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Abstract

The Kalman filter and its Monte Carlo approximation, the ensemble Kalman filter (EnKF),

are best suited to problems involving unbiased, Gaussian errors. Non-Gaussian error

distributions induced by bounded quantities make the EnKF sub-optimal and cause biased

estimates. Further, EnKF estimates of bounded quantities may violate physical bounds

and lead to a failure of the involved model. Extending the EnKF with a nonlinear variable

transformation technique can mitigate the first and solve the second problem.

Motivated by a parameter estimation problem from land surface modelling, we analyse

the effects of non-Gaussian distributions and non-zero mean errors on EnKF estimates

theoretically and experimentally. For the first time, we use a linear regression framework

to qualitatively examine and explain errors in the EnKF estimates and we analyse their

behaviour with and without variable transformations. From theoretical considerations, we

derive a covariance scaling approach for the estimation of the transformed observation error

covariance that ensures a constant transformed observation error covariance, independent

of the observed value.

Comparing estimates derived with the new covariance scaling approach, with two other

transformation-based approaches, and with the EnKF without variable transformation, we

find that covariance scaling is superior to the other methods with respect to the quality

of the estimates (for all other methods) and with respect to its computational cost (for all

methods except the EnKF without anamorphosis).

We verify these findings in a series of data assimilation experiments using synthetic land

surface albedo observations and a newly implemented data assimilation framework based

on the dynamic global vegetation model JSBACH and the Data Assimilation Research

Testbed.
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Chapter 1

Introduction

1.1 Constrained data assimilation with the ensemble Kalman

filter

Our knowledge about the state of the Earth system originates from models and obser-

vations. Both are uncertain due to various sources of error but they often contain com-

plementary information. Data assimilation combines this complementary information to

reduce the uncertainty in the combined estimate of the system’s state. The ensemble

Kalman filter (EnKF; Evensen, 1994) is a data assimilation method which is simple to

implement and which has become ubiquitous in geophysical research (cf. references in

Evensen, 2009a). Despite its apparent simplicity, the EnKF is a powerful tool for the

successive combination of observational data with a numerical model.

The EnKF is linked to Bayesian estimation (van Leeuwen and Evensen, 1996) as well as

minimum variance (Gelb, 1974) and least squares techniques (Duncan and Horn, 1972).

But no matter how we derive and interpret the EnKF, it is contingent on strong assump-

tions. And the quality of the EnKF estimates is contingent on the compliance of the

model and the observations with these assumptions. The two most restricting assump-

tions concern, on the one hand, the character of the uncertainty of the model state and

of the observations and, on the other hand, how the observations are related to the model

state. For the description of the uncertainty, the EnKF requires Gaussian distributions

and for the link between states and observations, the EnKF requires a linear observation

operator.

The EnKF is a statistical estimator that builds both on the Gaussian and the linear

assumption. And owing to this purely statistical nature, EnKF estimates do not auto-

matically satisfy physical constraints like boundedness. For any estimate to be useful,

however, such constraints have to be met and various modifications of the EnKF have

been proposed. The efforts to constrain the EnKF to bounded domains can be broadly

categorised into three types:

1. ad-hoc approaches that replace unphysical values with compliant ones,

2. constrained optimisation approaches, and

3. variable transformation approaches.
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1 Introduction

Constrained optimisation approaches (Pan and Wood, 2006; Yilmaz et al., 2011; Janjić

et al., 2014) consider the EnKF from the viewpoint of mathematical optimisation theory.

In this sense, the EnKF minimises the misfit between the estimate and the observations

as well as between the estimate and the prior data, that is model forecasts. Adding con-

straints to the otherwise unconstrained optimisation problem ensures physically consistent

estimates in this approach.

Variable transformation approaches map the quantities in the state vector from the

model’s physical space to an unbounded domain for the estimation and then back to the

physical, bounded domain afterwards (Bertino et al., 2002; Nielsen-Gammon et al., 2010;

Schirber et al., 2013). Taking into account the effect of the variable transformation on

the state variable distributions and on the observation error distributions, this approach

preserves the Bayesian character of the EnKF and leads to the Gaussian anamorphosis

technique (Bertino et al., 2002, 2003; Simon and Bertino, 2009). Gaussian anamorphosis

refers to a variable transformation that renders the distribution of transformed state vari-

able and of the transformed observation errors Gaussian. The reasoning behind Gaussian

anamorphosis is that the transformed variables will be more compliant with the EnKF

assumptions than the model space variables. Consequently, the application of the EnKF

to the transformed variables yields better estimates.

1.2 Land data assimilation systems and the assimilation of

albedo observations

The use of the EnKF for the assimilation of observations into land surface and vegetation

models is dominated by hydrological applications (Reichle et al., 2002, 2007; Moradkhani

et al., 2005; Hendricks Franssen and Kinzelbach, 2008; Schöniger et al., 2012) and carbon

cycle data assimilation systems (Williams et al., 2005; Chatterjee and Michalak, 2013).

Other applications include the assimilation of observations of the fraction of absorbed

photosynthetically active radiation and leaf area index to estimate vegetation parameters

of a phenology model (Stöckli et al., 2008, 2011).

None of the aforementioned studies used albedo observations. And neither does any of

the prevalent variational assimilation frameworks such as the Earth Observation Land

Data Assimilation System (EO-LDAS; Lewis et al., 2012) or the Carbon Cycle Data

Assimilation System (CCDAS; Rayner et al., 2005; Kaminski et al., 2013). The only

studies known to us that used albedo observations in a data assimilation system are

related to snow and snow albedo (Durand and Margulis, 2007; Dumont et al., 2012; Malik

et al., 2012).

To ensure physically consistent estimates in land data assimilation systems, ad-hoc ap-

proaches, constrained optimisation, and variable transformation techniques are used. In

the ad-hoc methods, the unphysical estimates are shifted to the physical domain (Stöckli

et al., 2011; Lewis et al., 2012). In the constrained optimisation approach of the variational

2



1.3 Error sources in the ensemble Kalman filter

EO-LDAS, the allowed values of estimates are confined to a bounded domain. And in the

variable transformation techniques that are currently being explored for CCDAS, bounded

parameters are transformed to unbounded ones (Kemp et al., 2014). None of these ap-

proaches, however, uses transformed observations. Gaussian anamorphosis does exactly

that but, to our knowledge, the applications of Gaussian anamorphosis for land surface

models are limited to hydrological parameters of the soil (Zhou et al., 2011; Schöniger

et al., 2012).

1.3 Error sources in the ensemble Kalman filter

Bounded quantities like albedo follow non-Gaussian distributions and can introduce non-

linearities in the relation between the model state and the observations. The EnKF

becomes a sub-optimal estimator in such cases (Bertino et al., 2003) and a variety of

modifications have been proposed to overcome these limitations. For example, nonlinear

observations are commonly handled by state augmentation (Evensen, 2003) and differ-

ent approaches modify the EnKF for non-Gaussian distributions (Lauvernet et al., 2009;

Anderson, 2010; Lei and Bickel, 2011). Further, the effects of non-Gaussian state distri-

butions on the updated ensembles in different versions of the EnKF have been previously

explored (Lawson and Hansen, 2004; Lei et al., 2010).

While there are numerous suggestions how to mitigate the adverse effects of non-

Gaussianity and nonlinearity, these effects themselves, that is the estimation errors, have

not yet been explored rigorously. In particular, the effects of state-dependent observation

error distributions have not yet been explored. Pires et al. (2010) state that heteroscedas-

tic observation errors cause non-Gaussianity and Lei and Bickel (2009, 2011) implicitly

include state-dependent observation errors in their theories. But an explanation of how

such deviations from the standard EnKF assumptions impact the EnKF estimates has not

yet been given.

1.4 Research questions and contributions

The goal of this thesis is to explain the effects of deviating from the standard EnKF

assumptions and the resulting estimation errors. In particular, we explore the case of

state-dependent observation error distributions. The insights from this analysis lead us to

the development of a new way to estimate the transformed observation error covariance

when using Gaussian anamorphosis.

Our research is motivated by the analysis of a new data set of radiative transfer pa-

rameters for vegetation canopies in chapter 2. These parameters describe the albedo of

vegetation canopies and are constrained to the interval [0, 1]. The emerging question is:

• Can we retrieve a climatology of canopy albedo parameters from observations of land

surface albedo with the ensemble Kalman filter and Gaussian anamorphosis?

3



1 Introduction

In chapter 3, we present the theory of Kalman filtering and Gaussian anamorphosis that

is necessary to answer this question. To analyse the error sources in the EnKF and their

impact on the EnKF estimates, we use the framework of linear regression (section 3.6).

Linear regression has been related to the Kalman filter before (Duncan and Horn, 1972),

but it has not been used to understand the effects of nonlinearity, non-Gaussianity and

state-dependent observation errors in the EnKF. We provide an explanation of these effects

using linear regression theory.

Further, we derive a statistical framework for the characterisation of the errors of trans-

formed observations when Gaussian anamorphosis is used with the EnKF. We use this

framework to justify and modify an existing method for the transformation of observa-

tion error covariances. We then suggest a new a method for the transformed observation

error covariances that overcomes statistical and computational drawbacks of the previous

method (section 3.7.5).

Finally, we compare our new method and the modified method with a direct method that

does not require transformed observation error covariances and with the EnKF without

Gaussian anamorphosis. This comparison provides an answer to the question:

• What is the best method (out of these four) to assimilate albedo observations with

the ensemble Kalman filter from a theoretical point of view?

In chapter 4, we apply the four methods in data assimilation experiments using the

EnKF for the assimilation of synthetic observations of land surface albedo into a com-

prehensive land surface model. The results of these experiments verify our theoretical

findings.

Chapter 5 provides a summary of our results and our conclusions. We give recommenda-

tions for the assimilation of real observations as well as for applications of our findings to

other quantities than canopy albedo. Lastly, we close with an outlook suggesting further

developments.
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Chapter 2

Canopy albedo in Earth system models and

observations

2.1 Land surface albedo in the Max Planck Institute Earth

System Model

Surface albedo is the most influential parameter on the surface energy budget because

it largely determines the amount of available energy for latent and sensible heat fluxes.

These fluxes affect the circulation and the climate locally as well as globally (Charney

et al., 1977; Sud and Fennessy, 1982; Sellers, 1997). Hence, Earth system models require

an accurate description of surface albedo. Since land covers approximately 30% of the

Earth’s surface, land surface albedo is an essential part of this description and Sellers

et al. (1995) suggest an absolute accuracy of ±0.02 for the surface albedo in land surface

models.

The surface albedo of vegetation-covered areas depends on the vegetation layer and

the background below. An accurate description of the albedo of vegetated surfaces re-

quires calculations of the radiative transfer through the vegetation canopy. Approximate

solutions of this problem are available and form one approach to simulate land surface

albedo in Earth system models (Sellers, 1985; Yuan et al., 2014). The land component

of the Max Planck Institute Earth System Model (MPI-ESM; Giorgetta et al., 2013) uses

a different approach that avoids radiative transfer calculations. Instead, the dynamic

global vegetation model JSBACH (Raddatz et al., 2007; Reick et al., 2013), which is the

land component of the MPI-ESM, partitions the land surface in vegetation canopy and

background to calculate the surface albedo (Rechid et al., 2009; Vamborg et al., 2011).

For snow-free surfaces, JSBACH calculates the surface albedo α of a homogeneously

covered part of a model grid box as a weighted average of background albedo αbg and

canopy albedo αc, that is,

α = fc αc + (1− fc) αbg.

The canopy fraction fc is calculated from the prognostic leaf area index (LAI) and from

5



2 Canopy albedo in Earth system models and observations

the fraction Vmax of the grid box that is covered by vegetation according to

fc = Vmax

(
1− exp

(
−LAI

2

))
.

Within a model grid box, different cover types may be present. JSBACH uses plant

functional types (PFTs) to represent different cover types and assigns a fraction of the grid

box, called a tile, to each PFT. The surface albedo of the whole grid box is then calculated

as a weighted average of these tiles with the weights given by the cover fractions.

The canopy albedo αc is a PFT-specific parameter and the background albedo αbg of a

grid box is given by a global map of background albedos projected onto the model grid.

JSBACH simulates the land surface albedo in the visible (0.4 – 0.7 µm) and the near-

infrared (0.7 – 4.0 µm) domain. Therefore, the canopy albedo and background albedo

parameters are also differentiated for these two spectral domains. The currently used

values for canopy and background albedo were derived from a linear regression of albedo

observations on observations of the fraction of photosynthetically active radiation (fAPAR)

from the Moderate Resolution Imaging Spectroradiometer (MODIS) as described in Rechid

et al. (2009).

2.2 Seasonal behaviour of canopy albedo

The canopy albedo parameters in JSBACH are constant in time. Without changes in

the PFT distribution, changes in snow-free surface albedo are only due to changes in the

simulated LAI. Observational studies, however, find changing canopy albedos during the

growing season which also affect the total surface albedo. These changes in the observed

canopy albedo are attributed either to changing nitrogen levels in the canopy (Ollinger

et al., 2008; Hollinger et al., 2010) or, objecting to the nitrogen hypothesis, to structural

changes within the canopy (Knyazikhin et al., 2013). Both suggestions are based on

correlations between in-situ or remote sensing observations of surface albedo over dense

canopies with either the nitrogen content of the canopy or structural variables such as the

broad-leaf fraction.

The products from the Joint Research Centre Two-stream Inversion Package (JRC-TIP;

Pinty et al., 2011a,b) offer another possibility to examine the seasonality of canopy albedo.

JRC-TIP uses a variational approach to retrieve the effective parameters of a two-stream

radiative transfer model (Pinty et al., 2006) from white-sky albedo values derived from

MODIS observations. These parameters include effective visible and near-infrared canopy

single scattering albedo (SSA) at a spatial resolution of 0.01° for the years 2001 to 2010.

For our analysis we used only values for which the posterior standard deviation was at

least 75% smaller than the prior standard deviation used in the variational scheme and we

resampled the results to a spatial resolution of 0.25°. Figure 2.1 shows the mean seasonal

amplitude of the effective canopy SSA in the visible and the near infrared domain and an

exemplary mean seasonal cycle of these two quantities at the location of the Hainich forest

6



2.3 Seasonal canopy albedo parameters for JSBACH

in Germany. Relating the seasonal variations to the absolute magnitude of the visible and

near-infrared effective SSA, we conclude that these quantities exhibit a seasonal behaviour

that differs with location.

2.3 Seasonal canopy albedo parameters for JSBACH

The effective canopy parameters in the two-stream model of JRC-TIP are not quantita-

tively comparable to the canopy albedo parameters of JSBACH. But both describe the

radiative properties of the canopy. Thus, qualitative insights from the analysis of the

effective single scattering albedos in the JRC-TIP data set can be related to the canopy

albedo parameters of JSBACH. This qualitative argument suggests that the canopy albedo

parameters of JSBACH should possibly also follow a seasonal cycle.

The implications of seasonal canopy albedo parameters in JSBACH depend on the

amplitude of the seasonal cycles of the visible and near-infrared parameters. The JRC-

TIP products and physiological considerations (Gitelson and Merzlyak, 1996) indicate

that these cycles will be opposed to each other, that is, decreasing visible canopy albedo

and increasing near-infrared canopy albedo during summer time. When assuming similar

amplitudes for both spectral domains as done in chapter 4 (Figure 4.3), the seasonal effects

annihilate each other and the total upward shortwave flux remains nearly unchanged

(Figure 2.2). The dependence of changes in the radiative balance on the seasonal cycles of

the parameters underlines the importance of a climatology of canopy albedo parameters.

Such a climatology would allow reliable statements about changes in the seasonal upward

shortwave fluxes due to seasonal changes in canopy albedo.

Insights into the seasonal behaviour of the JSBACH canopy albedo parameters require a

time series of the parameter values. But the canopy albedo parameters are effective model

parameters without an observable equivalent. Neither the albedo of single leaves nor the

apparent albedo of a closed canopy, that could both be measured, would be adequate to

characterise the JSBACH canopy albedo. We therefore require a model inversion similar to

JRC-TIP to retrieve a time series of JSBACH canopy albedo parameters from observations

of JSBACH model states.

7



2 Canopy albedo in Earth system models and observations

Mean of effective visible SSA Mean of effective near-infrared SSA

Seasonal amplitude of effective visible SSA Seasonal amplitude of effective near-infrared SSA
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Figure 2.1: Amplitude of mean seasonal cycle of effective visible (upper left) and effective
near-infrared (upper right) canopy single scattering albedo derived from JRC-TIP
data from 2001-2010 and mean seasonal cycle for the location of the Hainich forest
(51.09° N, 10.44° E) including multi-year standard deviations (white areas indicate no
successful retrieval).
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constant seasonal
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Figure 2.2: Mean values of upward shortwave flux and differences in seasonal upward short-
wave flux between simulations with seasonal and constant canopy albedo parameters
as prescribed in chapter 4 (Figure 4.3).
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Chapter 3

Sequential data assimilation with the

ensemble Kalman filter

3.1 Representation of uncertainty in models and observations

Numerical models and observations provide information about the state of a physical sys-

tem but both are subject to errors which limit the credibility of this information. This lack

of certainty in the output of a numerical model and in the output of a measurement device

is called uncertainty. To go beyond qualitative statements and to quantify uncertainty, we

need to derive the relevant errors and we need to specify statistical models which describe

the available knowledge about these errors.

We follow Cohn (1997) and let the vector s(tk) ∈ B, where B is some appropriate

function space, describe the system’s true state at a given time tk. The components of

s(tk) are functions of space and time and fully describe the individual variables of the

system. Further let g describe the propagation of a state s(tk−1) over a fixed time interval

from tk−1 to tk as

s(tk) = g(s(tk−1)). (3.1)

A numerical model employs discretisations of the components of s(tk) that form the true,

discretised state vector xk ∈ Rn. The mapping from s(tk) to xk is given by a projection

operator Π : B → Rn as

xk = Π(s(tk)). (3.2)

The true, discretised state evolves as

xk = f(xk−1) + ηk, (3.3)

11



3 Sequential data assimilation with the ensemble Kalman filter

where f is the numerical model that propagates xk and

ηk = xk − f(xk−1)

= Π(s(tk))− f(xk−1)

= Π(g(s(tk−1)))− f(xk−1)

= Π(g(s(tk−1)))− f(Π(s(tk−1))) (3.4)

is the model error term. It describes the model’s inability to predict the true, discretised

future state and originates from errors in the model’s formulation and forcing, on the

one hand, and from errors due to numerical approximations, discretisation and round-off

errors, on the other hand.

