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Abstract. The analysis of Einstein’s field equations in the context
of Penrose’s notion of asymptotic simplicity, which was originally intro-
duced to provide a geometric setting for the investigation of gravitational
radiation, reveals the existence of conformal representations of the field
equations which imply evolution equations that are hyperbolic up to
and beyond conformal infinity. This peculiar feature of the equations al-
lows us to formulate various well-posed initial and initial-boundary value
problems for the conformal field equations which lead to general large
scale existence and strong stability results as well as to sharp results on
the asymptotic behaviour and the conformal extensibility of solutions
to Einstein’s field equations. We discuss the physical relevance of these
results and various open questions.

1. Introduction

Enormous progress has been made in the last hundred years in the
investigation of Einstein’s field equations, their solutions, their solution
manifold, and thus the content of the theory. Research on the equations
has been largely guided by physical ideas but unforeseen mathematical
results repeatedly asked for revisions, a process that may not have come
to an end yet [56]. Mathematical analysis including approximations and
formal expansions led Einstein to an approximate notion of gravitational
radiation and prepared the way to the invariant concept available today.
Explicit solutions, mainly dealing with highly symmetric and idealized
situations, revealed physical phenomena on global scales (horizons, black
holes, singularities) which had not been anticipated and which sometimes
took years to be absorbed into a coherent world view. The abstract analysis
of the field equations, dealing with the existence of solutions and their
parametrization in terms of boundary data, evolved rather slowly, even
after the breakthrough marked by the work of Choquet-Bruhat [21]. More
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recently, it became a tool to establish the existence and investigate the
details of solutions with distinguished properties. Numerical techniques
allowed researchers to foray into domains of the solution manifold hardly
accessible by analytic methods [20] and the calculation of quantitative data
for comparisons with physical observations. In fact, certain data calculated
for astrophysical processes seem to have led to new observational results
[76]. These activities went through layers of generalizations and refinements,
discoveries of unexpected features, deepening of physical insights and ever
more sophisticated methods of mathematical analysis. In the following
this process will be illustrated by a particular line of research. Originally
motivated by the quest to ‘understand’ gravitational radiation, it opened
new views on the global space-time structure

Because there exists now a vast literature on the subject I will have to
focus in the following on particular aspects of it. To keep the list of references
at a reasonable length I shall often cite articles which appeared at later
stages in the development of some topic and give detailed refererence to
earlier work. It should also be noted that the statements below which begin
with a key word written in bold letters followed by some references may not
always be found verbatim in these references but follow immediately from
the results and arguments given there.

The second half of the 1950’s saw an intense activity concerned with
attempts to find a covariant concept of gravitational radiation in non-linear
general relativity that had no need of approximation arguments. It is difficult
to give a ‘correct’ historical account of this process and the contributions
of the various researchers. I just point out a few highlights and refer to the
literature for a more complete picture.

Pirani raises the question and tries to characterize radiative fields in
terms of the Petrov structure of their curvature tensor [90]. He observes
that pointwise algebraic considerations hardly suffice and proposes to study
the evolution of the Petrov structure by analyzing the vacuum Bianchi iden-
tity ∇μRμ

νλρ = 0. Emphasizing the role of asymptotic domains in radiation
problems, Trautman brings a global aspect into the discussion [100], [101].
Defining coordinate systems xμ near space-like infinity that satisfy condi-
tions analogous to Sommerfeld’s ‘Ausstrahlungsbedingungen’, he discusses
on the space-like slices x0 = const. a total energy-momentum formula which
may be considered as a precursor of a formula introduced later at null infin-
ity. Trying to integrate these considerations into a coherent picture, Sachs
shifts the point of view and considers the field along outgoing null geo-
desic congruences extending to infinity. Analysing the Bianchi equations in
a pseudo-orthonormal frame, he is led to suggest that the curvature tensor
shows at infinity a characteristic peeling-off behaviour of components related
to the Petrov types [94].

A decisive step is taken when Bondi et al [19], Sachs [95], and Newman
and Penrose [82] consider what in the language of today amounts to the
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asymptotic characteristic initial value problem, where data are prescribed on
an outgoing null hypersurface and at future null infinity. They specify the
asymptotic behaviour of the fields in terms of distinguished null coordinates
whose hypersurfaces are ruled by null geodesics extending to future null
infinity. The behaviour of the fields is analyzed in terms of formal expansion
in powers of 1/r as r → ∞, where r is a suitable parameter along the null
geodesics. In [82] the Bianchi equation is included into the system and the
equations are expressed in terms of a pseudo-orthonormal (more precisely, a
spin) frame. The required asymptotic behaviour is expressed in terms of the
conformal Weyl tensor and includes the peeling property. In [19] and [95]
are considered mass terms and mass-loss relations which are interpreted as
indication that the mass must decrease if the system is radiating. This result
strongly supports the view of being on the right track.

This development reached an apex when Penrose introduces an idea that
makes the role of the conformal structure, which features in the analysis
above in terms of null hypersurfaces and null geodesics, quite explicit and
offers at the same time a new view on the asymptotic and, in particular, on
the global structure of gravitational fields [86]. Let (M̂, ĝ) denote the space-
time of a self-gravitating isolated system that is so far away from other such
systems that one can essentially ignore the influence of the latter, possibly
with the exception of their gravitational radiation effects. Penrose proposes
that the asymptotic behaviour of (M̂, ĝ) is characterized by the following
property:

Definition 1.1. The space-time (M̂, ĝ) is said to be asymptotically
simple if there exists a space-time (M, g) with boundary J �= ∅ such that
M̂ can be diffeomorphically identified with the interior M̂ = M \ J of M
so that

gμν = Ω2 ĝμν on M̂,

with a conformal factor Ω which is a boundary defining function on M that
satisfies

Ω > 0 on M̂, Ω = 0, dΩ �= 0 on J .

The requirements only concern the asymptotic properties of the con-
formal structure of ĝ since they are invariant under rescalings of the form
(Ω, ĝ) → (θ Ω, θ2 ĝ) with positive functions θ. Conditions which restrict this
freedom will be referred to as conformal gauge conditions. Usually there are
also stated conditions which ensure that the conformal boundary J is as
complete as possible. This is related to the question of the uniqueness of the
conformal boundary [25]. We shall not discuss these questions here. In the
situations considered below, the conformal boundary will be uniquely deter-
mined by the evolution process defined by the field equations once suitable
initial data are prescribed and it will be independent of the conformal gauge
employed.

The degree of smoothness with which the conditions of the definition can
be achieved reflects in a precise way the fall-off behaviour of the physical
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fields. It will be seen that it can pose some of the most delicate problems.
Unless remarked to the contrary, however, it will be supposed that Ω and g
(and the functions θ above) are of class C∞ on M .

It follows then that ĝ-null geodesics are complete in those directions in
which they approach J . The set J thus represents a null infinity for the
‘physical’ space-time (M̂, ĝ), its points being endpoints of ĝ-null geodesics.
In general one would add conditions which ensure that no essential boundary
points are left out in the construction of M and for some types of systems
there would be derived consequences such as a splitting J = J − ∪ J +

of the boundary into two components J ± which represent the past/future
endpoints and thus past/future null infinity respectively. This will be seen
later in concrete situations. The impression that the definition disburdens
us from considering distinguished coordinates is not quite correct. To decide
whether a given space-time is asymptotically simple one has to extend
its differentiable structure, which amounts to singling out (if possible)
coordinate systems that admit extensions consistent with the conditions
above.

Statements about asymptotic simplicity gain significance if Einstein’s
field equations are involved. Penrose extended the range of application of
Definition 1.1 beyond that of isolated systems and also considered solutions
with non-vanishing cosmological constant λ [87]. In general a smooth so-
lution (M̂, ĝ) to the vacuum equations with cosmological constant λ does
not even satisfy the conditions with an extension (M, g, Ω) of finite differen-
tiability. But if it does, with sufficient smoothness, it follows that the field
equations determine the causal nature of the boundary. The set J will be
time-like, null, or space-like depending on λ being negative, zero, or positive
(assuming the signature (−, +, +, +)). While this is a simple consequence of
the field equations, it shows that the sign of the cosmological constant has
far-ranging effects on the overall behaviour of the solutions. Today this is
taken for granted, but at a time when local coordinates still dominated the
way of looking at space-times, it must have come as a revelation.

