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Spin effects in the tunneling regime of strong field ionization of hydrogenlike highly charged ions in linearly
as well as circularly polarized laser fields are investigated. The impact of the polarization of a laser field on the
spin effects are analyzed. Spin-resolved differential ionization rates are calculated employing the relativistic
Coulomb-corrected strong-field approximation (SFA) developed in the previous paper of the series. Analytical
expressions for spin asymmetries and spin flip probability, depending on the laser’s polarization, are obtained for
the photoelectron momentum corresponding to the maximum of tunneling probability. A simpleman model is
developed for the description of spin dynamics in tunnel-ionization, which provides an intuitive explanation for
the spin effects. The spin flip is shown to be experimentally observable by using moderate highly charged ions
with a charge of the order of 20 and a laser field with an intensity of I ∼ 1022 W/cm2.

I. INTRODUCTION

Due to advances of the laser technology, the relativistic
regime of laser-atom interactions is now within the experimen-
tal reach [1–10]. Recently different tools for advanced studies
of particles in extreme laser fields have been also developed,
which make it possible to select and prepare well-defined ion
ensembles and to optimize the laser-particle interaction [11].
This will allow the investigation of the relativistic strong field
ionization dynamics, which is accessible only in a combination
of strong lasers and highly charged ions.

The strong field approximation (SFA) [12, 13] and the
imaginary-time method (ITM) [14–18] are well developed
theoretical tools for the analytical investigation of strong field
ionization in the relativistic regime. In particular, the differ-
ential and total ionization rates were calculated using these
methods. The photoelectron momentum distribution in the
relativistic regime of above-threshold ionization was well ex-
plained by those calculations [19–25]. However, the details of
the electron spin dynamics in the relativistic tunnel-ionization
regime still needs further elucidation.

Spin effects in different processes in laser fields have been
investigated since the invention of the laser [26]. In particular,
it was shown that the relativistic dynamics of free electrons in
a strong laser field is disturbed by spin induced forces [27, 28],
and that the electron radiation can be modified due to the spin
induced dynamics [29]. Spin effects in laser assisted Mott scat-
tering and laser assisted Möller scattering were investigated
in [30, 31] and [32], respectively. Polarization effects in the
multiphoton Compton scattering were investigated in [33–41].
Transfer of polarization from the laser beam to positrons via
Compton scattering and pair production is shown in [42]. Re-
cently, a spin flip effect was shown in the Kapitza-Dirac effect
[43–45]. Relativistic spin operators in various electromag-
netic environments have been discussed in [46, 47]. Collapse
and revival of the spin precession in a laser field has been re-
vealed in [48]. Furthermore, interesting polarization effects
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were explored in electron-positron pair production processes
in ultra-strong laser fields, in particular, during electron and
positron pair creation in combined Coulomb and strong laser
fields [49], in the multiphoton Bethe-Heitler process [50] and
in two counterpropagating laser pulses [51]. Spin correlations
in electron-positron pair creation by a laser pulse and a proton
beam was examined in [52].

During the relativistic laser-atom interaction spin effects
were shown to appear in the laser-driven bound electron dy-
namics [53] and, in particular, in the radiation of high-order
harmonics [54–57]. The spin asymmetry in the strong-field-
ionization process of an atom with a circularly polarized laser
field was discussed in [58], neglecting the spin dynamics in
the bound state. The latter, however, can have a significant
impact on spin effect as it was shown in [59]. The spin dynam-
ics in nonsequential double ionization of helium was consid-
ered in [60, 61]. Furthermore, the photoelectron spin polariza-
tion can also arise because of the electron-ion entanglement
[62, 63]. The spin-asymmetry in the relativistic regime of
tunnel-ionization from p-states was explored in [64].

In this paper we investigate the dependence of the spin ef-
fects during tunnel-ionization on the polarization of the laser
field. The spin-resolved differential ionization rates of a highly
charged hydrogenlike ion from the ground state in a strong
laser field of linear and circular polarizations are calculated
using the relativistic Coulomb-corrected SFA (cc-SFA) devel-
oped in paper II (the second paper of this series [65, 66]). Spin
asymmetries and spin-flip effect during direct ionization of an
hydrogenlike system are investigated for the peak of the final
momentum distribution. Similarities and differences of the
spin asymmetries and spin-flip effect in the cases of linear and
circular polarizations of a laser field are analyzed. In addition
to the standard relativistic Coulomb corrected SFA (s-cc-SFA),
we also apply a dressed cc-SFA (d-cc-SFA), which is based on
the use of a non-standard partition of the Hamiltonian within
the SFA formalism [67, 68]. The physical relevance of the
different versions of the SFA formalism is discussed. While in
s-cc-SFA the influence of the laser field on the electron spin
evolution in the bound state is not taken into account, it is
fully accounted for in d-cc-SFA, which is shown to have a
decisive impact on the spin effects. Finally, we provide a sim-
pleman model for intuitive understanding of the spin effects. It
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incorporates the propagators of the spin states for the bound
and continuum motion, and quasiclassical description of the
tunneling process.

Spin effects in the tunneling regime of ionization emerge
through three steps [59]; spin precession in the bound state,
spin rotation during tunneling, and spin precession during
the electron motion in the continuum. In s-cc-SFA the spin
dynamics in the bound state is completely neglected. Therefore,
in this case the spin effects are determined by the electron
dynamics during tunneling and the motion in the continuum.
Because of the evident asymmetry in the spin evolution in
this picture, relatively large spin effects arise. However, it is
known that the laser field can induce a large spin precession in
the bound state [54, 55], which is accounted for in d-cc-SFA
[59, 66]. It reduces the asymmetry in the spin dynamics during
ionization and, consequently, lead to a reduction of spin effects.
Analysis based on our simpleman model shows that the spin
asymmetries are a consequence of the tunneling step.

The plan of the paper is the following. The spin-resolved
differential ionization rates within the two versions of cc-SFA
(standard and dressed) are calculated in Sec. II. The bound state
spin dynamics, which is essential for d-cc-SFA is investigated
in Sec. III. The final momentum distribution of the tunnel-
ionized electron is presented in Sec. IV, which later is used in
the calculation of the spin effects for the maximal tunneling
probability. Analytical formulas for the spin asymmetries and
the spin flip in linearly and circularly polarized laser fields are
calculated in Sec. V. A simpleman model for the spin dynamics
is presented in Sec.VI. The possibilities for an experimental
observation of spin effects are discussed in Sec. VII. Our con-
clusion is given in Sec. VIII. Atomic units (a.u.) and the metric
convention g = (+,−,−,−) are used throughout the paper.

II. THE COULOMB CORRECTED STRONG FIELD
APPROXIMATION

The Hamiltonian which governs the dynamics of the laser-
induced tunnel-ionization from the ground state of a hydrogen-
like ion, is given by

H = cα · (p + AL) − A0
L + βc2 + V(r) , (1)

where the laser field is described by gauge potentials given in
Göppert-Mayer gauge as Aµ

L = (A0
L, cAL) = −x · E(η)(1, k̂),

with the wave vector kµ = ω/c(1, k̂), the laser frequency ω and
the phase η = kx/ω, and the Coulomb potential V(r) = −κ/r,
κ being the charge of the hydrogenlike ion, and β, α are the
Dirac matrices.

The transition amplitude between the initial state |Ψ s
i 〉 with

the magnetic spin quantum number s and the final state |Ψ s′
f 〉

with the number s′ can be written as

Ms→s′ = (S − 1)s→s′ = −i
∫ ∞

−∞

dt 〈Ψ s′
f |Hint |Ψ

s
i 〉 , (2)

with the interaction Hamiltonian Hint. The S-matrix treatment
is exact as far as it incorporates the exact final state |Ψ s′

f 〉, which

is the exact solution of the Schrödinger equation

i∂t |Ψ
s′
f 〉 = H|Ψ s′

f 〉 . (3)

The initial state in its turn fulfills the following equation

i∂t |Ψ
s
i 〉 = (H − Hint)|Ψ s

i 〉 . (4)

In the SFA, the exact final state |Ψ s′
f 〉 in the transition ampli-

tude (2) is approximated by the Volkov state [69], whose wave
function in the Göppert-Mayer gauge reads

Ψ s′
V =

√
c2

ε
exp (iS + iA · x)

[
1 +

1
2cλ

(1 + k̂ · α)A · α
]

vs′ ,

(5)
with the Volkov action

S (η) = −px −
1
λ

∫ η

−∞

dη′
[
A(η′) · p +

A(η′)2

2

]
, (6)

and the free particle spinor

vs′ =

√
ε + c2

2c2


χs′

c
ε + c2 p · σχs′

 . (7)

Here ε =
√

c4 + c2 p2 is the electron energy, λ = ε/c2−p· k̂/c is
the integral of motion for the electron in a plane wave field, A ≡
−

∫ η

−∞
E(η′)dη′, and χ+ = (1 0)T and χ− = (0 1)T are the

two components spinors. Note that the Volkov wave function
in the Göppert-Mayer gauge is obtained by first solving the
Dirac equation in the velocity gauge Aµ(η) = (0, cA(η)) and
then applying a gauge transformation with the gauge function
A(η) · x.

In this approximation, the transition amplitude neglects the
effect of the Coulomb potential on the electron dynamics in
the continuum as well as the influence of the laser field on the
bound state dynamics. To account for the Coulomb potential
on the electron dynamics in the continuum, the relativistic cc-
SFA was developed in paper II [66]. Rather than the Volkov
solution for the continuum electron Ψ s′

V , cc-SFA employs the
wave function of the electron in the laser and Coulomb fields
in the eikonal approximation [70–74], which is given by [see
Eq. (II.29)]

Ψ s′
C = Ψ s′

V exp
[
iS c(x, η)

]
, (8)

where

S c(x, η) =

∫ ∞

η

dη′
ε(η′)
c2λ

V
(
x(η′)

)
, (9)

with the relativistic trajectory of the electron in the laser field
x(η′) = x +

∫ η′

η
dη′′ p(η′′)/λ, and the energy-momentum of the

electron in the laser field

p(η) = p + A(η) + k̂
[
p + A(η)/2

]
· A(η)

cλ
, (10)

ε(η) = ε +

[
p + A(η)/2

]
· A(η)

λ
, (11)
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where we have used Eqs. (205) and (206) of Appendix IX A and
define the final values of the physical variables as p ≡ p(η f ),
ε ≡ ε(η f ), and A(η f ) = 0.

Thus, the transition amplitude for the strong field ionization
in cc-SFA reads

Ms→s′ = −i
∫ ∞

−∞

dt 〈Ψ s′
C |Hint |Ψ

s
i 〉 . (12)

Accordingly, the spin resolved differential ionization rate for a
certain spin transition can be defined as

dWs→s′

d3 p
=
ω

π
|Ms→s′ (p)|2 , (13)

where the rate is averaged over a laser half-cycle.
In contrast to the exact S-matrix treatment, the results of the

SFA calculation depend on the partition of the full Hamiltonian
[67], i.e., on the identification of the interaction Hamiltonian
Hint. In the next sections we specify two different choices of in-
teraction Hamiltonians, which yield different SFA approaches.
We will calculate the spin resolved differential ionization rates
in these two approaches and will later discuss their physical
relevance.

We calculate the ionization rates in linearly as well as circu-
larly polarized laser fields. In the velocity gauge, the vector
potential of the laser field can be written as

A(η) =
E0

ω

[
sin(ωη)x̂ − ζ cos(ωη)ŷ

]
, (14)

which yields the corresponding electric and magnetic fields

E(η) = −E0
[
cos(ωη)x̂ + ζ sin(ωη)ŷ

]
, (15)

B(η) = E0
[
ζ sin(ωη)x̂ − cos(ωη)ŷ

]
, (16)

respectively, with the laser field amplitude E0 and the polar-
ization parameter ζ, such that ζ = 0 corresponds to linear and
ζ = 1 is for circular polarization of the laser field. Further,
we specify the propagation direction as k̂ = ẑ, which implies
η = t − z/c.