For the characterisation of the observation error, let the observations yk ∈ Rm at time

tk be given by

yk = m(s(tk)) + εmk , (3.5)

where m : B → Rm is the observation operator that maps the full state s(tk) to discrete

observations yk and where εmk is the measurement error of any involved instruments and

devices (Cohn, 1997). The discretised state xk is related to yk through the discrete

observation operator h : Rn → Rm as

yk = h(xk) + εk. (3.6)

Using (3.5) and inserting −m(Π(s(tk)) +m(Π(s(tk)) yields

εk = yk − h(xk)

= m(s(tk)) + εmk − h(xk)

= m(s(tk)) + εmk − h(Π(s(tk)))

= εmk +m(s(tk))−m(Π(s(tk))︸ ︷︷ ︸
εrk

+m(Π(s(tk)))− h(Π(s(tk)))︸ ︷︷ ︸
εak

(3.7)

and shows that the discrete observation error εk consists of the measurement error εmk ,

the error due to unresolved scales or representativeness error εrk (Lorenc, 1986), and the

error εak from the approximation of m with h.

The system’s state s(tk) and frequently also the propagator g are unknown. And the

errors ηk and εk together with the error of any initial discretised state are the sources

of uncertainty about the discrete representations xk and yk of s(tk). The error terms

are just as unattainable as the true state - notably they depend on s(tk). But once they

have been identified as the sources of uncertainty, information about their characteristics

can be obtained from controlled and repeated experiments. Subsequently, the available

knowledge can be cast into statistical models which allow to quantify the uncertainty by

12



3.1 Representation of uncertainty in models and observations

means of probabilities and probability density functions (pdfs).

The uncertain elements ηk, εk, and the uncertain initial condition x0 are now considered

to be random variables that follow known probability distributions. The choice of these

distributions is crucial for all further statements about uncertainty and the results of any

data assimilation experiment. This choice is governed by the information that is available

about the system of interest and about the observation process before the experiment starts

and it is governed by statistical considerations such as the maximum entropy principle

(Jaynes, 2007). With x0, ηk, and εk being random variables, xk and yk also become

random variables as they are now functions of at least one random variable. Within this

probabilistic framework, the most comprehensive description of xk based on observations

y1, . . . , yk is the conditional pdf p(xk|y1, . . . , yk). Finding p(xk|y1, . . . , yk) is called

the filtering problem and its solution is commonly found making three basic assumptions

about ηk and εk:

• the pdfs of ηk are known for all tk and ηk is white in time, that is, ηj is independent

of ηk for all time steps tj 6= tk and ηk has mean zero and finite variance,

• the pdfs of εk are known for all tk and εk is white in time,

• ηk is independent of εj for all time steps tj and tk (Cohn, 1997).

Under these assumptions, the state equation (3.3) and the observation equation (3.6),

xk = f(xk−1) + ηk,

yk = h(xk) + εk,

form a hidden Markov model (Marin and Robert, 2007).

The general solution of the filtering problem is given by Bayes’ Theorem (Jazwinski,

1970),

p(xk|y1, . . . , yk) =
p(xk|y1, . . . , yk−1) p(yk|xk, y1, . . . , yk−1)

p(yk|y1, . . . , yk−1)
. (3.8)

From the definition of conditional pdfs and marginal pdfs the denominator is

p(yk|y1, . . . , yk−1) =

∫
p(yk,xk|y1, . . . , yk−1)dxk

=

∫
p(xk|y1, . . . , yk−1) p(yk|xk, y1, . . . , yk−1)dxk,

which is the integral of the product in the numerator and thus only normalises this product

such that the right hand side of (3.8) is a pdf (Jazwinski, 1970). Bayes’ Theorem states

that the conditional or posterior pdf p(xk|y1, . . . , yk) is proportional to the product of the

prior pdf p(xk|y1, . . . , yk−1) and of the likelihood p(yk|xk, y1, . . . , yk−1). The expression

for the likelihood simplifies to p(yk|xk) due to the independence of observation and model

errors. With this simplification, the likelihood is given by the pdf of the observation error

13



3 Sequential data assimilation with the ensemble Kalman filter
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Figure 3.1: Construction of likelihood from observation error pdfs for an identity obser-
vation y = h(x) = x at y = 0.05. The observation error pdfs pε(x) are shifted to the
state h−1(y) = x for all x and evaluated at 0.05. These values are then assigned to the
likelihood at x. For example, the value of the observation error pdf given a state value
of 0.1 at the observation 0.05 is the likelihood of the state 0.1 given the observation
0.05 (the horizontal axis represents the state space as well as the observation space
because of the identity observation operator).

pεk(εk) and by a change of variable from εk to yk−h(xk) according to (3.6). The likelihood

then reads (Jazwinski, 1970)

p(yk|xk) = pεk(yk − h(xk)). (3.9)

We note that the likelihood is a function of xk and not yk because the observations yk

are fixed parameters in the filtering problem. The likelihood is therefore not necessarily a

pdf (Jaynes, 2007) and may also not be interpreted as a probability as in the concept of

the chance of a future event. It should rather be understood as a measure of how likely

any state xk has caused the given observation yk. In terms of pdfs, this means that the

likelihood of a state xk is given by the conditional pdf p(yk|xk) evaluated at the given

observation yk (Figure 3.1). Since p(yk|xk) is the pdf of the observation error εk whose

distribution may depend on the observed state xk, not only the location of p(yk|xk) but

also its shape may depend on xk. Consequently the likelihood of xk given yk may have

little resemblance with the observation error distributions although they are closely related

to each other.

In contrast to this retrospective information about xk, the prior pdf p(xk|y1, . . . , yk−1)

describes the probability of xk in a prognostic sense given the available information at

time tk−1. Again using the independence of the errors, the prior pdf is given by the
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3.2 The Kalman filter and the ensemble Kalman filter

Chapman-Kolmogorov equation as (Jazwinski, 1970)

p(xk|y1, . . . , yk−1) =

∫
p(xk|xk−1) p(xk−1|y1, . . . , yk−1)dxk−1. (3.10)

The so called transition density p(xk|xk−1) is derived with the same change of variable

argument as for the likelihood from (3.3) as

p(xk|xk−1) = pηk
(xk − f(xk−1)), (3.11)

where pηk
is the pdf of the model error ηk introduced in (3.3).

Accepting the assumptions on the errors ηk and εk, the posterior pdf p(xk|y1, . . . , yk)

can be found using a recursive algorithm that proceeds sequentially in time (Gordon et al.,

1993). And in conclusion, the Chapman-Kolmogorov equation and Bayes’ Theorem form

a recurrence relation that allows a recursive solution of the filtering problem as in

Algorithm 1

1. initialise the forecast distribution p(x0),

2. for i from 1 to k:

a) forecast the prior pdf p(xi|y1, . . . , yi−1),

b) update the forecast with the observation yi to find the posterior pdf p(xi|y1, . . . , yi).

3.2 The Kalman filter and the ensemble Kalman filter

The Kalman filter (KF) is a special case of Algorithm 1 for linear models and Gaussian

errors (Kalman, 1960; Kalman and Bucy, 1961; see also Cohn, 1997). It was derived

minimising expected squared errors. But next to this minimum variance interpretation,

the KF solution corresponds to the maximum likelihood solution as well as to the recursive,

weighted least squares estimate of a state given past observations (Jazwinski, 1970). In the

context of the filtering problem, Ho and Lee (1964) and van Leeuwen and Evensen (1996)

noted its recursive Bayesian character for linear, Gaussian problems. Because Gaussian

distributions are fully characterised by their mean and covariance, only solutions for mean

and covariance – as provided by the KF – are required to solve the filtering problem. The

ensemble Kalman filter (EnKF) uses a Monte Carlo method to approximate the KF with

less computational effort and to extend its applicability to nonlinear models (Evensen,

1994).

3.2.1 The Kalman filter

The KF builds on the two facts that linear transformations of Gaussian random variables

again yield Gaussian random variables and that the product of Gaussian pdfs is again

Gaussian.
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3 Sequential data assimilation with the ensemble Kalman filter

Consider a linear forecast model M ∈ Rn×n and a linear observation operator H ∈
Rm×n,

xk = Mxk−1 + ηk, (3.12)

yk = Hxk + εk. (3.13)

And assume that the errors ηk and εk follow Gaussian distributions with mean zero and

known, constant covariance matrices Q and R and assume further that the mean and the

covariance of the initial state x0 are xa0 and Pa
0,

ηk ∼ N(0, Q), (3.14)

εk ∼ N(0, R), (3.15)

x0 ∼ N(xa0, Pa
0). (3.16)

Then, the mean xak−1 and the covariance matrix Pa
k−1 of p(xk−1|y1, . . . , yk−1) evolve as

xfk = Mxak−1, (3.17)

Pf
k = MPa

k−1M
T + Q (3.18)

and xfk and Pf
k are the mean and the covariance matrix of the forecast distribution

p(xk|y1, . . . , yk−1). Thus, (3.17) and (3.18) solve the Chapman-Kolmogorov equation

(3.10) for linear, Gaussian models and constitute the forecast step of Algorithm 1. This

follows from the linearity of the expected value operator and the fact that linear transfor-

mations of Gaussian random variables are again Gaussian (see also Jazwinski (1970) and

Gardiner (2004) for a rigorous derivation of this result from the differential form of the

Chapman-Kolmogorov equation with Gaussian errors, called the Fokker-Planck equation).

The update step of Algorithm 1 follows directly from Bayes’ Theorem because the prod-

uct in the numerator of (3.8) can be algebraically calculated for Gaussian distributions.

The result of this calculation is

p(xk|y1, . . . , yk) = c1 exp

(
−1

2
(xk − xfk)T (Pf

k)−1(xk − xfk)

)
× exp

(
−1

2
(yk −Hxk)

TR−1(yk −Hxk)

)
= c1 exp

(
−1

2

[
(xk − xfk)T (Pf

k)−1(xk − xfk)

+ (yk −Hxk)
TR−1(yk −Hxk)

])
(3.19)

= c2 exp

(
−1

2
(xk − xak)

T (Pa
k)
−1(xk − xak)

)
(3.20)
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3.2 The Kalman filter and the ensemble Kalman filter

with

xak = xfk + K
(
yk −Hxfk

)
, (3.21)

Pa
k = (I−KH) Pf

k , (3.22)

K = Pf
kH

T
(
HPf

kH
T + R

)−1
, (3.23)

and with c1 and c2 being normalising constants (Cohn, 1997). The right hand side of

(3.20) shows that the posterior pdf is again Gaussian with mean xak and covariance matrix

Pa
k. The result xak is also called the analysis and Pa

k is also called the analysis covariance

matrix. The updated value of the predicted observation is

yak = yfk + HPf
kH

T
(
HPf

kH
T + R

)−1 (
yk − yfk

)
.

The KF consists of the recursive application of (3.17) – (3.18) and (3.21) – (3.23).

Originally, these equations were derived by minimising the expected squared error of the

estimate xak for xk given observations y1, . . . , yk (Kalman, 1960). As noted already by

Kalman (1960), the minimising solution is the mean of the posterior pdf p(xk|y1, . . . , yk)

given in (3.21) and the minimised expected squared error is the trace of the posterior

covariance matrix, tr(Pa
k). Therefore, xak is often called the minimum variance solution.

Maximising the posterior probability p(xk|y1, . . . , yk) also leads to xak as given in (3.21)

and xak is then the most likely value, called the posterior mode or maximum likelihood

solution (Jazwinski, 1970). The equivalence of the posterior mode and posterior mean also

follows intuitively from the symmetric, unimodal shape of the Gaussian posterior pdf.

Relaxing the assumptions on the errors such that they have only zero mean and known,

constant covariances but are not required to follow any specific distribution leads to an

interpretation of the KF result as the solution of the weighted, linear least squares problem,

where the updated state xak is fit to a background state xfk and observations yk. Together

with the forecast equations, this interpretation leads to the equivalence of the KF with

the solution of the recursive, weighted, linear least squares problem,

xak = min
x

∥∥∥(Pf
k)−

1
2

(
xk − xfk

)∥∥∥2
2

+
∥∥∥R− 1

2 (yk −Hxk)
∥∥∥2
2

(3.24)

= min
x

∥∥∥∥∥(Pf
k)−

1
2

(
xk − xfk

)
R−

1
2 (yk −Hxk)

∥∥∥∥∥
2

2

, (3.25)

as can be seen from equation (3.19) (Duncan and Horn, 1972). For zero-mean errors,

the Gauß-Markov Theorem states that the solution of this least squares problem, that

is, the KF estimate xak, is still the best linear unbiased estimate (BLUE) of xk while

for Gaussian errors with zero mean, the KF was optimal among all possible estimators

(Jazwinski, 1970; optimal in the sense of minimising the expected squared error). Last,

we note that the forecast or background term

∥∥∥∥(Pf
k

)− 1
2
(
xk − xfk

)∥∥∥∥2
2

can be interpreted
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3 Sequential data assimilation with the ensemble Kalman filter

as a Tikhonov regularisation term to the ill-posed problem of retrieving the state from the

observations (Freitag and Potthast, 2013).

3.2.2 The ensemble Kalman filter

The size of the matrices in the KF forecast and update equations increases quadratically

with the dimension of the state space. With current Earth system models’ or numerical

weather prediction models’ state space dimensions of the order of 107 and above, the

storage and the computational requirements of the KF would quickly exceed practical

bounds (see for example Talagrand, 1997; Houtekamer et al., 2013). The more important

limitation of the KF, however, is the restriction to linear models which allow the explicit

evolution of the state’s mean and covariance to solve the Chapman-Kolmogorov equation

(3.10).

The EnKF uses Monte Carlo methods to overcome both limitations. Instead of using

the mean and the covariance to describe the state vector distribution, the EnKF uses an

ensemble of N states which represents a sample from the state vector distribution. To solve

the Chapman-Kolmogorov equation for the evolution of state vector pdf, each ensemble

member evolves independently according to the, possibly nonlinear, model equations. The

resulting ensemble will then be a sample from the prior distribution at the next time step

(Gordon et al., 1993; Kitagawa, 1996). Model error terms can be included in the evolution

or can be accounted for in an intermediate step (section 3.3.1). The error in the estimates

of the statistical moments of the involved distributions decreases proportional to 1√
N

(Evensen, 1994; Doucet et al., 2001).

The update step of the EnKF uses the sample estimate P̂
f
k of the true covariance Pf

k to

construct a sample estimate K̂ of K and to update each ensemble member such that the

mean of the updated ensemble x̂ak and the covariance of the updated ensemble P̂
a
k follow

the KF equations (3.21) – (3.23),

x̂ak = x̂fk + K̂
(
yk −Hx̂fk

)
, (3.26)

P̂
a
k =

(
I− K̂H

)
P̂
f
k , (3.27)

K̂ = P̂
f
kH

T
(
HP̂

f
kH

T + R
)−1

. (3.28)

The ensemble update can be calculated in several ways. Replacing x̂ak and x̂fk above with

xa, ik and xf, ik , where i = 1, . . . , N indexes the ensemble members, leads to the perturbed

observations EnKF. The KF equations are thus applied directly to each ensemble member

with K̂ and P̂
f
k estimated from the forecast ensemble. This method requires the use of

perturbed observations

yik = yk + εi, i = 1, . . . , N (3.29)

in place of yk to achieve the correct posterior covariance, where εi is sampled from the
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3.2 The Kalman filter and the ensemble Kalman filter

observation error distribution (Burgers et al., 1998; Houtekamer and Mitchell, 1998).

Opposed to this stochastic version of the EnKF, deterministic versions such as the en-

semble transform Kalman filter (ETKF; Bishop et al., 2001) and the ensemble adjustment

Kalman filter (EAKF; Anderson, 2001) use matrix square roots of the analysis ensemble

covariance matrix P̂
a
k to derive the analysis ensemble (section 3.2.3). For linear models,

linear observation operators, and Gaussian error distributions, the estimates of stochas-

tic and deterministic EnKFs will converge to the KF estimates with increasing ensemble

size. This follows by construction for the deterministic EnKF versions and was shown by

Mandel et al. (2011) for the perturbed observations EnKF (Burgers et al., 1998 showed

the same but made implicit assumptions that are not required for the proof by Mandel

et al., 2011).

Using an ensemble to evolve and to update the state vector distribution lowers the

computational and storage requirements because the state vector covariance matrices P
a/f
k

do neither need to be computed nor stored. Their information is inherent in the ensemble

and efficient implementations allow to update the ensemble without explicit use of these

matrices (Evensen, 2003; Anderson and Collins, 2007; Houtekamer et al., 2013; Nerger and

Hiller, 2013).

If the observation errors of individual observations yjk, 1 ≤ j ≤ m, or of different

sets of observations {yjk, j ∈ I ⊂ {1, . . . , m}} are uncorrelated with each other, the

required amount of computation and storage can be further reduced. In this case, single

observations or sets of observations can be used one after another in the assimilation. This

reduces the size of the matrix HP̂
f
kH

T + R which has to be inverted, but yields the same

result as if they were assimilated all at once (Houtekamer and Mitchell, 2001).

3.2.3 Square root filters and the ensemble adjustment Kalman filter

The idea of square root filters originated from the “poor numerical properties” (Paige

and Saunders, 1977) of the KF covariance update in (3.22). The numerical solution of

this equation led to covariance matrices that were no longer positive-semidefinite, which

is a theoretical requirement for every covariance matrix (Jazwinski, 1970). Instead of

calculating Pa (we drop the time index k for this section), square root filters solve for a

matrix Xa such that

Pa = XaXaT , (3.30)

where Xa is a so called matrix square root of Pa (Kaminski et al., 1971). The matrix

product XaXaT is then ensured to be positive semidefinite.

The fact that sample estimate of Pa is

P̂
a

=
1

N − 1

(
(xa, 1 − xa) . . . (xa,N − xa)

)(
(xa, 1 − xa) . . . (xa,N − xa)

)
T , (3.31)

where xa is the updated ensemble mean, shows that the matrix Xa in (3.30) is the matrix
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3 Sequential data assimilation with the ensemble Kalman filter

of scaled analysis ensemble perturbations,

Xa =
1√
N − 1

(
(xa, 1 − xa) . . . (xa,N − xa)

)
. (3.32)

Consequently, updating the ensemble mean according to (3.26) and solving for the square

root of

XaXaT = P̂
a

= (I−KH) P̂
f

= P̂
f − P̂

f
HT

(
HP̂

f
HT + R

)−1
HP̂

f

= XfXf T −XfXf THT
(
HXfXf THT + R

)−1
HXfXf T

= Xf

(
I−Xf THT

(
HXfXf THT + R

)−1
HXf

)
Xf T (3.33)

yields an updated ensemble (by adding the rescaled columns of Xa to xa) with the exact

updated mean and covariance as given by the KF equations (Whitaker and Hamill, 2002;

Tippett et al., 2003). In particular, this avoids sampling the observation error distribution

as in the stochastic EnKF, which introduces additional sampling error into the ensemble

(section 3.3.1). In this respect, ensemble square root filters are superior to the perturbed

observation EnKF. The solution of (3.33) is not unique as explained by Tippett et al.

