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A Tutorial on Mathematical Modeling
of Biological Signaling Pathways

Zhike Zi

Abstract

Mathematical models have been widely used in the studies of biological signaling pathways. Among these
studies, two systems biology approaches have been applied: top-down and bottom-up systems biology. The
former approach focuses on X-omics researches involving the measurement of experimental data in a large
scale, for example proteomics, metabolomics, or fluxomics and transcriptomics. In contrast, the bottom-up
approach studies the interaction of the network components and employs mathematical models to gain
some insights about the mechanisms and dynamics of biological systems. This chapter introduces how to
use the bottom-up approach to establish mathematical models for cell signaling studies.
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1. Introduction

Traditional cell signaling studies have focused on understanding the
functions of individual signaling components. It is now realized that
cell behaviors are not only determined by the characteristics of
individual system components, but also by the interactions of such
components acting together as a system. Conventional biochemis-
try and cell biology approaches are useful to describe and discover
the components of cellular signaling pathways. However, most of
the descriptions are carton-type hypotheses that give us the static
and qualitative information about the system. The nonlinear inter-
actions of the componentsmight exhibit some emergent properties,
such as bistability, oscillation, and robustness, which are difficult to
be discovered by experimental analyses but are easier to be investi-
gated by kinetic analysis of mathematical models.

On the other hand, mathematical modeling of signaling
pathways requires experimental data and prior knowledge of
the pathways. Therefore, systems biology research could not be
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done without the contribution of traditional biochemical and cell
biology. However, classical cell signaling studies face the limitations,
such as inaccuracy, inability to deal with emergent properties, and so
on (1). The bottom-up systems biology approaches could fetch up
these limitations by merging model simulations and quantitative
experimental analyses. Therefore, systems biology approach with
mathematical models has been emerged as a powerful tool in study-
ing signaling pathways because it provides a way to study the signal-
ing dynamics and the underlying principles.

Many sources of uncertainty, including errors, noise, incomplete
information, and poor experimental design, impose limitations on
our confidence of the experimental data. Some experimental data
might lead to a misunderstanding of the true property of biological
systemsdue to the limited number of experimental data. For example,
we might get a time course data for protein X as shown in Fig. 1a.
The amount of protein X oscillates with the increase of time. The
experimentalists may judge the number of periods by counting the
number of peaks appearing in the data by connecting the discrete
data. In this case, the number of peaks will be counted as 3 (Fig. 1b).
However, if we performmodel simulation for this system,wewill find
that the number of the oscillations during the investigated timemight
be 7, rather than 3 (Fig. 1c). Inspired by the model prediction, we
could design a new experiment to verify the actual number of oscilla-
tions by taking more samplings at proper time points.

2. Materials

The material requirement for mathematical modeling of cellular sig-
naling pathways is not demanding. However, getting high quality of
quantitative experimental data sets is still one of the bottlenecks for the
development of the mathematical models. Normally, computer and
software packages are required to perform model simulations. The
specific configuration of the computers and software depends on the
modelers’ preference. Till now, more than 200 software tools have
been developed with the support of the Systems Biology Markup
Language (SBML) format (2). A summary of these software packages
is available in the official SBMLWeb site (http://sbml.org).

3. Method

The mathematical format for modeling signaling pathways depends
on the properties of the studied system and the specific questions
that are going to be answered. The most commonly used mathe-
matical forms are ordinary and partial differential equation systems,
which can be in either deterministic or stochastic format (3).
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Stochastic equations are useful to investigate the properties of the
system arising from random fluctuations or noise. Here, we intro-
duce how to establish mathematical models for the signaling path-
ways with a system of ordinary differential equations (ODE). The
ODE modeling approach can be applied to the signaling studies
when the components of the signaling pathway can be assumed
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Fig. 1. Illustration of the role of model prediction. (a) Time course data for the amount of
protein X. (b) The intuitive data connection predicts three oscillation periods. (c) Compu-
tational model simulation of the underlying network suggests that protein X has oscillated
seven times.
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to homogenously distribute in the cell and the stochastic effects
could be ignored.

3.1. The Choice

of Reaction Kinetics

There are different ways to model the reaction kinetics in signaling
pathways. Typical reaction kinetics include the law of mass action,
Hill equation, and Michaelis–Menten kinetics. Here, we use the
example of ligand receptor interaction to illustrate how to use these
kinetics to describe signaling reactions.

(1) The law of mass action: In the nineteenth century, Guldberg
and Waage introduced the law of mass action to describe the
biochemical kinetics (4). The law of mass action states that the
reaction rate is proportional to the probability of the collision
of the reactants. This probability is also proportional to the
concentration of reactants to the power of their molecularity,
the number of them entering the specific reaction (5).

