)

First output

Original

(P2, 2sp) (A1, 2sp) (Af-P2, 2sp)

(Af-A1, 2sp) (P2, 3sp) (A1, 3sp) (Af-P2, 3sp)

(Af-A1, 3sp) (P2, 5sp) (A1, 5sp) (Af-P2, 5sp)

(Af-A1, 5sp)

0 200 400 600

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Time (s)

r

e

l

a

t

i

v

e

e

r

r

o

r

Figure 8.3. Temperature urves from redued models ob-

tained by interpolation with di�erent methods and num-

bers of sample points in point θ = 1.67, µ = 1.78, γ =

2.36, ρ = 1.22.

In Figure 8.3 the results for two, three and �ve sampling points in the

�rst output for the interpolation point

pnew0 = (θ = 1.67, µ = 1.78, γ = 2.36, ρ = 1.22),

and redued order r = 100 are shown. For two sampling points (dotted

lines) the two-step methods (i.e. (Af-P2) and (Af-A1)) lead to better re-

sults than the one-step methods (i.e. (P2) and (A1)). For three sampling

points (dashed lines), the one-step methods get better in general, and for

�ve sampling points (dashdotted lines), the approximation using the one-

step methods is su�iently aurate � espeially for the approah (A1).

Considering three other interpolation points

pnew1 = (θ = 1.67, µ = 1.78, γ = 2.976, ρ = 2.73),
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pnew2 = (θ = 1.56, µ = 1.2, γ = 1.47, ρ = 1.634),

and pnew3 = (θ = 0.34, µ = 0.13, γ = 1.134, ρ = 1.22),

the results for the interpolated models an be found in Figures 8.4 to 8.6.

One observes that one obtains good results for �ve sampling points in all

four di�erent interpolation points pnewi . There are however di�erenes in the

quality of the approximation. The point pnew1 is for example not perfetly

approximated by the approahes (Af-P2) and (Af-A1). In addition, one an

observe osillations in the approximations by (Af-P2) and (Af-A1). They

our whenever there is a signi�ant hange in the dynamis of the model.

In general: For few sampling points, the two-step methods (Af-A1)

and (Af-P2) (i.e. using a global projetion matrix for the a�ne parameter

dependeny and then interpolating the non-a�ne parameters) lead to bet-

ter results than a diret interpolation. However, as the number of sampling

points inreases, the approahes with diret interpolation (i.e. (A1), (P2))

perform as good as the ones with a global projetion matrix for the a�ne

parameters, or even better. Hene, if the redution in one sampling point is

time onsuming (as it is using BIRKA � f. Setion 7.2.3), it is desirable

to sample as few points as possible. If the alulation of a global projetion

matrix in the a�ne parameters is not too time onsuming, using few sam-

pling points and one of the two-step methods ((Af-A1) and (Af-P2)) yields

satisfatory results.
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Figure 8.4. Interpolation of redued order models in �ve

sampling points at pnew1 = (θ = 1.67, µ = 1.78, γ =

2.976, ρ = 2.73).
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Figure 8.5. Interpolation of redued order models in �ve

sampling points at pnew2 = (θ = 1.56, µ = 1.2, γ =

1.47, ρ = 1.634).
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Figure 8.6. Interpolation of redued order models in �ve

sampling points at pnew3 = (θ = 0.34, µ = 0.13, γ =

1.134, ρ = 1.22).
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Table 8.5. Costs for the redution and interpolation of

the model with two a�ne and two non-a�ne parameters

redution in

sampling

points (sp)

o�ine redution in one parameter point: ≈ 30min.

for 2 sp: 24 · 30min= 8h,

for 3 sp: 34 · 30min≈ 1.7days,

for 5 sp: 54 · 30min≈ 13days.

one-step method

online Interpolation with (A1) < 10min,

(A2) < 15min,

(P1) < 10min,

(P2) < 5min.

two-step method

o�ine one global projetion matrix for �xed non-

a�ne parameters (θk , µl , γĴ , ρĴ): ≈ 1min,

for 2 sp: 22 · 1min= 4min,

for 3 sp: 32 · 1min≈ 6min,

for 5 sp: 52 · 1min≈ 25min.

online interpolation of non-a�ne parameters with:

(A1) <5s,

(A2) <10s,

(P1) <20s,

(P2) <5s.