A. Standard cc-SFA

In s-cc-SFA, the total Hamiltonian is partitioned as follows

H = Hs
0 + Hs

int , (17)

Hs
0 = cα · p + βc2 + V(r) , (18)

Hs
int = x · E

(
1 − α · k̂

)
. (19)

In this partition, the initial state, fulfilling Eq. (4), is the ground
state of a hydrogenlike ion |ψs

0〉, whose position representation
is

ψs
0(x) =

κ3/2

√
π

√
2 − Ip/c2

Γ(3 − 2Ip/c2)
(2κr)−Ip/c2

exp (−κr − iε0t) us ,

(20)

with the ground state spinor

us =


χs

i
Ip

cκ
x̂ · σχs

 , (21)

the ground state energy ε0 = c2 − Ip, and the ionization energy
Ip = c2 −

√
c4 − c2κ2 [75]. Then, after plugging the eikonal-

Volkov (8) as well as the ground state (20) wave functions into
the transition amplitude, and changing the variables from (t, x)
to (η, x), we obtain

Ms→s′ = N
∫ ∞

−∞

dη eiS̃ (η) (22)

×

∫
d3x e−iq(η)·x−κr+iS c(x,η)r−Ip/c2

x · E(η) v†s′ (1 − α · k̂)us ,

with the following contracted action S̃ (η) and the relativistic
kinetic momentum q(η):

S̃ (η) =
1
λ

∫ η

−∞

dη′
(
A(η′) · p +

A(η′)2

2
+ λ(ε − ε0)

)
, (23)

q(η) = p + A(η) −
ε − ε0

c
k̂ . (24)

Here, the prefactor is

N = −i

√
c2

ε

κ3/2

√
π

√
2 − Ip/c2

Γ(3 − 2Ip/c2)
(2κ)−Ip/c2

. (25)

For the later convenience, we can also write down the con-
tracted action in the form of

S̃ (η) =
1

2λ

∫ η

−∞

dη′
[
q2(η′) + κ2

]
. (26)

The η integral in Eq. (22) is performed via the saddle-point
approximation (SPA). The saddle point equation, ˙̃S (ηs) = 0,
yields

q2(ηs) + κ2 = 0 . (27)

As in the SPA-contour only the integration region near the
saddle point makes the main contribution to the integral, the
contracted action can be expanded around the saddle point ηs
as

S̃ (η) = S̃ (ηs) + ¨̃S (ηs)(η − ηs)2/2 . (28)

Then, we replace η with ηs in the rest of the phase dependent
functions, except in the term q(η), which after the coordinate
integration yields to a singular function at the saddle point,
as we will see below. Afterwards, the transition amplitude
becomes

Ms→s′ = N
∫ ∞

−∞

dη exp
[
iS̃ (ηs) + i ¨̃S (ηs)(η − ηs)2/2

]
(29)

×

∫
d3x e−iq(η)·x−κr+iS c(x,ηs)r−Ip/c2

x · E(ηs) v†s′ (1 − α · k̂)us ,
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where the Coulomb correction factor arises [see Eq. (II.57)]

Qr ≡ exp
[
iS c(x, ηs)

]
= exp

(
2Ip

c2

) (
1 −

Ip

6c2

) (
−

x · E(ηs)
4Ip

)Ip/c2−1

. (30)

Furthermore, using the fact that x · Ê/r ∼ 1, see [66], the
transition amplitude reads,

Ms→s′ = Ne2Ip/c2
(
1 −

Ip

6c2

)
(−4Ip)1−Ip/c2

(31)

×

∫ ∞

−∞

dη
eiS̃ (ηs)+i ¨̃S (ηs)(η−ηs)2/2

|E(ηs)|−Ip/c2 J0(η) v†s′
(
1 − α · k̂

)
ũs(η) ,

where

ũs(η) =


χs

i
Ip

cκ
J1(η) · σ

J0(η)
χs

 , (32)

with

J0(η) =

∫
d3x exp

[
−iq(η) · x − κr

]
, (33)

J1(η) · σ =

∫
d3x exp

[
−iq(η) · x − κr

]
x̂ · σ . (34)

With the help of the plane wave expansion, these space integrals
can be calculated exactly as

J0(η) =
8πκ[

q(η)2 + κ2]2 , (35)

J1(η) · σ = −
i8π[

q(η)2 + κ2]2 q(η) · σ . (36)

Then, the transition amplitude reads

Ms→s′ = Ne2Ip/c2
(
1 −

Ip

6c2

)
(−4Ip)1−Ip/c2

8πκ

×

∫ ∞

−∞

dη
eiS̃ (ηs)+i ¨̃S (ηs)(η−ηs)2/2|E(ηs)|Ip/c2[

q(η)2 + κ2]2 v†s′
(
1 − α · k̂

)
ũs(η) .

(37)

As a final step, we can evaluate the η-integral. The pre-
exponential integrand has a singularity at the saddle point
because of the saddle point condition Eq. (27). Therefore, we
first expand the singular factor around the saddle point as

1[
q(ηs)2 + κ2]2 =

1

4
[
q(ηs) · q̇(ηs)

]2 (η − ηs)2
, (38)

and include it in the integration following the modified SPA
[76]. The bispinor ũs(η) has no singularity at the saddle point
and reads

ũs(ηs) =


χs

i
Ip

cκ
q̂(ηs) · σχs

 , (39)

where we have used q(ηs) = iκ. Finally, the transition ampli-
tude can be written as

Ms→s′ = Ñ
exp

(
iS̃ (ηs)

)
[
q(ηs) · E(ηs)

]3/2

|E(ηs)|Ip/c2

√
λ

v†s′
(
1 − α · k̂

)
ũs(ηs) ,

(40)

with Ñ ≡ iN(2πi)3/2κe2Ip/c2
(
1 − Ip

6c2

)
(−4Ip)1−Ip/c2

.
In order to evaluate the transition amplitude for any spin

quantization axis, we can use the rotation operator D after
fixing the representation. Namely, we can choose the repre-
sentation of the gamma matrices in the z-basis and specify
the two-component spinor χs in Eq.(7) as well as in Eq.(21)
along the z-direction. Then, the spin states along an arbitrary
quantization axis can be written as

|Ψ s〉 =
∑

s′
Ds′ s(θ, φ)|Ψ s′

z 〉 , (41)

where |Ψ s
z 〉 is the state whose spin quantization direction is

the z-axis andDss′ (θ, φ) is the Wigner D-matrix, which can be
defined as

Ds′ s(θ, φ) =

 cos( θ2 ) e−iφ sin( θ2 )

eiφ sin( θ2 ) − cos( θ2 )

 , (42)

with the spherical coordinates θ and φ, see Fig. 1. In other
words, the rotated states expressed in terms of the z basis read

|Ψ+〉 = cos
(
θ

2

)
|Ψ+

z 〉 + eiφ sin
(
θ

2

)
|Ψ−z 〉 , (43a)

|Ψ−〉 = e−iφ sin
(
θ

2

)
|Ψ+

z 〉 − cos
(
θ

2

)
|Ψ−z 〉 . (43b)

As a result, the transition amplitude valid for any spin quanti-
zation axis can be written as

Ms→s′ =
∑
i, j

D∗js′M
z
i→ jDis , (44)

with Mz
i→ f being the transition amplitude when the spin quan-

tization axis is chosen along the z-axis. Furthermore, the spin
resolved differential ionization rate for an arbitrary spin quanti-
zation axis can be found via

dWs→s′

d3 p
=
ω

π

∑
i, j,k,l

D∗js′Dls′Mz
i→ jM

z ∗
k→lDisD

∗
ks

 . (45)

B. Dressed cc-SFA

Although, s-cc-SFA improves the results in comparison to
the usual SFA via the Coulomb correction to the continuum
electron wave function, it neglects the influence of the laser
field on the bound state. Because of that, the electron spin
dynamics in the bound state is completely neglected and the
electron spin in the tunneling bound state is the same as in
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FIG. 1. Spin states along an arbitrary quantization axis can be ob-
tained by acting the rotation operator on the initial spin states whose
quantization axis is along z. The rotation is defined by angles (θ, φ).
The configuration of the laser fields at the instant of ionization is
specified.

the initial state before the interaction with the laser field. In
this case the spin effects are determined solely by the electron
dynamics during the tunneling and during the motion in the
continuum. Due to the evident asymmetry in the spin evolution
in this picture (frozen spin in the bound state, rotating spin in
the tunneling, and oscillating spin in the continuum) relatively
large spin effects arise. On the other hand, it is well-known
that the laser field can induce a significant spin dynamics in
the bound state [54]. Moreover, the Zeeman-splitting of bound
state levels can have an impact on the tunneling probabilities,
in this way modifying the spin effects [77]. Therefore, it is
important to take into account the laser field influence on the
spin evolution in the bound state when calculating spin effects
in the ionization process.

With this motivation, we employ d-cc-SFA, see paper II,
which is based on a specific partition of the Hamiltonian, in
which the bound state dynamics in the laser field is accounted
for. In d-cc-SFA the total Hamiltonian is split up as follows

H = Hd
0 + Hd

int , (46)

Hd
0 = cα · p + βc2 + V(r) − (x · E)(α · k̂) , (47)

Hd
int = x · E . (48)

In this case the SFA transition amplitude reads

Ms→s′ = −i
∫ ∞

−∞

dt
∫

d3xΨ s′
C
†
(x, t) (x · E)Φs

0(x, t) , (49)

where the so-called dressed ground state satisfies the following
equation

i∂t |Φ
s
0〉 = Hd

0 |Φ
s
0〉 . (50)

This equation includes the spin precession in the bound state
induced by the laser field.

The Schrödinger equation for the dressed bound state (50)
cannot be solved analytically in an exact way and, therefore,
several approximations are applied. Since the typical dimen-
sion of the atomic bound state is much smaller than the wave-
length of the laser, we apply the dipole approximation for
treating the dressed bound state dynamics, i.e., η→ t. Further-
more, we are concerned mostly by the electron spin precession
in the bound state, consequently, we consider only transitions
in the subspace of spin states and describe the dressed ground
state with the following ansatz

|Φs
0(t)〉 =

∑
s′

C ss′ (t)|ψs′
0 (t)〉 , (51)

where |ψs′
0 (t)〉 is the ground state wave function whose position

representation is given by Eq. (20). According to the wave
equation (50), the coefficients C ss′ (t) satisfy the following dif-
ferential equation

iĊ ss′′ (t) =
∑

s′
C ss′ (t)〈ψs′′

0 (t)|H1(t)|ψs′
0 (t)〉 , (52)

where H1(t) = −E(t) · xα · k̂ . When the spin quantization
direction is the z-axis, the value of the matrix elements can be
written as

〈ψ+
0 (t)|H1(t)|ψ+

0 (t)〉 = 〈ψ−0 (t)|H1(t)|ψ−0 (t)〉 = 0 , (53a)

〈ψ+
0 (t)|H1(t)|ψ−0 (t)〉 = 〈ψ−0 (t)|H1(t)|ψ+

0 (t)〉∗ = i
iEy(t) − Ex(t)

2c
δ ,

(53b)

where δ ≡ 1−2Ip/(3c2). Thus, we obtain the following coupled
differential equations

Ċ+±(t) = C+∓(t)F∓(t) , (54a)

Ċ−±(t) = C−∓(t)F∓(t) , (54b)

with

F±(t) =
iEy(t) ± Ex(t)

2c/δ
. (55)