The ligand and receptor interaction is a signaling event
that happens in most signaling pathways. With the binding of
the ligand (L), the receptor (R) forms a ligand–receptor com-
plex (LRC) with a characteristic rate constant kon. On the
other hand, the LRC can dissociate to ligand and receptor
with a rate constant koff. The ligand–receptor interaction can
be described with the following reaction:

L þ R ,kon
koff

LRC: (1)

By the definition of mass action law, we can derive the
concentration change over time of ligand, receptor, and LRC
by the following ODE system:

d½L�
dt

¼ koff ½LRC� � kon½L�½R�; (2)

d½R�
dt

¼ koff ½LRC� � kon½L�½R�; (3)

d½LRC�
dt

¼ kon½L�½R� � koff ½LRC�: (4)

(2) Hill equation: The signaling receptors might exist not only as
monomers, but also form dimers or oligomers with two or
more identical binding sites for the ligand. The bound sub-
unit has a cooperative effect on the later binding subunits,
which means that the affinity of the receptor to the later
bound ligand is significantly increased by the already bound
ligand. A typical example that has such a property is the
binding of oxygen to hemoglobin (Hb). The early experi-
mental research found that the fractional saturation of Hb
with oxygen had a sigmoid response to the oxygen partial
pressure. Hill explained the interaction between the oxygen
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binding sites of Hb subunits by the following fractional
saturation (6):

Y ¼ ½LnR�
½Rt � ¼ ½L�n

ðKaÞn þ ½L�n ; (5)

where n is known as Hill coefficient andKa corresponds to the
ligand concentration occupying half of the receptor-binding
sites.

In general, for a receptor with n subunits, the reaction
rate of the receptor to the ligand can be approximated as:

v ¼ VmaxY ¼ Vmax½L�n
ðKaÞn þ ½L�n : (6)

The Hill coefficient (n) can be calculated by

n ¼ logð81Þ
logðS90=S10Þ : (7)

Here, S10 and S90 correspond to the ligand (stimulus)
levels that are required to achieve 10% and 90% of the maxi-
mum activation, respectively (7).

One can use Hill equation kinetics with a larger value of
Hill coefficient (n) to approximately model some switch-like
processes, for example the turn on of ion channels.

(3) Michaelis–Menten kinetics: When an enzyme (kinase or phos-
phatase) catalyzes a biochemical reaction, it is not consumed
or produced by this reaction, but forms a temporary complex
with the substance in the reaction. For such a reaction, we can
use Michaelis–Menten kinetics to describe the reaction rate
under the key assumption of quasi-steady-state approxima-
tion, which is valid when the enzyme concentration is much
lower than the substrate concentrations and when the enzyme
is not allosteric. Michaelis–Menten kinetics is named after
Leonor Michaelis and Maud Menten and has the following
formulation:

v ¼ VmaxS

Km þ S
; (8)

where Km is the Michaelis constant and is equal to the sub-
stance concentration that causes the half-maximal reaction
rate Vmax.

3.2. How to Construct

the Systems of Ordinary

Differential Equations?

The ODE modeling approach describes the concentration change
of a component over time by a system of ordinary differential
equations. For a certain component’s concentration [Ci] evolved
over time, we calculate both the sum of the reaction rates producing
Ci (the reactions coming towards componentCi, v

+) and the sum of
the rates consuming Ci (the reaction going outwards component
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Ci, v
�). The system ofODEs is determined by the subtraction of the

former to the latter item as the following equation:

d½Ci�
dt

¼
X

vþ �
X

v�: (9)

More examples about how to construct the ODE system will be
illustrated in the following section.

3.3. How to Model

Different Signal

Transduction Steps?

Some signal transduction steps are shared in different signaling
pathways. In order to establish a complete model for a certain signal
pathway, it would be useful to understand how to model represen-
tative signal transduction steps (8).

3.3.1. Production and

Degradation of mRNA

and Protein

The production and degradation of mRNA and protein are typical
processes involved in signaling pathways (Fig. 2). Here, we can
assume that there is a constitutive mRNA synthesis with a production
rate constant k1. The degradation of mRNA follows first-order mass-
action kinetics with degradation rate constant k2. The protein is
producedwith a rate constant k3 and is proportional to the concentra-
tionofmRNA.Similarly, theprotein is degradedwith rate constant k4.