(2003) and, for example, the ETKF and the EAKF are two square root filters that solve

(3.33) differently.

Because we will later derive a new method related to non-Gaussian distributions that

is motivated by the EAKF approach, we explain the EAKF here in detail. The reasoning

behind the EAKF is to retain as much of the prior ensemble structure, that is, as much

of the higher statistical moments of the ensemble, in the analysis as possible. To this

end, the EAKF transforms the prior ensemble into a coordinate system in which the

covariance matrix of the prior ensemble Pf and the scaled inverse observational covariance

matrix HTR−1H become diagonal matrices. Further, the transformed state covariance

matrix is scaled such that all diagonal elements are one and the same scaling is applied

to the transformed inverse observational covariance matrix. The EAKF also calculates

the updated mean in this transformed space. Finally, because all covariance matrices are

diagonal, the updated ensemble can be derived by shifting the transformed ensemble to the

updated mean and contracting it along the transformed coordinate axes according to the

transformed inverse observational covariances.The posterior ensemble in the original state

space is then obtained by applying the respective inverse transformations to the updated

ensemble in the transformed coordinates (Anderson, 2001, 2009a).

Using single, sequential observations y, the EAKF can be understood more directly

within the local least squares framework of Anderson (2003). The EAKF can then be

summarised in three steps:

1. evolve the ensemble and predict an ensemble of observations,
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3.2 The Kalman filter and the ensemble Kalman filter

2. update the ensemble of observations,

3. transfer the observational update to a state update using linear regression.

The EAKF applies the observation operator H, which now maps x to a scalar observation

y, to each member of the prior ensemble to generate a prior ensemble of observations

yf, i = Hxf, i. Using the ensemble mean yf and the ensemble covariance (σf )2 of the prior

observation ensemble as well as the observed value y and its prescribed observation error

covariance (σo)2, the updated observation ensemble covariance is

(σa)2 =
(σf )2 (σo)2

(σf )2 + (σo)2

=
1

1
(σf )2

+ 1
(σo)2

. (3.34)

And the updated observation ensemble mean is

ya =
(σo)2 yf + (σf )2 y

(σf )2 + (σo)2
(3.35)

= (σa)2
(

yf

(σf )2
+

y

(σo)2

)
. (3.36)

They result from the product in (3.19) (for Gaussian distributions) or from the Gauß-

Markov Theorem (for zero-mean errors). The observation ensemble is then shifted and

scaled such that the updated ensemble has mean ya and covariance (σa)2. The differences

between the prior observation ensemble and the updated observation ensemble define the

observation increments ∆yi = ya, i − yf, i, i = 1, . . . , N . These increments are scaled to

state increments for the j-th element of the state vector, j = 1, . . . , n, according to

∆xa, i, j =
σxjy
(σf )2

∆yi, (3.37)

where σxjy is the covariance of the j-th element of the state vector and the observation as

estimated from the prior ensemble of states and predicted observations. The term
σ
xjy

(σf )2

corresponds to the estimated slope of a linear regression line fitted between the prior state

and observation ensembles.

This approach is easily extended to nonlinear observation operators by replacing H

with h(x) and following the same steps. Given that H is linear, the points (xf, i, yi) =

(xf, i, Hxf, i) all lie on a straight line defined by the observation operator. If h(x) is

nonlinear, the line defined by the regression slope
σ
xjy

(σf )2
will be the best linear fit to the

nonlinear observation operator estimated from the state-observation pairs of the prior

ensemble. Because this fit changes with the location and the spread of the prior ensemble

and is not equivalent to a global least squares fit, Anderson (2003) calls it a “local least

squares fit”.
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3 Sequential data assimilation with the ensemble Kalman filter

3.2.4 State augmentation for nonlinear observations and parameter

estimation

The handling of nonlinear observations described above can be generalised for all EnKF

types by augmenting the state vector with the results of the nonlinear observation operator

h(x) (Evensen, 2003). The vector of predicted observations h(xf, i) is appended to the state

vector xf, i for all ensemble members. Writing

yk = h(xk) + εk (3.38)

=
(
0n Im

)( xk

h(xk)

)
+ εk (3.39)

= H

(
xk

h(xk)

)
+ εk (3.40)

shows that the now linear observation operator is given by H =
(
0n Im

)
, where 0n and

Im are zero and identity matrices of dimension n× n and m×m, respectively.

State augmentation also enables the estimation of parameters with the EnKF. For this

purpose, parameters are treated like state variables and appended to the state vector. This

approach has been suggested to estimate correlation and bias parameters for the error

terms (Jazwinski, 1970; Dee and Da Silva, 1998) but is easily transferred to model param-

eters (Moradkhani et al., 2005; Evensen, 2009b). Besides the combined state-parameter

estimation, where the complete updated state-parameter vector is used for the next fore-

cast step, a pure parameter estimation approach is also possible. This method uses only

the updated parameters to replace the ones from the forecast. The next forecast cycle is

then started with the updated parameters but with the unchanged state from the previous

forecast (Nowak, 2009; Schöniger et al., 2012).

3.3 Sources of error in the ensemble Kalman filter

The KF is a statistical algorithm that is driven by assumptions about the uncertainty of

the initial state, about the evolution of this initial uncertainty, and about the uncertainty

of the observations. These assumptions are cast into a statistical model as described

in section 3.1. A flawed or incomplete specification of this statistical model will lead to

errors in the estimates obtained by the KF. And the ensemble representation of the state’s

probability distribution in the EnKF will incur additional errors due to the finite sample

size. Any combination of these types of errors can lead to what is called filter divergence.

The filter diverges if the state vector estimate follows an incorrect trajectory with ever

decreasing estimated covariance, that is, with ever increasing certainty in the – wrong –

estimate. From the covariance update in (3.22), we see that the state vector covariance

decreases in every update step because Pf
k and KHPf

k on the right-hand side and Pa
k on

the left hand side of (3.22) are all covariance matrices and therefore positive semidefinite.
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3.3 Sources of error in the ensemble Kalman filter

Consequently, tr(Pa
k) must be smaller than tr(Pf

k). But a continuously decreasing co-

variance of the state vector makes the assimilation of additional observations increasingly

irrelevant because the observations will not be given any influential weight anymore and

the filter will not move away from its locked-in trajectory.

3.3.1 Forecast model error and sampling error

Consider the evolution of the state vector covariance matrix given by

Pf
k = MPa

k−1M
T + Q.

The model error covariance matrix Q contributes to the error covariance of the forecast.

If Q is neglected or chosen too small, the estimate of Pf
k will be too small. Moreover, the

EnKF systematically underestimates the analysis covariance matrix Pa
k which further re-

duces Pf
k in the next forecast (“inbreeding”; Houtekamer and Mitchell, 1998; van Leeuwen,

1999; Sacher and Bartello, 2008). In the update step, a too small estimate of Pf
k leads to

an erroneously high weight for the predicted state (given by its inverse covariance matrix,

cf. (3.24)) compared to the weight given to the observations and, eventually, to a loss of

impact of the observations on the state vector estimate and thus to filter divergence.

The representation of the forecast distribution by an ensemble introduces additional

errors in the update step of the EnKF because it uses sample estimates of the covariance

matrices instead of the exact values. This causes spurious correlations where, due to

the limited ensemble size, the estimated value of entries in Pf
k is not zero although the

true value is zero. These estimation errors lead to errors in the updated state and in

the updated covariance because observations and states will be erroneously linked to each

other by the spurious correlations.

Both effects are well known error sources in the EnKF and different techniques have

been developed to handle them (Anderson, 2012; Whitaker and Hamill, 2012). To en-

sure a sufficient spread of the forecast ensemble, various model error representations are

currently used. Multiplicative inflation multiplies the forecast covariances or the updated

covariances by an inflation factor. Implemented into an ensemble filter, this corresponds

to scaling the ensemble perturbations to increase the sample covariance (Anderson and

Anderson, 1999). Additive inflation follows directly from the evolution of the covariance

matrix. This method adds random perturbations sampled from the model error distribu-

tion to the ensemble members (Mitchell and Houtekamer, 2000).

Spurious correlations are reduced by localisation of the covariances, that is, by con-

straining non-zero covariances to the physical vicinity of a state variable and by tapering

the covariances with increasing distance between states (Hamill et al., 2001; Houtekamer

and Mitchell, 2001).
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3 Sequential data assimilation with the ensemble Kalman filter

3.3.2 State-dependent and non-zero mean errors

The derivation of both, the recursive Bayesian estimation and the recursive best linear

unbiased estimation, assume a prior state vector distribution with mean xfk and zero-mean

observation errors (section 3.2.1) with a constant observation error covariance matrix R.

The zero-mean observation error assumption together with the assumption of a constant

observation error covariance means that the observation error distribution is independent

of the observed state. As a consequence, the likelihood of xk given yk,

p(yk|xk) = pε(yk − h(xk)),

will have the same shape as the observation error distribution pε(ε) for all observations

yk and will only be shifted along the xk-coordinate axes. For a Gaussian observation

error distribution, for example, the likelihood will then also be a Gaussian function. If,

however, R is not constant but a function of the unknown state xk, that is, R = R(xk),

the likelihood will in general be non-Gaussian even if all observation error distributions are

Gaussian. This is because to construct the likelihood, a different pdf pεk(yk − h(xk)) has

to be evaluated for every state xk. Further, the shape of the likelihood may be different for

every observation yk. Given that the prior state vector estimate and the observations have

zero mean errors, Zehnwirth (1988) extended the KF to accommodate a state-dependent

observation error covariance matrix. The equation for the Kalman gain then changes to

K = Pf
kH

T
(
HPf

kH
T + E

(
R(x)

))−1
. (3.41)

A modification of the EnKF to accommodate E
(
R(x)

)
is discussed in section 3.6.3. The

estimates of the modified KF are no longer the conditional mean and the conditional

covariance of xk given y1, . . . , yk because, due to the non-Gaussian likelihood, the right

hand side of

p(xk|y1, . . . , yk) =
p(xk|y1, . . . , yk−1) p(yk|xk, y1, . . . , yk−1)

p(yk|y1, . . . , yk−1)

will no longer be a Gaussian pdf. The only remaining interpretation of the KF state

vector and covariance matrix estimates in this case are the BLUE and its estimated error

covariance.

Non-zero mean errors, that is biases, can be included in the KF framework using state

augmentation and can in principle be estimated online, given prior estimates of the biases

(Dee and Da Silva, 1998). It is, however, assumed that either the observations or the prior

state vector estimate are unbiased which is an inappropriate assumption for certain non-

Gaussian observation error distributions (section 3.7). If non-zero mean errors, possibly

also with a state-dependent mean, are neglected, a statistical interpretation of the KF and

the EnKF results becomes difficult. Such an interpretation will be given in section 3.6.
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3.4 Physical consistency of updated states

3.4 Physical consistency of updated states

The nature of the KF’s update step causes a blindness for physical constraints and non-

linearities. The only link between the state vector and the observations in the KF update

step is the cross-covariance matrix cov(x, y) between states and observations. For linear

observation operators, cov(x, y) (we drop the time index for this section) is given by

cov(x, y) = E
(
(x− E(x)) (y − E(y))T

)
= E

(
(x− E(x)) (Hx + ε− E(Hx + ε))T

)
= E

(
(x− xf ) (x− xf )THT

)
+ E

(
(x− xf )εT

)
= E

(
(x− xf ) (x− xf )THT

)
= PfHT ,

which appears in the definition of the Kalman gain K. This term transfers the update

from observation space into state space. To see this, consider the right-hand side of

xa = xf + PfHT
(
HPf

kH
T + R

)−1 (
y −Hxf

)
,

where
(
HPf

kH
T + R

)−1 (
yk −Hxfk

)
is a vector in Rm that corresponds to the observa-

tion increments scaled with the inverse prior covariance of y (cf. (3.45)). The term PfHT

maps these analysis increments in observation space to analysis increments in state space

and corresponds to the cross-covariance matrix of x and y.

For nonlinear observation operators, cov(x, y) and the scaling factor for the observa-

tion increments are estimated from the ensemble of augmented state vectors and used

for the update of xf (section 3.2.4). Consequently, the KF assumes a linear relation-

ship between states and observations that is a statistical, linear approximation of the

nonlinear observation operator around the ensemble mean (section 3.6.2). This linear ap-

proximation is not limited to any bounded domain because the linear relationship given

by
(
cov(x, y) cov(y, y)−1

)
can be arbitrarily applied to any x and y. Due to observation

errors, sampling errors of the ensemble, and nonlinear observation operators, the mapping

of an observation y to an updated state xa will lead to physically invalid results for xa if

y falls outside a certain range [ymin, ymax] (Figure 3.2).

Various approaches have been developed to constrain updated states (and parameters)

to physically valid ranges. These approaches can be broadly categorised into variable

transformation techniques (Bertino et al., 2002; Nielsen-Gammon et al., 2010; Schirber

et al., 2013) and constrained optimisation approaches. The latter solve the minimisation

problem (3.24) under appropriate constraints on the solution xak (Pan and Wood, 2006;

Janjić et al., 2014) or add penalty terms to the objective function (Yilmaz et al., 2011; this

corresponds to the weak-constraint four-dimensional variational formulation by Gauthier

and Thépaut, 2001). Because constrained optimisation changes the problem formulation
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3 Sequential data assimilation with the ensemble Kalman filter

0 xf 1

x

0
ymin

ymin

1

y

Figure 3.2: Linear (blue) and nonlinear (orange) observation operators (solid lines) on
a bounded interval and the linear relation given by

(
cov(x, y) cov(y, y)−1

)
(dashed

lines) that is used to update xf from an observation y. If the physically valid range
for x is [0, 1], only observations larger than ymin will yield physically consistent values
in the KF update. Prior and observation error covariances in this example are 0.5
and 0.25, respectively.

that was used to derive the recursive solution of the filtering problem, these approaches

prohibit an immediate statistical interpretation of the estimates in terms of conditional

distributions or best linear unbiased estimates. Variable transformation techniques, in

contrast, retain the Bayesian character of the EnKF. These are discussed in section 3.7.

3.5 Nonlinearity and non-Gaussianity

Nonlinearity and non-Gaussianity are closely linked to each other. The reason is that

any nonlinear transformation of a Gaussian random variable, for example a model fore-

cast or an observation operator, will generally transform the variables distribution from

a Gaussian distribution to a non-Gaussian distribution. And while multivariate Gaussian

distributions are fully described by their means and covariances – which correspond to

linear relationships –, a multivariate non-Gaussian distribution has higher non-zero mo-

ments and requires nonlinear functions to characterise the relationships between individual

random variables.

The development of the EnKF was motivated by computational and memory limitations

when handling the KF covariance matrices, on the one hand, and by the limited applica-

bility of the KF to nonlinear forecast models, on the other hand (Evensen, 1994). In fact,

the forecast step of the EnKF poses no constraints on the linearity of the model, given that

the ensemble is large enough (section 3.2.2; for a discussion of strongly nonlinear models

in conjunction with the EnKF see Sakov et al., 2012). The update step, however, is still

based on covariances and thus on linear relationships. Therefore, the update step also

requires Gaussian distributions in order to be a Bayesian method that yields the correct

posterior pdf.
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3.6 The Kalman filter as linear regression

The KF was introduced in section 3.2.1 as a special case of recursive Bayesian estimation

(Algorithm 1 in section 3.1) for linear models and Gaussian error distributions. In this

case, the update step of the KF yields the mean and the covariance of the conditional

pdf p(xk|y1, . . . , yk) which is also Gaussian and fully described by the KF estimates of

its mean and covariance. We also noted that the KF reduces to the BLUE and its error

covariance estimate in case of non-Gaussian distributions with zero mean. The BLUE is

sub-optimal with respect to the expected squared estimation error. And more important,

the BLUE is hard to interpret because it does not allow to draw any conclusions on the

probability of the estimated state to be the true state. After all, the BLUE could lie in a

low probability region of a multimodal or long-tailed pdf and could be very unlikely to be

the true state (note that being unbiased here refers to the expectation taken over x only,

without any considerations on the available observations).

The EnKF does not alleviate this issue because the EnKF is only a Monte Carlo ap-

proximation of the KF and as such only a Monte Carlo approximation of the BLUE in

the non-Gaussian case. Starting from the same initial ensembles, different versions of the

EnKF (for example the perturbed observations EnKF and the EAKF) will lead to differ-

ent updated ensembles that only agree in their ensemble means and ensemble covariance

matrices. Only in the Gaussian case will the two ensembles be samples from the same,

Gaussian posterior distribution. Comparisons of stochastic and deterministic filters under

non-Gaussianity show that stochastic filters like the perturbed observations EnKF are

more resilient to outliers in the ensemble. This means that the spread is actually gener-

ated by randomly differing states instead of being generated by only one member far away

from a nearly collapsed ensemble or by two nearly collapsed groups of ensemble members

(Lawson and Hansen, 2004; Lei et al., 2010).

Nonlinear observation operators or non-Gaussian observation errors also invalidate the

Bayesian interpretation of the KF and the EnKF. This is because the conditional mean

of the state x given the observations y = h(x) + ε is, in general, a nonlinear function of

the observations y. But the KF update is linear in y and can consequently only be an

approximation of the conditional mean. The same holds for the conditional covariance

matrix. The BLUE interpretation of the EnKF, however, also holds for nonlinear obser-

vation operators and non-Gaussian observation errors, provided that they have zero mean

(section 3.6).

3.6 The Kalman filter as linear regression

The connection between the KF and linear regression was noted by Duncan and Horn

(1972) and the KF has been described as the “evolution of a series of regression functions”

by Meinhold and Singpurwalla (1983). In this section, we explain how the effects of

nonlinearity, non-Gaussianity, and state-dependent, non-zero mean errors in the KF and

the EnKF can be understood using the linear regression framework.

Consider the joint pdf p(x, y). Then the conditional mean of x given y is a function of
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3 Sequential data assimilation with the ensemble Kalman filter

y given by

E(x|y) =

∫
x

x p(x|y) dx (3.42)

= f(y)

The function f : Rm → Rn is called the regression of x on y (Papoulis, 1991). As noted

in section 3.2.1, the conditional mean f(y) is the globally optimal estimate of x because

it minimises the expected squared error

E((x− g(y))T (x− g(y))

over all possible estimators g(y).