The conformal Weyl tensor Cμ
νκσ[ĝ] of ĝ goes to zero at J if there exists

a conformal extension (M, g, Ω) of sufficiently high differentiability [87]. In
fact, observing that Cμ

νκσ[ĝ] = Cμ
νκσ[g] on M̂ , one can easily specify pre-

cise smoothness conditions on (M, g, Ω) which imply that ∇μΩ Cμ
νκσ[g] = 0

on J . If λ �= 0, so that g(dΩ, dΩ) �= 0, pointwise algebra shows that
Cμ

νκσ[g] = 0 on J . If λ = 0 the conclusion is more subtle. The argument
given in [87] contains an implicit assumption on the smoothness of the con-
formal extension (M, g, Ω) which requires difficult global considerations for
its justification (in the review of the argument given in [53] this assump-
tion is taken as the starting point). We shall see below, that the situation
is not completely understood yet. Therefore it will sometimes be convenient
to use the notation J∗ to refer to null infinity simply as a unstructured set
of fictitious endpoints of null geodesics.
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Suppose there does exist a smooth conformal extension satisfying the
requirements of Definition 1.1. Then many questions concerning the as-
ymptotic structure which required delicate limits before can conveniently
be studied in terms of local differential geometry. The conditions then
comprise fall-off properties of the curvature tensor which are such that
Wμ

νκσ = Ω−1 Cμ
νκσ[ĝ] extends smoothly to the boundary J and it fol-

lows by pure algebra that the Sachs peeling conditions are satisfied [88].
In the vacuum case with λ = 0 the setting provides a precise notion of
radiation field. It is given on J + (say) by the complex-valued function
ψ0 = ψABCD ιA ιB ιC ιC where ψABCD is the symmetric spinor field which
represents the limit of the tensor Wμ

νκσ to J + and ιA is a two-index spinor
field so that ιA ῑA

′
is tangential to the null generators of the null hypersur-

face J +. For a discussion of the relations between the radiation field, the
mass, and the mass loss along J + we refer to [88].

The situation described in Definition 1.1 will be referred to by saying that
(M̂, ĝ) admits a smooth conformal extension at null infinity. We emphasize
that this comprises the smooth extendibility of the metric g as well as that
of the conformal factor Ω with the required properties. In the context of the
Einstein equations both requirements are important, because they relate in
a precise way to the decay behaviour of the gravitational field indicated
above. That these things should not be taken for granted is illustrated
by the following example. The space-time with manifold M̂ = R

2 × S
2

and metric ĝ = −dt2 + dr2 + cosh2 r hS2 is geodesically complete. That it
admits a conformal extension is seen as follows [17]. With the transformation
defined by cosh τ cos ψ = tanh r, cosh τ sin ψ = cosh t cosh−1 r, sinh τ =
sinh t cosh−1 r and the conformal factor Ω = cosh−1 r one obtains Ω2 ĝ =
g ≡ −dτ2 + cosh2 τ dψ2 + hS2 . The metric g is that of the Nariai solution

which lives in fact on M = R×S
1 ×S

2. The conformal embedding of (M̂, ĝ)
into (M, g) so obtained covers only the domain where | cosh τ cos ψ| < 1, 0 <
ψ < π. This domain is bounded by null hypersurfaces {cosh τ cos ψ = ±1},
which can be understood as defining a conformal boundary for the space-
time (M̂, ĝ). While the metric Ω2 ĝ extends smoothly to this boundary, the
function Ω, which can be written Ω =

√
1 − cosh2 τ cos2 ψ, only extends

continuously with Ω = 0 but dΩ divergent on the boundary. Moreover, the
conformal Weyl tensor Cμ

νλρ[g] does not go to zero on this boundary.

2. Field equations and conformal rescalings

The early studies of the notion of asymptotic simplicity focus on geo-
metrical and physical issues, the existence of solutions satisfying the con-
ditions is discussed mainly in terms of explicit, usually static or stationary
ones, which have vanishing radiation field [65], [71], [87]. There have been
found explicit vacuum solutions which admit pieces of a smooth conformal
boundary with non-vanishing radiation field [14], but non of them arise
from smooth, asymptotically flat, geodesically complete data on a Cauchy
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hypersurface and admit a conformal boundary that satisfies reasonable com-
pleteness conditions ([66]). At the time, anyone toiling at the general ab-
stract analysis of the Cauchy problem for the non-linear Einstein equations
must have registered with surprise that the complicated global problem of
characterizing the asymptotic behaviour of solutions should allow, in any
generality, an answer in so simple and clean geometric terms as used in Def-
inition 1.1. In fact, it has been argued from early on that the assumptions
on the asymptotic behaviour underlying the work referred to above might
be too stringent and that consistent formal expansions at null infinity can
also obtained under more general assumptions [29], [34].

Many questions remained open and we shall address here only a few of
them. Physically a particularly interesting one, which will obviously become
most important once gravitational radiation can be measured directly, refers
to fields of isolated self-gravitating systems: What kind of information on
the structure of the sources can be extracted from the radiation field ?
This question does not only ask for qualitative control on the far fields
and the (massive) sources, but also for quantitative results. These can, in
particular in the case of strong and highly dynamical fields, only be obtained
by numerical methods. In this article we shall mainly be interested in a
more basic problem: How rich is the class of solutions satisfying Definition
1.1 ? Besides providing mathematical results on the structure of the field
equations and the large scale nature of the solutions (which should also
help with the first question above) the complete answer should include a
discussion of the physical significance of possible obstructions to asymptotic
simplicity. We shall be interested in the following in solutions of four space-
time dimensions which are general in the sense that they are not required
to have symmetries.

Answers to the second question above can only be obtained by meth-
ods of general abstract analysis and global or semi-global existence results.
Provided the extension is smooth, asymptotic simplicity makes a statement
about the asymptotic behaviour that is absolutely sharp. This makes the
concept most delicate from the PDE point of view and harbours the danger
of leading to undesired restrictions. On the other hand, it may give deeper
insight into the mathematical structure and the physical meaning of solu-
tions. In the following sections we will have various opportunities to discuss
this dichotomy.

In the early 1970’s there existed a huge gap between the formal expansion
type studies at null infinity and the abstract existence theory for Einstein’s
field equations. At that time the latter only supplied existence results
local in time for the wave equation obtained from Einstein’s equations in
harmonic coordinates. The two approaches to Einstein’s field equations were
completely unrelated. An effort to understand the field equations in the
conformal setting combined with a search for alternative ways to exploit
the intrinsic hyperbolicity of the Einstein equations showed, however, that
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Penrose’s emphasis on the conformal structure might lead to new methods
for the existence problem [41].

If the vacuum equation Rμν [ĝ] = 0 for the ‘physical’ metric ĝμν is
expressed in terms of a conformal factor Ω and the conformal metric
gμν = Ω2 ĝμν , it reads

(2.1) Rμν [g] = −2 Ω−1 ∇μ∇νΩ−gμν gαβ
(
Ω−1 ∇α∇βΩ − 3 Ω−2 ∇αΩ ∇βΩ

)
.

The right hand side becomes singular where Ω → 0. It is one of the
remarkable features of the Einstein equations that (2.1) can be included into
a larger system of equations, the conformal field equations discussed below,
which avoids this type of singularity. By itself this might not help much but
it turns out that the resulting system admits hyperbolic reductions [42]. It
generalizes the Einstein equations by being equivalent to them where Ω �= 0
but still implying hyperbolic evolution equations where Ω = 0.

It is clear that in controlling the large scale behaviour of their solutions
in terms of estimates on the physical field ĝ and fields derived from it, the
conformal properties of the equations exhibited here must play implicitly
an important role. The explicit use of these properties in terms of the
conformal field equations seemed to offer, however, ways to calculate global
or semi-global solutions to Einstein’s field equations numerically on finite
grids. Formulating corresponding initial or initial-boundary value problems
and working out their qualitative consequences for the global space-time
structure analytically therefore suggested itself as a way to obtain also
quantitative results and thus answers to the first question asked above.

2.1. Conformal field equations. Einstein’s equations with cosmolog-
ical constant λ and energy-momentum tensor T̂μν ,

(2.2) R̂μν − 1
2

R̂ ĝμν + λ ĝμν = κ T̂μν ,

coupled to suitable matter field equations, are reexpressed in terms of a
conformal factor Ω, the metric gμν = Ω2 ĝμν , suitably transformed matter
fields, and the derived fields

s ≡ 1
4

∇ρ ∇ρΩ +
1
24

Ω R, Lμν =
1
2

(
Rμν − 1

6
R gμν

)
,

Wμ
ρνλ ≡ Ω−1 Cμ

ρνλ, T ∗
ρμ ≡ T̂ρμ − 1

4
T̂ ĝρμ,

∇̂ρL̂μν ≡ κ

2
∇̂ρ

(
T̂μν − 1

3
T̂ ĝμν

)
,

where ∇̂μ, ∇μ and Ĉμ
ρνλ, Cμ

ρνλ denote the covariant derivative operators
and the conformal Weyl tensors of the metrics ĝ and g respectively, Lμν is
the Schouten tensor of g, and T̂ the ĝ-trace of T̂μν . Equations (2.2) imply
the conformal field equations ([41], [42], [49])

(2.3) 6 Ω s − 3 ∇ρΩ ∇ρΩ − λ = −κ

4
T̂ ,
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(2.4) ∇μ ∇νΩ + Ω Lμν − s gμν =
κ

2
Ω T ∗

μν ,

(2.5) ∇μ s + ∇ρΩ Lρμ =
κ

2
∇ρΩ T ∗

ρμ − κ

24 Ω
∇̂μ T̂ ,

(2.6) ∇ν Lλρ − ∇λ Lνρ − ∇μΩ Wμ
ρνλ = 2 ∇̂[ν L̂λ]ρ,

(2.7) ∇μ Wμ
ρνλ =

2
Ω

∇̂[ν L̂λ]ρ,

where index operations are performed with the metric g. The first two
equations are just a rewrite of (2.2). They imply the differential identity
(2.5). Equation (2.7) is obtained from the contracted Bianchi identity for ĝ
with the conformally covariant relations

Cμ
ρνλ = Ĉμ

ρνλ, ∇μ(Ω−1 Cμ
ρνλ) = Ω−1 ∇̂μ Ĉμ

ρνλ.