In Table 8.5 approximate osts for the redution and interpolation are

summarized. Again the alulations have been performed on visualization

nodes used simultaneously by di�erent users. The alulation times are

therefore only approximations depending on load and available memory on

the nodes. It is not surprising, that the interpolation using all parameter

points is slower that the one, where only the non-a�ne parameters need

to be interpolated. In general, (A1) is faster than (A2) and (P2) is faster

than (P1). This is due to the following behavior: The redution in (P2) is

performed using a weighted SVD. We use the weights that will be used for

the linear interpolation of the models afterwards. As only the nearest models

with respet to the new parameter point are used in the interpolation, only

the projetion matries V (pj ) from these models are used for the alulation

of the referene subspae RV . In ontrast, all matries V (pj ) are used

for the SVD in (P1). This explains longer alulation times. During the
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exeution of (A1) and (A2), the interpolation is done on tangential spaes

of matrix manifolds. The matries need to be mapped to these spaes by

using di�erent logarithms (see Table 5.1). Whereas the manifold of n ×m

matries only involves a subtration, the manifold of nonsingular matries

requires an inversion and a matrix logarithm. This leads to longer alulation

times.

8.4.0.1. Interpolation methods (A2) and (P1). So far, only results for

the interpolation methods (A1) and (P2) have been presented. This is due

to the fat that the obtained results for the approahes (A2) and (P1)

are in most ases not as good as the results for the other approahes. A

omparison of the approahes (P1) and (P2) for the interpolation point

pnew0 = (θ = 1.67, µ = 1.78, γ = 2.36, ρ = 1.22),

an be found in Figure 8.7, and results for the approah (A2) for the in-

terpolation point pnew3 are shown in Figure 8.8. Whereas the method (P1)

usually gives reasonable results, the method (A2) has signi�ant problems

in the approximation of the third output of the model.

Method (A2) fails to provide a reasonable approximation. This might

be related to the interpolation proedure. First, all matries in the sampling

points A(pj ) (whih belong to the manifoldM of the non-singular matries)

need to be transferred to the tangential spae regarding the referene model

TA(pj0 )
M, then a �lassi" interpolation � in our ase linear interpolation�

is performed on these elements of TA(pj0 )
M. It is not lear, that the �lassi"

interpolation stays in the tangential spae, and hene the interpolated matrix

A(pnew) might lead to inaurate results.
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Figure 8.7. Interpolation using the approahes (P1) and

(P2) in �ve sampling points at interpolation point θ =

1.67, µ = 1.78, γ = 2.36, ρ = 1.22.
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Figure 8.8. Interpolation of redued order models in

two,three and �ve sampling points at interpolation point

θ = 0.34, µ = 0.13, γ = 1.134, ρ = 1.22 for (A2).
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8.4.1. Disussion of results. In this hapter, results for the redution

and interpolation of thermal models with geometri variations have been

presented. Linear parametri models have been reformulated as bilinear

models in two di�erent ways (f. Setion 8.1.1 and 8.1.2) and then redued

using BIRKA with one-sided projetions (f. Setions 6.2.2 and 7.2.1.2).

First, results for the �rst reformulation (R1) (f. Setion 8.1.1), for a

model with n = 71, 978 and one geometrial parameter have been shown

(f. Figures 8.1 and 8.2). An additional preproessing step was neessary

to avoid problems resulting from the fat, that the norms of Nk and A

are of the same magnitude. A saling was introdued and lead to a large

redued order r = 700. The seond reformulation (R2), Setion 8.1.2, does

not require this preproessing. Due to high omputational demands (f.