In general, the conditional mean f(y) is a nonlinear function of y that is not attainable

because it requires the knowledge of the conditional pdf p(x|y) and the solution of the

multidimensional integral in (3.42) (also note, that p(x|y) would be the solution of the fil-

tering problem which we are trying to find). Instead, we seek the best linear approximation

of f(y), that means we seek a linear function

f̂(y) = Ay + b

that minimises the expected squared error

tr
[
E
(

(x− f̂(y))T (x− f̂(y))
)]
.

This is called linear regression and A and b are given by (Pfeiffer, 1990; chapter 16)

A = cov(x, y) cov(y, y)−1,

b = E (x)− cov(x, y) cov(y, y)−1E (y) .

The linear regression estimate is unbiased,

E(f̂(y)) = E
(
(E(x)− cov(x, y) cov(y, y)−1(y − E(y))

)
= E(x),

and the error covariance matrix of the linear regression estimate is

E
(

(x− f̂(y))(x− f̂(y))T
)

(3.43)

where the expectation is taken over x and y.

Using now the KF assumptions that E(x) = xf , that y = Hx + ε with E(ε) = 0, and
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3.6 The Kalman filter as linear regression

that x and ε are independent, we get

E(y) = E(Hx + ε)

= HE(x) + E(ε) (3.44)

= Hxf ,

and

cov(y, y) = E
(
(y − E(y)) (y − E(y))T

)
= E

(
(y −Hxf ) (y −Hxf )T

)
= E

(
(Hx + ε−Hxf ) (Hx + ε−Hxf )T

)
= HE

(
(x− xf ) (x− xf )T

)
HT + E

(
εεT

)
= HPfHT + R, (3.45)

as well as

cov(x, y) = E
(
(x− E(x)) (y − E(y))T

)
= E

(
(x− xf ) (y −Hxf )T

)
= E

(
(x− xf ) (Hx + ε−Hxf )T

)
= E

(
(x− xf ) (x− xf )THT

)
+ E

(
(x− xf )εT

)
= E

(
(x− xf ) (x− xf )T

)
HT

= PfHT .

The linear regression estimate of x given y now reads

f̂(y) = xf + PfHT (HPfHT + R)−1(y −Hxf )

= xa,

which is the KF estimate of x given y. Likewise, the estimate of the error covariance of

f̂(y) is equal to the KF estimate Pa. This shows that the KF performs a linear regression

of the state x on the observation y.

In the special case of Gaussian distributions for x, ε, and thus also for y, the joint pdf

p(x, y) is Gaussian. We can write the joint pdf of x and y as

p(x, y) = c1 exp

−1

2

(
x− xf

y −Hxf

)T (
Pf PfHT

HTPf HPfHT + R

)−1(
x− xf

y −Hxf

) (3.46)
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3 Sequential data assimilation with the ensemble Kalman filter

and then the conditional pdf of x given y is also Gaussian and given by

p(x|y) = c2 exp

(
−1

2
(x− xa)T (Pa)−1(x− xa)

)
.

The linear approximation f̂(y) to the conditional mean yields the conditional mean itself

in this case, that is f̂(y) = f(y), because for joint Gaussian pdfs, the conditional mean

f(y) is only a linear function of y. Further, the error covariance matrix of the linear

regression estimate in (3.43) coincides with the conditional covariance matrix,

cov(x|y, x|y) = E
(
(x− f(y)) (x− f(y))T |y

)
= E

(
(x− f(y)) (x− f(y))T

)
= Pf −PfHT (HPfHT + R)−1HPf

= Pa,

because for joint Gaussian pdfs the conditional covariance is independent of y (Jazwinski,

1970). Therefore, if the involved distributions are Gaussian and the observation operator

is linear with zero-mean errors, the linear regression estimate and its error covariance are

the conditional mean and the conditional covariance matrix of x given y.

Instead of a single linear regression, the EnKF performs N linear regressions

xa, i = xf, i + P̂
f
HT (HP̂

f
HT + R)−1(yi −Hxf, i), i = 1, . . . , N,

where P̂HT and (HP̂
f
HT + R) are sample estimates of cov(x, y) and cov(y, y) from the

forecast ensemble. Burgers et al. (1998) showed that the use of perturbed observations yi

as defined in (3.29) is necessary to yield an updated ensemble whose sample covariance

matrix is an estimate of the linear regression error covariance matrix and thus of the

conditional covariance matrix in the Gaussian case. Ensemble square root filters such as

the EAKF implicitly construct perturbed observations such that the updated ensemble

covariance matrix matches the linear regression error covariance matrix (section 3.2.3). For

increasing ensemble size, the Monte Carlo estimates of the linear regression will converge

to the true linear regression of x on y.

We now argue, that the KF estimates xa and Pa can be understood as approximations

of the conditional mean and the conditional covariance matrix also for non-Gaussian distri-

butions and nonlinear observation operators. Further, we regard the normal distribution

with mean xa and Pa as an approximation of the conditional distribution of p(x|y). By

reverting the arguments that led to the equivalence of the KF estimates with the condi-

tional mean and the conditional covariance in the linear, Gaussian case, we find that this

normal approximation of p(x|y) corresponds to an approximation of the joint pdf p(x, y)

with a normal joint pdf with mean
(

xf

Hxf

)
and covariance matrix

(
Pf PfHT

HPf HPfHT+R

)
. This

normal approximation of the true joint pdf corresponds to an exclusion of information

about the higher moments of x and y as it is done in the KF. In this way, we can derive

30



3.6 The Kalman filter as linear regression

the implicit approximations of observation error pdfs and likelihoods that we make when

we apply the KF to non-Gaussian, nonlinear problems. The same holds asymptotically

for the EnKF with N → ∞ and we refer to KF and EnKF interchangeably in the next

sections. In the sense of approximating the Bayesian Algorithm 1, the KF becomes

Algorithm 2

1. initialise the forecast distribution p(x0),

2. for i from 1 to k:

a) forecast the prior pdf p(xi|y1, . . . , yi−1),

b) estimate the conditional mean and covariance using linear regression,

c) approximate the conditional pdf p(xi|y1, . . . , yi) with a normal pdf with the

estimated conditional mean and covariance.

3.6.1 The Gaussian case with linear observations

For Gaussian distributions and a linear observation operator, the joint pdf is Gaussian and

there are no approximations. Figure 3.3 visualises the KF estimation of the conditional

mean in this case. The KF approximations of the observation error pdf, the likelihood,

and the posterior pdf agree with the true pdfs and likelihoods. Further, the linear regres-

sion agrees with the conditional mean. Thus, all four regression curves in panels a) and

e), that is the conditional mean of x given y (labelled “mean of p(x|y)”), the true linear

regression of x on y and the two KF approximations of the linear regression, are identical.

The constant observation error covariance, visualised by the grey, filled contours in panels

e) and f), is the reason for the congruence of the two KF approximations of the linear

regression and the congruence of the approximating joint normal pdfs. Having a observa-

tion error covariance means that the normal approximation of p(y), which is the prior pdf

of y, is independent of the observation that is used to construct it. This independence is

a natural requirement because p(y) does not depend on realisations of y.

3.6.2 The Gaussian case with nonlinear observations

For nonlinear observation operators, the linear regression reads

xa = xf + cov(x, y) cov(y, y)−1(y − E(h(x))). (3.47)
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Figure 3.3: KF estimation with linear observation operator and Gaussian distributions
(continued on next page).
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3.6 The Kalman filter as linear regression

Figure 3.3: The KF estimate of the linear regression for two different realisations of the
same observation (different random observation error) is shown as orange and blue
dashed lines in panels a) and e). The true linear regression line is shown as purple
dashed line and the curve of the conditional mean of x given y is shown as pink solid
line. The true joint pdf is shown as filled grey contours in panel a) and b) and the
implicit approximations of the KF are shown as orange and blue contours. The true
observation pdf (function of y) and the true observation likelihood (function of x)
are shown as filled grey contours in panels e) and f). The observation operator is
shown as light green, dashed line and the mean of the observation pdf is shown as
dark green, solid line. The implicit approximations of the KF to the true observation
pdf/true likelihood are shown as orange and blue contours in panels e) and f). The
true observation error pdf and the KF approximation shifted to the perfect observation
Hx for two different true states corresponding to the realisations of the observation
are shown in panel c). The prior pdf and the KF approximation are shown in panel
d). The true likelihood of x given two different realisations of the observation and the
KF approximations are shown in panel g). And the true posterior pdf and the KF
approximation for two different observations are shown in panel f).

The terms cov(x, y), cov(y, y) and E(h(y)) cannot easily be determined. But we can

write (without loss of generality assuming E(ε) = 0)

cov(y, y) = E ((y − E(y)) (y − E(y)) T ) (3.48)

= E
(
(y − E(h(x))) (y − E(h(x)))T

)
= E

(
(h(x) + ε− E(h(x))) (h(x) + ε− E(h(x)))T

)
= E

(
(h(x)− E(h(x))) (h(x)− E(h(x)))T

)
+ E

(
εεT

)
= cov(h(x), h(x)) + R (3.49)

where the cross terms between (h(x) − E(h(x))) and ε are zero because the observation

error is independent of the state. Using the independence assumption again we get

cov(x, y) = cov(x, h(x)) (3.50)

and

cov(h(x), y) = cov(h(x), h(x)). (3.51)

Now we use the ensemble of predicted observations

yf, i = h(xf, i)
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3 Sequential data assimilation with the ensemble Kalman filter

and formulate the ensemble of linear regressions with the augmented state vector (sec-

tion 3.2.4)(
xa, i

ya, i

)
=

(
xf, i

yf, i

)(
cov(x, y)

cov(h(x), y)

)
(cov(y, y) + R)−1 (yi − yf, i)

=

(
xf, i

yf, i

)(
cov(x, h(x))

cov(h(x), h(x))

)
(cov(h(x), h(x)) + R)−1 (yi − yf, i), (3.52)

where all covariance matrices can be estimated from the ensemble. The updated ensemble

members xa, i, i = 1, . . . , N , can be derived directly from the perturbed observations

yi = y + εi as in the perturbed observations EnKF. Alternatively, the state increments

xa, i − xf, i can be derived from the observation increments ya, i − yf, i using the linear

approximation to the observation operator given by

xa, i − xf, i = cov(x, h(x)) cov(h(x), h(x))−1 (ya, i − yf, i). (3.53)

The EAKF updates the ensemble in this way without perturbations of the actual ob-

servation y. The equivalence of the EAKF to the direct update of xf, i from perturbed

observations yi is seen by deriving the implicitly used perturbed observations of the EAKF

from (3.48) – (3.51) and by using the expression for ya, i from the second line of (3.52) in

(3.53). With increasing ensemble size, the mean of the updated ensemble in (3.52) then

converges to xa as defined in (3.47). The same holds for the ensemble covariance matrix

and the linear regression error covariance matrix.

Non-Gaussian prior distributions, non-Gaussian observation errors, or nonlinear ob-

servation operators cause the joint pdf p(x, y) to be non-Gaussian. Consequently, the

conditional mean will be a nonlinear function f(y) and the conditional covariance matrix

will depend on y. As argued before, the KF uses linear regression to approximate the

conditional mean and the linear regression error covariance matrix to approximate the

conditional covariance matrix and these approximations define a normal pdf which is an

approximation of the true conditional pdf.

In the update step, the KF approximates the nonlinear relationship between the state

vector and the observations with the linear relationship given by the cross-covariances

cov(x, h(x). Together with the Gaussian distributions, this leads to an approximating

joint normal pdf as shown in Figure 3.4. As in section 3.6.1, due to the constant observation

error covariance, the true linear regression and the KF approximations agree. But because

the true joint pdf is non-Gaussian, the linear regressions are only an approximation to the

nonlinear conditional mean f(y). Further, the linear approximation of the observation

operator leads to a shift in the observation pdf that corresponds to the vertical difference

between the nonlinear observation operator and its linear approximation in panel f).

The difference in the location of the true likelihoods and their approximations corre-

sponds to the horizontal distance between the nonlinear observation operator and its linear
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3.6 The Kalman filter as linear regression
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Figure 3.4: KF estimation with nonlinear observation operator and Gaussian distributions.
The linear approximation of the observation operator is shown as thin, dashed, light
green line in panel f) (for detailed explanation see Figure 3.3).
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3 Sequential data assimilation with the ensemble Kalman filter

approximation at the level of the realisation of the observation. The non-Gaussian shape

of the true likelihoods arises from the nonlinearity of the observation operator, which

causes the observation error pdf to be shifted differently for the same change ∆x depend-

ing on x. The Gaussian shape of the approximations is due to linear approximation of the

observation operator which leads to a Gaussian joint pdf.

The differences between the locations of the true posterior pdfs and the KF approxima-

tions in panel f) mirror the horizontal distance between the linear regression lines and the

curve of the conditional mean at the level of the realisation of the observation in panels

a) and e). The differences in the shape and width of the true posterior pdfs and the

KF approximations originate from the approximation of the true joint pdf by a normal

joint pdf. Figure 3.4 visualises the fact, the for nonlinear observation operators, the KF

estimates will only be good approximations when the assimilated observations are in the

vicinity of h(xf ), that means the perfect observation that would have originated from the

mean of the prior state vector.

In case of a linear observation operator and non-Gaussian prior distribution or non-

Gaussian observation errors, the KF approximation would also agree with the true linear

regression. The differences between the linear regressions and f(y) would be qualitatively

similar. The approximating likelihoods would not be shifted (this is an effect of the linear

approximation of the nonlinear observation operator) but their shape would not match the

true likelihood, either, due to the normal approximation. The difference between the KF

approximations of the posterior pdf and the true posterior pdf would also be qualitatively

similar.

3.6.3 The Gaussian case with state-dependent observation error covariance

For the derivation of cov(x, y) and cov(y, y), we have so far assumed that the observation

error covariance R is constant and independent of the observed state x (homoscedastic

errors). Consider now observations

y = h(x) + ε(x)

with zero-mean but state-dependent observation error ε(x) and thus with a state-dependent

observation error covariance (heteroscedastic errors).

The distribution of y now depends twofold on x, through the location given by h(x)

and through the shape of the distribution of ε(x). Consequently, the joint pdf will be non-

Gaussian even if all error distributions pε(x)(y−h(x)) are Gaussian. We may still assume

that the observation errors and the state are uncorrelated. In this case, the covariance

36



3.6 The Kalman filter as linear regression

matrix of y is

cov(y, y) = E
(
(y − E(h(x))) (y − E(h(x)))T

)
= E

(
(h(x) + ε(x)− E(h(x))) (h(x) + ε(x)− E(h(x)))T

)
= E

(
(h(x)− E(h(x))) (h(x)− E(h(x)))T

)
+ E

(
ε(x)ε(x)T

)
= cov(h(x), h(x)) + E (R(x))

while the other covariance matrices remain unchanged.

Analogous to the modification of the KF for state-dependent observation error covari-

ances (section 3.3.2), the perturbed observations EnKF can be extended to accommodate

E(R(x)). First note that

E(R(x)) = E(ε(x)ε(x)T )

= E
(
E(ε(x)ε(x)T |x)

)
where the inner expectation is taken over ε and the outer expectation is taken over x. Thus,

we can obtain a sample estimate of R(x) by sampling the state-dependent observation

error ε(x) for every member xf, i. Ensemble square root filters, on the other hand, require

the analytical calculation of E(R(x)) because they avoid the additional sampling of the

observation error and use a prescribed observation error covariance matrix.

An ad-hoc approach for assigning state-dependent observations errors is to use the

observation error covariance which results from inverting the observation operator, that

is,

R̂ = R(h−1(y)).

The consequences of this approach are illustrated in Figure 3.5. Two different realisations

of the same observation lead to two different approximating joint normal pdfs. This is

statistically inconsistent because the joint pdf describes the probability of the realisations

of observations and the approximation used in the KF should be independent of the

realisations of observations. The two different approximations to the joint pdf explain

also the two different KF regression lines which differ both from the true linear regression

because both KF approximations use an incorrect observation error covariance.

The observation error approximations are correct by construction. The KF approxima-

tions to the likelihoods are acceptable in the proximity of the prior mode which results

in good approximations of the posterior covariance (width of the posterior pdf). But due

to the error in the estimated regression curves, the locations of the KF approximations

of the posterior pdf are wrong. The blue posterior pdf is by chance closer to the true

posterior pdf because the observation error covariance used in this case is close to the true

observation error covariance which makes the blue KF regression line by chance a good

approximation of the true linear regression.

37



3 Sequential data assimilation with the ensemble Kalman filter
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Figure 3.5: KF estimation with linear observation operator and Gaussian distributions with
state-dependent observation error covariance (for detailed explanation see Figure 3.3).
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3.6 The Kalman filter as linear regression

3.6.4 Non-zero mean observation errors and state-correlated observation

errors

If the observation errors do not have zero mean, the expectation of y will no longer be the

expectation of the observation operator applied to x,

E(y) = E(h(x)) + E(ε)

6= E(h(x)).

Therefore, the linear regression estimate of x given y reads

f̂(y) = xf + cov(x, y)(cov(y, y))−1(y − E(h(x))− E(ε))

= xa − cov(x, y)(cov(y, y))−1E(ε).

Similar to the state-dependent observation errors, the term E(ε) could be included in the

sampling of perturbed observations in the stochastic EnKF. If not accounted for, non-zero

mean observation errors will lead to a shift of the regression line estimated by the KF

along the x-coordinates. This shift results in a bias of the estimated conditional mean.

Even for the state-dependent observation errors, we hitherto assumed that they are

uncorrelated with the state. Otherwise, the cross-covariance terms

E((x− E(x))(ε− E(ε))T )

and

E((h(x)− E(h(x))(ε− E(ε))T )

in the derivations of cov(y, y) and cov(x, y) will not be zero. This assumption, however,

ensures that the ensemble estimates of cov(y, y) and cov(x, y) are unbiased. Errors in the

estimates of cov(y, y) and cov(x, y) cause errors in the slope of the estimated regression

line as can be seen in Figure 3.6. In this example, the prior pdf is defined on the bounded

interval (0, 1). The observation error pdf is chosen such that its mode is at the perfect

observation and that the observation is within (0, 1). Due to the boundedness, the prior

pdf and the observation error pdf are non-Gaussian and the joint pdf of x and y is therefore

also non-Gaussian and defined on (0, 1)× (0, 1).

The conditional mean of x given y is a nonlinear function that maps every observation

y to a value in (0, 1). The mean of the observation pdf does not coincide with the

observation operator which implies E(y) 6= E(h(x)) or equivalently E(ε) 6= 0. Moreover

the observation error pdf is state dependent, as shown by the bent grey contours in panel

e) and f) which are not parallel to the observation operator.