With (2.7) equation (2.6) is obtained from the Bianchi identity for g. These
equations must be supplemented by equations which relate the tensorial
unknowns

(2.8) Ω, s, Lμν , Wμ
ρνλ,

to the metric g and the connection ∇. One possibility to do this is by
introducing a g-orthonormal frame field {ek}k=0,...3 and suitable coordinates
xμ. In terms of the frame coefficients eμ

k and the connection coefficients
Γi

k
j defined by the relations ek = eμ

k ∂xμ and ∇i ej = Γi
k

j ek so that
g(ei, ej) = gμν eμ

i eν
j = ηij and Γijk = −Γikj , where ∇i = ∇ei and

Γijk = Γi
l
k ηlj , the structural equations then take the form of the torsion-

free condition

(2.9) eμ
i, ν eν

j − eμ
j, ν eν

i = (Γj
k

i − Γi
k

j) eμ
k,

and the Ricci identity

(2.10) Γl
i
j, μ eμ

k − Γk
i
j, μ eμ

l + 2 Γ[k
i p Γl]pj − 2 Γ[k

p
l] Γp

i
j

= Ω W i
jkl + 2 {gi

[k Ll]j + Li
[k gl]j}.

If equations (2.3) to (2.7) are expressed in terms of the frame and combined
with the structural equations, they are equivalent (ignoring subtleties which
may arise in the case of very low differentiability) to Einstein’s vacuum
equations where Ω > 0 and in fact also where Ω < 0 (with the replace-
ment (Ω, s, Wijkl) → (−Ω, −s,−Wijkl) and the other fields unchanged the
equations remain satisfied as they stand).

If (2.3) holds on an initial slice, which can always be arranged, it will be
satisfied as a consequence of the other equations. In the vacuum case T̂μν = 0
the right hand sides of equations (2.4) to (2.7) vanish and all factors 1/Ω in
the equations are gone. If the Ricci scalar R is prescribed as a function of the
coordinates (which can locally be done in an arbitrary way) and the system
(2.4) to (2.10) is written with respect to a suitable choice of coordinates
and frame field, it implies reduced equations which are hyperbolic even where
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Ω changes sign. Moreover, the evolution by the reduced system preserves
the constraints and the gauge conditions. Various versions of hyperbolic
systems are given in [42], [47], [49], [53]. The case of zero rest-mass fields,
for which the energy momentum tensor is trace free and the matter fields
admit regular conformal representations is similar. For other matter models
the situation is more difficult and will in general result in equations where
the 1/Ω terms cannot be removed. A remarkable case of non-zero rest-mass
fields with non-vanishing trace of the energy momentum tensor where the
1/Ω terms drop out will be discussed in section 3.

While the search for hyperbolic reductions which could be adapted to
various particular situations led to quite general reduction procedures, in
fields of isolated systems a precise analysis of the equations remained ex-
tremely difficult in the neighbourhood of space-like infinity. Admitting be-
sides conformal rescalings also transitions to Weyl connections, one obtains,
however, an extended version of the conformal field equations. It allows one
to employ a type of geometric gauge, based on conformal geodesics which
has not been used in the context of the Einstein equations before. Apart
from some freedom on the initial slice, the gauge is then defined completely
in terms of the conformal structure [50], [51]. The resulting equations are
referred to as the general conformal field equations. The existence results
discussed in the following sections have been obtained with the conformal
field equations above or such generalizations.

In the following years were studied modifications of the equations above,
in particular systems of wave equations obtained by taking further deriva-
tives [23], [85], and versions of conformal field equations that apply to other
situations. In the static or stationary asymptotically flat case the vacuum
Einstein equations with λ = 0 can be written as Einstein equations on the 3-
dimensional (Riemannian) quotient space. These were shown to posses con-
formal representations that admit real analytic extensions to spatial infinity
[8], [9], [78]. Tod discusses big bang like isotropic cosmological singulari-
ties that are characterized by the existence of conformal rescalings which,
in contrast to the asymptotically simple case, blow up a neighborhood of
the singularity so as to represent the big bang by a hypersurface smoothly
attached to the original space-time [97]. These solutions were studied in
the following by versions of conformal field equations which include suitable
matter fields and deal with some remaining singular terms [84], [98], [99].

Though the conformal field equations above do admit regular general-
izations to higher dimensions, the space-time dimension four is special for
them [53]. Only in that dimension do they supply hyperbolic evolutions sys-
tems of first order in the unknowns (2.8). This raises the question whether
there exist generalizations. Various authors studied formal expansion at the
(space- or time-like) conformal boundary J of solutions to Einstein’s equa-
tions with or without matter fields and with cosmological constant λ �= 0 in
space-time dimensions n ≥ 4 [68], [91], [96]. In odd space-time dimensions
these expansions must include logarithmic terms to exploit the full freedom
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to prescribe data on J . The logarithmic terms not to occur on the even
dimensional boundary J if the Fefferman-Graham obstruction tensor Ojk

of the free data vanishes on J . This tensor, defined by an operator of order
n for any metric g on a manifold of even dimension n ≥ 4, is trace-free, sym-
metric, conformally invariant, and vanishes for metrics conformal to Einstein
metrics [68]. Anderson uses the equation Ojk[g] = 0 as a conformal vacuum
Einstein equation [2].

3. De Sitter-type solutions

In recent years various observations suggested an accelerating expansion
of the universe and all of them seem to be consistent with the assumption
of a positive cosmological constant in Einstein’s field equations [38]. There
exist neither convincing theoretical explanations for the acceleration nor for
the cosmological constant. Therefore it is of particular interest to understand
the manifold of solutions to Einstein’s field equations with positive λ. In the
vacuum case T̂μν = 0 we write equation (2.2) in the form

(3.1) Ric[ĝ] = λĝ.

The simply connected, conformally flat prototype solutions to (3.1) with
λ = 3 is de Sitter space (M̂ = R × S

3, ĝ = −dt2 + cosh2 t h S3) where h Sn

denotes the standard metric on the unit n-sphere S
n. With the coordinate

transformation t → τ = 2 arctan et − π
2 and the conformal factor Ω =

cosh−1 t = cos τ one obtains the conformal representation M̂ = ]− π
2 , π

2 [ × S
3,

g = Ω2 ĝ = −dτ2+h S3 . The metric on the right hand side and the conformal
factor extend smoothly to the manifold with boundary M = [−π

2 , π
2 ] × S

3.
Their extensions will be denoted again by g and Ω. The conformal boundary
J splits into the components J ± = {± π

2 , } × S
3 which are space-like for g

and represent for ĝ future and past null and time-like infinity respectively.
In the following we shall be interested in globally hyperbolic general-

izations of this solution which either admit a smooth conformal extension
with conformal boundary J + in the future (which maps onto a J − under
time reversal), or conformal extensions in the past as well as in the future,
with conformal boundaries J ±. These solutions will be such that each null
geodesic acquires precisely one future endpoint on J + in the first case and
precisely one past endpoint on J − and one future end point on J + in the
second case. The hypersurfaces J +, resp. J − and J + will constitute Cauchy
hypersurfaces for the conformal extension (M, g) and initial hypersurfaces
suitable for the conformal field equations. To avoid misunderstandings aris-
ing from the fact that the sign of the cosmological constant only becomes
meaningful if the signature of the metric is fixed, we shall refer to such
space-times as de Sitter type space-times.

3.1. Existence and stability results. To construct such solutions,
suitable initial data are needed. Because there seem to be no natural
boundary conditions for solutions with λ > 0, we shall assume in both
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types of initial data sets discussed below that the 3-manifold S is compact.
Moreover, only smooth initial data will be considered. Let λ denote a fixed
positive number.

A standard initial data set for Einstein’s vacuum field equations (3.1)
with cosmological constant λ consists of an orientable 3-dimensional Rie-
mannian manifold (S, ĥab) and a symmetric tensor field χ̂ab which satisfy on
S the Hamiltonian constraint R[ĥ] = ψ̂ab ψ̂ab+2 λ− 2

3 χ̂2 and the momentum
constraint D̂a ψ̂ab = 2

3 D̂bχ̂, where D̂ and R[ĥ] denote the Levi-Civita opera-
tor and the Ricci scalar of ĥ and we use the decomposition χ̂ab = ψ̂ab+ 1

3 χ̂ hab

into ĥ-trace-free part and trace.
The set of such data will be denoted by DS . Any data set (S, ĥab, χ̂ab)

in DS determines a unique (up to diffeomeorphisms) maximal, globally
hyperbolic solution (M̂, ĝ) to (3.1) which contains a Cauchy hypersurface
Ŝ that is, together with the first and second fundamental form induced on
it by ĝ, diffeomorphic(S, ĥab, χ̂ab) [22]. We note that in the case χ̂2 < 3 λ

the Hamiltonian constraint implies R[ĥ] > 0 and thus a restriction on the
conformal structure of (S, ĥ). From the initial data (λ, S, ĥab, χ̂ab) can be
derived initial data for the conformal field equations.