Setion 7.2.3), all results for the seond reformulation and four parameters

have been presented for a smaller model with n = 2, 969. Interpolation

of this model using di�erent numbers of sampling points and interpolation

methods (f. Setion 8.2) have been performed. In general, all methods give

reasonable results. However, the method (P2) � using a weighted SVD

to obtain the referene subspae � usually outperforms the method (P1)

� the non-weighted SVD. In addition, it was not possible to obtain good

results for the interpolation method on tangential spaes of non-singular

matries (A2), whereas the interpolation on tangential spaes of R
k×l

leads

to good results (A1). The two approahes (A1) and (P2) usually give

omparable results, hene it is not possible to favor one method over the

other. Having two a�ne and two non-a�ne parameters, it is reommended

to use a two-step method � �rst alulate a global projetion matrix for

the a�ne parameters and then interpolate the redued order models in the

non-a�ne parameters. For few sample points these methods yield usually

better results than the one step methods.
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9.1. Summary and Conlusions

The main objetive of this work was to investigate the use of bilinear

H2-optimal methods in parametri Model Order Redution. As shown by

Benner and Breiten [11℄, it is possible to reformulate a ertain lass of linear

parametri systems as bilinear systems (f. Setion 5.3.2). The parame-

ters an then be onsidered as inputs and the redution an be performed

without any sampling and interpolation in the parameter spae, as most of

the other methods for pMOR do [53, 3, 37, 13℄. After obtaining a bilinear

model, one an make use of bilinear Model Order Redution. In this work,

we foused on two methods for bilinear H2-optimal Model Order Redu-

tion, whih are desribed in Chapter 5. BIRKA (f. Algorithm 3), originally

obtained by Benner and Breiten [12℄, is stated and new algorithms for the

bilinear H2-optimal redution have been developed. These algorithms use

optimization on Grassmann manifolds and � as a main advantage � an

preserve stability. We have proven the stability preservation for symmetri,

bilinear systems and analyzed the onvergene behavior of the algorithms.

171
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In addition to these theoretial results, several models for the ther-

mal analysis of eletrial motors have been built using Comsol

R©
3.5a (f.

Chapter 3). Linear parametri systems have been exported from Comsol

R©

by an analysis of the underlying equations (f. Chapter 4). For industri-

ally relevant problems, both physial and geometri parameters need to be

onsidered and the parameter dependeny after the redution must be pre-

served. As the resulting models are usually large (in our ase n = 41, 199,

n = 71, 978, and n = 2, 969), the bilinear H2-optimal redution methods

have to be apable of dealing with these large systems.

The newly developed methods for the redution using optimization on

Grassmann manifolds are, however, not yet ready (f. Setion 7.1) for the

use with these large systems, but results for the redution of a heat equa-

tion on a square have been stated. BIKRA (f. Setion 5.5,[12℄) is apable

of reduing the large models, but several problems have been identi�ed. In

some ases, the sti�ness matrix A is singular, the magnitude of the Nk is

too large and a saling needs to be introdued. Also unstable models have

been obtained after the redution. All these issues haven been examined

and solutions have been proposed (f. Chapter 6).

Numerial results for the redution of two di�erent types of models

have been obtained. On one hand, a part of an eletrial motor model,

inorporating physial parameters, has been onsidered. These models are

parametrized with physial parameters and have a struture that easily al-

lows to reformulate them as a bilinear model. Redution with BIRKA yields

good results, not only in a ertain parameter interval, but globally in the

whole parameter range (f. Chapter 7.2, Figure 7.8). The seond type of

models are eletrial motor models, that in addition to the physial parame-

ters use parameters that desribe hanges in geometry. This leads to models

with a struture that an not easily be rewritten as a bilinear system. Hene

one an reformulate the model as a bilinear model for ertain parameters

and interpolate the other parameters (f. Chapter 8). For the interpolation,

several well known methods from pMOR have been used (f. [53, 3, 37℄),

whih generally lead to good results. There are, however, di�erenes in the

quality of the approximation. For models with an a�ne parameter depen-

dene in ertain parameters, using a global projetion matrix for the a�ne
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parameter dependene leads to good results and an outperform a diret

interpolation, espeially for few sampling points.

9.2. Future researh

Based on the work that has been presented in this thesis, several op-

portunities for future researh have been identi�ed:

• The new methods for the bilinear H2-optimal MOR using op-

timization methods on the Grassmann manifold as developed in

Setions 5.5.4 and 7.1 still require some investigation:

� The Algorithms bilGFA, bilFGFA and bilSQA have not yet

been tested on large problems, due to the fat that one needs

to solve large bilinear Sylvester equations. In the future, low-

rank approximations to the solutions should be applied suh

as the ADI iteration (f. [57, 14℄), to allow treatment of

large systems.