It is useful to separate the bound state propagation in two
stages; first, from the switching on the laser field up to the ion-
ization moment, and second, the under-the-barrier dynamics.
The description of the first stage requires the exact solution
of Eq. (54), which for linear and circular polarizations of the
laser field are discussed in Sec.III. For the second stage of
the under-the-barrier dynamics during the imaginary time, a
simple approximate solution of the bound state wave function
can be found exploiting the shortness of this time propaga-
tion. In fact, the time integration in Eq. (49) will be performed
by SPA and the matrix element (49) will be evaluated at the
saddle point ηs = ηr + iηi (see Sec.IV), where ηr is the in-
stant of ionization at which the spin state leaves the bound
state, and ηi is the duration of the imaginary time (the Keldysh
time), during which the state evolves under-the-barrier, yet, it
is small with respect to the laser period in the tunneling regime
|ωηi| ∼ γ � 1 [the tunneling regime of ionization is defined by
the Keldysh parameter γ =

√
2Ipω/E0 � 1].
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In order to investigate solely the under-the-barrier propaga-
tion, we first convert these differential equations to Volterra
integral equations of the second kind, which for the time prop-
agation after t = tr can be written as

C+±(t) = C+±
0 + C+∓

0

∫ t

tr
ds F∓(s) (56a)

+

∫ t

tr
ds C+±(s)F∓(s)

∫ t

s
dτ F±(τ) ,

C−±(t) = C−±0 + C−∓0

∫ t

tr
ds F∓(s) (56b)

+

∫ t

tr
ds C−±(s)F∓(s)

∫ t

s
dτ F±(τ) ,

where C ss′
0 ≡ C ss′(tr). For calculation of the maximal tunnel-

ing probability, we choose tr = 0, which corresponds to the
electric field maximum, see Eq. (15). Then, introducing the
dimensionless parameter ϕ ≡ ωt, we arrive at the following
integral equation

C ss′ (ϕ) = f ss′ (ϕ) +
1
4
δ2ξ2

∫ ϕ

0
duK ss′ (ϕ, u)C ss′ (u) , (57)

with the relativistic invariant field parameter ξ ≡ E0/(cω).
Here, the integral Kernels are given by

K±+(ϕ, u) = K±−∗(ϕ, u) =
[
cos(u) + iζ sin(u)

]
(58)

×
(
iζ

[
cos(u) − cos(ϕ)

]
+ sin(u) − sin(ϕ)

)
,

and the functions f ss′ (t) are

f +±(ϕ) = C+±
0 + C+∓

0
δξ

2
[
iζ(cos(ϕ) − 1) ± sin(ϕ)

]
, (59a)

f −±(ϕ) = C−±0 + C−∓0
δξ

2
[
iζ(cos(ϕ) − 1) ± sin(ϕ)

]
. (59b)

The formal solution to the integral equation (57) can be
given by the iterative method [78]. Although in weak laser
fields, ξ � 1, a few iterations would give an accurate result,
for the strong fields, ξ � 1, generally, one has to deal with
the infinite sum of iterations. Nevertheless, we consider a very
short time propagation ϕ = ωηi � 1. Moreover, we observe
from Eq. (57)-(59) that the effective time parameter scales as
ξδϕ, which can be estimated as ξδγ ∼

√
Ip/c � 1 and it is

small. Therefore, the solution of the integral equation (57)
for the considered small time propagation can be represented
by the leading iteration term even for strong fields. The first
iteration, which leads already to terms of the order of (Ip/c2)3/2,
is given by the following expressions

C+±(ϕ) = C+±
0 ±

C+∓
0

2
δξϕ −

1
8

[
2iC+∓

0 δξζ + C+±
0 δ2ξ2

]
ϕ2

(60a)

∓
1

48

[
4C+∓

0 δξ − 2iC+±
0 δ2ξ2ζ + C+∓

0 δ3ξ3
]
ϕ3 ,

C−±(ϕ) = C−±0 ±
C−∓0

2
δξϕ −

1
8

[
2iC−∓0 δξζ + C−±0 δ2ξ2

]
ϕ2

(60b)

∓
1

48

[
4C−∓0 δξ − 2iC−±0 δ2ξ2ζ + C−∓0 δ3ξ3

]
ϕ3 .

Furthermore, the coefficients (60) can be represented as

C ss′ (ϕ) = Π(ϕ, 0)C ss′
0 , (61)

with the transformation matrix

Π(ϕ, 0) =


1 − 1

8δ
2ξ2ϕ2 1

2δξϕ −
1
4 iδζξϕ2

+ 1
24 iδ2ζξ2ϕ3 −

(
1
48δ

3ξ3 + 1
12δξ

)
ϕ3

− 1
2δξϕ −

1
4 iδζξϕ2 1 − 1

8δ
2ξ2ϕ2

+
(

1
48δ

3ξ3 + 1
12δξ

)
ϕ3 − 1

24 iδ2ζξ2ϕ3


.

(62)
In this way we separate the propagation of the spin states
through the imaginary time axis from the states at the instant
of ionization.

Then following the same procedure as in the case of s-cc-
SFA, the transition amplitude in d-cc-SFA for the case when
the spin quantization direction is the z-direction can be written
as

Mz
s→s′ = Ñ

exp
(
iS̃ (ηs)

)
[
q(ηs) · E(ηs)

]3/2

|E(ηs)|Ip/c2

√
λ

× vz †
s′

[
1 +

1
2cλ
α · A(ηs)(1 + α · k̂)

]∑
s′′

C ss′′
0 Uz

s′′ (ηs) ,

(63)

where

Uz
±(ηs) =

[
1 −

1
8
δ2ξ2(ωηs)2 ±

1
24

iδ2ζξ2(ωηs)3
]

ũz
±(ηs)

∓

[
1
2
δξ(ωηs) ±

1
4

iδζξ(ωηs)2 −

(
δ3ξ3

48
+
δξ

12

)
(ωηs)3

]
ũz
∓(ηs) .

The transition amplitude as well as the differential ionization
rate for any spin quantization axis can be defined via Eqs. (44)
and (45), respectively.

III. SPIN DYNAMICS IN THE BOUND STATE

The spin resolved ionization amplitudes in d-cc-SFA, given
by Eq. (63), depend on the coefficients C ss′

0 , which describe
the spin precession in the bound state when the quantization
axis is along the laser propagation direction and are evaluated
at the ionization time tr. These coefficients are found from the
solution of the system of differential equations (54) with the
following boundary conditions

lim
ξ→0

C±±(t) = 1 , (64a)

lim
ξ→0

C±∓(t) = 0 , (64b)

describing the initial spin state of the atom when the laser field
is switched off adiabatically.
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A. Circular polarization

In the case of circular polarization, the solution of Eq. (54),
which satisfy the boundary conditions (64), is

C±±circ(t) =
1 +

√
1 + δ2ξ2√

δ2ξ2 +
(
1 +

√
1 + δ2ξ2

)2
e
∓ 1

2 itω
(
1−
√

1+δ2ξ2
)
,

(65a)

C±∓circ(t) =
iδξ√

δ2ξ2 +
(
1 +

√
1 + δ2ξ2

)2
e
± 1

2 itω
(
1+
√

1+δ2ξ2
)
.

(65b)

The maximum of the ionization probability is at the instant of
ionization tr = 0, see Eq. (15), at which the coefficients yield

C++
circ(tr = 0) = C−−circ(tr = 0) =

1 +
√

1 + δ2ξ2√
δ2ξ2 + (1 +

√
1 + δ2ξ2)2

,

(66a)

C+−
circ(tr = 0) = C−+

circ(tr = 0) =
iδξ√

δ2ξ2 + (1 +
√

1 + δ2ξ2)2
.

(66b)

In the weak field limit, ξ � 1, one has the following asymp-
totics

C++(tr = 0) = C−−(tr = 0) = 1 −
1
8
ξ2δ2 , ξ � 1 , (67a)

C+−(tr = 0) = C−+(tr = 0) =
i
2
δξ −

3i
16
δ3ξ3 , ξ � 1 ,

(67b)

while in the strong field regime, ξ � 1

C++
circ(tr = 0) = C−−circ(tr = 0) =

1
√

2
, ξ � 1 , (68a)

C+−
circ(tr = 0) = C−+

circ(tr = 0) =
i
√

2
, ξ � 1 . (68b)

We observe from the solution (65) that the spin oscillates
over time with the frequency ω

(
1 ±

√
1 + δ2ξ2

)
/2. While for

weak fields it oscillates around the value at tr = 0 (67) with the
laser’s frequency ω, for strong fields the spin state does full os-
cillation between the up and down states with a large frequency
δξω/2. As the coefficients C ss′

circ(tr) and, accordingly, the spin
resolved ionization probability oscillate with respect to the ion-
ization time tr, it is physically more appropriate to consider the
time averaged ionization rate. The latter, in fact, corresponds to
the averaging over the photoelectron momentum, because there
is a mapping between the final momentum and the instant of
ionization via the saddle point equation. Choosing the interval
of the time averaging T much smaller than the laser period
T0, one can still relate the averaged ionization probability to
the maximum of the momentum distribution of the tunneling
electron.

In the weak field regime the averaging result coincides with
the instantaneous one with an accuracy of the order of T/T0
(T/T0 � 1). However, in the strong field regime the period of
the spin oscillations are ξ times smaller than the laser period.
In this case we average the ionization probability over the time
period of the spin oscillation T = T0/ξ.

From Eq. (63) one can see that the spin dependent part of
the transition amplitude in the case of d-cc-SFA is determined
by the following factor

Sz
s→s′ ≡ Vz †

s′ (η′s)
∑
s′′

C ss′′ (tr)Uz
s′′ (η

′
s) , (69)

with

Vz †
s′ (η′s) ≡ vz †

s′

[
1 +

1
2cλ
α · A(η′s)(1 + α · k̂)

]
. (70)

Here, we did the replacement C ss′′
0 → C ss′′ (tr) as well as η′s →

tr + ηs in order to investigate effect of an arbitrary instant of
ionization tr. Then, the averaged differential ionization rate
contains the factor

〈|Sz circ
s→s′ |

2〉 = 〈|S̃z
+→s′ (η

′
s)C

s+
circ(tr) + S̃z

−→s′ (η
′
s)C

s−
circ(tr)|2〉 ,

= |S̃z
+→s′ (η

′
s)|

2〈|C s+
circ(tr)|2〉 + |S̃z

−→s′ (η
′
s)|

2〈|C s−
circ(tr)|2〉

+ S̃z
+→s′ (η

′
s)S̃

z ∗
−→s′ (η

′
s)〈C

s+
circ(tr)C s−

circ
∗(tr)〉

+ S̃z
−→s′ (η

′
s)S̃

z ∗
+→s′ (η

′
s)〈C

s−
circ(tr)C s+

circ
∗(tr)〉 , (71)

with S̃z
s→s′(η

′
s) ≡ Vz †

s′ (η′s)U
z
s(η
′
s). Here, the slow oscillating

functions S̃z
s→s′(ηs) with respect to the averaging time T are

taken out from the averaging. From Eq. (65) one can see that
the mean values |C s±

circ(tr)|
2 are time independent, and the fre-

quency of the oscillations of C s±
circ(tr)C s∓

circ
∗(tr) is ω. Therefore,

the averaged probability over the time T � T0 will coincide
with the instantaneous value

〈|Sz circ
s→s′ |

2〉 = |Sz circ
s→s′ (tr = 0)|2 . (72)

However, this particular choice of the spin quantization axis
along the laser propagation direction is very special in the cir-
cular polarization case. When the quantization axis is arbitrary,
the probability is a linear combination of C s1 s2

circ (tr)C
s3 s4
circ
∗(tr)

with arbitrary values of si because

〈|Scirc
s→s′ |

2〉 = 〈
∑
i, j,k,l

D∗js′Dls′DisD
∗
ks

×
(
S̃z

+→ j(η
′
s)C

i+
circ(tr) + S̃z

−→ j(η
′
s)C

i−
circ(tr)

)
×

(
S̃z

+→l(η
′
s)C

k+
circ(tr) + S̃z

−→l(η
′
s)C

k−
circ(tr)

)∗
〉 ,

which, for instance, contains a term

S̃z
−→ j(ηs)S̃z ∗

+→l(ηs)〈C+−
circ(tr)C−+

circ
∗(tr)〉 . (73)

The term C+−
circ(tr)C

−+
circ
∗(tr) oscillates with the frequency

ξδω for strong fields, and its mean value is vanishing
〈C+−

circ(tr)C
−+
circ
∗(tr)〉 = 0 when the averaging period fulfills the

condition

1
δξω

� T � T0 . (74)
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Note that that the instantaneous value of this term at tr = 0 is
1/2 in the strong field limit, ξ � 1. Therefore, the averaged
probability will differ from the instantaneous value in those
cases when the direction of quantization axis is chosen other
than in the laser propagation direction.