Approximating the prior distribution and the observation error distributions with nor-

mal distributions, leads to an approximating joint normal distribution that has non-zero
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Figure 3.6: KF estimation with linear observation operator with state-dependent observa-
tion error distribution, non-zero mean observation error and non-Gaussian prior (for
detailed explanation see Figure 3.3).

40



3.6 The Kalman filter as linear regression

probabilities outside the bounded domain of the state and the observation. And like-

wise, the linear regression of x on y approximates the nonlinear conditional mean of x

given y but is not restricted to (0, 1). The KF approximations of the linear regression

coincide for both realisations of the observation because the observation error covariance

is constant. They are shifted relative to the true linear regression along the x-axis by

cov(x, y)(cov(y, y))−1E(ε) because of the non-zero mean observation errors. And they

are not parallel to the true linear regression line, that is, they have a different slope, be-

cause the observation errors are correlated with the state (for small x, positive ε are more

likely than negative ε and with increasing x negative ε become more likely compared to

positive ε which results in a slight negative correlation). For a discussion on the effects of

the bounded domain see section 3.7.

As previously the KF approximations of the posterior pdf are horizontally shifted due to

the horizontal distance between the conditional mean curve and the KF approximations

of the linear regression. Further, the joint pdf and the posterior pdfs of x given y are

significantly non-Gaussian and thus the error covariance of the linear regression is not

a good approximation of the conditional covariance. Consequently the width of the KF

approximations of the posterior pdf disagree strongly with the width of the true posterior

pdfs. Lastly, the KF approximations assign positive probabilities to states outside (0, 1)

which is inconsistent with the true prior pdf and the bounded domain of the state (see

also section 3.4).

3.6.5 Summary of errors in estimated conditional means and conditional

covariance matrices

The KF corresponds to a linear regression of the state vector x on the observations y

and the result of this regression is an approximation of the conditional mean and of the

conditional covariance matrix of x given y. But, depending on which KF assumptions

are or are not satisfied, the KF only approximates the estimates that would result from

a linear regression. The estimated conditional mean and covariance matrix can be used

to approximate the posterior pdf with a normal pdf. In this interpretation the KF is an

approximate Bayesian computation algorithm (ABC algorithm; Nott et al., 2011). The

total error of this approximation depends on three sources of error:

1. the error due to the approximation of the (nonlinear) function f(y) that defines the

conditional mean with a linear function f̂(y),

2. the error in the estimate of the linear function f̂(y),

3. the error of approximating a non-Gaussian posterior pdf with a Gaussian pdf.

The first type of error arises from non-Gaussian prior distributions, non-Gaussian ob-

servation errors, nonlinear observation operators, or state-dependent observation errors.

These all induce a non-Gaussian joint pdf and a nonlinear dependency of the conditional
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3 Sequential data assimilation with the ensemble Kalman filter

mean on the observation. Consequently, the linear regression estimate and its error co-

variance matrix are only approximations of the conditional mean and the conditional

covariance matrix instead of agreeing with the true values.

The second type of error arises from using the KF equations to estimate the linear

regression of x on y and not accounting for non-zero mean observation errors, state-

dependent observation errors and correlations of the observation error with the state.

These errors cause the estimated regression line be shifted along the x-axis and they cause

errors in the covariance matrices cov(x, y and cov(y, y) which lead to an incorrect slope

of the estimated regression line. For either of the first two types of errors, the estimated

conditional mean of x given y will be shifted from its true value. And the errors in the

estimated conditional covariance matrices will increase with the mismatch between the

true joint pdf p(x, y) and the normal joint pdf which is implicitly used to approximate

the true one.

The third type of error arises if the posterior pdf is non-Gaussian due to any of a

non-Gaussian prior distribution, non-Gaussian observation errors, a nonlinear observation

operator, or state-dependent observation errors. This type of error becomes relevant when

other properties than the mean or the covariance of the posterior pdf, for example its

mode, are sought after (section 3.7).

3.7 Gaussian anamorphosis for the assimilation of bounded

quantities

The quality of the KF estimates of the conditional mean and the conditional covariance

matrix depends on the joint pdf of x and y being approximately Gaussian. The quality

of the estimates deteriorates as the joint pdf becomes less Gaussian while, at the same

time, the normal approximation of the conditional pdf becomes less useful because the

conditional pdf will also depart from Gaussianity. And a non-Gaussian conditional pdf

can in general not be adequately described by only its mean and covariance matrix, even

if these estimates are correct. We may, however, restrict the conditional pdf to be of such

a type that it can be characterised by its first two moments, even if it is non-Gaussian,

and we may then try to improve the estimated values of the first two moments. This is

the idea of Gaussian anamorphosis applied in conjunction with the EnKF.

Gaussian anamorphosis (Chilès and Delfiner, 1999) transforms a random variable x such

that the transformed variable x̃ follows a Gaussian distribution. The estimates of the mean

and the covariance of x̃ fully describe the distribution of x̃ and thus also the distribution

of x, even if this distribution is non-Gaussian. This approach is also called normal score

transform (Krzysztofowicz, 1997; and references therein). In conjunction with the EnKF,

Bertino et al. (2002, 2003) suggested to use Gaussian anamorphosis to transform the

state vector and the observations such that their distributions are Gaussian or close to

Gaussian, which improves the quality of the KF estimates. Gaussian anamorphosis is
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

particularly useful for the assimilation of bounded quantities because it can transform

bounded variables into unbounded variables which are used in the assimilation process.

The inverse transformation ensures estimates that are then consistent with the variable’s

bounds.

3.7.1 Assimilation of bounded quantities

Section 3.4 explains how physically inconsistent updated states appear due to the purely

statistical nature of the KF and its use of linear relationships between state vector and

observations. Gaussian anamorphosis uses a variable transformation (section 3.7.3) to

improve the Gaussianity of the variables in the transformed space that are used in the

assimilation. If this transformation maps the bounded quantities in state space to an

unbounded domain in the transformed space, then the inverse transformation of the es-

timates from the transformed space to the physical space ensures physically consistent

estimates. The same can be achieved with any such transformation only to ensure phys-

ically consistent estimates, without considering the effects of the variable transformation

on the distribution of the variable in the transformed space (Nielsen-Gammon et al., 2010).

Section 3.6 explains how nonlinearity and non-Gaussianity cause errors in the estimated

conditional mean and the estimated conditional covariance. These estimation errors cause

biases in the estimates which are derived from the KF approximation of the conditional

pdf because this pdf is shifted. The adverse effects are particularly strong if states and

observations close to the bounds of the interval are considered. Panel e) of Figure 3.6

shows the linear regression used by the KF to estimate the conditional mean. Compared

to the true curve of the conditional mean of x given y, these estimates have a bias towards

the centre of the interval (the curves would be symmetric about x = 0.5 for values close

to 1). Even for observations very close to zero, the estimated conditional mean is very

different from zero and any approximating pdf that uses this estimate will be shifted to

the centre of the interval. Consequently, any estimates derived from this approximate pdf,

such as its mean, will be biased.

Lastly, the use of approximate conditional pdfs that are Gaussian, and thus assign non-

zero probabilities to values outside the physical domain of the state variables, complicates

the interpretation of these pdfs and any estimates derived from them.

3.7.2 Estimation of conditional mode

For practical applications such as the use of an estimated parameter in a model, the

approximate conditional pdf has to be reduced to one value, the state or parameter esti-

mate. The two intuitive estimates are the conditional mean, which minimises the expected

squared error of the estimate and which can be regarded as the “average estimate”, and

the conditional mode. The conditional mode has the highest probability to be the true

value and is also referred to as the maximum a posteriori estimate (MAP estimate). For

normal distributions, both estimates coincide and no decision has to be made. In general,
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model space

t(0.01) ≈ −4.6
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space

0.01
0.10 0.50 0.90

0.99

x

t(0.01) ≈ −4.6

t(0.10) ≈ −2.2

t(0.50) = 0.0

t(0.90) ≈ 2.2

t(0.99) ≈ 4.6

x̃
=
t(
x

)

Figure 3.7: Transformation of a double-bounded random variable from (0, 1) to (−∞, ∞)
using the logit function described in section 3.7.4.

however, they will differ. We argue that the conditional mode is the intuitively more

appealing estimate because the conditional mean could, after all, be a very unlikely state

or parameter value, for example if the conditional pdf has a sharp peak and a long, flat

tail or if the conditional pdf is strongly bimodal.

3.7.3 Transformation of states and observations

The transformation of a random variable x to a new variable x̃ changes the distribution

of x. The distribution of the transformed variable can be derived from the cumulative

distribution function, which is the anti-derivative of the pdf, and the rules for the change

of variables in integration (Figure 3.7). Given a bijective transformation

x̃ = t(x), (3.54)

the pdf of x̃ is

px̃(x̃) = px(t−1(x̃))
dt−1(x̃)

dx̃

= px(x)
dx

dx̃
. (3.55)
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

For random vectors, the transformation reads

px̃(x̃) = px(t−1(x̃))

∣∣∣∣dt−1(x̃)

dx̃

∣∣∣∣
= px(x)

∣∣∣∣dx

dx̃

∣∣∣∣ ,
where

∣∣dx
dx̃

∣∣ is the determinant of the Jacobian of the inverse transformation t−1 evaluated

at x̃ (Papoulis, 1991).

These transformations are commonly applied to single variables, changing the univariate

marginal distributions p(xj), where xj is the j-th element of the state vector, because this

simplifies the application of Gaussian anamorphosis significantly (Bocquet et al., 2010).

Applying the transformations in this univariate fashion, however, does not ensure mul-

tivariate Gaussian distributions in the transformed space that would be required for the

KF estimates to be optimal. Hence to ensure optimal updates of the transformed state

vector, at least bi-Gaussianity of the transformed state-observation pairs has to be checked

(Brankart et al., 2012).

The EnKF uses an ensemble of states to represent the non-Gaussian prior pdf and the

transformation of this pdf corresponds to the transformation of all ensemble members

according to a transformation tx. The transformed ensemble then represents the trans-

formed prior pdf and is a true sample of a normal distribution. The anamorphosis can

be applied to the whole state vector and the observations as well as to parts of the state

vector or the observations only. Also, different transformations for the state vector and

the observations are possible. In general, the anamorphosis will change the relation be-

tween the state vector and the observations. Consider a transformation tx for the state

vector (note that individual components of tx may be the identity operator such that the

variable is not changed) and a transformation ty for the observations. The transformed

observation operator is then given by (Bertino et al., 2002)

h̃(x̃) = ty ◦ h ◦ t−1x (x̃),

where ◦ means the composition of two functions. The choices of tx and ty may improve

or deteriorate the linearity between states and observations. For our application, which is

the estimation of canopy albedo parameters from surface albedo observations, we assume

identity observations of the first part of the state vector in model space and we use the

same transformation t for states and observations such that

ỹ = h̃(x̃)

= t ◦
(
Im 0n−m

)
◦ t−1(x̃)

=
(
Im 0n−m

)
x̃.

Such an observation operator corresponds to identity observations of m model states while
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3 Sequential data assimilation with the ensemble Kalman filter

the state vector is augmented with n−m model parameters that are not observed.

3.7.4 Choice of the anamorphosis function and definition of model space

distributions

The transformation or anamorphosis function t can be chosen ad-hoc or constructed nu-

merically from an ensemble of states as well as from an ensemble of observations (Simon

and Bertino, 2009; Brankart et al., 2012). Motivated by the application for albedo, we

choose the logit function

t(x) = ln(x)− ln(1− x) (3.56)

that maps (0, 1) to (−∞, ∞) and whose inverse is the logistic function

t(x̃) =
exp(x̃)

exp(x̃) + 1
. (3.57)

The ad-hoc choice of an anamorphosis function avoids the problem of defining the tails

of a numerically constructed function beyond the last data points of the ensemble and

simplifies the implementation. The logit transform is also applicable to other double-

bounded intervals if the variables are appropriately shifted and scaled. The end points of

the interval are excluded because the logarithm is not defined there.

Our choice of the distributions of the state vector and the observation error in model

space result from the choice of the transformation and the requirement that the trans-

formed distributions must be Gaussian. This leads to logit-normal distributions (Johnson

and Kotz, 1970) in model space . The prior state distribution is chosen such that its mode

is at the best available prior estimate and that it has a standard deviation that represents

the prior uncertainty. The observation error pdfs are defined such that they have mode

zero and a standard deviation that corresponds to the assumed observation error standard

deviation.

Numerical calculation of transformed space distributions

Given the mode xmode and the variance σ2x of the logit-normal pdf in model space, we

calculate the mean and the variance of the normal pdf in transformed space numerically

using (3.55) and

dpx(x)

dx

∣∣∣
xmode

= 0 (3.58)
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

together with the integral definition of the mean µx and the variance σ2x,

µx =

∫
x
xpx(x)dx, (3.59)

σ2x =

∫
x
(x− µx)2px(x)dx. (3.60)

Because of the computational cost, we store the results for a variance of 0.0001 and 0.0016

in model space (corresponding to standard deviations of 0.01 and 0.04, see section 4.2.2)

for all modes 0.00001, . . . , 0.99999 in a look-up table that enables the efficient conversion

of model space distributions to transformed space distributions and the efficient numerical

construction of likelihood functions. In order to represent an observation error distribution,

the respective distribution in model space whose mode is at the observed value is shifted

such that its mode is at zero, equivalent to the assumption that the perfect observation is

the most probable one.

3.7.5 Transformation of observations and observation error

The transformation of the observation itself is straightforward, it is an evaluation of the

anamorphosis function ty. The observation error covariance of the transformed observa-

tion, however, cannot be derived directly from the observation error in model space and no

formal derivation has been given so far. In previous applications of Gaussian anamorpho-

sis, the transformed observation error covariance has been derived by ad-hoc assumptions.

Doron et al. (2011, 2013) used small observation error covariances that justify similarly

small error covariances in the transformed space. Fontana et al. (2013) and Lien et al.

(2013) linearised the anamorphosis function locally and scaled the observation error stan-

dard deviation with the slope of the anamorphosis function. Schöniger et al. (2012) and

Simon and Bertino (2012) suggested to use an ensemble of perturbed observations, trans-

form them and estimate the covariance of the transformed observation error from the

transformed ensemble. We formalise this approach, analyse it, and provide an alternative

approach that avoids hitherto unnoted shortcomings.

Calculation of transformed observation error covariance from the transformed

observation pdf

In section 3.7.3, we have introduced the transformation ty that yields the transformed

observation

ỹ = ty(y).

The KF requires the covariance of the error of the transformed observation

ε̃ = ỹ − h̃(x̃),
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that is, the KF requires the covariance of ε̃. A direct derivation of the distribution of ε̃

from the distribution of ε and from requiring that the distribution of

h̃(x̃) + ε̃ = ty ◦ h ◦ t−1x (x̃) + ε̃

is equal to the distribution of

ty (h(x) + ε)

is not possible because ty is nonlinear (otherwise, the anamorphosis does not improve

the Gaussianity nor does it map states and observations to an unbounded domain) and

because the distribution of ε̃ depends on x or, respectively, x̃. Therefore, we suggest to

derive ε̃ from the distributions of ỹ and y for an assumed true state x. Given x, the

distribution of y is

py(y) = pε(y − h(x)),

where pε is the pdf of ε (cf. (3.7)). We transform py(y) according to the anamorphosis

function ty and get pỹ(ỹ). According to

pỹ(ỹ) = pε̃(ỹ − h̃(x̃))

and

h̃(x̃) = ty ◦ h ◦ t−1x (tx(x))

= ty ◦ h(x)

the distribution of the transformed observations pỹ(ỹ) is equal to the distribution of the

transformed observation error, shifted by ty ◦h(x), where pε̃ is the distribution of ε̃. Note

that because ty is nonlinear and because of (3.55), the shape of the distribution of ε̃

depends on x or, respectively, x̃. Thus, the transformed observation error covariance is

state-dependent, even if the original observation error covariance is constant. As explained

in section 3.6.3, this is undesirable because it leads to different approximating joint pdfs

for different realisations of the same observation (Figure 3.8).

When assimilating an observation y with the KF, we do not know its distribution nor

do we know the true state that caused y (which determines the distribution of y). An

obvious ad-hoc solution to derive ε̃ is therefore to use

x = h−1(y)

to derive the distribution of y and to subsequently derive the distribution of ε̃. This

corresponds to the ensemble of perturbed observations used by Simon and Bertino (2012).
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

We extend their method by using the full observation pdf – given by the observation error

pdf shifted such that its mode is at the observation – instead of an ensemble and thus

calculate the exact distribution and the exact covariance of the transformed observation

error instead of approximating it with an estimate from an ensemble.

We apply this approach to the example from section 3.6.4 and Figure 3.6. The outcome

of the transformation and the resulting KF estimation in the transformed space are shown

in Figure 3.8. With respect to the desired bi-Gaussianity of the transformed joint pdf,

which would improve the results of the linear estimation, the transformation does not yield

any improvements compared to Figure 3.6, except that it is now defined on an unbounded

domain. The conditional mean is still highly nonlinear and the grey contours in panel a)

and b) still indicate a non-Gaussian joint pdf. The true linear regression approximates

the conditional mean well over a smaller range considering the model space units. But

it approximates the conditional mean much better for small and very small observations

close to zero.

Considering the transformation of the observation error covariance, Figure 3.8 shows

that the modified method of (Simon and Bertino, 2012) leads to different linear regression

approximations for different realisations of the same observation. The different approxi-

mations are due to the state-dependent transformed observation error covariance which is

statistically inconsistent as explained in section 3.6.3.

Estimation of the transformed observation error covariance by covariance scaling

To avoid the state dependence of the transformed observation error covariance, we suggest

a new method for the estimation of the transformed observation error covariance based

on a scaling approach.

Consider the sequential assimilation of a scalar observation y and the update step of

the EAKF that uses an ensemble of predicted, that is prior, observations to derive ob-

servation increments and that maps these increments to state increments (section 3.2.3).