� Convergene and the stability preservation for the Algorithms

bilGFA,bilFGFA and bilSQA have not yet been established for

bilinear systems with non-symmetri A and Nk .

� For the optimization, one needs to orretly set several pa-

rameters to ensure a desent in the objetive funtion. It

would be an advantage to identify robust riteria based on

whih these parameters an be hosen.

• The redution of the large parametri thermal models has been

done using BIRKA [12℄. The redution times for our large models

are within the range of several hours to a few days for 12 CPUs

with 3GB RAM (see Setion for a disussion 7.2.3). However,

the struture of BIRKA would allow a parallelization, whih ould

signi�antly redue the redution time.

• One interpolation approah by Amsallem [3℄ shows weak perfor-

mane for some models (f. Setion 8.4.0.1). This ould be

aused by the fat that our used interpolation method does not

preserve the membership in the tangential spae. This behavior

requires a development of interpolation proedures that do stay

on the orresponding manifold.

• The interpolation methods used for the redution of the paramet-

ri models require the redution at several sampling points. The
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number of sampling points has a strong impat on the ompu-

tational demands, so it is worthwhile to explore methods to sys-

tematially and optimally sample the parameter spae, e.g. using

sparse grids [10℄ or latin hyperube sampling [4, 20℄.



APPENDIX A

Derivation of the bilinear H2-optimal

onditions

A.1. Wilson onditions

We start by di�erentiating the norm

J =||Σerrbil ||
2
H2
= tr(

[
C −Ĉ

]
P err

[
CT

−ĈT

]
)

=tr(P err
[
CT

−ĈT

] [
C −Ĉ

]
)

=tr(P errC),

(5.42)

as given by Zhang and Lam [72℄ with respet to a parameter γ:

∂J

∂γ
= tr(

∂P err

∂γ
C) + tr(P err

∂C

∂γ
).

First, we insert the following Lyapunov equation in the derived norm:

(Aerr)T Y errEerr + (Eerr)T Y errAerr +

m∑

k=1

(Nerrk )
T Y errNerrk + (C

err)TCerr︸ ︷︷ ︸
=C

= 0,

(A.1)

and obtain:

∂J

∂γ
=tr

(
∂P err

∂γ

(
−(Aerr)T Y errEerr

−(Eerr)T Y errAerr −

m∑

k=1

(Nerrk )
T Y errNerrk

))
+ tr(P err

∂C

∂γ
).

(A.2)
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Seond, we will derive the other Lyapunov equation of the error system:

AerrP err(Eerr)T + EerrP err(Aerr)T +

m∑

k=1

Nerrk P
err(Nerrk )

T + Berr(Berr)T︸ ︷︷ ︸
=B

= 0,

(A.3)

and multiply it from the left by Y err(= (Eerr)−1QerrEerr):

2tr(
∂Aerr

∂γ
P err(Eerr)T Y err) + 2tr(Aerr

∂P err

∂γ
(Eerr)T Y err)

+2tr(AerrP err
∂(Eerr)T

∂γ
Y err) + 2tr(

m∑

k=1

∂Nerrk
∂γ

P err(Nerrk )
T Y err)

+tr(

m∑

k=1

Nerrk
∂P err

∂γ
(Nerrk )

T Y err) + tr(
∂B

∂γ
Y err) = 0.

(A.4)

Adding (A.4) to the derived norm (A.2) leads to the following equation:

∂J

∂γ
=2tr(

∂Aerr

∂γ
P err(Eerr)T Y err) + 2tr(

∂Eerr

∂γ
P err(Aerr)T Y err)

+

m∑

k=1

2tr(
∂Nerrk
∂γ

P err(Nerrk )
T Y err) + tr(

∂B

∂γ
Y err) + tr(P err

∂C

∂γ
).