B. Linear polarization

In the case of linear polarization of the laser field, the so-
lution of Eq. (54), with the boundary conditions according to
Eq. (64), is

C±±lin (t) = cos
[
1
2
δξ sin(ωt)

]
, (75a)

C±∓lin (t) = ∓ sin
[
1
2
δξ sin(ωt)

]
. (75b)

The spin states at the instant of ionization, tr = 0 are

C±±lin (tr = 0) = 1 , (76a)
C±∓lin (tr = 0) = 0 . (76b)

Similar to the circular polarization case, in weak fields ξ �
1, the spin states oscillate over time around the value at the
instant of ionization tr = 0 with the laser’s frequency,

C±±lin (t) = 1 −
1
2

(δξ sin(ωt)/2)2 , ξ � 1 , (77a)

C±∓lin (t) = ∓
1
2
δξ sin(ωt) , ξ � 1 , (77b)

Consequently, in weak fields ξ � 1 the time averaged probabil-
ity, carried out over the time region given by Eq. (74), coincides
with the instantaneous one.

In strong fields ξ � 1, the spin oscillates between the up
and down states with the frequency δξω/2. The mean value
of the differential ionization rate for an arbitrary spin quanti-
zation axis in the linear polarization case includes the follow-
ing three factors; 〈cos

[
1
2δξ sin(ωtr)

]
sin

[
1
2δξ sin(ωtr)

]
〉 = 0,

〈cos2
[

1
2δξ sin(ωtr)

]
〉 = 1/2, and 〈sin2

[
1
2δξ sin(ωtr)

]
〉 = 1/2,

when the averaging is carried out over the time region (74). Ac-
cordingly, when the quantization axis is along the z-direction,
the averaged spin resolved ionization probability in the strong
field limit is determined by the factor

〈|Sz lin
s→s′ |

2〉 =
1
2

(
|S̃z

+→s′ (ηs)|2 + |S̃z
−→s′ (ηs)|2

)
, ξ � 1 , (78)

which does not coincide with the instantaneous value of the
transition probability. The rate for an arbitrary quantization
axis can be calculated in a similar way.

As a summary, the spin resolved differential ionization rate
corresponding to the maximum of the photoelectron momen-
tum distribution is well defined in the case of weak fields and
corresponds to the instantaneous ionization rate at the peak
of the laser field. In strong laser fields, the spin resolved ion-
ization rate is highly oscillating with respect to the ionization
time, therefore, it is physically relevant to average the rate over
a period fulfilling the condition (74).

IV. FINAL MOMENTUM DISTRIBUTION OF THE
TUNNEL-IONIZED ELECTRON

We are concerned with the spin resolved ionization prob-
abilities corresponding to the maximum of the momentum
distribution of photoelectrons. In this section we derive the
momentum distribution of the directly ionized electrons, taking
into account the relativistic corrections during the under-the-
barrier motion (∼ Ip/c2) as well as the nonadiabatic corrections
(∼ γ2). The momentum corresponding to the maximum of this
distribution will be used in the next section for the evaluation
of the spin asymmetries as well as for the spin flip.

In SFA the dominating part of the ionization probability is
given by the tunneling exponent

W ∼
∣∣∣∣exp

(
iS̃ (p, ηs(p))

)∣∣∣∣2 , (79)

where the exponent depends on the final momentum p as well
as the saddle point ηs = ηr + iηi. Furthermore, via the saddle
point equation q(ηs)2 = −κ2, the momentum and the saddle
point are connected to each other so that the exponent is a
function of the final momentum. In other words, each saddle
pints correspond to different momenta for the tunnel-ionized
electron. In order to find the momentum that maximizes the ion-
ization probability, we first note that in the quasistatic tunnel-
ionization regime (γ � 1) the tunneling probability is maximal
when the electric field reaches the maximum at the real part of
the saddle time, i.e., when

|E(ηr)| = E0 . (80)

Here ηr corresponds to the instant of ionization in the quasi-
classical description of tunneling such that the electron leaves
the bound state and starts the continuum motion. Then, taking
into account Eqs. (15) and (16) we find ηr = 0, and

E(ηr) = −E0 x̂ , (81)
B(ηr) = −E0 ŷ , (82)

A(ηr) = −
E0

ω
ζ ŷ . (83)

Note that for a circularly polarized field, at any time the condi-
tion (80) is fulfilled. Nevertheless, in order to generalize the
result to an arbitrary polarization, we set ηr = 0. This condition
further implies that the most probable tunneling is along the
direction that points the maximal electric field. Within this
conclusion, the saddle point equation (27) reads

κ2 + c2
(
1 − λ − Ip/c2

)2
+

(
py −

E0ζ cosh(ωηi)
ω

)2

+

(
px + i

E0 sinh(ωηi)
ω

)2

= 0 . (84)

For a real ηi, Eq. (84) can only be fulfilled if

px = 0 , (85)

i.e., the final momentum along the tunneling direction of the
tunnel-ionized electron should vanish. Correspondingly, the
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contracted action (26) can be written as

S̃ (ηs) =
E2

0(ζ2 − 1)
[
sin(2ωηs) − 2ωηs cos(2ωηs)

]
8λω3

−
8E0 pyζω

[
sin(ωηs) − ωηs cos(ωηs)

]
8λω3 . (86)

Further, it is more convenient to maximize the tunneling proba-
bility not by the final momentum p ≡ p(η f ) but by the momen-
tum p(ηr) at the tunnel exit, assuming the electron propagation
from the tunnel exit to the detector is governed by the laser
field only. The latter is defined via the following relation,

p = p(ηr) − A(ηr) −
k̂
λc

(
p(ηr) −

A(ηr)
2

)
· A(ηr) , (87)

where we have used Eq. (205) in Appendix IX A, and the fact
that A(η f ) = 0. Taking into account Eqs. (83) and (85), the
relation (87) yields

px = px(ηr) = 0 , (88a)

py = py(ηr) +
ζ E0

ω
, (88b)

pz = pz(ηr) +
1
λ c

ζ E0

ω

(
py(ηr) +

ζ E0

2ω

)
. (88c)

We observe that the initial momentum along the tunneling
direction at the tunnel exit, px(ηr), vanishes, which agrees with
the simpleman model as ηr is the turning point, i.e., the tunnel
exit point, where the classical particle has a vanishing velocity.

Next we express the constant of motion λ via (py(ηr), pz(ηr))
as

λ =
1
c

(√
c2 + (py(ηr)2 + pz(ηr)2) − pz(ηr)

)
,

≈ 1 −
pz(ηr)

c
, (89)

where we neglect py(ηr)2/c2 and pz(ηr)2/c2 which are of the
orders of (E0/Ea)(2Ip/c2) [the latter follows from the fact that
the width of the transverse momentum distribution at tunnel-
ionization is

√
E0/(2Ip)1/4 [16]. Note that in the tunneling

regime E0/Ea ≤ 1/10, with the atomic field strength Ea =

(2Ip)3/2]. Using the λ value, the contracted action (86) reads

S̃ (ηs) = −
E0

[
E0 + ζωpy(ηr)

]
3[1 − pz(ηr)/c]

η3
s , (90)

where we expand the action (86) up to nonvanishing order in
ηs taking into account that |ωηs| ∼ γ � 1. At the same order,
the saddle point is calculated as

ηs = i

√
py(ηr)2 + pz(ηr)2 + 2Ip[1 − pz(ηr)/c]

E0[E0 + ζpy(ηr)ω]
. (91)

Finally, we can identify the momentum which maximizes the
tunneling probability via the condition

∂S̃
∂p⊥(ηr)

= 0 , (92)

FIG. 2. (Color online) Ionization probability calculated numerically
via Eq. (79) versus the final transverse momentum. The final mo-
mentum is defined as pf⊥ ≡ p⊥(1 + δp⊥ ), with p⊥ given by Eq. (95b),
and Eq. (95c) and δp⊥ being the dimensionless deviation. The applied
parameters are κ = 50, ω = 1, ζ = 0.5, E0/Ea = 1/30. Note that we
set ω = 1 instead of ω = 0.05, which is a typical parameter for tunnel-
ionization, in order to confirm that the derived analytical results are
valid in a nonadiabatic regime as well.

with p⊥(ηr) = (py(ηr), pz(ηr)). The condition yields the follow-
ing two equations

py(ηr)2 − 2pz(ηr)2 − Ip + cpz(ηr)
(
3 + Ip/c2

)
= 0 , (93a)

6E0 py(ηr) + ζω

{
5py(ηr)2 − pz(ηr)2 − 2Ip

[
1 −

pz(ηr)
c

]}
= 0 .

(93b)

Up to the leading order in Ip/c2, the solution of Eq. (93) can
be given by

pz(ηr) =
Ip

3c
, (94a)

py(ηr) =
ζωIp

3E0
. (94b)

As a summary, the final momentum yielding the maximal
tunneling probability, with Eq. (88), can be written as

px = 0 , (95a)

py =
ζ E0

ω

(
1 +

γ2

6

)
, (95b)

pz =
Ip

3c
+

p2
y

2c

(
1 +

Ip

3c2

)
, (95c)

the validity of which is illustrated in Fig. 2, where the final
momentum distribution is calculated numerically via Eq. (79).
We emphasize that the momentum distribution (95) is valid
also for an arbitrarily elliptical polarization with an ellipticity
0 ≤ ζ ≤ 1.

Furthermore, by using the final momentum (95), we can
write down the saddle point, which maximizes the tunneling
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probability, as

ηs = i

√
2Ip

E0

[
1 −

5Ip

36c2 +
γ2

18
(ζ2 − 3)

]
, (96)

where Ip/c2-expansion is applied. Accordingly, the maximal
probability is derived from Eq. (79) can be found as

W ∼
∣∣∣∣exp

(
iS̃ (ηs)

)∣∣∣∣2 ≈ exp
(
−

2Ea

3E0

[
1 −

Ip

12c2 +
γ2

30
(ζ2 − 3)

])
.

(97)
Here we should note that the initial transverse momentum

given by Eq. (94) arises during the classically forbidden under-
the-barrier dynamics in tunnel-ionization. The momentum
along the laser propagation direction Ip/(3c) is a relativistic
signature of the process [79], whereas the momentum along
the direction of the laser’s magnetic field at the instant of ion-
ization ζE0γ

2/(6ω), which depends on the laser polarization,
is induced due to the nonadiabaticity of the ionization and it is
significant at large Keldysh parameters γ [80, 81]. In addition
to the SFA prediction, there exist also an initial nonvanishing
momentum along the tunneling direction for the most probable
trajectory, if one goes beyond the quasiclassical description of
tunneling and defines a tunneling time delay [82].

In the following sections, we discuss the spin dynamics in
the tunneling regime, γ � 1, consequently, we will omit the
γ2 terms in Eqs. (95) - (97) in the corresponding calculations.

V. SPIN ASYMMETRIES AND SPIN FLIP

In order to investigate the spin dynamics we consider the
following physically relevant choices of the spin quantization
axis; along the laser propagation direction, along the direction
of the laser electric field, and along the laser magnetic field at
the instant of ionization.