An asymptotic initial data set for Einstein’s vacuum field equations (3.1)
with cosmological constant λ > 0 consists of an orientable 3-dimensional
Riemannian manifold (S, hab) and a symmetric tensor field wab on S that
satisfies wa

a = 0 and Dawab = 0, where D denotes the Levi-Civita operator
of h.
Semi-global existence [46]: An asymptotic initial data set (λ, S, hab, wab)
for the vacuum field equations (3.1) determines a unique, maximal, globally

hyperbolic solution (M̂, ĝ) to Ric[ĝ] = λĝ with M̂ ∼ R × S which admits a

smooth conformal future extension M̂ → M = M̂ ∪ J +, ĝ → g = Ω2 ĝ and
a diffeomorphism j : S → J + = {Ω = 0} that identifies h with the metric
induced by g on J + and w with the J +-electric part of the extension of the
rescaled conformal Weyl tensor Wμ

λρν to J +.

The result follows from an analysis of the constraints induced by the
conformal field equations on a hypersurface {Ω = 0} and by solving a
Cauchy problem backwards in time for the hyperbolic reduced conformal
fields equations. It is a semi-global result because the solutions are null-
geodesically future complete. All de Sitter-type vacuum solutions which
admit smooth conformal extensions in the future (or past) are characterized
here.

Besides orientability no restriction on the topology of S, no smallness
condition on the data, and no restriction on the conformal class of (S, h)
needs to be imposed. The last property follows from the observation that the
Hamiltonian constraint becomes trivial on the set {Ω = 0}. This is related to
the fact that (λ, S, θ2 hab, θ

−1 wab), with θ > 0 a smooth function on S, is also
an asymptotic initial data set which determines the same ‘physical’ solution
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as (λ, S, hab, wab). Because the solutions are obtained by solving Cauchy
problems with data prescribed on J + = {Ω = 0} the smooth conformal
extensibility of the solutions is built in here by construction.

Let Ŝ denote a Cauchy hypersurface of a solution (M̂, ĝ) as above and
let (λ, Ŝ, ĥab, χ̂ab) be the standard initial data induced by ĝ on Ŝ. We denote
the set of such data by A+

S . Thus A+
S denotes the set of standard initial data

sets which develop into de Sitter-type solutions that admit smooth conformal
extensions in the future. Similarly, A±

S denotes the set of standard initial
data sets which develop into de Sitter-type solutions that admit smooth
conformal extensions in the past as well as in the future.
Strong future stability [47]: The set A+

S is open in DS (in suitable Sobolev
norm).

‘Strong’ has been added here to emphasize that not only geodesic
(future) null completeness but also smooth (future) conformal extensibility
is preserved under small perturbations. The result is obtained as follows.
Let (λ, Ŝ, ĥab, χ̂ab) be an initial data set in A+

S and denote by (M̂, ĝ)
the maximal, globally hyperbolic vacuum solution determined by it. Then
(M̂, ĝ) admits after a rescaling with a suitable conformal factor a smooth
extension with boundary J + in the future. Using the induced asymptotic
data on J +, it can be smoothly extended as a solution to the conformal field
equations into a domain which contains a Cauchy hypersurface on which
Ω = const. < 0. If (λ, Ŝ, ĥ∗

ab, χ̂
∗
ab) are data in DS that are close (with respect

to suitable Sobolev norms) to (λ, Ŝ, ĥab, χ̂ab) then data for the conformal
field equations associated with these two data sets can be arranged so as to
be also close to each other. The result then follows by Cauchy stability for
the (symmetric) hyperbolic equations (see [74]) induced by the conformal
field equations and the fact that equation (2.3) ensures that the sets {Ω = 0}
are space-like hypersurfaces.
Strong global stability [47]: The set A±

S is open in DS.

This follows by similar arguments. It implies that the de Sitter solution
or solutions obtain from it by factoring out suitable symmetries of (S3, hS3)
are strongly globally stable. We note that in the two stability results the
smooth conformal extensibility of the solutions close to the reference solution
is derived as a consequence of the conformal properties of Einstein’s field
equations.
Generalizations including matter fields [49]: With suitably generalized
definitions of A+

S , A±
S , DS to include matter fields, the results above gener-

alize to Einstein’s field equations (2.2) with λ > 0 coupled to ‘conformally
well behaved’ matter field equations.

We shall not try to characterize ‘conformally well behaved’ here because
it may require non-obvious transformations to arrive at a set of unknowns
so that no 1/Ω terms appear on the right hand sides (2.3) to (2.7) or in
the transformed matter field equations and the equations imply hyperbolic
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reduced systems. The statement certainly applies to matter equations like
the Maxwell and the Yang-Mills equations, discussed in detail in [49], which
in four space-time dimensions are conformally invariant in the most direct
sense. Other cases of matter fields with trace-free energy momentum tensor
and conformally covariant equations have recently been worked out in [79],
[80]. Further below we shall discuss a less obvious case.
Generalizations to higher dimensions [2]: The vacuum results above
generalize to all even space-time dimension larger that four.

3.2. Questions, obstructions, numerical results. The solutions
which develop from data in A+

S have been characterized indirectly in terms
of the asymptotic data induced on J + by the conformal extension of the
solutions. A direct characterization of the standard data in A+

S is desirable
but not known. That A+

S is a proper subset of DS is illustrated by the
analytically extended Schwarzschild-de Sitter solutions, which admit only
patches of smooth conformal extensions in the future and past [67]. A more
extreme case is that of the standard Nariai space-time, given by

M̂ = R × (S1 × S
2), ĝ = −dt2 + cosh2 t hS1 + hS2 ,

which solves (3.1) with λ = 1. It is globally hyperbolic and geodesically
complete. In [12] has been used a topological argument to show that the
standard Nariai solution does not even admit a patch of a smooth conformal
boundary. However, using that Cμνρλ[ĝ] Cμνρλ[ĝ] = Ω4 Cμνρλ|g] Cμνρλ|g] if
gμν = Ω2 ĝμν , where the contractions are performed with ĝ on the left and
with g on the right hand side, and using the result Cμνρλ[ĝ] Cμνρλ[ĝ] =
const. �= 0 of a calculation, it follows directly that there cannot exist a piece
of J ± of class C2.

Similarly, one would like to characterize the data in A+
S which are in fact

in A±
S . That the latter is a proper subset of A+

S is shown by the following
examples. The space-time

M̂ = R × T
3, ĝ = −dt2 + e2 t k0,

with k0 an Euclidean metric on T
3, solves (3.1) with λ = 3. It only admits

a smooth extension in the future. Its causal geodesics are future complete
but only the causal geodesics t → (t, p), p ∈ T

3 are past complete. Another
case is the space-time

M̂ = R × (S1 × S
2), ĝ = −dt2 + sinh2 t hS1 + cosh2 t hS2

which solves (3.1) with λ = 3, admits smooth conformally extensions at
the ends where |t| → ∞ but becomes singular as t → 0. These solutions
illustrate a general phenomenon:
Obstructions to smooth conformal extensibility in the past [6]: A

solution (M̂, ĝ) to (3.1) with λ > 0 which develops from data in A+
S does

not even admit a patch of a smooth conformal extension in the past if the
fundamental group of S is not of finite order or if the asymptotic data (h, w)
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induced by ĝ on J + are such that the conformal structure defined by (J +, h)
is not of positive Yamabe type.

The result gives little information about what exactly prevents the
solution from extending smoothly in the past. Further, there exist situations
in which smooth conformal extensibility fails for reasons different from those
given above. Let {αa}a=1,2,3 denote a basis of 1-forms on S

3 such that
δab αa αb = hS3 and dαa = −εbc

aαb ∧ αc. Then

M̂ = R × S3, ĝ = −1 + t2

v
dt2 + (1 + t2)(α1 α1 + α2 α2) +

v

1 + t2
α3 α3,

with v = (1 + t2)2 − α t, α ∈ R, denote members of the λ-Taub-NUT
family which solve (3.1) with λ = 3. Their conformal structures extend
smoothly in the past and in the future. With a suitable conformal scaling
the metric g induces on J + ∼ S

3 the asymptotic initial data h = hS3 ,
w = −α

2 (δab αa αb − 3 α3 α3), so that the obstructions pointed out above are
not present. If |α| < α∗ ≡ √

3 · 16/9, then v > 0 for τ ∈ R, the solutions are
geodesically complete and imply Cauchy data belonging to A±

S3 . If |α| ≥ α∗
the solutions are no longer globally hyperbolic. If α = α∗ the function v
has a double zero on the hypersurface {τ = τ∗ ≡ 1/

√
3}, which represents a

smooth compact Cauchy horizon that contains closed null curve. If α > α∗
the function v has two simple zeros at values τ± with 0 < τ− < τ∗ < τ+.
The hypersurfaces {τ = τ±} are Cauchy horizons which sandwich a domain
that contains closed time-like curves.