(A.5)

Di�erentiating by the redued matries leads to:

∂J

∂âi j
= 2tr(

∂Aerr

∂âi j
P err(Eerr)T Y err) = 2tr(

∂Â

∂âi j
(P T12E

T Y12 + P22Ê
T Y22)).

As an optimal redued model would ful�ll

∂J
∂âi j
= 0 for all i , j one an onlude

P T12E
T Y12 + P22Ê

T Y22 = 0. (A.6)

One obtains for the derivative with respet to the ei j :

∂J

∂êi j
= 2tr(

∂Eerr

∂êi j
P err(Aerr)T Y err) = 2tr(

∂Ê

∂êi j
(P T12A

T Y12 + P22Â
T Y22)),

and again, this leads to:

P T12A
T Y12 + P22Â

T Y22 = 0. (A.7)

For the matries Nk one derives:

∂J

∂(n̂k)i j
= 2tr(

∂Nerrk
∂(n̂k)i j

P err(Nerrk )
T Y err) = 2tr(

∂Ê

∂(n̂k)i j
(P T12N

T
k Y12+P22N̂

T
k Y22)),
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for all k = 1, . . . , m. One obtaines:

P T12N
T
k Y12 + P22N̂

T
k Y22 = 0, k = 1, . . . , m. (A.8)

The equations for B and C involve more ompliated alulations:

∂J

∂b̂i j
= tr

(
∂B

∂b̂i j
Y err
)
= tr

([
0 Beje

T
i

eie
T
j B

T eie
T
j B̂

T + B̂eje
T
i

] [
Y11 Y12
Y T12 Y22

])

= tr(Beje
T
i Y12) + tr(eie

T
j B

TY12 + eie
T
j B̂

TY22 + B̂eje
T
i Y22)

= tr(BT Y12eie
T
j ) + tr(B̂

T Y12eie
T
j ) + tr(eie

T
j B

T Y12) + tr(eie
T
j B̂

TY22)

= 2tr(eie
T
j (B

T Y12 + B̂
TY22)),

This yields:

BT Y12 + B̂
TY22 = 0. (A.9)

Whereas

∂J

∂ĉi j
= tr

(
P err

∂C

∂ĉi j

)

= tr

([
−P12eje

T
i C −P11C

T eie
T
j + P12eje

T
i Ĉ + P12Ĉ

T eie
T
j

−P22ejeiC −P T12C
T eie

T
j + P22eje

T
i Ĉ + P22Ĉ

T eie
T
j

])

= tr(−P12eje
T
i C) + tr(−P

T
12C

T eie
T
j ) + tr(P22eje

T
i Ĉ) + tr(P22Ĉ

T eie
T
j )

= 2tr((−P T12C
T + P22Ĉ

T )eie
T
j ) = 0,

yields

− P T12C
T + P22Ĉ

T = 0. (A.10)

A.2. Derivation of the optimality onditions by Benner and Breiten

Following Benner and Breiten [12℄, the representation of the H2-norm

will be derived with respet to the eigenvalues of the redued system λ̂i and

Ñk , B̃, C̃:
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J = ve(I2p)
T (
[
C −C̃

]
⊗
[
C −C̃

]
)

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1

×

[
B

B̃T

]
⊗

[
B

B̃T

]
ve(I2m).

We will need the following lemma, originally given by Benner and Breiten

[12℄:

Lemma A.2.1. Let C(x) ∈ Rp×n, A(y), E, Nk ∈ R
n×n

and B ∈ Rn×m with

x, y ∈ R. Let

L(y) =

(
−A(y)⊗ E − E ⊗ A(y)−

m∑

k=1

Nk ⊗Nk

)
,

and assume that C and A are di�erentiable with respet to x and y . Then

∂

∂x

[
vec(Ip)

T (C(x) ⊗ C(x))L(y)−1(B ⊗ B)vec(Im)
]

= 2vec(Ip)
T
(
∂

∂x
C(x) ⊗ C(x)

)
L(y)−1(B ⊗ B)vec(Im),

and

∂

∂y

[
(ve(Ip)

T (C ⊗ C)L(y)−1(B ⊗ B) ve(Im)
]

= 2

[
(ve(Ip)

T (C ⊗ C)L(y)−1
(
∂A(y)

∂y
⊗ E

)
L(y)−1(B ⊗ B) ve(Im)

]
.