Concerning the spin asymmetry during ionization, one may
ask two independent questions:

1. Does the ionization rate depend on the initial spin state
of the bound electron?

2. Will the electron be polarized after tunnel-ionization
from an unpolarized target?

Consequently, we can define two spin asymmetry parameters,
firstly, the tunneling asymmetry parameter

At =
W+→+ + W+→− −W−→+ −W−→−

WT
, (98)

which measures the asymmetry between the tunneling rates for
initially polarized states. Here

Ws→s′ ≡
dWs→s′

d3 p

∣∣∣∣∣
p=pM

, (99)

is the differential ionization rate at the momentum value p =

pM corresponding to the maximal tunneling rate, see Eq.(95),
and

WT =
W+→+ + W+→− + W−→+ + W−→−

2
, (100)

is the total ionization rate averaged by the initial and summed
over the final spin states.

Secondly, one may define the spin polarization asymmetry
parameter as

Ap =
W+→+ + W−→+ −W+→− −W−→−

WT
, (101)

which is a measure of the electron final polarization in the case
of initially unpolarized states [58].

In addition to the asymmetries we will provide also the spin
flip rate

F± =
W±→∓

WT
. (102)

The three independent parameters At, Ap and F+ fully de-
scribe the spin transitions, taking into account the normaliza-
tion condition (1/2)

∑
s,s′ Ws→s′/WT = 1.

To sum up, we have introduced the following two sets of
parameters: the laser polarization parameter ζ, and the spin
quantization angles θ, φ in order to investigate analytical results
for the spin effects. The latter are described by three indepen-
dent parameters; the tunneling and polarization asymmetry
parameters, and the spin flip, for which we discuss the weak
field as well as the strong field limits in the following section.

A. The s-cc-SFA prediction

Let us first consider predictions of s-cc-SFA, which neglects
the spin dynamics in the bound state. We underline that due
the latter the results of s-cc-SFA are applicable for an arbitrary
elliptical polarization ζ.

1. The spin quantization axis is parallel to the laser propagation
direction

When the spin quantization axis is along the laser propaga-
tion direction ẑ, the angles determining the quantization axis
are θ = 0 and φ = 0. In this case we obtain for the spin
flip relative probability corresponding to the maximum of the
momentum distribution

F
z (s)
± =

ζξ(ζξ/2 ∓ ρ)/2
1 + ζ2ξ2/4

+ O(ρ2) , (103)

in the leading order of ρ ≡
√

2Ip/c2. On the one hand, the
spin flip vanishes for a linearly polarized filed for the maximal
tunneling probability. On the other hand, for a nonvanish-
ing laser’s polarization (ζ , 0), the spin flip is negligible in
the weak field regime ξ � 1, F z (s)

± → 0, whereas s-cc-SFA
predicts almost complete spin flip for strong fields ξ � 1,
F

z (s)
± → 1.
The tunneling asymmetry parameter and the spin polariza-

tion asymmetry parameter can be calculated up to the nonvan-
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ishing order of ρ as

A
z (s)
t = −

ζ

2ξ
ρ3 , (104)

Az (s)
p =

2ζξ
1 + ζ2ξ2/4

ρ . (105)

The s-cc-SFA calculations predict a rather large spin polariza-
tion asymmetry because the parameter Az (s)

p scales linearly
with the parameter ρ, while the tunneling asymmetry parame-
ter is much smaller ∼ ρ3. Nevertheless, the spin asymmetries
disappear for the linear polarization case.

We note that on the one hand the relation ρ3/ξ = ρ2γ indi-
cates that there is no singularity in Eq. (104) in the weak field
regime (ξ � 1), where ρ � γ � 1. On the other hand, the
relation ρ3/ξ = ω/c2(Ea/E0) indicates that Eq. (104) vanishes
for low frequencies. When neglecting the terms of the order of
ξ2 in the limit ξ � 1, one has also to neglect the terms of the
order of ρ2, because they are much smaller than the former by
the factor of γ2 � 1.

2. The spin quantization axis is perpendicular to the laser
propagation direction

In the case when the spin quantization axis is perpendicular
to the laser propagation direction, one can align it along the
direction of the electric field or the magnetic field at the in-
stant of ionization ηr, and for the sake of convenience we will
consider the directions opposite to the fields.

When the spin quantization axis is along the direction of
−Ê(ηr = 0) (θ = π/2, φ = 0, see Fig. 1), cf. Eq. (81), the flip
probability is

F
x (s)
± =

ρ2

4
, (106)

which is tiny for nonrelativistic (low charge) ions. Furthermore,
the asymmetries are vanishing

A
x (s)
t = Ax (s)

p = 0 . (107)

The results are independent from both the polarization and in-
tensity parameters at the maximum of the tunneling probability,
tr = 0.

When the quantization axis is along the direction of −B̂(ηr =

0) (θ = π/2, φ = π/2), cf. Eq. (82), the spin flip is

F
y (s)
± =

(ζ2ξ2/4)(1 ± ρ)
1 + ζ2ξ2/4

+ O(ρ2) . (108)

While it is insignificant for weak fields, a complete spin flip
occures in the strong field regime when ζ , 0, which is similar
to Eq. (103). On the other side, the spin asymmetries can be
written as

A
y (s)
t = 2ρ , (109)

A
y (s)
p = 2ρ

1 − ζ2ξ2/4
1 + ζ2ξ2/4

. (110)

Spin effects for strong fields ξ � 1
k̂ −Ê(ηr = 0) −B̂(ηr = 0)
s-SFA d-SFA s-SFA d-SFA s-SFA d-SFA

F± ζ 1/2 ± ζρ3/4 ρ2/4 1/2 ζ(1 ± ρ) ζ
(
1/2 ± ρ3/4

)
At 0 ζρ3 0 0 2ρ (1 − ζ)ρ3

Ap 0 0 0 0 2ρ(1 − 2ζ) ρ3(1 − 2ζ)

TABLE I. Spin flip and asymmetries in strong field regime ξ �
1 at the instant of ionization associated to the maximal tunneling
probability in the leading order of the parameter 1/ξ. Comparison of
the s-cc-SFA and d-cc-SFA results for different spin quantization axes
at the leading order in ρ ≡

√
2Ip/c; ζ = 0 is for linear and ζ = 1 is for

circular polarization of the laser field.

The spin polarization asymmetry parameter as well as the tun-
neling asymmetry parameter scale as ρ. The latter is also inde-
pendent from the polarization as well as the intensity parameter
of the laser field.

B. The d-cc-SFA prediction

In the weak field regime ξ � 1, as the asymmetries as
well as the spin flip are negligible (smaller by an order of
magnitude than ρ3) for any choice of the quantization axes,
in what follows, we discuss the predictions of the strong field
limit of d-cc-SFA. Note that in contrast to the s-cc-SFA case,
the polarization parameter is ζ = {0, 1} for the d-cc-SFA case.

1. The spin quantization axis is parallel to the laser propagation
direction

In this case the spin flip in the strong field regime (ξ � 1)
in the leading order of ρ equals to

F
z (d)
± =

1
2
± ζ

ρ3

4
, (111)

which is due to the spin fast oscillation in the bound state (see
Sec. VI B for an intuitive description), and it is different than
the prediction of the s-cc-SFA, whose strong field limit yields
F

z (s)
± → ζ with ζ = {0, 1}. Furthermore, there is a correction

at the order of ρ3 for the circular polarization case, see Fig. 5.
The corresponding asymmetries are

A
z (d)
t = ζρ3 + O(ξ−1) , (112)

Az (d)
p = O(ξ−1) . (113)

Firstly, the polarization asymmetry parameter vanishes for both
of linear and circular polarizations. The tunneling asymmetry
parameter also disappears in the linear polarization case, where
s-cc-SFA and d-cc-SFA agree with each other for strong fields.
However, the d-cc-SFA result for the tunneling asymmetry
parameter differs from the s-cc-SFA one in the case of circular
polarization, as it increases with increasing charge of the ion.
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2. The spin quantization axis is perpendicular to the laser
propagation direction

First of all, when we align the spin quantization axis along
the −Ê(ηr = 0)-direction, the spin flip can be calculated as

F
x (d)
± =

1
2
, (114)

which is again a consequence of the bound state dynamics, cf.
Eq. (106). However, as in the case of s-cc-SFA, the asymme-
tries vanish

A
x (d)
t = Ax (d)

p = O(ξ−1) . (115)

In the case where the spin quantization axis is the −B̂(ηr =

0)-direction, the spin flip is

F
y (d)
± =

ζ

2

(
1 ±

ρ3

2

)
+ O(ξ−1) . (116)

We first notice that the spin flip vanishes for the linear po-
larization case. For a circularly polarized field the spin flip
is the same as in the case of the quantization axis along the
k̂-direction.

The asymmetries in the d-cc-SFA case are

A
y (d)
t = (1 − ζ)ρ3 + O(ξ−1) , (117)

A
y (d)
p = ρ3 − 2ζρ3 . (118)

In the previous configuration, Eqs. (112) and (113) the both
asymmetries vanish for a linearly polarized field, however in
this case, the both have the same nonvanishing value. More-
over, we notice for the circular polarization case that when
the spin quantization axis is rotated from the z-axis to the -
B̂(ηr = 0)-direction, the tunneling asymmetry parameter and
the spin polarization asymmetry parameter interchange their
roles except a sign difference. Namely, Az (d)

t = A
y (d)
t = 0,

andAz (d)
p = −A

y (d)
t = ρ3.

Comparison of s-cc-SFA and d-cc-SFA for strong fields,
where the spin effects are not negligible, are presented in Ta-
ble I in a compact way. Thus, the standard and dressed SFA
give different answers for spin asymmetries and the question is
which result has physical implication. In the next section we
develop a simpleman model for the spin dynamics in tunnel-
ionization which allows us to identify the origin of the differ-
ence between s-cc-SFA and d-cc-SFA, and to recognize the
d-cc-SFA result as the physical relevant one. Note that the
same conclusion is reached in [59] from the comparison of
analytical results with numerical simulations in the case of a
linearly polarized laser field.

VI. SIMPLEMAN MODEL FOR THE SPIN DYNAMICS

All the SFA results calculated in the previous section con-
cerning the spin dynamics can be intuitively inferred in the
following simpleman model. We will describe by the simple

man model spin transitions taking place at an arbitrary instant
of ionization.

The complete propagation of the tunnel-ionized state can be
decomposed into three parts as

U(∞,−∞) = UC(∞, tr)UT (ts + tr, tr)UB(tr,−∞) , (119)

where UB(tr,−∞) describes the propagation of the bound state,
UT (ts + tr, tr) the under-the-barrier dynamics, and UC(∞, tr) the
continuum dynamics, see Fig. 3. Here, tr is an arbitrary instant
of ionization, and ts = i

√
2Ip/E0 is the imaginary Keldysh

time given by Eq. (96), which defines how long the electron
has to travel for the width of the tunneling barrier in imaginary
time and determines the tunneling rate.

Firstly, the spin resolved continuum evolution can be found
via the spin resolved prefactor of the Volkov wave function (5)
in the following way. The Volkov bispinors in two different
times are connected to each other as[

I +
1

2cλ

(
I + k̂ · α

)
A(t) · α

]
vs (120)

= UC(t, t′)
[
I +

1
2cλ

(
I + k̂ · α

)
A(t′) · α

]
vs ,

with the identity matrix I. Hence, the continuum time evolution
operator yields

UC(t, t′) = I +
1

2cλ

(
I + k̂ · α

) [
A(t) − A(t′)

]
· α , (121)

which reduces to

UC(∞, tr) = I −
1

2cλ

(
I + k̂ · α

)
A(tr) · α , (122)

where we use the fact that A(∞) → 0. Moreover, we will
consider only the large spin components, therefore, moving
from the bispinor- to spinor-description

UC(∞, tr) ≈ I − i
ξ

2

[
sin(ωtr)σy + ζ cos(ωtr)σx

]
, (123)

FIG. 3. (Color online) The simpleman model for the time evolution
of the initial bound spin state. The propagation can be split up to
three parts; the bound state, the under-the-barrier, and the continuum
dynamics. The standard SFA (red dashed curve) neglects the former,
whereas the dressed SFA (blue solid curve) takes the laser field into
account in the bound state dynamics.
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where we further set λ = 1 for the spinor-description consis-
tency.