The inverse observation error covariance enters the calculation of the observation incre-

ments as a weighting factor for the actual observation while the inverse estimated prior

observation covariance is used as a weighting factor for the mean of the prior observation

ensemble (cf. (3.36)). Thus, the impact of the observation on the observation ensemble,

and consequently on the state, is governed by the ratio of the prior observation covariance

to the observation error covariance. Therefore, we suggest to use this ratio calculated from

the model space values to scale the transformed observation error covariance such that its

ratio to the prior observation covariance in the transformed space is equal to the ratio in

model space. Let σ̃2o be the transformed observation error covariance, σ̃2p the covariance

of the transformed prior observations and let σ2o and σ2p be the respective covariances in

model space. Then, we suggest to estimate σ̃2o as

σ̃2o = σ2o
σ̃2p
σ2p
. (3.61)
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e)
ob

s
(e

rr
or

)
p

d
f

/
o
b

s
li
ke

li
h

o
o
d

x̃
f

x̃
∗

t(
0
.0

1
)
t(

0
.1

)
t(

0
.5

)
t(

0
.9

)
t(

0
.9

9
)

st
a
te
x̃

Ix̃
f

Ix̃
∗

observationỹ
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Figure 3.8: KF estimation in transformed space using the logit transform and the modified
method of Simon and Bertino (2012).
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

Figure 3.8: The KF estimate of the linear regression for two different realisations of the
same transformed observation (different random observation error) is shown as orange
and blue dashed lines in panels a) and e). The true linear regression line in the trans-
formed space is shown as purple dashed line and the curve of the conditional mean
of x̃ given ỹ is shown as pink solid line. The transformed true joint pdf is shown as
filled grey contours in panel a) and b) and the implicit approximations of the KF are
shown as orange and blue contours. The transformed true observation pdf (function
of ỹ) and likelihood (function of x̃) are shown as filled grey contours in panels e) and
f). The transformed observation operator is shown as light green, dashed line and
the mean of the transformed observation pdf is shown as dark green, solid line. The
implicit approximations of the KF to the transformed true observation pdf/true likeli-
hood are shown as orange and blue contours in panels e) and f). The transformed true
observation error pdf and the KF approximation shifted to the transformed perfect
observation Ix̃ for two different transformed true states corresponding to the realisa-
tions of the transformed observation are shown in panel c). The transformed prior pdf
and the KF approximation are shown in panel d). The transformed true likelihood of
x̃ given two different realisations of the observation and the KF approximations are
shown in panel g). And the transformed true posterior pdf and the KF approximation
for two different transformed observations are shown in panel f).

For diagonal observation error covariance matrices, this approach can be extended to the

simultaneous assimilation of several observations by

R̃ = RP̃
f
diag

(
Pf

diag

)−1
,

where R̃ is the transformed observation error covariance matrix, R is its model space

equivalent, P̃
f
diag is the covariance matrix of the transformed prior observations with all

off-diagonal elements set to zero and Pf
diag is its model space equivalent. Provided that

R is independent of x, this approach ensures that R̃ is independent of x̃ and that all

observations get the same weight relative to the prior ensemble in the transformed space

as they would get in model space.

As a result of the covariance scaling, the estimated covariance matrix cov(ỹ, ỹ) is in-

dependent of the actual transformed observation ỹ as is the normal approximation of the

transformed joint prior pdf. Figure 3.9 shows that, consequently, the linear regression

estimated by the KF is now independent of the realisation of the transformed observation.

However, the KF approximation of the linear regression is still different from the true lin-

ear regression because the covariance scaling does not yield the expected value E(R̃(x̃))

that defines the true linear regression. Further, the non-zero mean observation errors are

not remedied by the variable transformation and, thus, still cause the slope of the esti-

mated linear regression lines to be different from the slope of the true linear regression

line (section 3.6.4).
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Figure 3.9: KF estimation in transformed space using the logit transform and covariance
scaling (for detailed explanation see Figure 3.8).
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3.7 Gaussian anamorphosis for the assimilation of bounded quantities

3.7.6 Estimation of conditional pdf in model space with Gaussian

anamorphosis

After the transformed observation error covariance is determined, we perform the assim-

ilation in the transformed space. The transformed prior ensemble is updated according

to the transformed observation and its transformed observation error covariance. The

approximate conditional pdf in the transformed space is Gaussian with mean x̃a and co-

variance matrix P̃
a

given by the estimates from the updated transformed ensemble. This

approximate conditional pdf in transformed space can be mapped back to model space to

yield the approximate conditional pdf in model space. The mean and covariance matrix

of the approximate conditional pdf in model space agree with the ensemble mean and

covariance matrix of the updated model space ensemble as they would for the KF without

anamorphosis but the approximate conditional pdf is a logit-normal pdf instead of a nor-

mal pdf. This logit-normal pdf is more appropriate to derive estimates of the conditional

mode in model space as explained in section 3.8.

The KF with Gaussian anamorphosis adds an additional step to Algorithm 2 that maps

the ensemble – as a representation of the prior pdf – to an transformed ensemble for the

assimilation. And Gaussian anamorphosis modifies the approximation step of Algorithm 2

such that the approximate conditional pdf in model space results from the inverse trans-

formation of the approximate conditional pdf in the transformed space:

Algorithm 3

1. initialise the forecast distribution p(x0),

2. for i from 1 to k:

a) forecast the prior pdf pxi(xi|y1, . . . , yi−1),

b) transform the transformed prior pdf to px̃i(x̃i|y1, . . . , yi−1),

c) estimate the conditional mean and covariance matrix in transformed space

using linear regression in the transformed space,

d) approximate the conditional pdf p(xi|y1, . . . , yi) in model space with

p̂x̃i(t
−1(x̃i)|y1, . . . , yi−1)

∣∣∣dt−1(x̃)
dx̃

∣∣∣, where p̂x̃i is a normal approximation

of the transformed conditional pdf.

3.7.7 Inflation and Gaussian anamorphosis

As discussed in section 3.3.1, covariance inflation is a necessity in EnKFs to avoid filter

divergence. Inflation modifies the ensemble such that its spread, or covariance, increases

without changing other characteristics of the ensemble. Gaussian anamorphosis and the

use of a transformed ensemble next to the model space ensemble now raise the question

which ensemble to inflate and how. Inflating the transformed ensemble, even without

changing any other of its characteristics, changes all moments of the model space ensemble

53



3 Sequential data assimilation with the ensemble Kalman filter

because of the nonlinear inverse transformation, which manifests itself in the derivative

term on the right hand side of (3.55). In particular, inflating the transformed ensemble

shifts the location of the model space ensemble and changes its estimated conditional

mode. Since our goal is to approximate the conditional mode in model space, we need to

perform the inflation in a way that does not change the mode after the ensemble has been

inflated. For previous applications of Gaussian anamorphosis the use of inflation is not

discussed except for Lien et al. (2013) who also use a model space inflation technique. In

fact, Simon and Bertino (2012) note that their parameter estimates diverge and the use

of inflation still has to be investigated.

We here propose a simple additive inflation scheme that preserves the mode of the

approximate conditional pdf in model space. For every ensemble member, we add a

random model error term that is sampled from a shifted beta distribution. This beta

distribution is chosen such that its mode is zero and its covariance equals a prescribed

model error covariance. The beta distribution is shifted such that it is defined on the

interval (−x, 1 − x) where x is the state value that we perturb. This shift of the beta

distribution ensures a perturbed state that is physically consistent. We apply the additive

inflation only after an update step and not in every model time step of the next forecast

cycle (note that the assimilation does not need to take place at every model time step).

Otherwise, the ensemble distribution would change towards the distribution of the sum of

beta distributions and lose its logit-normal shape. The amount of inflation, that is, the

prescribed covariance of the model error, is a tuning parameter of the data assimilation

system (section 4.3).

An alternative inflation method that we derived from the relaxation-to-prior-spread

method (Whitaker and Hamill, 2012) determines the normal distribution in transformed

space that corresponds to a desired distribution in model space and shifts and scales the

normally distributed ensemble in transformed space. The desired distribution in model

space would be one that has the same mode as the current approximate conditional pdf

but a larger covariance. Experiments with this technique led to unsatisfying results with a

collapsed ensemble where only one or two members generated the desired ensemble spread.

3.8 Comparison of KF estimates for double-bounded quantities

We evaluate four methods to approximate the conditional mode and the conditional covari-

ance of a scalar quantity x that is restricted to the interval (0, 1) from direct observations

y of that quantity. The prior pdf and the observation error pdfs are logit-normal distri-

butions with equal covariance, the mode of all observation error pdfs is zero. The true

conditional pdf is calculated from the prior pdf of x and the likelihood of x given y using

Bayes’ Theorem. The conditional mode and the conditional covariance are estimated from

the approximate conditional pdf that results from four different applications of the KF or

the EnKF assuming an infinite ensemble.

The first method represents the KF applied in model space without Gaussian anamor-
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3.8 Comparison of KF estimates for double-bounded quantities

phosis. The KF approximates the prior and the observation error pdfs with normal distri-

butions and the approximate conditional pdf is also a normal pdf. In an EnKF context,

this would mean having an ensemble that contains members outside the interval (0, 1) in

order to get correct estimates for the mean and covariance of the prior pdf.

The second method uses Gaussian anamorphosis to transform the variables from (0, 1)

to (∞, ∞). This makes the transformed prior pdf and the transformed observation error

pdfs Gaussian. But because of the state-dependence of the transformed observation error

pdf, the transformed observation likelihood is non-Gaussian (cf. Figure 3.1). Applying

Bayes’ Theorem in the transformed space, the transformed conditional pdf is calculated

from the transformed prior pdf and the transformed likelihood. We then approximate

the transformed conditional pdf with a normal pdf with equal mean and covariance and

this normal pdf is transformed back to model space. This method corresponds to an

exact Bayesian update of the mean and the covariance of the prior observation ensemble

in the transformed space. Since the prior observation ensemble is a sample of a normal

distribution and only the mean and covariance are used to update the ensemble, the

updated observation ensemble will also be a sample of a normal distribution. The state

increments which are derived from the updated observation ensemble lead to an updated

transformed state ensemble that is also sample from a normal distribution. Therefore, the

normal approximation of the transformed conditional pdf is transformed back to model

space and not the result of Bayes’ Theorem.

The third method is the KF with Gaussian anamorphosis where the transformed ob-

servation error covariance is estimated with the modified method of Simon and Bertino

(2012). And the fourth method is the KF with Gaussian anamorphosis where the trans-

formed observation error covariance is estimated with covariance scaling (for both methods

see section 3.7.5).

3.8.1 Comparison of the estimated regression curves and approximate

conditional pdfs in model space

The upper two panels of Figure 3.10 show the true conditional mean regression curve

and the true linear regression in model space together with the four estimated regression

curves for a prior distribution with mode at 0.05 and two realisations of an observations

at 0.05 and 0.2. The covariance of the prior pdf and the observation error was 0.0016,

which corresponds to an observation error standard deviation of 0.04 (a comparison for

prior and observation error covariances of 0.0001 (standard deviation 0.01) is shown in

Appendix A).

Gaussian anamorphosis and the assimilation in the transformed space lead to nonlin-

ear regression curves due to the nonlinear inverse transformations t−1x and t−1y . These

curves are also defined by only two parameters as the linear regressions (the slope and the

intercept in the transformed space) but allow a much better approximation of the true

conditional mean in the vicinity of the prior mode. They quickly diverge from the true
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Figure 3.10: Estimated regression curves and approximate conditional pdfs.
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3.8 Comparison of KF estimates for double-bounded quantities

conditional mean because the linear regression in transformed space also diverges from the

transformed true conditional mean curve. The KF approximation to the linear regression

in model space is biased towards the centre of the interval because of the non-zero mean

observation errors.

The regression curves estimated from the modified method of Simon and Bertino (2012)

and from covariance scaling agree for the first realisation of the observation Ixf because

it is equal to the prior mode and the observation error pdf in this case is identical with

the prior pdf. Consequently, the transformed pdfs and their covariances are equal such

that the covariance scaling factor is one. For the second realisation, the transformed

observation pdf will be different from the transformed prior pdf. Now the covariance

scaling enforces the estimated linear regression in the transformed space to be equal to

the estimated regression from the first realisation, while the direct calculation from the

transformed observation pdf leads to a different transformed observation error covariance

and, therefore, to a different approximation of the linear regression in the transformed

space. Hence, the two estimated regression curves from the modified method of Simon

and Bertino (2012) and covariance scaling differ for the second realisation Ix∗.

The different estimated conditional means from the different regression curves lead to

different locations of the approximate conditional pdfs in model space shown in the lower

two panels of Figure 3.10. The two approximate conditional pdfs from the methods using

Gaussian anamorphosis are better approximations to the true conditional for the first

realisation of the observation Ixf because the transformed true conditional pdf in this

case is close to a normal pdf (Figure 3.9, panel h)). The normal approximate conditional

pdf resulting from the KF without transformation is not a good approximation because

it is forced to be symmetric and cannot well approximate the true conditional pdf which

is skewed. For the second realisation Ix∗, the approximate conditional pdfs from the

KFs with transformation are not good approximations because the observation is far

from the prior mean and the linear approximation to the transformed conditional mean

quickly diverges as the distance to the prior mode increases. The location of the normal

approximate conditional pdf from the KF without transformation is better in this case

but its covariance does not well approximate the true conditional covariance.

3.8.2 Comparison of estimated conditional modes and covariances

Figure 3.11 shows the error of the estimated conditional mode derived from the approxi-

mate conditional pdfs and Figure 3.12 shows the error of the square root of the estimated

conditional variance for all possible combinations of prior mode and observation for a

prior covariance and observation error covariance of 0.0016, which corresponds to an ob-

servation error standard deviation of 0.04 (a comparison for prior and observation error

covariances of 0.0001 (standard deviation 0.01) is shown in Appendix A). Figure 3.13

shows the square root of the true conditional covariance, that is, the conditional standard

deviation, and serves as a reference for the errors in the estimated conditional mode and
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Figure 3.11: Error in the estimated conditional mode as a function of the mode of the
prior distribution and the observation. The prior distribution has a covariance that is
equal to the covariance of the observation error of 0.0016 (standard deviation 0.04).
Grey areas indicate a bimodal conditional pdf. White dots indicate the position of
the examples in Figure 3.10.
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Figure 3.12: Error in the square root of the estimated conditional variance as a function of
the mode of the prior distribution and the observation. The prior distribution has a
covariance that is equal to the covariance of the observation error of 0.0016 (standard
deviation 0.04). Grey areas indicate a bimodal conditional pdf. White dots indicate
the position of the examples in Figure 3.10.
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Figure 3.13: Square root of the true conditional covariance.
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3 Sequential data assimilation with the ensemble Kalman filter

covariance. The conditional standard deviation approximately represents the width of the

conditional pdf and errors in the conditional mode have to be judged in relation to this

width. Consequently even the small magnitude of the errors in the conditional mode is a

sign of substantial errors. The grey areas indicate bimodal conditional pdfs which are not

discussed.

The quality of the estimates of all four methods deteriorates as the prior mode ap-

proaches the bounds of the interval. This due the normal approximation of the condi-

tional pdf for the KF without transformation. For the two methods that estimate the

transformed observation error covariance, the errors originate in the normal approxima-

tion of the transformed conditional pdf and the nonlinear inverse transformation. The

normal approximation of the true transformed conditional pdf has the correct mean and

covariance and the errors in the estimates from this method are only due to the nonlinear

inverse transformation. Both sources of error exacerbate as the prior mode approaches

the bound of the interval because the normal approximation becomes less valid in model

space as well as in transformed space and the nonlinearity of the transformation increases.

The KF without transformation causes biases in the estimated conditional mode for all

combinations of prior mode and observation that are not at the centre of the joint domain.

The KF with transformation where we approximate the true transformed conditional

pdf with a normal pdf shows a large tolerance to differences in the prior mode and the

observation if the prior mode is between 0.25 and 0.75. But this method causes biases

even when prior mode and observation agree when the bound is approached. The modified

method of Simon and Bertino (2012) and covariance scaling show a generally similar

behaviour with opposite sign for the errors. Both yield good estimates if the observation

is close to the prior mode but the covariance scaling is more tolerant to differences between

the prior mode and the observation.

The comparison yields qualitatively similar results for a prior and observation error

covariance of 0.0001 (standard deviation 0.01) in model space, except for the KF without

transformation. This approach performs better for the small covariances because the pdfs

are extremely narrow and the non-Gaussianity only matters in a very small region close

to the interval bound.

3.8.3 Comparison of the approximating joint pdfs and observation error pdfs

in model space

For the four compared methods, Figure 3.14 shows the approximating joint pdfs in model

space (upper row) and the approximating likelihoods and observation error pdfs in model

space, respectively as a function of x or as a function of y (lower row). The approximating

joint pdf of the KF without transformation does not approximate the true joint pdf well.

Most notably, it extends beyond the bounds of the domain (0, 1)×(0, 1) and the contours of

the approximate pdf narrow where the contours of the true pdf broaden. For the modified

method of Simon and Bertino (2012), the quality of the approximating joint pdf depends on
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Figure 3.14: Joint pdf of x and y and approximations used by the KF in model space
(upper row) and observation pdfs (function of y for fixed x) and observations likelihood
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realisations Ixf and Ix∗ of an observation.
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3 Sequential data assimilation with the ensemble Kalman filter

the realisation of the observation. The approximating joint pdfs of the covariance scaling

approach and the approach with a normal approximation of the transformed conditional

pdf capture the broadening shape of the true joint pdf well. This is in agreement with

Figures 3.11 and 3.12 where these two approaches showed the best performance.

Regarding the observation error pdfs, the modified method of Simon and Bertino (2012)

and covariance scaling lead to an approximation with symmetrical observation error dis-

tributions whose covariance decreases as the observation approaches the bounds of the

interval. The most important difference, again, is that the implicit approximations of the

observation pdf and the observation likelihood, respectively, are independent of the reali-

sation of the observation for the covariance scaling approach, as opposed to the modified

method of Simon and Bertino (2012).

We note here, that the assumption of normal observation error distributions with con-

stant covariance in transformed space as it is made in the covariance scaling approach

corresponds to an approximation of the true observation errors in model space with rel-

ative observation errors, where the error magnitude scales with increasing distance from

the bounds of the interval. This explains the bent shape and the congruence of the blue

and orange contours in panel h) of Figure 3.14.

3.8.4 Summary and discussion of KF estimates for double-bounded quantities

We interpret the KF as an approximate version of the sequential filtering algorithm (Al-

gorithm 1 in section 3.1) that yields an approximate conditional pdf of the state vector

x given the observations y. The estimated conditional pdf is a good approximation of

the true conditional pdf as long as the prior and observation error distributions are ap-

proximately Gaussian. Double-bounded quantities imply non-Gaussian distributions for

the prior state and, in case of direct observations, for the observation error. These non-

Gaussian distributions cause the joint pdf of x and y to be non-Gaussian and make the

conditional mean of the state x given the observations y a nonlinear function of y.

The KF uses a linear regression approach to estimate the conditional mean and the

conditional covariance and, subsequently, approximates the conditional pdf with a normal

pdf. The estimation of the linear regression, however, is susceptible to non-zero mean and

state-dependent observation errors. The quality of the approximation of the conditional

mean can be improved with a nonlinear regression that results from the KF in conjunction

with Gaussian anamorphosis. This, however, requires the estimation of the observation

error covariance in transformed space which is, in general, state-dependent.