For this simple network, we can use the following system of
ODEs to describe its dynamics.

d½mRNA�
dt

¼ k1 � k2½mRNA�; (10)

d½Protein�
dt

¼ k3½mRNA� � k4½Protein�: (11)

It is worth noting that mRNA has appeared in Eq. 11 for the
protein production, but it does not mean that mRNA is a reactant
or substrate for protein production. Therefore, parameter k3 should
not appear in Eq. 10. mRNA is used as a template during protein
translation and mRNA itself is not converted to protein. In SBML,
such molecules are defined as “modifiers.”

For Eq. 10, we can derive an analytic solution to calculate the
mRNA amount at time t with the following equation:

½mRNA�t ¼
k1
k2

� k1
k2

� ½mRNA�0
� �

e�k2t ; (12)

where [mRNA]0 is the concentration of mRNA at initial time 0.

mRNA

Protein

k1 k2

k3 k4

Fig. 2. A simple network for the production and degradation of mRNA and protein.
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3.3.2. Phosphorylation

and Dephosphorylation

Protein phosphorylation and dephosphorylation take place very
frequently in cellular signaling transduction. In Fig. 3, the protein
Y is phosphorylated to pY by a kinase and then the phosphorylated
pY is dephosphorylated to Y by a phosphatase. Here, we assume
that the total amount of Y and pY is constant and equals to Yt.

For this process, there are two different ways to model it. We
can choose mass-action kinetics or Michaelis–Menten kinetics
depending on the context of the signaling pathway. If the concen-
trations of kinase (Ek) and phosphatase (Ep) are much lower than
their substrates, we can model this simple system with Michaelis–
Menten kinetics:

d½Y �
dt

¼ � Vmax1½Y �
Km1 þ ½Y � þ

Vmax 2ðYt � ½Y �Þ
Km2 þ ðYt � ½Y �Þ ; (13)

½pY� ¼ Yt � ½Y �: (14)

In some cases, the kinase or phosphatase can be one compo-
nent of the signaling pathway and its concentration is in a similar
range as the substrate. The assumption for Michaelis–Menten
kinetics is not valid anymore. In this case, mass-action kinetics
might be better to model the system. It might be necessary to
include the intermediate steps. For simplicity, we can model this
system with mass-action kinetics in the following way.

d½Y �
dt

¼ �k1½Y � þ k2ðYt � ½Y �Þ; (15)

½pY� ¼ Yt � ½Y �: (16)

3.3.3. Feedbacks Feedback regulations are important strategies for cells to control
the signaling pathways. For example, positive feedback may allow
signaling pathways to read continuously graded signal input and
generate digital signaling output (9). Moreover, cells can adapt to
some types of signals by using negative-feedback regulation (10).
In some cases, a signaling pathway with delayed negative feedback
could generate an oscillatory response of the signaling output.

Figure 4 shows a simple example of feedback network, in which
the activation of molecule A leads to the activation of molecule B and
activated B (B*) has a positive or negative feedback on the activation
of A.We can usemass-action kinetics tomodel the activation of A and

P P
Y

pY

(Ser,Thr, Tyr)

Kinase (Ek)

Phosphatase (Ep)

(Ser,Thr, Tyr)

Fig. 3. Scheme of protein phosphorylation and dephosphorylation.
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B. For the feedback of activated B on the activation of A, we can
chooseHill equation tomodel it. Here, the total amount of A and A*
is At, and the total amount of B and B* is Bt. Therefore, for the
network shown in Fig. 4, it is possible to model it with the following
system of ODE:

d½A��
dt

¼ k1ðAt � ½A��Þ � k2½A�� þ VmaxðB�Þn
ðKaÞn þ ðB�Þn ðAt � ½A��Þ;

(17)

d½B��
dt

¼ k3½A��ðBt � ½B��Þ � k4½B��: (18)

In Eq. 17, parameter Vmax denotes how strong the feedback is.
Parameter Ka and Hill coefficient n indicate how sensitive the
feedback is to the activated B. If n is negative, then the feedback
is negative regulation. Otherwise, it represents a positive feedback.

3.3.4. How to Model

Signaling Inputs?

A variety of signaling sources trigger different types of signaling
pathway, which includes environment stimuli and signaling mole-
cules. According to the specific signaling input profile, different
mathematical approximations can be used to model the signaling
input change over time. Two typical approximations are employed
to model the step change and the depletion of signaling input (S)
change.