For given asymptotic initial data on S
3 or S

1 × S
2 Beyer investigates

solutions to the backward Cauchy problem for the conformal field equations
numerically [10]. This allows him in particular to calculate solutions de-
termined by data in A±

S from J + all the way down to J −. Among other
solutions, he studies a class of λ-Taub-NUT solutions larger than the one
given above. The investigation of the stability properties of solutions with
Cauchy horizons (numerically a delicate adventure since uniqueness of lo-
cal extensions fails at Cauchy horizons) suggests that the solutions develop
curvature singularities instead of Cauchy horizons if the asymptotic data on
J + are slightly perturbed [11].

3.3. Extensions beyond conformal boundaries. The argument
which give the stability results uses the fact that solutions which admit
smooth conformal extensions to J + can in fact be smoothly extended as
solutions to the conformal field equations into domains beyond J + where
Ω < 0. The extension defines there another solution to the Einstein equa-
tions. The conformal representation of de Sitter space given by Ω = cos τ
and g = −dτ2 + h S3 extends analytically to the manifold R × S

3, where
Ω defines an infinite sequence of domains on which Ω �= 0, separated by
hypersurfaces where Ω = 0, dΩ �= 0. On any such domain Ω−2 g is isometric
to the de Sitter metric. Denote by X ∼ S

3 a hypersurface which separates
two of these domains and let k > 0 be an integer. Consider asymptotic
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vacuum data on X . Then, by Cauchy stability, the solution to the confor-
mal field equations determined by these data will extend over k different
domains where Ω �= 0 if the data are sufficiently close to the asymptotic de
Sitter data induced on X by the metric g. In this case the ‘physical metrics’
induced on the different domains will not necessarily be isometric. It is an
interesting mathematical question whether a solution to the conformal field
equations which extends over an infinite number of domains where Ω �= 0
must necessarily be locally conformally flat.

So far the extensibility was used as a technical device. The ‘physical
solutions’ considered above, can hardly be considered as cosmological mod-
els, they expand exponentially in both time directions while current wisdom
expects that the universe starts with a big bang. One may still ask why the
‘physical world’ should end at J + if extensions across conformal boundaries
are a natural consequence of the field equations. At this stage we have to
recall that matter fields with non-zero rest mass have been ignored so far.
There exists little precise information about the behaviour of the conformal
structure near J +∗ if such fields are coupled to Einstein’s equations. If the
conformal structure can be controlled at all, it may depend in subtle ways
on the specific nature of the matter model.

A transition process across conformal boundaries is at the basis of
the conformal cyclic cosmology proposed by Penrose [89]. The underlying
picture is that of a smooth, time oriented conformal structure of signature
(−, +, +, +) (which we shall refer to as the long conformal structure) on a 4-
dimensional manifold M ∼ R×S with compact 3-manifold S, into which an
infinite sequence of aeons, i.e. time oriented ‘physical’ solutions to Einstein’s
field equations with cosmological constant λ > 0, are conformally embedded
so that any two consecutive aeons are separated by a crossover 3-surface
X ∼ S which is space-like with respect to the conformal structure. Each
aeon starts with a big bang that ‘touches’ the preceding crossover surface
and ends in the future with an exponentially expanding phase for which the
following crossover surface defines a smooth conformal boundary.

The transition process through the crossover surfaces must be controlled
with suitable versions of conformal field equations. It must be clarified what
happens at the prospective conformal boundaries in the presence of fields
with non-vanishing rest-masses. In [89] it is assumed that only zero rest-mass
fields will be present in some past neighbourhoods of the crossover surfaces.
No justification is known for this requirement. Finally, it will not suffice to
be able to glue in specific cases the future conformal boundary of a given
aeon to the hypersurface that conformally represents the isotropic singularity
in the past of the subsequent aeon. A general mechanism is needed that
forces the equations to take the route from a expanding phase to big bang
phase instead of simply using the smooth transitions across the conformal
boundaries discussed above. Moreover, the scenario asks for a quite new type
of global PDE result which establishes the existence of the long conformal
structure.
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Most likely, these problems are not independent of each other and it will
be worthwhile to have a closer look at the asymptotic behaviour of solutions
involving non-zero-rest mass fields. Ringström obtained quite general results
on the Einstein-scalar-field system. Consider the de Sitter metric ĝ together
with a function φ = 0 on M̂ = R × S

3 as a special solution to the Einstein’s
equations (2.2) with energy momentum tensor

T̂μν = ∇̂μφ ∇̂νφ −
(

1
2(∇̂ρφ ∇̂ρφ + m2 φ2) + U(φ)

)
ĝμν ,

coupled to the scalar field equation
∇̂μ ∇̂μφ = m2 φ + U ′(φ),

with rest-mass m > 0 and a smooth potential U .
Global stability [92]: If the potential is such that U = O(|φ|3) as φ → 0,
then the de Sitter solution (with φ ≡ 0) is non-linearly stable in the sense that
sufficiently small perturbations of de Sitter Cauchy data on a hypersurface
∼ S

3 develop into solutions to the coupled system whose causal geodesics are
past and future complete and which are, with respect to suitable close norms,
close to the de Sitter solution.

The work referred to above gives detailed estimates in terms of the phys-
ical metric. Getting precise ideas about the asymptotic behaviour of the
conformal structure will require more, however. In studying these questions
it may be useful to take into account the possibility that a loss of differ-
entiability of the long conformal structure at the crossover surfaces may
be admissible as long as uniqueness of the extensions is assured. The loss
may depend on various specific features of the matter model. The following,
somewhat unexpected, result shows that there are possibilities which are not
obvious if one just looks at the Einstein equations in their standard form.
Strong global stability [62]: If the mass and the cosmological constant are
related in the Einstein-scalar-field system by 3 m2 = 2 λ and the potential
satisfies U = O(|φ|4) as φ → 0, then Cauchy data sufficiently close to de
Sitter data with φ = 0 evolve into globally hyperbolic solutions that admit
smooth conformal extensions in the past and in the future.

If the scalar field is replaced by the function ψ = Ω−1 φ, the conformal
field equations and the transformed scalar field equation contain under the
assumptions above no 1/Ω terms and imply in fact hyperbolic reduced
systems. With asymptotic data on a slice {Ω = 0} that generalize the
asymptotic vacuum data considered earlier, a local existence result follows
and arguments similar to the ones given earlier imply the result.

This raises various questions. To which extent can the smoothness
assumptions and results be relaxed and the matter models be generalized ?
Can extensions of low smoothness and suitable matter models help initiate
the transition process from expanding to big bang phases ? Do there exist
physical fields satisfying the condition ? Does the relation between the
matter field and the cosmological constant shed any light on the origin
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and the role of the cosmological constant ? These questions will have to
be discussed elsewhere.

4. Minkowski-type solutions

The calculation of the gravitational radiation generated by spatially
localized processes like the encounters of stars or merges of black holes is
one of the main motivations for analyzing asymptotically flat solutions. The
simply connected, conformally flat model case is Minkowski-space, given in
spatial spherical coordinates by

M̂ = R
4, ĝ = −dt2 + dr2 + r2 hS2 .

Coordinates τ and χ and a conformal factor Ω satisfying

t = Ω−1 sin τ, r = Ω−1 sin χ, Ω = cos τ + cos χ, 0 ≤ χ, |τ ± χ| < π,

give Ω2 ĝ = g ≡ −dτ2 + dχ2 + sin2 χ hS2 , whence a smooth conformal
embedding of Minkowski space into the Einstein cosmos (M∗ = R×S

3, g∗ =
−dτ2 + hS3) [87].

The metric g and the conformal factor Ω extend smoothly to the range
0 ≤ χ, |τ ± χ| ≤ π of the coordinates. This extension adds to M̂ the sets
J ± = {τ = ± (π − χ), 0 < χ < π}, which are for the extended metric
g null hypersurfaces, referred to as future and past null infinity. The sets
i0 = {τ = 0, χ = π} and i± = {τ = ±π, χ = 0} represent regular points of
the conformal extension, it holds there Ω = 0, dΩ = 0, and 0 �= HessgΩ ∼ g.
For a given space-like slice Ŝto = {sin τ = to Ω}, to ∈ R, one may consider
i0 as a point added at spatial infinity which makes the slice into a sphere
∼ S

3. The point i0 defines an endpoint (in both directions) for all space-
like geodesics and thus represents space-like infinity for (M̂, ĝ). The points
i± are approached by the time-like geodesics in the future and the past
respectively and thus represent for (M̂, ĝ) future and past time-like infinity.
The set J + is ruled by the past directed null geodesics through the point
i+, which coincide with future directed null geodesics through i0. Similar
relations hold for J −, i−, and i0.