In order to model the time evolution for the under-the-barrier
dynamics, we consider a triangular barrier depicted in Fig. 4
and apply WKB approximation. The WKB propagator can be
mimicked by the following spin resolved propagator, which
is derived via including the spin interaction Hamiltonian into
Eq. (26);

UT (ts) = exp
{

i
∫ tr+ts

tr
dt

[
q(t)2

2
− ε± +

σ · B(t)
2c

]}
, (124)

with ε± being the energy of the tunneling spin-1/2 particle,
which is different in the standard and dressed SFA.

Since the bound state dynamics varies, we will investigate
it in a more detail way for the standard and dressed SFA,
respectively.

A. Standard SFA

In the standard SFA, the influence of the laser field on the
bound state is neglected. Due to the latter, all the results which
we derive are valid also for an arbitrary elliptical polarization.

The evolution of the bound state between two different times
in this case is given by the usual propagator as

UB(t, t′) = exp
[
−iε±(t − t′)

]
= exp

[
iIp(t − t′)

]
, (125)

with the energy of the tunneling bound state particle ε± = −Ip,
which leads to a trivial phase. Accordingly, as there is no
Zeeman splitting of the energy in the bound state, the under-
the-barrier propagator reads

UT (ts) =
√

W(tr) exp
[
i
∫ tr+ts

tr
dt
σ · B(t)

2c

]
, (126)

where the tunneling probability amplitude
√

W(tr) arises from
the two first terms in Eq. (124), which depends on the arbitrary
instant of ionization (or the electron’s final momentum). For
example,

√
W(0) = exp

(
−

Ea

3E0

)
(127)

for the instant of ionization that corresponds to the maximal
tunneling probability. Furthermore, the spin resolved term can
be written up to the order O(t2

s ) as

i
∫ tr+ts

tr
dt
σ · B(t)

2c
≈ i

E0ts

2c

(
ζσx sin(ωtr) − σy cos(ωtr)

)
,

(128)

=
ρ

2

(
σy cos(ωtr) − ζσx sin(ωtr)

)
. (129)

As a consequence, the final spin state in terms of the initial
spin state |±; ŝ〉 ≡ | ± (−∞); ŝ〉 with an arbitrary spin quantiza-

tion axis ŝ can be written as

| ± (∞); ŝ〉 =
√

W(tr)
[
I − i

ξ

2

(
sin(ωtr)σy + ζ cos(ωtr)σx

)]
× exp

[
ρ

2

(
σy cos(ωtr) − ζσx sin(ωtr)

)]
|±; ŝ〉 ,

(130)

and the transition amplitude can be given by

Ms→s′ = 〈s′|
[
I − i

ξ

2

(
sin(ωtr)σy + ζ cos(ωtr)σx

)]
(131)

× exp
[
ρ

2

(
σy cos(ωtr) − ζσx sin(ωtr)

)]
|s〉 ,

where we omit the tunneling probability amplitude for the sake
of simplicity.

Let us first consider the case when the spin quantization axis
is chosen along the z-direction. The transition amplitudes up
to the leading order in ρ can be found as

Mz
±→± = 1 +

1
8
ξρ

[
±2ζ + i(ζ2 − 1) sin(2ωtr)

]
, (132a)

Mz
±→∓ =

1
2

[
(±ξ − ζρ) sin(ωtr) − i(ζξ ∓ ρ) cos(ωtr)

]
.

(132b)

For the spin flip, we derive

F
z (s)
± (tr) = 1−

4(2 ± ζξρ)
8 + (1 + ζ2)ξ2 − (1 − ζ2)ξ2 cos(2ωtr)

. (133)

For the instant associated to the maximal tunneling probability,
tr = 0 we have

F
z (s)
± (0) =

ζξ(ζξ ∓ 2ρ)
4 + ζ2ξ2 , (134)

which coincides with the s-cc-SFA result given by Eq. (103).
If we go further in the next orders of ρ, the spin flip at tr = 0
can be written as

F
z (s)
± (0) ≈

(ζξ ∓ ρ)2

4 + ζ2ξ2 . (135)

Eq. (135) shows that both the spin precession in continuum (the
term ∼ ξ) and the spin dependent tunneling probability (the
term ∼ ρ) are contributed for the spin flip effect. In the case
of linear polarization, ζ = 0, Eq. (135) gives F z (s)

± (0) ≈ ρ2/4,
indicating spin flip only due to the tunneling. However, this is
specific only for tr = 0. For this reason one can introduce the
mean value of the spin flip over the laser’s period T0, which
yields

〈F
z (s)
± 〉 ≡

〈Wz (s)
±→∓〉

〈Wz (s)
T 〉

=
ξ(ξ + ζ2ξ ∓ 4ζρ)

8 + (1 + ζ2)ξ2 , (136)

with

〈Ws→s′〉 ≡
ω

2π

∫ ω/π

−ω/π

dt Ws→s′ . (137)



14

The average spin flip in some cases can be different from the
instantaneous value. For instance, in ζ = 0 case, Eq. (136)
provides the strong field asymptotic, ξ � 1, 〈F z (s)

± 〉 = 1 in
contrast to F z (s)

± (0) ≈ ρ2/4.
At the same order the spin asymmetries can be given by

A
z (s)
t (tr) = 0 , (138)

Az (s)
p (tr) =

16ζξρ
8 + (1 + ζ2)ξ2 − (1 − ζ2)ξ2 cos(2ωtr)

. (139)

The tunneling asymmetry parameter is negligible for all possi-
ble intensities as well as laser’s polarization similar to Eq. (104).
Further, it is independent from the instant of ionization. The po-
larization asymmetry parameter disappears for both of the weak
field and the strong field regimes. Nonetheless, the polarization
asymmetry parameter depends on the ionization moment for
intermediate fields. For the maximal tunneling probability, it
reads

Az (s)
p (0) =

2ζξρ
1 + ζ2ξ2/4

, (140)

which agrees with Eq. (105), whereas its mean value over the
laser’s period can be calculated as

〈Az (s)
p 〉 =

2ζξρ
1 + (1 + ζ2)ξ2/8

, (141)

which has the same qualitative behavior asAz (s)
p (0).

In a similar way, we can deduce by the simpleman model
the spin flip as well as the spin asymmetries for different spin
quantization axes. For example, when we align the quanti-
zation axis along the y-direction, we provide the following
expressions up to the order O(ρ)

F
y (s)
± (tr) =

2ζ2ξ2 cos(ωtr)(cos(ωtr) ± ρ)
8 + (1 + ζ2)ξ2 − (1 − ζ2)ξ2 cos(2ωtr)

, (142)

A
y (s)
t (tr) = 2ρ cos(ωtr) , (143)

A
y (s)
p (tr) = 2ρ cos(ωtr) (144)

×

[
1 −

4ζ2ξ2

8 + (1 + ζ2)ξ2 − (1 − ζ2)ξ2 cos(2ωtr)

]
.

For the linear polarization case, the spin flip vanishes and
the both asymmetries simplify to Ay (s)

t (tr) = A
y (s)
t (tr) =

2ρ cos(ωtr). The spin asymmetries as well as the spin flip for a
nonvanishing polarization depend on the instant of ionization
even for strong fields. While we derive

F
y (s)
± (0) =

(1 ± ρ)ζ2ξ2

4 + ζ2ξ2 , (145)

A
y (s)
t (0) = 2ρ , (146)

A
y (s)
p (0) =

2ρ
(
4 − ζ2ξ2

)
4 + ζ2ξ2 , (147)

for the maximal tunneling probability, and we notice that
the simpleman results capture the corresponding SFA results,

Eqs. (108)-(110), their mean value can be calculated as

〈F
y (s)
± 〉 =

ζ2ξ2

8 + (1 + ζ2)ξ2 , (148)

〈A
y (s)
t 〉 = 0 , (149)

〈A
y (s)
p 〉 = 0 . (150)

One should note that the time averaging destroy the asymme-
tries. The spin flip qualitatively remains the same at the time
averaging, but decreases two times.

If the quantization axis is along the x-direction, at the leading
order of ρ, the spin flip and the spin asymmetries can be written
as

F
x (s)
± (tr) =

ξ2 sin(ωtr)(sin(ωtr) ∓ ζρ)
4 + ξ2 (

ζ2 cos2(ωtr) + cos2(ωtr)
) , (151)

A
x (s)
t (tr) = −2ζρ sin(ωtr) , (152)

Ax (s)
p (tr) = −2ζρ sin(ωtr) (153)

×

[
1 −

4ξ2

8 + (1 + ζ2)ξ2 − (1 − ζ2)ξ2 cos(2ωtr)

]
.

All the spin effects depend on the instant of ionization, and all
of them disappear for the maximum tunneling probability at
the leading order in ρ. If we further go the next order, the spin
flip for the maximal tunneling probability can be given by

F
x (s)
± (0) =

ρ2

4
, (154)

which is consistent with Eq. (106). The mean values over the
laser’s period, on the other hand, can be given by

〈F
x (s)
± 〉 =

ξ2

8 + (1 + ζ2)ξ2 , (155)

〈A
x (s)
t 〉 = 0 , (156)

〈Ax (s)
p 〉 = 0 . (157)

In this case, the average value of the spin flip is quite different
than the instantaneous value. Thus 〈F x (s)

± 〉 ≈ 1 at ξ � 1.
We notice that our simpleman model captures the main fea-

tures of the spin dynamics and is able to reproduce the results
of the SFA. The averaging of the spin flip and asymmetries
over the ionization time in some cases modifies significantly
the result.

B. Dressed SFA

In the dressed SFA, the scenario is changing because we
take into account the bound state evolution in the laser field.
The bound state propagation is not a trivial phase in this case,
but includes the spin precession in the bound state. Accord-
ingly, the Hamiltonian for the bound state propagation can be
represented as

H = H0I +
σ · B(t)

2c
, (158)
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FIG. 4. Intuitive description of the spin dynamics under-the-barrier
can be modeled with a triangular potential barrier. In the standard SFA
case, the spin states of the tunneling particle enter the barrier with the
same energy −Ip and are split during the under-the-barrier dynamics,
whereas in the dressed SFA, first the energy of the spin state is split
due to the Zeeman effect in the bound state, but later it is compensated
by the energy splitting in the under-the-barrier dynamics.

where H0 is the usual atomic Hamiltonian of the electron in
the Coulomb field of the core. We would like underline that
once the solution of the Schrödinger equation for the Hamilto-
nian (158) is known, the developed simpleman model is valid
for any polarization, and accordingly we discuss the linear and
circular polarization cases separately for the dressed SFA.

In addition to the trivial phase (125), in this scenario the
bound state propagator for a linearly polarized field can be
calculated as

UB(tr,−∞) = exp
(
−i

∫ tr

−∞

σyBy(t)
2c

)
, (159)

= cos
(
ξ

2
sin(ωtr)

)
I + iσy sin

(
ξ

2
sin(ωtr)

)
.

(160)

Furthermore, due to the Zeeman splitting, the energy of the
tunneling bound spin states whose quantization axis is along
y-direction will read ε± = −Ip ∓ E0 cos(ωtr)/(2c) for a certain
instant of ionization tr, where ε+(−) is for spin-up (down) state.
Consequently, as the spin states having different quantization
axes can always be expanded by the basis vectors |±; ŷ〉, the
Zeeman splitting and the spin interaction under-the-barrier
cancel each other, and the propagator is simply given by the
tunneling probability amplitude

UT (ts) =
√

W(tr) . (161)

We conclude that the tunneling probability is spin independent
in the dressed SFA at the leading order in ρ. Therefore, the
spin asymmetries disappear at this order [the contribution of
higher orders are discussed in the next subsection].