We compare four methods, one without and three with Gaussian anamorphosis, to

estimate the mode of the non-Gaussian conditional pdf of a state x given an observation y,

where both x and y are restricted to the bounded interval (0, 1). The KF without Gaussian

anamorphosis is sub-optimal because the normal approximation of the conditional pdf in

model space is inadequate for bounded quantities, in particular close to the bounds of the

interval. The estimates of the conditional mode from this approach are biased towards the
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3.8 Comparison of KF estimates for double-bounded quantities

centre of the interval for observations that approximately agree with the prior mode. The

KF without Gaussian anamorphosis only yields acceptable estimates if the prior mode

and the observations are close to the centre of the interval because, in this case, the prior

distribution and the observation error distributions are close to Gaussian distributions.

Moreover, without Gaussian anamorphosis, physically inconsistent estimates that have to

be manually corrected may occur. The transformation of the state by an anamorphosis

function avoids this problem (section 3.7.1).

The second method uses Gaussian anamorphosis, exactly calculates the transformed

conditional pdf using Bayes’ Theorem from the Gaussian transformed prior pdf and the

non-Gaussian transformed observation likelihood, and approximates the transformed con-

ditional pdf with a normal pdf with equal mean and covariance. This approach is compu-

tationally expensive because the application of Bayes’ Theorem requires the construction

of the transformed likelihood, the point-wise multiplication of the transformed prior pdf

and the transformed likelihood, and numerical integrations to calculate the mean and the

covariance of the transformed conditional pdf. This approach performs well if the prior

mode is close to the centre of the interval, independent of the observation. But, as the

prior mode approaches the bounds, the estimates of the conditional mode are biased to-

wards the bounds of the interval even for observations that are consistent with the prior

mode.

The third method calculates the transformed observation error covariance from an ap-

proximation of the transformed observation error pdf (modified method of Simon and

Bertino, 2012). Finding the transformed pdf, however, is numerically expensive (section

3.7.4). This approach performs well in terms of the estimated conditional mode and the

estimated conditional covariance in model space over the whole interval, given that the

observation is close to the prior mode. When the prior mode or the observation approaches

the bounds, the estimates of the conditional mode are biased towards the centre of the

interval and the quality of the estimates of the conditional covariance also deteriorates.

The fourth method uses the new covariance scaling technique proposed in this thesis to

approximate the transformed observation error covariance. This method performs similar

to the modified method of Simon and Bertino (2012). But the range in which the prior

mode and the observation may differ to still yield acceptable estimates is much larger

than for the modified method of Simon and Bertino (2012). When the prior mode or

the observation approaches the bounds, the estimates of the conditional mode are biased

towards the bounds of the interval while the estimates of the conditional covariance remain

acceptable.

Assuming unbiased observations, the most frequent combinations of prior mode and

observations are these around the one-to-one line in Figures 3.11 and 3.12. Thus, small

estimation errors in this area are particularly important. In this respect, the method of ap-

proximating the true transformed conditional pdf with a normal pdf, the modified method

of Simon and Bertino (2012), and covariance scaling perform similar. The approximation

of the true transformed conditional pdf with a normal pdf, however, is prohibitively expen-
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3 Sequential data assimilation with the ensemble Kalman filter

sive. When comparing the modified method of Simon and Bertino (2012) and covariance

scaling, covariance scaling is easier to implement and less costly. More important, how-

ever, is that covariance scaling uses the same statistical approximations independent of

the observed value while the estimation process itself of the modified method of Simon

and Bertino (2012) is sensitive to the observation.
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Chapter 4

Data assimilation experiments with synthetic

observations

4.1 A sequential data assimilation framework for JSBACH

Motivated by the need for a climatology of JSBACH canopy albedo parameters (sec-

tion 2.3), we set up a flexible sequential data assimilation framework for JSBACH based

on the Data Assimilation Research Testbed (DART; Anderson et al., 2009). DART uses a

parallel implementation of the EAKF to update the state vector from a sequence of scalar

observations (Anderson and Collins, 2007). For the assimilation experiments with DART,

we map the visible and near-infrared grid box albedos and the visible and near-infrared

canopy albedo parameters to the DART state vector and assimilate scalar observations of

visible and near-infrared grid box albedo. We integrated JSBACH into DART with full

restart capabilities to be able to perform longer assimilation experiments with computa-

tionally expensive update algorithms as described in section 3.8.

4.1.1 Model setup and forcing

We use the offline version of JSBACH with a time step of 30 minutes on a T63 Gaus-

sian grid, corresponding to a resolution of 1.875° × 1.875° at the equator (Dalmonech

and Zaehle, 2013). The model forcing consists of 6 years of daily data for surface wind

speed, shortwave and longwave incoming radiation, precipitation, and minimum and max-

imum air temperature. To generate the forcing, we conservatively remapped ERA-Interim

reanalysis data for the years 2005 to 2010 (Dee et al., 2011). To correct for errors in

ERA-Interim precipitation values, we rescaled these values such that their monthly means

match the monthly values from the Global Precipitation Climatology Project (GPCP;

Huffman et al., 2009) according to Balsamo et al. (2010). Further, CO2 forcing is taken

from the RCP 4.5 scenario and rises from 379 ppm in 2005 to 388 ppm in 2010 (Moss

et al., 2010).

We run JSBACH with one tile per grid box and with a constant spatial distribution of

cover types as shown in Figure 4.1. The vegetated fraction for each grid box is also constant

and is shown in Figure 4.2. We use different PFTs for the northern hemisphere (NH) and

the southern hemisphere (SH) because of the assumed opposing seasonal cycles of the
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Figure 4.1: Spatial distribution of cover types (PFTs).

canopy albedo parameters (see section 2.3). Otherwise, NH and SH PFTs are identical.

The visible and near-infrared canopy albedo parameters are prescribed as constant in time

for one set of experiments. In this case, the parameters are equal for NH and SH PFTs. In

a second set of experiments, we prescribe a seasonal cycle for the parameters. The values

for the constant parameters in the first set of experiments and the prescribed seasonal

cycles for the second set of experiments are shown in Figure 4.3. We selected the PFTs

such that they exhibit different values for LAI and thus for canopy cover fraction. And we

included evergreen and deciduous vegetation types to simulate different seasonal cycles of

LAI and canopy cover fractions (Figures 4.4 and 4.5).

4.1.2 Extensions of the Data Assimilation Research Testbed

We integrated JSBACH into DART such that they run as single executable. DART uses

a predefined model interface to which we coupled JSBACH such that DART controls

the advancement of the model on a model time step basis. Between observations, DART

repeatedly advances an ensemble of model states until the next observation time is reached.

At this point, the model state is mapped to the DART state vector and DART performs

the assimilation using the EAKF. Subsequently, the updated DART state vector is mapped

back to a model state and the next forecast cycle starts.

We extended DART with the option to transform the elements of the model state

vector with the logit function when mapping them to the DART state vector (section 3.7).

And we extended the implementation of the update step of the EAKF to use any of

the four methods explained in section 3.8, those are the KF without transformation, the
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Figure 4.3: Prescribed constant (dashed) and seasonal (solid) canopy albedo parameters.
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approximation of the transformed conditional pdf with a normal pdf, the modified method

of Simon and Bertino, 2012, and covariance scaling. For the KF without transformation,

we ensure physically consistent values by setting updated states and parameters to zero

or one if they are less than zero or greater than one, respectively.

For the approximation of the transformed conditional pdf with a normal pdf, we calcu-

late the transformed conditional pdf by pointwise multiplication of the transformed prior

pdf and the transformed observation likelihood according to Bayes’ Theorem. To calcu-

late the mean and covariance of this pdf, we added a numerical integration scheme to the

update step. We construct the required observation likelihood from the observation pdfs

as described in section 3.1 (cf. Figure 3.1). All these calculations are done with univariate

pdfs because DART assimilates observations sequentially.

The modified method of Simon and Bertino (2012) requires the covariance of the trans-

formed observation pdf. We assume logit-normal observation error distributions in model

space and use pre-calculated look-up tables as described in section 3.7.4 to retrieve the

mean and covariance of this pdf from the observed value and its prescribed observation

error covariance.

For the covariance scaling, we calculate the ensemble covariance in the transformed space

and in model space. Together with the prescribed observation error covariance in model

space, we use these two covariance estimates to calculate the transformed observation error

covariance according to (3.61).

Further we added an option for additive inflation in model space to DART. After the

update step, the ensemble is transformed back to model space. Before we start the next

forecast cycle, we add a random error term to each canopy albedo parameter for each

ensemble member. The random error term is drawn from a beta distribution as described

in section 3.7.7. The parameters of the beta distribution are found from the equations for

the mode and the variance of the beta distribution (Johnson and Kotz, 1970).

4.2 Setup of assimilation experiments

We performed assimilation experiments with synthetic observations generated from a con-

trol run of JSBACH that represents a virtual truth. The use of synthetic observations

generated from a virtual truth allows us to analyse the errors of the estimated parameters

and to draw conclusions for the assimilation of real observations.

4.2.1 Generation of initial ensembles

We generate initial ensembles with 64 members by perturbing the canopy albedo parame-

ters of the 8 PFTs shown in Figure 4.1. For the initial uncertainty, we assume a variance

of 0.0025 (standard deviation of 0.05) for the parameter distribution in model space. We

also shift the mode of the initial parameter distribution in model space randomly from the

true parameter value. We calculate the transformed, normal distribution that corresponds
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Figure 4.6: Initial ensembles of visible (left) and near-infrared (right) canopy albedo pa-
rameters. Ensemble members are shown in grey, the virtual true value in orange and
the mode of the initial ensemble in blue.

to the shifted mode and the assumed variance, sample the 64 parameter values from that

normal distribution, and transform the ensemble back to model space. Figure 4.6 shows

the initial ensembles for the canopy albedo parameters generated in this fashion. The

initial distributions for the visible parameters, which are very close to zero, are highly

skewed with a sharp peak and a long tail. This shape of the pdf causes the outliers and

the clustering on the lower end of the visible parameter ensembles. The distributions for

the near-infrared parameters, on the other hand, are more symmetrical. This is reflected

by the more symmetrical distribution of the near-infrared ensemble members around the

mode.

Finally, we use the generated parameter ensembles to simulate an ensemble of initial

model states in a one-year model spin-up for each ensemble member. This one-year sim-

ulation uses the given parameters as constant parameters without a seasonal cycle. The

assimilation then starts from these 64 initial model states.

4.2.2 Generation of synthetic observations

In the assimilation experiments we use synthetic observations which we generate from

a virtual truth. This is particularly important for the estimation of effective model pa-

rameters because the virtual truth serves as a direct reference for the evaluation of the

estimated parameters. Using real observations, the estimated parameters would have to

be used in an additional simulation step to predict observations which could then be com-

pared to independent observations for the validation of the estimated parameters. But this

introduces additional sources of error. The assimilation of synthetic observations in a twin

experiment is therefore an essential step for the evaluation of an assimilation framework.
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4.3 Data assimilation experiments

We generate the synthetic truth with a five-year control run of JSBACH that starts

after a one-year spin up. We prescribe constant canopy albedo parameters for one set of

experiments and seasonal canopy albedo parameters for another set as shown in Figure

4.3. From the model state of the control run, we extract visible and near-infrared grid-

box albedo values every eight days and add a random error to generate the synthetic

observations. The added observation error is sampled from a shifted beta distribution with

mode zero and a prescribed variance. The distribution is shifted such that the perturbed

observation lies in the interval (0, 1), similar to the model error distribution described

in section 3.7.7. For the assimilation experiments, we generated observations with an

observation error covariance of 0.0016 (standard deviation 0.04) and 0.0001 (standard

deviation 0.01).

The chosen observation error covariances and observation frequency correspond to the

order of magnitude of the errors and the observation frequency of land surface albedo

observations from MODIS (Liu et al., 2009). We note, however, that the scale of the

observations differs significantly (500 m for MODIS, approximately 200 km at the equator

for the T63 grid).

4.3 Data assimilation experiments

We compare the results of data assimilation experiments for prescribed constant and

seasonal canopy albedo parameters. The model forcing in all assimilation experiments

is the same forcing that we used for the generation of the synthetic observations. In all

experiments we return only the updated parameters to the model for the next forecast

cycle. To update the parameters, we use the four methods described in section 3.8 (KF

without transformation, approximation of the transformed conditional pdf with a normal

pdf, the modified method of Simon and Bertino, 2012, and covariance scaling).

We compare the assimilation results for the visible and near-infrared canopy albedo

parameters of JSBACH. The estimates of the conditional mode and the conditional co-

variance in model space are calculated directly from the univariate approximate conditional

pdf in model space. The mode is given by the location of the maximum of that pdf and the

covariance is found from the integral definition of the covariance in (3.60). We derive the

approximate conditional pdf in model space from the normal pdf in the transformed space

that is given by the mean and the covariance of the transformed ensemble of parameter

values (see section 3.7.6).

For both, constant and seasonal canopy albedo parameters, we first compare the effects

of different magnitudes of inflation followed by the comparison of the four update methods.

4.3.1 Experiments with constant canopy albedo parameters

Figure 4.7 shows the conditional mode and the ensemble spread (given as the square root of

the conditional covariance) in model space for experiments without inflation, with an added
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Figure 4.7: Assimilation results for one fixed canopy albedo parameter in the visible (left)
and the near-infrared (right) domain. Dark-coloured lines show the results before
inflation and the light-coloured lines show the results after inflation.

random model error that has covariance 0.0004 (standard deviation 0.02), and with an

added random model error with covariance 0.0016 (standard deviation 0.04). We refer to

the standard deviation of the added random model error as inflation magnitude. Without

inflation, the ensemble collapses to nearly zero spread during the first few assimilation

steps. The estimate of the conditional mode without inflation, however, is equal to the

estimates with inflation (within their random variations).

Using inflation, the ensemble spread is increased to the inflation magnitude after ev-

ery update step (difference between dark- and light-coloured lines in Figure 4.7). The

estimated conditional mode varies randomly around a constant value. The variations are

small and the estimates before inflation approximately agree with the estimate without in-

flation. After the inflation, the variability of the estimated mode of the inflated ensembles

increases and the estimated mode is on average smaller than before the inflation. This

applies in particular for the parameter in the visible domain that is much closer to zero.

The magnitude of the variations in the estimated mode and of the difference between the

estimates before and after inflation depends on the inflation magnitude. A larger inflation

magnitude leads to larger variations and a larger difference. The results for other vegeta-

tion types than the one shown in Figure 4.7 are qualitatively similar and are summarised

in Figure 4.8. The experiments in the subsequent comparison of the four methods used
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Figure 4.8: Bias and error variability of the conditional mode for the estimation of fixed
canopy albedo parameters. Horizontal lines indicate the mean error, vertical bars
above and below indicate one standard deviation of the errors.

RMSE bias std of errors

without transformation 0.025 0.015 0.010
normal approx. to cond. pdf 0.010 -0.005 0.004
covariance scaling 0.012 0.007 0.005
Simon and Bertino (2012) 0.014 0.008 0.005

Table 4.1: Overall root mean square error (RMSE), bias and standard deviation of errors
for the estimation of fixed canopy albedo parameters.

an inflation magnitude of 0.04. Figure 4.8 shows the mean error (bias) and the standard

deviations of the errors for the estimated visible and near-infrared canopy albedo parame-

ters for the four update methods. Table 4.1 gives the combined values over all parameters

for root mean square error, bias, and standard deviation of the errors. The errors have

a consistent pattern in the visible and the near-infrared domain. For both domains, the

normal approximation of the transformed conditional pdf leads to an underestimation of

the conditional mode while the other three methods overestimate the parameter.

In the visible domain, the KF without transformation causes the largest absolute er-

rors and has the largest variability in the errors. The other three methods yield almost

equal results, with the normal approximation of the transformed conditional pdf having

marginally smaller absolute errors. In the near-infrared domain the results are similar

although with an overall smaller magnitude of the errors.

4.3.2 Experiments with seasonal canopy albedo parameters

Figure 4.9 shows the conditional mode and the ensemble spread in model space for experi-

ments without inflation and for inflation with magnitudes 0.02 and 0.04 for the estimation
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Figure 4.9: Assimilation results for one seasonal canopy albedo parameter in the visible
(left) and the near-infrared (right) domain. Dark-coloured lines show the results
before inflation and the light-coloured lines show the results after inflation.

of a seasonal canopy albedo parameter. Without inflation, the ensemble collapses during

the first few assimilation steps. As a result, the conditional mode estimate diverges and

cannot follow the seasonality of the parameter. The estimates from experiments with in-

flation follow the seasonal cycle of the parameter. The effects of the inflation are the same

as described for the estimation of a fixed parameter in the previous section.

As before, the experiments in the subsequent comparison of the four methods used

an inflation magnitude of 0.04. Figure 4.10 illustrates the effects of the different update

methods on the estimates of the conditional mean and the conditional covariance in model

space. First, all four methods yield estimates that follow the prescribed seasonal cycle up

to random variations. But all four methods are shifted by a constant value from the true

parameter value. The results are qualitatively the same in the visible and near-infrared

domain, although the estimates for the near-infrared parameter are much closer to each

other. In both domains, the KF without transformation yields the largest estimates of the

conditional mode and the normal approximation to the transformed conditional pdf yields

the smallest estimates. The estimates of the covariance scaling method and the modified

method of Simon and Bertino (2012) are nearly identical and lie in between the other two

methods. The estimated conditional covariance, shown by the ensemble spread, of the

method based on Simon and Bertino (2012) is larger than for the other three methods.
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Figure 4.10: Assimilation results for one seasonal canopy albedo parameter of an evergreen
PFT in the visible (left) and the near-infrared (right) domain. The ensemble spread
is the spread after the update before the ensemble is inflated.
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Figure 4.11: Assimilation results for one seasonal canopy albedo parameter of a deciduous
PFT in the visible (left) and the near-infrared (right) domain. The ensemble spread
is the spread after the update before the ensemble is inflated.

Figure 4.11 is similar to Figure 4.10 and shows the same quantities but the estimated pa-

rameter belongs to a deciduous vegetation type (Temperate Broadleaf Deciduous) whereas

the parameter in Figure 4.10 was that of an evergreen vegetation type (Tropical Ever-

green). In conjunction with Figures 4.4 and 4.5, we see that all four methods are able

to constrain the parameter only when observations of the canopy are possible. When the

canopy fraction decreases due to a decrease in LAI, the conditional mode diverges from the

truth. During phases with a small or no observable canopy fraction, the ensemble spread

also grows continuously. When the canopy fraction starts to increase again, the ensemble

spread decreases and the conditional mode approaches the true value again. Further, for

the deciduous PFT, the differences in the estimated conditional covariance between the

modified method of Simon and Bertino (2012) and the other three update methods are

larger than for the parameter of the evergreen PFT.