There are of course no stars or black holes around here but since the
registration of gravitational radiation takes place at large distances from
the sources, generalizations of the situation above to the far fields of non-
trivial vacuum solutions are of particular interest. It is sometimes said that it
were too extreme an idealization to put the measuring device at null infinity
or, in other words, to read off the radiation field there. This is in fact one
of the questions we are interested in when we try to control the field near
null infinity. If the field turns out to admit a smooth conformal extension
at null infinity then the structure of the field will hardly be affected if the
location of the ideal measuring device at null infinity is shifted slightly (in
terms of g-adapted conformal coordinates) into the space-time. In terms of
the physical metric g̃ such a shift covers an infinite distance, which puts
the measuring device at a reasonable distance to the sources. This is the
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situation considered in most numerical calculations. What is lost in such a
procedure, however, is the unique tangent space of null infinity which serves
to define the radiation field and gives an automatable prescription for the
numerical calculation of radiation fields.

Quite early the requirements of Definition 1.1 were shown to be met by
some of the most important explicit vacuum solutions that admit time-like
Killing fields [71], [87]. These were special cases of a general fact.
Static and stationary fields [36]: Asymptotically flat static or stationary
vacuum solutions admit smooth conformal extensions at future and past null
infinity.

This result establishes the existence of a fairly large class of asymptoti-
cally simple vacuum solutions. The main purpose of introducing Definition
1.1 is, however, to discuss gravitational radiation and all the solutions above
have vanishing radiation fields. There remains the question to what extent
Definition 1.1 applies to dynamical solutions.

In hindsight the PDE problem whose analysis paved the way to the
notion of asymptotic simplicity can understood as the asymptotic charac-
teristic initial value problem where data are prescribed on an outgoing null
hypersurface N which is supposed to intersect future null infinity in a 2-
dimensional space-like slice Σ and the part J +′ of future null infinity in the
past of Σ. A detailed formulation of this problem for the conformal field
equations which specifies the freedom to prescribe data has been given in
[42]. Its elaboration gives:
Well-posedness of the asymptotic characteristic initial value prob-
lem [72]: For given smooth null data on N and J +′

and certain smooth
functions given on Σ, there exists a smooth solution to the conformal vac-
uum field equations in a past neighborhood U of Σ which induces the given
data on U ∩ (N ∪ J +′). It induces on Û = U \ J +′

a unique solution ĝ to

Einstein’s vacuum field equation R̂μν = 0.

The smooth conformal extensibility of (Û , ĝ) has been built in by the
way the PDE problem is formulated. The freedom to prescribe null data
(two components of Wμ

νρλ on each hypersurface) is similar to that in
characteristic initial value problems for Einstein’s vacuum field equations
with data given on two intersecting null hypersurfaces N1, N2 which are
thought as lying in the physical space-time [41]. Only some differences
in the freedom to prescribe data on Σ resp. N1 ∩ N2 indicates that J +′

is geometrically a special hypersurface. The null datum on J +′ is in fact
the radiation field ψ0. If the data on N and Σ are trivial, the solution is
completely determined by ψ0. In the time reversed situation it is thus quite
natural to identify ψ0 with the incoming radiation field on past null infinity.
Since the radiation field can be prescribed freely we have solutions of the
type we are looking for. There also exists a real analytic version of this result
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[43]. The solution to the conformal field equations then extends analytically
into the future of null infinity to a domain where Ω < 0.

The characteristic initial value problem for the conformal field equations
whose solutions supplies purely radiative space-times is of particular interest
[48]. These space-times are defined be the requirement that they posses a
smooth past conformal boundary J − whose null generators are complete in
a conformal gauge that makes J − expansion free and which admit a smooth
conformal extension containing a point i− so that Ni− = J − ∪ {i−} is the
cone generated by the future directed null geodesics emerging from i−. Some
authors say ‘purely radiative’ under much weaker assumptions. It should be
noted, however, that only with sufficient regularity at i− the solutions will
be determined uniquely by the radiation field, a counter example being given
by the Schwarzschild solution. The simplest way to create purely radiative
space-times is to assume that the radiation field vanishes in a neighbourhood
of i−, so that the solution will be Minkowskian near past time-like infinity.
If one wants to exploit the full freedom to prescribe data, however, one has
to face problems arising from the non-smoothness of the initial set at the
vertex. One needs an appropriate notion of smoothness for the free data on
Ni− and it must be shown that field equations themselves then ensure the
smoothness of the solution in the future of Ni− [60]. The most difficult part,
the existence problem near i−, has been solved only recently.
Existence for the pure radiation problem near past time-like
infinity i− [30]: For a given radiation field on the cone Ni− that satisfies
appropriate smoothness conditions, there exists near i− a unique (up to
diffemorphisms) smooth solution to the vacuum equations in the future of
Ni−. For this solution Ni− represents a smooth conformal past boundary
with regular vertex i− on which the solution induces the given data.

Characteristic problems are important in various arguments and are
being used as the basis of numerical calculations extending to null infinity.
They will not be considered here any further. Being ruled by null geodesics,
null hypersurfaces have an intrinsic tendency to develop caustics, which can
give rise to extreme technical difficulties.

4.1. The hyperboloidal initial value problem. We consider now
initial value problems based on space-like hypersurfaces. Two classes of such
hypersurfaces are of interest to us. These are standard Cauchy hypersurfaces
like the sets Ŝto considered above, that extend to space-like infinity, and
hyperboloidal hypersurfaces like the sets {τ = τo, 0 ≤ χ < π − |τo|},
0 < |τo| = const. < π, in the conformally extended Minkowski space, which
extend smoothly to null infinity as space-like slices. The prototype example,
obtained for τo = π

2 , is the unit hyperboloid H+ = {−t2 + r2 = −1, t > 0}
which motivates the name [44]. In the conformally extended Minkowski
space it is easily seen that the future null cone with vertex at the origin, the
hull hypersurface J +, and the extension of the hypersurface H+ intersect
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each other transversally. Referring to the latter as ‘asymptotically null’, as
it is done sometimes, is thus easily misleading.

Hyperboloidal initial data (Ŝ, ĥab, χ̂ab) for Einstein’s vacuum field equa-
tions R̂μν = 0 have with asymptotically flat standard Cauchy data in
common that the underlying Riemannian space (Ŝ, ĥab) is required to
be orientable and geodesically complete, the vacuum constraints R[ĥ] =
χ̂ab χ̂ab − (χ̂a

a)2 and D̂b χ̂a
b = D̂a χ̂b

b must be satisfied, and the mean ex-
trinsic curvature κ̂ = χ̂a

a can be constant. This will be assumed in the
following to simplify the discussion. They differ, however, in their asymp-
totic behaviour. In the hyperboloidal case one must then have κ̂ �= 0 whereas
κ̂ = 0 in the asymptotically flat case. Moreover, if hyperboloidal data are
supposed to lead to a asymptotically smooth situation, they must admit a
smooth conformal completion

Ŝ → S = Ŝ ∪ Σ, ĥab → hab = Ω2 ĥab, χ̂ab → χab = Ω (χ̂ab − 1
3

κ̂ ĥab),

where (S, hab) is a Riemannian space with compact boundary ∂S = Σ, Ω a
smooth defining function of Σ with Ω > 0 on Ŝ, and Wμ

νλρ = Ω−1 Ĉμ
νλρ

extends smoothly to Σ on S where Ĉμ
νλρ denotes then conformal Weyl

tensor determined by the metric ĥab and the second fundamental form χ̂ab.
Such data will be called smooth.
Existence for hyperboloidal problems [44]: Smooth hyperboloidal initial
data develop into a unique smooth, maximal, globally hyperbolic solution to
Einstein’s vacuum field equations R̂μν = 0 which admits in the future of

the embedded hypersurface Ŝ a smooth conformal extension at future null
infinity, that approaches Σ in its past end, and which possesses a Cauchy
horizon in the past of Ŝ that approaches Σ in its future end.

While in the solution above the future directed null geodesics which ap-
proach future null infinity are future complete, the smooth hyperboloidal
hypersurfaces that connect the two future null infinities of the conformally
extended Schwarzschild-Kruskal space-time [71] show that further assump-
tions are required to ensure future completeness for all null geodesics.

Hyperboloidal initial data for which this completeness requirement is
satisfied are given by the data induced on a space-like hypersurface Ŝ
in Minkowski space with the following properties: Any past inextendible
causal curve starting in the future of Ŝ intersects Ŝ precisely once and Ŝ
has a (unique) smooth space-like extension S in the conformally extended
Minkowski space so that the surface Σ = S ∩ J + is diffeomorphic to S

2.
Data of this type will be referred to as Minkowskian hyperboloidal data and
their future development as a Minkowskian hyperboloidal development.
Strong future stability for Minkowskian hyperboloidal develop-
ments [47]: Let (Ŝ, ĥ∗

ab, χ̂
∗
ab) denote Minkowskian hyperboloidal data with

smooth conformal extension to the 3-manifold S = Ŝ ∪ Σ. Then any smooth



GEOMETRIC ASYMPTOTICS AND BEYOND 57

hyperboloidal vacuum initial data set (Ŝ, ĥab, χ̂ab) which is sufficiently close
(in suitable Sobolev norms) to the Minkowskian data set develops into a
solution which is null geodesically future complete and admits a smooth con-
formal extension at future null infinity with conformal boundary J +′

. More-
over, the conformal extension can be chosen to contain a regular point i+

such that the past directed null geodesics emanating from i+ generate the set
J +′

and approach the boundary Σ attached to Ŝ in their past.