After including the continuum propagation for ζ = 0, the
transition amplitude in the case of the dressed SFA for linearly
polarized field becomes

Ms→s′ = ×〈s′|
(
I − i

ξ

2λ
sin(ωtr)σy

)
(162)

×

(
cos

(
ξ

2
sin(ωtr)

)
I + iσy sin

(
ξ

2
sin(ωtr)

))
|s〉 .

First of all, the transition amplitude is a function of σy, as
a consequence there cannot exist a spin flip when the spin
quantization axis is the y-direction, which explains the derived
result (116). Furthermore, due to the symmetry reason, the
spin flip for the case when the spin quantization axis is the
z-direction is the same as when it is the x-direction, and they
can be calculated as

F
z,x (d)
± (tr) =

2
[
ξ sin(ωtr) cos

(
ξ sin(ωtr)

2

)
− 2 sin

(
ξ sin(ωtr)

2

)]2

8 + ξ2(1 − cos(2ωtr))
.

(163)

At tr = 0, F z,x (d)
± (0) = 0. If tr , 0, F z,x (d)

± (tr) ∼ ξ2 for weak
fields, and it is negligible. However, its strong field limit can
be given by

F
z,x (d)
± = cos2

(
ξ

2
sin(ωtr)

)
. (164)

As we discussed in Sec. III, the bound spin highly oscil-
lates between up and down states in a very short time interval
for strong fields. As a result, it is physically more correct to
present the mean value of the spin flip instead of its instanta-
neous value at tr = 0. Furthermore, one can obtain the mean
value corresponding to the maximal tunneling probability by
averaging over a period T fulfilling the condition (74), and it is

〈F
z,x (d)
± 〉T =

1
2
, (165)

which agrees with Eq. (111), and Eq. (114) as well as with
Ref. [59]. Note that the mean value over the laser period T0
needs a numerical calculation.

For the circular polarization case, we first notice that solv-
ing the coupled differential equations (54) corresponds to
solving the Schrödinger equation for the Hamiltonian H =

σ · B(t)/(2c/δ). Furthermore, the corresponding propagator
can be written as

UB(tr,−∞) =

C++(tr) C−+(tr)
C−+(tr) C−−(tr)

 , (166)

with the coefficients (66). As a consequence, the bound state
propagator for a circularly polarized field can be obtained with
the replacement of δ→ 1 in the coefficients (66), which reads

UB(tr,−∞) =
1√

ξ2 + (1 +
√

1 + ξ2)2
(167)

×


(
1 +

√
1 + ξ2

)
e−iωtr

1−
√

1+ξ2
2 iξe−iωtr

1+
√

1+ξ2
2

iξeiωtr
1+
√

1+ξ2
2

(
1 +

√
1 + ξ2

)
eiωtr

1−
√

1+ξ2
2

 .
While the under-the-barrier propagator is the same as Eq. (161),
the continuum propagator for the circular polarization case
reads

UC(∞, tr) = 1 − i
ξ

2

[
sin(ωtr)σy + cos(ωtr)σx

]
. (168)
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Thereby, we can give an intuitive description of the spin effects
for a circularly polarized field. For instance, when the spin
quantization axis is along the z-direction, the spin flip is

F
z (d)
± (tr) =

ξ2
[
4 − 4(1 + Ξ)Cos (ωtr(1 − Ξ)) + (1 + Ξ)2

]
2(4 + ξ2)

(
Ξ2 + Ξ

) .

(169)

with Ξ ≡
√

1 + ξ2. For a weak field the spin flip is negligible,
whereas in the strong field, ξ � 1 we derive

F
z (d)
± (0) =

1
2
, (170)

for the instantaneous value at tr = 0. The mean value of the
spin flip over the period T (74),

〈F
z (d)
± 〉T =

1
2
, (171)

which coincides with its instantaneous value. This result is a
consequence of this particular choice of quantization axis as
we discussed in Sec. III A. In a similar way, the strong field
limit of the spin flip for the other spin quantization axes can be
derived as

F
y (d)
± (tr) =

1
2

[
1 −

cos [ωtr(1 − Ξ)] − cos [ωtr(3 − Ξ)]
2

]
,

(172)

F
x (d)
± (tr) =

1
2

[
1 −

cos [ωtr(1 − Ξ)] + cos [ωtr(3 − Ξ)]
2

]
.

(173)

While at tr = 0, we provide

F
y (d)
± (0) =

1
2
, (174)

F
x (d)
± (0) = 0 , (175)

their mean values over the period T are

〈F
y (d)
± 〉T =

1
2
, (176)

〈F
x (d)
± 〉T =

1
2
, (177)

which are consistent with Eq. (116), and Eq. (114).
Thus, the simpleman model clearly shows that the spin dy-

namics in the bound state is very important for developing
of spin effects during tunnel-ionization. This dynamics is in-
cluded only in the dressed SFA and, therefore, the physically
correct results are those predicted by the dressed SFA.

C. Origin of the spin asymmetries in the dressed SFA

If we compare the results developed in the previous sec-
tions VI A and VI B, we notice that the origin of the spin
asymmetries in the standard SFA is the spin interaction under-
the-barrier, which leads to different tunneling probabilities for

spin-up and spin-down states. Since the Zeeman splitting in
the bound state compensates this spin interaction in the dressed
SFA, there is no spin asymmetries at the leading order of ρ.
However, the magnetic field in the rest frame of the electron
is slightly different in the bound state and under-the-barrier,
which have an impact on the Zeeman splitting compensation
and can lead to a spin asymmetry. This can be described by
improving our simpleman model in the following way.

If we go further in the Foldy-Wouthuysen expansion of the
Hamiltonian, we can write down the propagator for the under-
the-barrier dynamics as

UT (ts) (178)

= exp
{
i
∫ tr+ts

tr
dt

[
q(t)2

2 − ε± +
σ·B(t)

2c +
σ·(E(t)×q(t))

4c2

]}
,

where the last term in the exponent of Eq. (178) describes the
effect of the magnetic field in the rest frame of the electron
during tunneling. Note that as the momentum vanishes for
the bound state, i.e., 〈p〉B = 0, we do not need to modify the
energy of the tunneling bound spin states. Moreover, the rest
frame effect depends on the final momentum distribution via
the term E(t) × q(t). Thereby, in order to elaborate the spin
asymmetries in the dressed SFA, we consider the instant of
ionization associated to the maximal tunneling probability. The
rest frame effect term, then, can be calculated up to the order
O(t2

s ) as

i
∫ ts

0
dt
σ · (E(t) × q(t))

4c2 ∼ i
σyE0qz(0)ts

4c2 ,

=
σyρ

3

12
, (179)

where we have further used qz(t) = −2Ip/(3c) via Eq. (24). As
a result, the under-the-barrier propagator yields

UT (ts) = exp
(
−

Ea

3E0

)
exp

(σy

12
ρ3

)
(180)

for the maximal tunneling probability.
Combining the bound state propagator for linear (159) and

circular polarizations (167) together, we derive

UB(0,−∞) = (1 − ζ)I +
ζ
[(

1 +
√

1 + ξ2
)

I + iξσx

]
√
ξ2 + (1 +

√
1 + ξ2)2

, (181)

with ζ = {0, 1}. Including the continuum propagator

UC(∞, 0) = I − i
ξζ

2
σx , (182)

the transition amplitude can be written as

Ms→s′ = 〈s′|
[(

I − i
ξζ

2
σx

) (
I +

σy

12
ρ3

)
(183)

×

(1 − ζ)I +
ζ
[(

1 +
√

1 + ξ2
)

I + iξσx

]
√
ξ2 + (1 +

√
1 + ξ2)2


 |s〉 ,
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where an expansion over a small parameter ρ is used. Then,
in the linear polarization case, ζ = 0 the transition amplitude
yields

Ms→s′ = 〈s′|
(
I +

σy

12
ρ3

)
|s〉 . (184)

Since the amplitude depends only on σy, there cannot exist the
spin asymmetries when the spin quantization axis is along the
z or x-directions. This is the underlying reason of Eqs. (112)
and (113) as well as Eq. (115). However, when the spin quanti-
zation direction is chosen in the y-direction, we derive

A
y (d)
t = A

y (d)
p =

ρ3

3
, (185)

which agrees with Eqs. (117) and (118) up to 1/3 prefactor.
In the case of a circularly polarized field, the corresponding

spin asymmetries can be written as

A
z (d)
t =

ξ

3
√

1 + ξ2
ρ3 , Az (d)

p =
4ξ

3(4 + ξ2)
ρ3 , (186a)

A
y (d)
t =

1

3
√

1 + ξ2
ρ3 , A

y (d)
p =

4 − ξ2

3(4 + ξ2)
ρ3 , (186b)

A
x (d)
t = 0 , Ax (d)

p = 0 , (186c)

and their strong field limit, ξ � 1 is

A
z (d)
t =

ρ3

3
, Az (d)

p = 0 , (187a)

A
y (d)
t = 0 , A

y (d)
p = −

ρ3

3
, (187b)

A
x (d)
t = 0 , Ax (d)

p = 0 . (187c)

Similar to the linear polarization case they agree with the d-cc-
SFA results up to the 1/3 factor (see Table I).

As a conclusion, the simpleman model describes correctly
the qualitative behavior of the asymmetry parameters. Here
we would like stress that we divide the total propagator into
three parts: the bound, under-the-barrier, and continuum parts.
While the bound and continuum propagators are unitary opera-
tors, the tunneling asymmetry parameterAt vanishes for these
propagations. The latter follows from the fact that since the
conservation of the probability implies W+→+ + W+→− = 1 as
well as W−→+ + W−→− = 1, with Ws→s′ = |〈s′|U(t, t′)|s〉|2, by
definition At essentially disappears. Nonetheless, the under-
the-barrier evolution operator is not a unitary operator as it
determines the tunneling rate. Therefore, the asymmetries are
originated from the tunneling step.

D. Further contributions to spin effects

Finally, we would like to discuss further contributions to
the spin effects that have been neglected in our treatment.
First of all, we would like to emphasize that the following
relativistic corrections, λ → 1 − ρ2/6, δ → 1 − ρ2/3, and

ts → i
√

2Ip/E0(1 − 5ρ2/72) as well as the effect of the bi-
spinor description can improve the accuracy of the results of
the simpleman model.

Next, we have neglected the spin-orbit interaction during
the electron motion in the continuum under the action of the
laser and Coulomb fields. In the paper II, we have identified
the spin-orbit coupling term in the continuum wave function.
Including this term in the continuum propagator will result in
a new term for the matrix element describing spin transitions

1
2cλ

∫ ∞

t
dt′α · ∇V (C)(r(t′)) . (188)

This will modify not only the simpleman model but also the
SFA calculations.

Finally, there could be a relation of spin effects to the tun-
neling delay time [82], which needs investigation beyond the
quasiclassical description of tunneling. For instance, in the
simpleman model the time evolution of the wave function will
be modified as

U(∞,−∞) = UC(∞, tr +τ)UT (tr +ts+τ, tr)UB(tr,−∞) , (189)

if we introduce a real and positive time τ associated to the
time spent under-the-barrier, which would lead to an additional
precession and spin effect modifications.

The mentioned modifications for the spin transition proba-
bilities will be discussed elsewhere.