For step change of signal, the signal profile is constant, for
example the osmotic change for the stress signaling pathways in
bacterial and yeast cells. In this case, the ODE for the signal input is
defined as:

d½S�
dt

¼ 0: (19)

Therefore,

½St � ¼ ½S0�: (20)

A A*

B B*

(+ or -)
k1

k2

k3

k4

Vmax, Ka

Fig. 4. Scheme of network feedback.
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In mammalian cells, the signaling molecules (or ligands) can be
internalized into the cells and then degraded. The signaling mole-
cules in the extracellular medium will be depleted over time. In this
case, for a certain dose of signaling molecules, we can assume that
the degradation of the signaling molecules is proportional to their
concentration, which reads as

d½S�
dt

¼ �l½S�: (21)

The signaling molecules’ time course profile is a decaying function.

½St � ¼ ½S0�e�lt (22)

Here, l characterizes the speed of ligand depletion.
It is worth noting that the value of parameter lmay depend on

the ligand dose and cell density (11). For a very high dose of ligand,
l is approximate to 0. Therefore, the depletion of the signaling
molecules can be ignored and it is approximately constant.
However, when the ligand dose is relatively low, the depletion of
signaling molecules plays an important role and l cannot be
ignored. When the signaling responses to different ligand doses
are modeled, it would be better to develop a more complicated
mathematical model, including the ligand–receptor interaction,
and internalization and degradation of the ligand.

3.4. How to Run

Simulation for the

Mathematical Model?

Two pieces of important information are essential for implement-
ing simulation for the ODE mathematical model, which are (a) the
initial condition of the variables and (b) the values for the reaction
rate constants.

The initial condition of the ODE system corresponds to the
abundance of the proteins involved in the signaling pathway.
Normally, it is difficult to know the complete information about
the absolute number of molecules per cell and it is still a challenge
to directly measure the rate constants by in vivo experiments. Some
model parameter values have to be estimated based on quantitative
experimental data. The estimation of the model parameter values is
called parameter estimation. The goal of parameter estimation for
the ODE models is to find the possible parameter sets that mini-
mize the difference between the model simulation data and experi-
mental data, which is formalized as:

Fobj ¼
Xn

i¼1

ysimi � ydatai

si

� �2
: (23)

Here, Fobj is called the objective function (cost function) or sum
of squared errors. ysimi is computer simulation data and ydatai is the
corresponding experimental data. si represents the noise or standard
deviation of the experimental data. Different optimization algo-
rithms can be used for parameter estimation. The performance of
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the algorithms usually depends on the specific models (12). Differ-
ent tools are available for parameter estimations, for example Copasi
(13), SBML-PET-MPI (14, 15), PottersWheel (16), and so on.

Whenwe know the initial conditions and parameter values for the
ODEmodel, it is possible to run computer simulation for the model
with software tools. Model simulation is usually implemented with
some ODE solver algorithms. The user needs to specify the ODE
solver with the initial condition, parameter values, and ODE system.
Some SBML software tools are able to automatically generate the
ODE equations if the modeler can define all reactions involved in
the pathway and set the reaction kinetics. Copasi (18) and CellDe-
signer (17) are two popularmodel construction and simulation tools.
Details about the software tools are available in the user guide of these
tools or other resources.

3.5. A General Workflow

for Modeling of Cellular

Signaling Pathways

The procedure of building a mathematical model for biological
signaling pathways can be summarized as the following steps.

(a) Draw a complete reaction interaction map of the signaling
pathway based on the existing biological knowledge. Occa-
sionally, the signaling pathway might be disconnected; new
reactions can be added to bridge the disconnected subsystems
together. Such a map is a schematic representation of the
mathematical model. The modeler can define the reactions
with some software tools in different ways, for example write
the reaction in text format (for example, Copasi) or draw the
graphic reaction map (for example, CellDesigner).

(b) Assign appropriate reaction kinetics for all the reactions that
are involved in the signaling pathway.

(c) Generate the ODE equations for the signaling pathway. For a
simple system, it is possible to write it down manually. How-
ever, for large signaling network, it is more convenient to
generate the ODE system by SBML software packages,
which avoid typo mistakes as well.

(d) Set the initial concentration (or initial amount) of the mole-
cules in the signaling pathway. The initial concentrations of
the molecules might be unknown and need to be estimated
with quantitative experimental data sets.

(e) Set the values of the parameter appeared in the reaction kinet-
ics. If some parameter values are unknown, perform parameter
estimation based on quantitative experimental data sets.

(f) Run simulations for the mathematical model. With the math-
ematical model, one can implement additional kinetic analysis
of the signaling pathway, for example steady-state analysis,
sensitivity analysis, and other perturbation analysis such as
over-expression, down-regulation, knockout, and so on.
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