The proof uses again the possibility to extend solutions to the conformal
field equations through sets where Ω vanishes. We don’t go into any details
but point out the remarkable consequence of equations (2.4) and (2.5) that
the null generators of the set J +′

are forced to meet under the given
conditions at exactly one point i+, where the conformal factor has a non
degenerate singularity with HessgΩ = s g, s = s|i+ �= 0.
Generalizations including matter fields [49]: The vacuum results above
can be generalized to include conformally well behaved matter fields coupled
to Einstein’s equations.

Generalization to higher dimensions [3]: The vacuum results generalize
to even space-time dimensions larger than four.

Hyperboloidal initial data can be constructed by a suitable adaption of
the conformal method known from the construction of asymptotically flat
Cauchy data. Certain seed data consistent with the required fall-off behaviour
at space-like infinity are prescribed freely and then elliptic equations are
solved to determine correction terms so that the corrected data will satisfy
the constraints.
Existence of smooth hyperboloidal vacuum data [4], [5]: Seed data
on a 3-manifold S with boundary Σ which extend smoothly to Σ determine
solutions to the vacuum constraints. In general these admit at Σ only
asymptotic expansions in terms of powers of x and log x where x is a local
coordinate with x = 0 on Σ and x > 0 on S̃ = S \ Σ (polyhomogenous
expansions). The hyperboloidal data are smooth if and only if the seed data
satisfy certain conditions at Σ.

It is important here to note that conditions on the seed data need only
be imposed at the boundary at infinity to ensure the smoothness of the
resulting hyperboloidal data. The result suggests a generalization.
Existence of polyhomogeneous hyperboloidal vacuum data [4]: Seed

data which are smooth on Ŝ and admit certain polyhomogenous expansions
at Σ determine hyperboloidal vacuum data which admit polyhomogenous
expansions at Σ.

The fact that the data are ‘physical’ only on the open set Ŝ leaves a large
ambiguity of how to specify the data at Σ if some roughness is admitted. It
is a critical open question, which will come up again in the standard Cauchy
problem, whether there exist physical situations of interest which can only
be modeled by using non-smooth data.
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For the calculation of radiation fields at null infinity the hyperboloidal
initial value problem is as good as the standard Cauchy problem and it
has the advantage of avoiding the difficulties at space-like infinity discussed
below. P. Hübner pioneered the numerical calculation of solutions including
parts of future null infinity from hyperbolical data [69]. He developed a code
for the conformal vacuum field equations which enabled him to calculate
numerically, without assuming any symmetries, the entire future of the
hyperboloidal initial slice as considered in the strong stability result above.
The calculation includes the radiation field on the asymptotic region J +′

and its limit at i+ [70]. A survey on this and other numerical developments
involving the conformal field equations is given by Frauendiener [39]. Once
it had been established that certain classes of hyperboloidal data develop
into solutions with a smooth asymptotic structure it became less daring
to try other approaches. There are now being developed numerical codes
based on equations that are more directly related to the singular conformal
representation (2.1) [93].

4.2. The standard Cauchy problem. For asymptotically flat space-
times the standard Cauchy problem for Einstein’s field equations is more
fundamental than the hyperboloidal problem. Its solutions cover the past as
well as the future in a unified way while a solution to a hyperboloidal problem
is thought of as part of an ambient asymptotically flat space-time. One may
wonder whether the problem raised above about non-smooth hyperboloidal
initial data could be answered by analyzing the developments of standard
Cauchy data. The picture of the conformally compactified Minkowski space
and the results on the hyperboloidal initial value problem then suggest that
the field equations decide on the asymptotic smoothness at null infinity
in any neighbourhood of space-like infinity. There is again an ambiguity
concerning the fall-off behaviour.

One has to decide between conflicting requirements. Too much generality
can obscure important features by irrelevant noise while overly stringent
conditions aiming at sharp control of physical concepts may cause a loss of
physically relevant input. To make a useful choice one needs to understand
a reasonably broad spectrum of possibilites.

Existence results are usually formulated in terms of suitable function
spaces which encode in a precise way the fall-off behaviour and other
properties of the solutions. In the following comparisons we shall ignore
all these important technicalities and just use order symbols to indicate the
asymptotic behaviour of the fields which is essential to our discussion. For
full precision we refer to the original articles. In the following we consider
smooth initial data sets, i.e. solutions (Ŝ, ĥab, χ̂ab) to the vacuum constraints,
on the manifold Ŝ = R

3 with standard Euclidean coordinates x̂a, which are
in a suitable sense close to the Minkowski data (Ŝ, δab, 0). Bieri obtained a
quite general result.
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Stability of Minkowski space A [15]: Smooth vacuum Cauchy data

(Ŝ, ĥab, χ̂ab) which are sufficiently close to the Minkowski data and which
are asymptotically flat so that

ĥab = δab + o3(|x̂|−1/2), χ̂ab = o2(|x̂|−3/2),

develop into solutions to Einstein’s vacuum equations R̂μν = 0, for which all
causal geodesics are complete and whose curvature tensor approaches zero
asymptotically in all directions.

A global stability result based on such weak fall-off conditions is a
remarkable mathematical achievement. One has to pay a price, however.
The analysis gives little information on the precise behaviour of the solution
near null infinity. In particular, a concept of radiation field is no longer
available [16]. Christodoulou and Klainerman obtained their result under
stronger requirements.
Stability of Minkowski space B [24]: Smooth vacuum Cauchy data

(Ŝ, ĥab, χ̂ab) which are sufficiently close to the Minkowski data and which
are asymptotically flat so that

ĥab =
(
1 + 2 m |x̂|−1) δab + o4(|x̂|−3/2), χ̂ab = o3(|x̂|−5/2),

with some constant m > 0 develop into solutions to Einstein’s vacuum equa-
tions R̂μν = 0, for which all causal geodesics are complete and whose curva-
ture tensor approaches zero asymptotically in all directions. Null infinity is
complete. A concept of radiation field can be defined.

Some information about null infinity, such as being approximated by
complete null geodesics, is obtained, but sharp fall-off statements are miss-
ing. The results obtained on the fall-off behaviour of the conformal Weyl
tensor at null infinity are weaker than those required by the Sachs peeling
behaviour. If they are sharp the solutions do not admit smooth conformal
extensions. This raised doubts whether there do exist asymptotically flat
vacuum data at all that develop into solutions which are null geodesically
complete and admit smooth conformal extensions at null infinity [24]. The
characterization of such data clearly requires a detailed analysis of the evo-
lution near space-like infinity. It is reasonable to base the investigation on a
choice of data with clean fall-off behaviour at all orders.
Existence of Cauchy data with prescribed asymptotic behaviour
[37]: There exists a large class of asymptotically flat vacuum Cauchy data on
R

3 so that in suitable coordinates x̂a near space-like infinity the data behave
as

ĥab =
(
1 + 2 m |x̂|−1) δab + O(|x̂|−2), χ̂ab = O(|x̂|−2) as |x̂| → ∞,

and admit asymptotic expansions in terms of powers of |x̂|−1 as |x̂| → ∞
with smooth, bounded coefficients.

In [37] are prescribed seed data possessing this property, where the seed
metric is required in addition to admit a smooth conformal compactification
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at space-like infinity (for possible generalizations see [36]). It is then shown
that the elliptic equations give correction terms with the desired asymptotic
expansion if and only if |x̂|3 χ̂ab is bounded on R

3. Otherwise one obtains
data which only admit polyhomogeneous expansions. It is interesting to note
that the latter are admitted in [15] but excluded in [24]. They will also be
excluded in the following discussion.

The smooth conformal extension of Minkowski space contains the point
i0 that represents space-like infinity for the space-time as well as for any
Cauchy data. If one stipulates a similar picture for general asymptotically
flat vacuum solutions with mass m > 0, one finds that the data for the
conformal field equations induced on Cauchy hypersurfaces are strongly
singular at the point i0. In the following it will become clear that a detailed
and general analysis of the field equations and their evolution properties
is impossible if the structure near space-like infinity exhibited below is
compressed into one point.

Surprisingly, the Einstein equations allow us to define a setting which
explains why a stability result as strong and unrestricted as in the de Sitter
case cannot be obtained in the case λ = 0.

The regular finite Cauchy problem [52]: With asymptotically flat

initial data as above the Cauchy problem for R̂μν = 0 is equivalent to an
initial value problem for the general conformal field equations with smooth
initial data on a 3-manifold S with boundary I0 ∼ S

2. These data develop
smoothly on a manifold M diffeomorphic to an open neighborhood of S ≡
{0}×S in R×S which, assuming a suitable ‘time’-coordinate t taking values
in the first factor, has I = ] − 1, 1[×I0 as a boundary.