VII. EXPERIMENTAL OBSERVABILITY

A. Detection of photoelectrons

The measurement of the photoelectron spin flip during
tunnel-ionization requires an initially polarized atomic target
and a detection of the photoelectron spin polarization. The
photoelectron spin polarization can be measured using Mott
polarimetry [83–85]. The latter is based on the left-right asym-
metry of Mott scattering cross-section on a high-κ target. It
depends on the electron spin polarization P⊥, transverse to the
scattering plane; dσ = dσ0[1 + P⊥S (θ)], where dσ and dσ0
are the spin resolved and spin-averaged cross-sections of Mott
scattering, respectively, S (θ) is the so-called Sherman function,
the maximum of which is approximately 0.5 in the case of a
gold target at electron energies of the order of megaelectron-
volts [84], and ∼ 10−2 in the case of zinc or lead targets at
electron energies of order of hundred megaelectronvolts [84].
For instance, when the spin of the ionized electron is polar-
ized in the laser propagation direction in a circularly polarized
laser field, the electron spin polarization in the final state is
1/2 for ξ � 1, according to Table I and see Fig. 5. This
means that the spin in the final state will be oriented trans-
versely with respect to the propagation direction. Therefore,
P⊥ ∼ 1 is possible, because in the relativistic regime the elec-
tron final momentum is mostly along the laser propagation
direction. At ξ ∼ 10 (the laser intensity of the order of 1020

W/cm2), P⊥S (θ)max ≈ 10−2, and the relative error of the signal

(∼ 1/
√

N(t)
s , with the total scattering events N(t)

s ) should be
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FIG. 5. (Color online) The spin flip associated to the maximal tunnel-
ing probability for a circularly polarized field when the spin quanti-
zation axis is the laser’s propagation direction within d-cc-SFA. The
blue solid and the red dashed lines represent SF z (d)

+ and SF z (d)
− , re-

spectively. The applied parameters are ω = 0.05, and E0/Ea = 1/30.

smaller than 10−2 to distinguish the electron polarization, i.e.,
N(t)

s = vshotN
(1)
s > 104, where vshot is the number of laser shots,

and N(1)
s is the number of scattering events per the laser shot.

The latter is determined by the ionization (Wi) and the Mott
scattering (WM) probabilities N(1)

s ∼ Wi ×WM × (δθ/π), where
the effective interval of the scattering angle (where S (θ) ∼ 10−2

[85]) is δθ ∼ 5o. Estimating the Mott scattering probability via
WM ≈ (κ2πa2

B/γ
2
l )ρ0` ≈ 1, with the Bohr radius aB, the target

length ` = 0.1 µm, the Lorentz factor γl ≈ ξ
2 = 100, κ = 30,

and the density ρ0 = 2 · 1022 cm−3, each electron will produce
a scattering event but the hindering multiple scattering will
be avoided. The ionization probability per laser shot can be
estimated as Wi ∼ 10−2κ2 (at a fixed E/Ea = 1/10, the laser
pulse duration of 100 fs) [66]. Then the scattering events per
laser shot is N(1)

s ≈ WM × (δθ/π)×Wi ∼ 3× 10−2. The number
of laser shots required for the necessary signal resolution is
νshot > N(1)

s /Ns ≈ 3 × 105, which can be realized even with 1
Hz laser system.

For typical experimental parameters, e.g., ionization of hy-
drogenlike Ne9+-ions in a strong infrared laser field with an
intensity of 1020 W/cm2, the d-cc-SFA predicts a spin-flip
relative probability of about 0.1.

B. Detection of ions

The electron spin flip can also be revealed via a measurement
of ion parameters. The angular momentum change of the ion
during ionization ∆Ji can be related to the electron spin change
∆S , using the angular momentum and the energy conservation
laws in the case of circular polarization

n + Ji + Je = J′i + J′e, (190)
nω = Ip + 2Up, (191)

where n is the number of the absorbed photons at ionization,
Up = c2ξ2/2 is the ponderomotive potential, Ji,e and J′i,e are the
ion and the electron total angular momentum before and after
the ionization, respectively, Ji,e = Li,e + S i,e with Li,e and S i,e

being the orbital angular momentum and the spin of the ion and
electron, respectively, and ∆Ji,e = J′i,e − Ji,e, ∆S i,e = S ′i,e − S i,e
and n = ∆Je + ∆Ji. Taking into account that the change of the
electron angular momentum during above-threshold ionization,
which is

∆Le ≈
Ip + 2Up

ω
, (192)

see [12], the change of the electron spin can be measured via
the ion angular momentum

∆S = −∆Ji . (193)

Let us employ a circularly polarized laser field and polarize the
initial electron spin along the laser propagation direction (the
ion nuclear spin is assumed to be vanishing S i = 0). Even when
the electron spin is not changed during the ionization ∆S e = 0,
the ion carries out a small part of the angular momentum
provided by n absorbed photons. In particular, with a right
circular polarization, the ion gets an orbital angular momentum

LR
z = L0 ≡

m
M

Ip + 2Up

ω
, (194)

where m and M are the electron and ion mass, respectively.
The latter follows from the fact that the ion distance with re-
spect to the center-of-mass of the ion-electron system m/M
times smaller than the electron distance. With a left circular
polarization, the ion acquires an angular momentum LL

z = −L0.
When the spin flip happens, LR

z = L0 − 1 and LL
z = −L0 − 1,

respectively. Therefore, the spin flip will be indicated by a non-
vanishing signal for the difference in the ion angular distribu-
tion with the left and right polarized laser field. The mentioned
signal for the difference in the ion angular distribution can be
estimated as

S ∼ ||YL0+1,L0+1|
2 − |YL0−1,L0−1|

2| (195)

∼ | sin2(L0+1) θ − sin2(L0−1) θ| ∼ 2δ ,

where Yl,m are the spherical harmonics, θ is the ion scattering
angle with respect to the laser propagation direction, and δ ≡
cot2 θ � 1. Then, the required number of laser hots is νshot ∼

106 at δ ∼ 10−3 (the ions are observed in the transverse to the
laser propagation direction within an angle of 20 mrad).

VIII. CONCLUSION

In this paper we have investigated the spin effects during
strong field ionization in the tunneling regime for linearly as
well as circularly polarized laser fields. The spin effects are
fully described by two types of spin asymmetries, tunneling
asymmetry and polarization asymmetry, as well as by the spin
flip probability. The tunneling asymmetry describes the asym-
metry in ionization of the initially polarized target, while the
polarization asymmetry describes the degree of the photoelec-
tron polarization from an unpolarized target. The spin resolved
differential ionization rates as well as the spin asymmetries
are derived for the maximal tunneling probability. For this
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purpose, the final momentum distribution of the tunnel-ionized
electron is calculated. The results are further generalized to an
arbitrary spin quantization axis.

Two versions of the Coulomb corrected SFA have been con-
sidered. While in s-cc-SFA the influence of the laser field on
the bound state is completely neglected, the latter is properly
treated in d-cc-SFA. Therefore, we have discussed the spin
dynamics in the bound state driven by linearly as well as cir-
cularly polarized fields. The physically relevant predictions
for the spin effects is given by the dressed SFA. Generally, the
spin effects calculated with s-cc-SFA are overestimated.

A simpleman model for spin effects is developed which
transparently shows how the spin effects arise in three steps;
spin precession in the bound state, spin rotation during tunnel-
ing and further spin precession in the continuum.

The parameter ξ determines the field regime, and in the weak
field regime ξ � 1 the spin flip as well as the spin asymmetries
are negligible. The spin effects are considerable for strong
fields ξ � 1, where the spin flip probability is about 1/2.
The spin flip probability is mainly determined by the bound-
state dynamics, however the latter has no effect on the spin
asymmetries. Indeed, the spin asymmetries, which increases
with increasing the charge of atomic core, are a consequence of
the effect of the magnetic field in the rest frame of the electron
during tunneling as indicated by the developed simpleman
model.

The most favorable for experimental observation of spin
effects is the spin flip by using moderate highly charged ions
with a charge of the order of κ ∼ 20 and a laser field with an
intensity of I ∼ 1022 W/cm2.
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IX. APPENDIX

A. Classical equations of motion of a charged particle in a
plane wave

The most general gauge potential for a plane wave can be
given by

Aµ = ε
µ
1 f1(η) + ε

µ
2 f2(η) , (196)

with the phase η = kx/ω and the wave vector kµ (k2 = 0). Here
ε
µ
1 , εµ2 are the polarization vectors such that ε2

1 = ε2
2 = −1 and

ε1k = ε2k = ε1ε2 = 0. Then the field strength tensor Fµν reads

Fµν = ε
µν
1 ḟ1(η) + ε

µν
2 ḟ2(η) , (197)

where εµν1 = kµεν1 − kνεµ1 , εµν2 = kµεν2 − kνεµ2 , and dot denotes the
derivative with respect to the phase η.

The classical equations of motion are obtained by solving
the Lorentz force law, which can be written in the proper time
parametrization as

dpµ

dτ
= −

1
c

Fµνpν . (198)

The relation kµε
µν
1 = kµε

µν
2 = 0 implies that kp is a constant of

motion. Using further the following identity

dpµ

dτ
=

dpµ

dη
dη
dτ

= ṗµλ , (199)

with λ = kp/ω, the Lorentz force law in the phase parametriza-
tion yields

ṗµ =
1
c

Ȧµ −
1
λωc

kµȦp . (200)

Moreover, the last term in the above equation can also be given
by

Ȧp =
d
dη

(Ap) − Aṗ =
d
dη

(
Ap −

1
2c

A2
)
, (201)

where we used the contraction of Eq. (200) with Aµ after the
second equality sign. Then, Eq. (200) can be written as

ṗµ =
d
dη

(
1
c

Aµ −
1
λωc

kµ
(
Ap −

1
2c

A2
))
, (202)

whose solution in terms of the initial phase ηi can be found as

pµ(η) = pµ(ηi) +
Aµ(η) − Aµ(ηi)

c

−
kµ

λωc

(
pν(ηi) +

Aν(η) − Aν(ηi)
2c

)
(Aν(η) − Aν(ηi)) ,

(203)

where we used the following relation

Aµ(η)pµ(η) = Aµ(η)pµ(ηi) +
1
c

Aµ(η) (Aµ(η) − Aµ(ηi)) . (204)

In the velocity gauge Aµ = (0, cA), the three-momentum and
the energy, then, yield

p(η) = p(ηi) + A(η) − A(ηi)

+
k̂
λc

(
p(ηi) +

A(η) − A(ηi)
2

)
· (A(η) − A(ηi)) , (205)

ε(η) = ε(ηi) +
k̂
λ

(
p(ηi) +

A(η) − A(ηi)
2

)
· (A(η) − A(ηi)) .

(206)
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[3] M. Dammasch, M. Dörr, U. Eichmann, E. Lenz, and W. Sandner,
Phys. Rev. A 64, 061402 (2001).

[4] K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue,
and H. Ueda, Phys. Rev. A 68, 065403 (2003).

[5] E. Gubbini, U. Eichmann, M. Kalashnikov, and W. Sandner,
J. Phys. B: At., Mol. Opt. Phys. 38, L87 (2005).

[6] A. D. DiChiara, I. Ghebregziabher, R. Sauer, J. Waesche,
S. Palaniyappan, B. L. Wen, and B. C. Walker, Phys. Rev.
Lett. 101, 173002 (2008).

[7] S. Palaniyappan, R. Mitchell, R. Sauer, I. Ghebregziabher, S. L.
White, M. F. Decamp, and B. C. Walker, Phys. Rev. Lett. 100,
183001 (2008).

[8] A. D. DiChiara, I. Ghebregziabher, J. M. Waesche, T. Stanev,
N. Ekanayake, L. R. Barclay, S. J. Wells, A. Watts, M. Videtto,
C. A. Mancuso, and B. C. Walker, Phys. Rev. A 81, 043417
(2010).

[9] N. Ekanayake, S. Luo, P. D. Grugan, W. B. Crosby, A. D. Camilo,
C. V. McCowan, R. Scalzi, A. Tramontozzi, L. E. Howard, S. J.
Wells, C. Mancuso, T. Stanev, M. F. Decamp, and B. C. Walker,
Phys. Rev. Lett. 110, 203003 (2013).

[10] A. D. Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,
Rev. Mod. Phys. 84, 1177 (2012).

[11] M. Vogel, W. Quint, G. Paulus, and T. Stöhlker, Nucl. Instr.
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