The results for other vegetation types are qualitatively similar to either Figure 4.10 or

Figure 4.11 and are summarised in Figure 4.12 and discussed in section 4.4. The results

for the visible and the near-infrared canopy albedo parameters are qualitatively the same,

with the normal approximation to the transformed conditional pdf underestimating the

parameters while the other three methods overestimate them.

As for the estimation of the constant parameters, the KF without transformation shows
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Figure 4.12: Bias and error variability of the conditional mode for the estimation of seasonal
canopy albedo parameters. Horizontal lines indicate the mean error, vertical bars
above and below indicate one standard deviation of the errors.

RMSE bias std of errors

without transformation 0.052 0.017 0.020
normal approx. to cond. pdf 0.024 -0.007 0.010
covariance scaling 0.026 0.007 0.011
Simon and Bertino (2012) 0.030 0.010 0.011

Table 4.2: Overall root mean square error (RMSE), bias and standard deviation of errors
for the estimation of seasonal canopy albedo parameters.

the largest absolute errors while the other three methods perform similarly. But contrary

to the example with constant parameters, we see different error variations for the different

vegetation types. The estimates for the deciduous vegetation type have a higher error

variability than the for the evergreen types. And the estimates for the SH coniferous type

also have a higher error variability than for the NH coniferous type.

Figure 4.13 shows the time-series correlations of the estimated parameters with the true

values and the ratios of their standard deviations (for an explanation of the diagram see

Taylor, 2001). The PFTs can be divided into two groups, with the deciduous types and

the coniferous type on the southern hemisphere in one group and the other types in the

second group. The first group exhibits low correlation values (∼ 0.6 and below) and a

higher variability in the estimated time series than in the true time series. The second

group has high correlation values (∼ 0.8 and above) and approximately the same temporal

variability as the true time series.
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Figure 4.13: Taylor diagram of the estimated time series of seasonal canopy albedo pa-
rameters.
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4.4 Summary and discussion of assimilation experiments

The comparison of experiments with and without inflation shows, that inflation is nec-

essary to maintain a sufficient ensemble spread that allows the observations to have an

impact on the estimate. We therefore conclude that the estimation of seasonal parameters

requires the inflation of the updated ensemble. In our experiments, we inflate the ensemble

after all observations at one observation time have been assimilated. This causes a risk

of loosing ensemble spread already early during the sequential assimilation of the single,

scalar observations and leaves room for improvement.

The low correlation and high error variability values of the deciduous types are due to

the fact that the canopy albedo parameters are unconstrained when there is no canopy to

observe. During these times, model error builds up in the parameter estimates and they

diverge from the true parameter values. This effect could be damped by using adaptive

inflation methods (Anderson, 2009b). The results for the coniferous type on the southern

hemisphere are also rooted in the lack of observations of the canopy, but in this case due

to the small global fraction of this type (see Figure 4.1).

The comparison of the four update methods yields similar results for the estimation of

fixed and seasonal parameters. The covariance scaling method performs marginally better

than the modified method of Simon and Bertino (2012) and the normal approximation

of the transformed conditional pdf is marginally better than these two. Lastly, the KF

without transformation leads to distinctly larger estimation errors than the other three

methods.

The different signs of the mean errors and also the different magnitudes agree with the

results from the comparison of the the linear and nonlinear regression curves in section

3.8.1. Figure 4.14 shows the estimation errors of the conditional mode (see section 3.8.2),

overlaid with contours showing a two-dimensional histogram of truth-observation pairs

from the assimilation experiments with seasonal canopy albedo parameters. We use the

true values as approximations of the prior modes occurring in the four experiments. This

approach is justified by the small estimation errors compared to the size of the interval

(0, 1). The contours then approximately show the conditions occurring during the as-

similation experiments. The regions overlaid by the bulk of the truth-observation pairs

indicate different expected errors for the conditional mode in model space from each of

the four update methods. Our experiments confirm these expectations. In agreement

with Figure 4.14, the KF without transformation caused the largest errors. The normal

approximation of the transformed conditional pdf caused too small estimates. The co-

variance scaling and the modified method of Simon and Bertino (2012) perform similarly

while covariance scaling is slightly better.

The concentration of the truth-observations pairs at the lower edge of the plot, that is

in the area of small observation values, in conjunction with the errors in the estimated

conditional covariance (see Figure 3.12) also explains the larger ensemble spread for the

modified method of Simon and Bertino (2012) in Figures 4.10 and 4.11.
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Figure 4.14: Error in the estimated conditional mode as a function of the mode of the prior
distribution and the observation. Overlaid are contours showing a two-dimensional
histogram of truth-observation pairs from the assimilation experiments (observation
of glacier grid boxes are excluded). The histogram shows counts per 0.02× 0.02 box
and the innermost contour indicates a count value of 30000.
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The results of our experiments for an observation error covariance of 0.0001 (standard

deviation 0.01) are shown in Appendix B. They are qualitatively similar to the results

presented in this section. But the results for the smaller observation error covariance

indicate that the choice of the update method is less critical for smaller observation errors.

This is due to the fact that all involved distributions are very narrow or become very narrow

after the first assimilation. Thus, the distributions are also more symmetrical and closer

to Gaussian distributions. And the bounds of the interval are of less importance because

the involved pdfs drop off sharply well before they reach the bounds.

4.5 The step to real observations

The next step would be to assimilate real land surface albedo observations. First, this

would require a careful adjustment of the observation error model to the characteristics

of the observations (for example, Liu et al. (2009) state a small negative bias for MODIS

observations).

The larger challenges, however, lie on the side of the model. The assimilation of albedo

observations as described in this section will adjust the parameters such that they com-

pensate for all sources of error in the predicted observations. These sources include an

incorrect background albedo map, a mismatch in the phenological cycles of the model

and the observations, and a mismatch in the assumed and the true vegetation distribu-

tion. Dalmonech and Zaehle (2013), for example, compared the JSBACH phenology to

satellite-derived proxies for vegetation activity and found shifts in the phenological cy-

cles. And Brovkin et al. (2013) identified problems in the distribution of bare ground and

different vegetation types.

A technical point to consider is the extension to several tiles within a model grid box

of JSBACH. This extension complicates the estimation of canopy albedo parameters from

grid box observations because the joint distribution of parameters and observations will

become less Gaussian. Consequently, the linear regression approximation of the relation

between observed states and unobserved parameters will be less valid and the quality of

the estimates will deteriorate. A possible solution to the problem of exacerbated non-

Gaussianity could be the use of multivariate Gaussian anamorphosis. Multivariate Gaus-

sian anamorphosis aims to transform the state vector such that the transformed joint pdf

is truly multivariate Gaussian and linear estimation techniques are close to optimal.
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Chapter 5

Summary, conclusions, and outlook

5.1 Summary

The motivation for this thesis emerged from the analysis of the new JRC-TIP data set

of radiative transfer parameters for vegetation canopies. The analysis of this data set

shows that the effective canopy single scattering albedo in the visible and in the near-

infrared domain follows a seasonal cycle. We therefore speculate that the canopy albedo

parameters in JSBACH should also follow a seasonal climatology. The derivation of such

a climatology requires a time series of parameter values which we suggest to derive with

the EnKF.

The application of the EnKF for bounded quantities like albedo causes physically in-

consistent estimates, on the one hand. The reasons for these estimates are the purely

statistical nature of the EnKF’s update step, the approximations of the nonlinear state-

observation relationship with a linear relationship, and sampling errors due to the finite

ensemble size. On the other hand, the application of the EnKF for bounded quantities,

like albedo, causes biased estimates. The reasons for these errors are the inherent non-

Gaussian properties of the bounded distributions of the state variables and the observation

errors as well as the – assumed – state-dependent and non-zero mean observation errors.

For the first time, we analyse the influence non-Gaussian state and observation error

distributions, nonlinear observation operators, and state-dependent, non-zero mean ob-

servation errors on the EnKF using a linear regression framework. Linear regression has

been previously related to the KF and the EnKF (Duncan and Horn, 1972; Lei and Bickel,

2011) but has so far not been used to understand the estimation errors. We find that the

total error arises from errors in approximating a nonlinear regression function with a linear

regression function, from errors in the estimation of this linear regression function, and

from errors due to the approximation of a non-Gaussian conditional pdf with a Gaussian

pdf.

We extend the analysis of estimation errors and the linear regression framework to the

EnKF with Gaussian anamorphosis. Gaussian anamorphosis transforms the state variables

and the observations from the model space to a transformed space. The transformation

function, or anamorphosis function, is chosen such that the transformed state and the

transformed observation error follow Gaussian distributions. Further, the state variables
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are transformed from a bounded to an unbounded domain. This transformation to Gaus-

sian distributions improves the quality of the EnKF estimates because the linear regression

approximation used by the EnKF is a better approximation to the state-observation re-

lationship in the transformed space than it is in model space. The transformation to

an unbounded domain additionally ensures physically consistent values for the inversely

transformed estimates in model space.

The estimation of the transformed conditional mean and the transformed conditional

covariance requires the transformed observation error covariance. For the first time, we

derive approximations of the transformed observation error covariance based on the trans-

formation of the observation error pdf, explicitly stating the assumptions used in the

approximation. Our derivation is an extension of an ensemble-based method to estimate

the transformed observation error covariance (Simon and Bertino, 2012). Using the lin-

ear regression framework, we find that the estimate of the linear regression function and,

consequently, the estimates of the conditional mean and covariance from the method of

Simon and Bertino (2012) depend sensitively on the actual realisation of an observation,

rather than on the statistical properties of the observation. We then suggest a new ap-

proximation of the transformed observation error covariance based on a scaling approach

that relates the transformed observation error covariance to the sample covariance of the

transformed ensemble.

We compare the method of Simon and Bertino (2012), our newly suggested covariance

scaling, a direct approach that approximates the true transformed conditional pdf with a

normal pdf, and the KF without transformation with respect to the estimated conditional

mode and the estimated conditional covariance in model space. For this comparison we

introduce the approximate conditional pdf. This pdf is defined by the normal distribution

with mean and covariance given by the ensemble mean and covariance in model space for

the KF without transformation. For the other three methods, the approximate conditional

pdf results from the inverse transformation of the approximate transformed conditional

pdf. The approximate transformed conditional pdf is given by a normal distribution

with mean and covariance equal to the ensemble mean and covariance of the transformed

ensemble. The comparison of the estimated conditional modes and covariances shows

that the covariance scaling method and the method of Simon and Bertino (2012) perform

best for typical assimilation conditions. Numerically and statistically, however, covariance

scaling is more favourable.

We confirm this finding experimentally by setting up a sequential data assimilation

framework based on the ensemble adjustment Kalman filter and the dynamic global veg-

etation model JSBACH. We generate synthetic observations from a virtual truth and

assimilate these observations to retrieve constant and seasonal canopy albedo parameters,

respectively. In our experiments, we find that the canopy albedo parameters can be re-

trieved from the synthetic observations, given that there is a sufficiently large fraction of

canopy that contributes to the observations.

Regarding the four compared methods, all retrieve the seasonal cycles of the parameters

84



5.2 Conclusions

equally well. But they differ in the absolute magnitude of the estimated parameters for

both the constant and the seasonal parameters. The ranking of the magnitudes of the

errors for the four methods in our experiments agrees with the expected errors from our

theoretical considerations in the linear regression framework. The numerically expensive

method that approximates the true transformed conditional pdf is marginally better than

the method of Simon and Bertino (2012) and covariance scaling, which perform similarly

and the KF without variable transformation falls behind. Our results are qualitatively

similar for the visible and the near-infrared canopy albedo parameters. But the differences

in the absolute values between the four update methods are greatly reduced for the near-

infrared parameters.

5.2 Conclusions

Our motivating research question was

• Can we retrieve a climatology of canopy albedo parameters from observations of land

surface albedo with the ensemble Kalman filter and Gaussian anamorphosis?

In a twin experiment where only the perturbed canopy albedo parameters and random

observation errors are the source of the deviations of the assimilated observations from

the model state the answer is yes. We can retrieve such a climatology from land surface

albedo observations. We show in section 4.3 that the EnKF with Gaussian anamorphosis

can retrieve the seasonality in the parameters, independent of the chosen method for the

observational update.

Our second research questions was

• What is the best method (out of these four) to assimilate albedo observations with

the ensemble Kalman filter from a theoretical point of view?

The answer to this question is rooted in the theoretical considerations for the estimation of

bounded quantities in chapter 3. We confirm theoretically – and later experimentally – that

using the EnKF with Gaussian anamorphosis to transform the state and the observations

yields better estimates than the EnKF without transformation. The EnKF with Gaussian

anamorphosis, however, requires an estimate of the transformed observation error covari-

ance which leaves the question which of the remaining three methods performs best. From

our theoretical examination and from the data assimilation experiments, we find that our

new covariance scaling method is the best choice. It performs only marginally better than

our modification of the method of Simon and Bertino (2012). But the covariance scaling

technique is easier to implement because it does not require the transformed observa-

tion pdf which either causes high computational cost during the assimilation or requires

pre-calculated look-up tables. Further, covariance scaling is statistically more consistent

because the estimated linear regression function does not depend on the realisation of the

assimilated observation.
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Our findings are relevant for quantities whose numerical value is close to the bounds of

their physical domain. The comparison of the experimental results for visible and near-

infrared canopy albedo parameters and the theoretical results confirm the intuition that

the estimation will be the more difficult the closer the values are to the bounds of the

domain. From the quantitatively different results for the visible and the near-infrared

canopy albedo parameters as well as from the results for the experiments with a smaller

observation error covariance in Appendix B, we conclude that the importance of treating

the bounds depends on the relation of the widths of the involved pdfs, characterised by

their covariances or standard deviations, to the distance of the peak of the pdf from the

bounds. As a vague generalisation we state that, if the numerical values of the quantities

of interest are apart from the bounds of the domain by about four to five times their

standard deviation, the effects of the boundedness and non-Gaussianity become nearly

negligible compared to other error sources. This holds at least for unimodal logit-normal

pdfs considered in this thesis.

5.3 Outlook

The logical next step regarding the estimation of parameters is the assimilation of real

observations. But leaving the idealised world of twin experiments with their isolated error

sources makes this step somewhat adventurous. In principle we see two approaches to

cope with the multitude of errors in assimilation experiments with real data:

1. assimilate one type of observations after another to estimate different types of vari-

ables one by one or

2. assimilate many types of observations to estimate many different types of variables

simultaneously.

The first approach offers a great deal of control on the assimilation results and is similar

to our approach in this thesis. But this approach attributes most of the errors to the first

few types of variables that are estimated. This is because the deviations of the predicted

observations from the actual observations will be caused by deficiencies in several types

of variables while the assimilation will correct only one of them. This approach requires a

careful selection of the order in which the observations are assimilated and of appropriate

localisation methods, which are not discussed in this thesis.

The second approach poses large challenges on the generation of initial ensembles that

exhibit desirable covariance structures which minimise spurious correlations. For mildly

nonlinear models and nearly multivariate Gaussian distributions, this approach appears

feasible and as the more promising one. But if Gaussian anamorphosis is required for

several types of variables and observations, ensuring multivariate Gaussian distributions

in the transformed space will be a major challenge.

From our point of view of the EnKF as a linear regression method, the combination

of Gaussian anamorphosis with the EnKF essentially turns the linear regression into a
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nonlinear regression approach. Nott et al. (2011) have already noted the link between a

non-Gaussian extension of the EnKF by Lei and Bickel (2011) and nonlinear regression

methods. Lei and Bickel (2011) extend the EnKF to higher moments. This can also

be seen as extending the linear regression in the EnKF to regression methods that use

more than two parameters (slope and intercept) to approximate the conditional mean.

With respect to this thesis, the covariance scaling can possibly be transferred to higher

moments or other characteristics of the ensembles to derive regressions with more than

just two parameters.
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Appendix A

Comparison of KF estimates for model space

prior and observation error covariance 0.0001

The true conditional pdf in model space is bimodal in most cases due to the narrow prior

and observation error distributions.
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Figure A.1: Error in the estimated conditional mode as a function of the mode of the prior
distribution and the observation. The prior distribution has a covariance that is equal
to the covariance of the observation error of 0.0001 (standard deviation 0.01). Grey
areas indicate a bimodal conditional pdf.
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Figure A.2: Error in the square root of the estimated conditional variance as a function of
the mode of the prior distribution and the observation. The prior distribution has a
covariance that is equal to the covariance of the observation error of 0.0001 (standard
deviation 0.01). Grey areas indicate a bimodal conditional pdf.
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Appendix B

Data assimilation experiments for

observation error covariance 0.0001

B.1 Experiments with fixed canopy albedo parameters

The covariance of the initial prior ensemble of canopy albedo parameters in model space

was 0.0025 (standard deviation 0.05) as for the experiments in chapter 4. The experiments

used an inflation magnitude of 0.04.
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Figure B.1: Assimilation results for one fixed canopy albedo parameter in the visible (left)
and the near-infrared (right) domain. Dark-coloured lines show the results before
inflation and the light-coloured lines show the results after inflation.

RMSE bias std of errors

without transformation 0.002 0.001 0.001
normal approx. to cond. pdf 0.002 -0.001 0.001
variance scaling 0.001 0.001 0.001
Simon and Bertino (2012) 0.004 0.001 0.003

Table B.1: Overall root mean square error (RMSE), bias and standard deviation of errors
for the estimation of fixed canopy albedo parameters.
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B.2 Experiments with fixed seasonal albedo parameters
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Figure B.2: Assimilation results for one seasonal canopy albedo parameter in the visible
(left) and the near-infrared (right) domain. The ensemble spread is the spread after
the update before the ensemble is inflated.

RMSE bias std of errors

without transformation 0.008 0.002 0.004
normal approx. to cond. pdf 0.006 -0.001 0.003
variance scaling 0.006 0.000 0.003
Simon and Bertino (2012) 0.013 0.001 0.006

Table B.2: Overall root mean square error (RMSE), bias and standard deviation of errors
for the estimation of seasonal canopy albedo parameters.
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Figure B.3: Assimilation results for one seasonal canopy albedo parameter of a deciduous
PFT in the visible (left) and the near-infrared (right) domain. The ensemble spread
is the spread after the update before the ensemble is inflated.
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Figure B.4: Bias and error variability of the conditional mode for the estimation of seasonal
canopy albedo parameters. Horizontal lines indicate the mean error, vertical bars
above and below indicate one standard deviation of the errors.
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