Proof. The proof given by Benner and Breiten shows this result for

E = In. The ase E 6= In is a straight forward generalization of the proof,

whih will therefore be omitted here. �

In addition, we will need the following matrix:

M :=

[
Ir ⊗

[
In
0

]
Ir ⊗

[
0T

Ir

]]
,
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where 0 = zeros(r, n). It holds for M:

MT
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Ñk
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,

as well as MMT = Ir2n. We will now start with the di�erentiation of the

norm with respet to C̃ by making use of Lemma A.2.1:
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]
vec(I2m)

=2(vec(I2p))
T
[
−eie

T
j ⊗ C eie

T
j ⊗ Ĉ

]

×

(
−

[
Ir ⊗ A

Ir ⊗ Â

]
−

[
Λ⊗ E

Λ⊗ Ir

]

−

m∑

k=1

[
Ñk
T
⊗ Nk

Ñk
T
⊗ N̂k

])−1

×

[
B̃T ⊗B

B̃T ⊗ B̂T

]
vec(I2m)

=− 2vec(Ip)
T (eie

T
j ⊗ C)

·

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

+ 2vec(Ip)
T (eie

T
j ⊗ Ĉ)

·

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im).

The di�erentiation with respet to the eigenvalues λ̂i is done as follows.

First, we use Lemma A.2.1:

1

Using Λ = S−1ÂS, ÑT
k
= S−1N̂kS, B̃T = S−1B̂, C̃ = ĈS.
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∂J

∂λi
= 2vec(I2p)

T
([
C −C̃

]
⊗
[
C −C̃

])

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1([
0 0

0 eie
T
i

]
⊗

[
E

Ir

])

×

(
−

[
E

Ir

]
⊗

[
A

Λ

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

Ñk
T

])−1

×

[
B

B̃T

]
⊗

[
B

B̃T

]
vec(I2m)

= 2vec(I2p)
T
([
C −C̃

]
⊗
[
C −Ĉ

])

×

(
−

[
E

Ir

]
⊗

[
A

Â

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

N̂k

])−1

×

([
In

Ir

]
⊗

[
In

S

])([
0 0

0 eie
T
i

]
⊗

[
E

Ir

])

×

([
In

Ir

]
⊗

[
In

S−1

])

×

(
−

[
E

Ir

]
⊗

[
A

Â

]
−

[
A

Λ

]
⊗

[
E

Ir

]

−

m∑

k=1

[
Nk

Ñk
T

]
⊗

[
Nk

N̂k

])−1

×

[
B

B̃T

]
⊗

[
B

B̂

]
vec(I2m)
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= 2vec(Ip)
T
(
−C̃ ⊗

[
C −Ĉ

])

×

(
MMT (−Ir ⊗

[
A

Â

]
− Λ⊗

[
E

Ir

]

−

m∑

k=1

Ñk
T
⊗

[
Nk

N̂k

]
)MMT

)−1

×

(
eie
T
i ⊗

[
E

Ir

])

×

(
MMT (−Ir ⊗

[
A

Â

]
− Λ⊗

[
E

Ir

]

−

m∑

k=1

Ñk
T
⊗

[
Nk

N̂k

]
)MMT

)−1

× B̃T ⊗

[
B

B̂

]
vec(Im)

= −2vec(Ip)
T (C̃ ⊗ C)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗Nk

)−1

× (eie
T
i ⊗ E)

(
−Ir ⊗ A− Λ⊗ E −

m∑

k=1

Ñk
T
⊗ Nk

)−1
(B̃T ⊗ B)vec(Im)

+ 2vec(Ip)
T (C̃ ⊗ Ĉ)

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1

(eie
T
i ⊗ Ir )

(
−Ir ⊗ Â− Λ⊗ Ir −

m∑

k=1

Ñk
T
⊗ N̂k

)−1
(B̃T ⊗ B̂)vec(Im).

The onditions for the di�erentiation with respet to Ñk and B̃ an be

derived in exatly the same manner, hene they will be omitted here. Setting

the derived equations to zero leads to the optimality onditions stated in

Setion 5.5.2.



A.3. PROOF OF THEOREM 183

A.3. Proof of Theorem 5.5.4

We demonstrate the following result:

Theorem A.3.1 ([12℄). Assume Algorithm 2 onverges. Then Êopt, Âopt,

N̂optk , B̂opt and Ĉopt full�l the Wilson optimality onditions (5.43)-(5.47).

Proof. We denote by E, A, Nk , B, C the matries orresponding to

the step before the last step. A state spae transformation an be used to

transform this model to the optimal model, due to the onvergene of the

algorithm:

E = T−1ÊoptT, A = T−1ÂoptT, Nk = T
−1N̂optk T,B = T−1B̂opt,

C = ĈoptT,

By the orthogonalization step in the Algorithm 2, we know that

V opt = XoptF, W opt = Y optG,

with F,G ∈ Rr×r nonsingular. The following two Sylvester equations hold:

AXoptE
T
+ EXoptA

T
+

m∑

k=1

NkX
optN

T

k + BB
T
= 0, (A.11)

ATY optE + ET Y optA+

m∑

k=1

NTk Y
optNk − C

TC = 0. (A.12)

The �rst equation (A.11) is multiplied with

(
W opt

)T
from the left, and the

expressions for E, A, Nk , B, C are inserted:

(
W opt

)T
AXoptFF−1E

T
+
(
W opt

)T
EXoptFF−1A

T

+
(
W opt

)T m∑

k=1

NkX
optFF−1N

T

k +
(
W opt

)T
BB

T
= 0,

⇒
(
W opt

)T
A

V opt︷ ︸︸ ︷
XoptF F−1T T (Êopt)TT−T

+
(
W opt

)T
E

V opt︷ ︸︸ ︷
XoptF F−1T T (Âopt)TT−T

+
(
W opt

)T m∑

k=1

Nk X
optF︸ ︷︷ ︸
V opt

F−1T T (N̂optk )
TT−T +

(
W opt

)T
BB̂optT−T = 0.
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By multiplying with T T from the right this leads to the following Lyapunov

equation:

ÂoptF−1T T (Êopt)T+ÊoptF−1T T (Âopt)T +

m∑

k=1

N̂optk F−1T T (N̂optk )
T

+ B̂opt(B̂opt)T = 0.

Under the assumption that the redued order system is stable this equation

has an unique solution and hene P22 = F−1T T . We multiply the seond

Sylvester equation (A.12) with

(
V opt

)T
from the left and insert the given

expressions, whih leads to:

(Âopt)TG−1T−1Êopt+(Êopt)TG−1T−1Âopt +

m∑

k=1

(N̂optk )
TG−1T−1N̂optk

+ (Ĉopt)T Ĉopt = 0.

Multiplying this equation with −1 gives the solution Y22 = −G
−1T−1 and

as Y22 is a symmetri matrix this leads to: Y22 = −T
−TG−T . Inserting the

expressions for the overlined matries into the Sylvester equations (A.11)

and (A.12) yields to the following equations:

AXoptT T (Êopt)T + EXoptT T (Âopt)T +

m∑

k=1

NkX
optT T (N̂optk )

T

+ B(B̂opt)T = 0,

AT Y optT−1Êopt + ET Y optT−1Âopt +

m∑

k=1

NTk Y
optT−1N̂optk

+ CT Ĉopt = 0.

hene one obtains P12 = X
optT T and Y12 = Y

optT−1. The Wilson onditions

an now be proven:

Y T12EP12 + Y22Ê
optP22

= T−T (Y opt)TEXoptT T − T−TG−T (W opt)TEV optF−1T T



A.3. PROOF OF THEOREM 185

= T−T (Y opt)TEXoptT T − T−TG−TGT (Y opt)TEXoptFF−1T T = 0.

with similar alulations for onditions (5.44) and (5.45). For the other

onditions one obtains:

Y T12B + Y22B̂
opt = T−T (Y opt)TB − T−TG−T (W opt)TB = 0

ĈoptP22 − CP12 = Ĉ
optF−1T T − CXoptT T = 0.

�
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