It is a consequence of the assumptions that the data extend in a suitable
conformal scaling smoothly to the boundary I0, which represents space-like
infinity on the initial slice S. What may look strange, is that the Cauchy
problem has been replaced by an initial-boundary value problem. The
boundary is, however, of a very peculiar nature. It is ‘totally characteristic’
in the sense that at points of the boundary the hyperbolic reduced equations
contain only differential operators tangential to the boundary. On the
boundary the unknowns are thus evolved by inner equations and boundary
data cannot be prescribed. The set I, which is generated in the given gauge
by the evolution process from I0, defines a smooth extension of the physical
manifold which represents space-like infinity for the solution space-time.

The setting has further remarkable features. In the given gauge the
conformal factor Ω is an explicitly known function of the coordinates and
there are sets J ±

# = {Ω = 0, dΩ �= 0}± with known finite (gauge dependent)
coordinate location in the future and the past of S respectively so that Ω > 0
between these sets on M \ I. If the solution to the conformal field equations
extends to these sets with sufficient smoothness they will in fact define the
conformal boundary at null infinity so that J ±

# = J ±.
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The sets J ±
# approach the boundary I transversely at the critical sets

I± = {±1} × I0, which can be understood as defining a boundary of I.
While the reduced equations will be hyperbolic along I as well as between
J −

# and J +
# (as long as the gauge does not break down), and even on the

latter sets if the solution extends smoothly, their hyperbolicity degenerates
in a specific way at the critical sets. The decision which initial data evolve
into solutions that admit a smooth conformal structure at null infinity takes
place precisely at these sets.

Data which are static in a neighborhood of I0 in S evolve into solutions
which are real analytic and extend with that property across I± and J ±
[55]. If the data are stationary the setting works as well and one gets a
similar result [1]. For more general data the loss of hyperbolicity at I± can
entail, however, a loss of smoothness at these sets.
This is a fundamental difference with the hyperboloidal initial value problem.
While in the latter smoothness of the initial data ensures smoothness of the
conformal boundary near the initial slice, this is not the case in the standard
Cauchy problem. Here, the field equations define a hierarchy of conditions,
involving all orders of differentiabilty, which go beyond simple smoothness
requirements on the initial slice.

Denote by u the set of unknowns in the conformal field equations, by r
a local coordinate near I with r = 0 on I and r > 0 on M \ I, and by
t a ‘time’ coordinate on I with t = 0 on I0 and t = ±1 on I±. Then
the peculiar nature of the boundary I has the consequence that on I the
functions ∂p

ru, p ≥ 1, evolve from the initial data ∂p
ru|I0 as solutions to linear,

hyperbolic transport equations intrinsic to I. Explicit calculations show that
these functions, which are smooth on I, do in general not extend smoothly
to I+ but only admit asymptotic expansion in terms of (1− t)k log(1− t)l as
t → 1 with coefficients that are smooth functions on I0 and with exponents
k which are increasing with p so that the singular behaviour gets milder at
higher order. A similar behaviour is found at I−.

In which way does this affect the smoothness at the sets J ±∗ ? This
question has not been answered yet. But that it will have an effect is seen if
the setting is linearized at Minkowski space. The resulting problem is then
controlled by the Bianchi equation for the linearized rescaled conformal
Weyl tensor W ′μ

νρλ. It turns out that if the initial data are such that
some quantity ∂p

rW ′μ
νρλ on I develops a logarithmic term at I+ then the

logarithmic singularity spreads along the null generators of null infinity [54].
The situation can hardly be expected to improve in the non-linear case.

Which conditions on the initial data on S ensure that the functions ∂p
ru

extend smoothly to I± ? This question is technically quite difficult. A first
family of such conditions have been derived in [52], which concentrates on
the time reflection symmetric case so that the physical data on S \ I0 are
given by the 3-metric ĥab. Let Bab denote he (dualized) Cotton tensor of
the rescaled 3-metric hab. It has been shown in [52] that the symmetrized



62 HELMUT FRIEDRICH

h-covariant derivatives of Bab necessarily vanish at all orders at space-
like infinity if the ∂p

ru extend smoothly to I±. Since the sequence of
these conditions is conformally invariant they define a condition on the
asymptotic conformal structure of ĥab. If the metric ĥab is conformally flat
near space-like infinity these conditions are satisfied. In that case the metric
is determined near space-like infinity only the by scaling factor of the flat
metric, which is restricted by the Hamiltonian constraint. It has been shown
that even in that case there might arise obstructions to the smoothness of
the ∂p

ru at I± [102].
In the time reflection symmetric case the complete set of necessary

conditions is not known yet and the situation is even less clear in general.
In the time reflection symmetric case there are, however, strong indications
which suggest that a necessary and sufficient condition for the smoothness
of the ∂p

ru, p ∈ N, is that the datum ĥab is asymptotically static at space-like
infinity. We refer to [59] for a detailed discussion.

4.2.1. Asymptotically special initial data. The discussion above raises
questions about the possibilities to construct solutions to the vacuum con-
straints which satisfy at space-like infinity additional asymptotic conditions
at all orders. Cutler and Wald considered the even more difficult prob-
lem of constructing data with a complete metric on R

3 that are exactly
Schwarzschild in a neighbourhood of space-like infinity. They managed to
construct for the Einstein-Maxwell equations a smooth family of such data
which includes the Minkowski data [35]. This allowed them to show for the
first time the existence non-trivial solutions to the Einstein-Maxwell equa-
tions which are null geodesically complete and admit smooth conformal ex-
tensions at null infinity with complete J ± and regular points i±. In fact, the
control on the asymptotic behaviour of the solutions in the static region near
space-like infinity allows them to conclude that the solutions contain hyper-
boloidal hypersurfaces with induced data that can be arbitrarily close to
Minkowskian hyperboloidal data. Invoking the strong stability result above
on Minkowskian hyperboloidal developments then gives the result.

The data so constructed seem to be extremely special but the work
initiated by Corvino shows that there exist in fact large classes of data with
specialized ends.
Complete vacuum data with Schwarzschild ends. [31]: A given time
reflection symmetric, asymptotically flat vacuum data set can be deformed
outside some prescribed compact domain so as to obtain vacuum data which
are exactly Schwarzschild in some neighbourhood of spatial infinity.

This has been generalized by Corvino and Schoen ([33]) and Chruściel
and Delay ([27]), who obtained vacuum data which agree on prescribed
compact sets with given asymptotically flat data and which are stationary
near spatial infinity. (It may be noted that the multi-poles associated with
these static or stationary ends are hardly of any significance with respect to
the structure of these data in the interior.) Combined with the hyperboloidal
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stability result the control on the evolution of these data near spatial infinity
led to generalizations of the Cutler - Wald idea.
Vacuum solutions with smooth asymptotic structure [32], [26]:
There exist large classes of vacuum solutions that are null geodesically com-
plete and static or stationary near space-like infinity, which admit smooth
and complete conformal boundaries J ± at null infinity and regular points
i± at future and past time-like infinity.

It appears that we are getting close to obtaining conditions which are
necessary and sufficient for asymptotically flat solutions to admit a smooth
conformal extension in a neighborhood of the critical set or, with suitable
smallness assumptions on the data, along complete null infinities. But closing
the gap still requires some complicated analysis. There are good arguments
why it would be worth the effort.

In the time reflection symmetric case it has been shown in [63] that,
given enough smoothness, the completion of the picture reduces many
questions about the asymptotics and the associated physical concepts which
have been discussed in the literature for a long time to straightforward
(though possibly lengthy) calculations. In particular, the settings of [82],
[83] are related in [63] to the setting of [52] near space-like infinity, it is
shown how quantities of physical interest like the Bondi-mass or the NP
conserved quantities near the critical set on J + can be related explicitly
to quantities on the initial slice near spatial infinity like the ADM-mass
and higher order expansion coefficients, and so on. The setting also allows
us to single out in a unique way the Poincare group as a subgroup of the
BMS-group. It would be interesting to understand the weakest smoothness
conditions under which this can still be done and under which the BMS-
group can still be defined. Some generalizations of these results are discussed
in [103].

The precise identification of the data content which needs to be supressed
to achieve a certain amount of asymptotic smoothness may help understand
the role and meaning of that content (if there is any). Referring to it as
‘radiation near space-like infinity’ explains very little. It needs to be decided
whether there exist physical situations of interest which require this content
for their adequate modelling.

The setting proposed in [52] offers the possibility to calculate numer-
ically entire asymptotically flat solutions, including their asymptotics and
radiation fields, on finite grids. First steps to develop adequate numerical
methods are being taken in [13] and [40]. The work in [13] even includes a
discussion of the logarithmic terms exhibited in [54] and it suggests that the
difficulties arising from the loss of hyperbolicity of the equation at the crit-
ical sets can be compensated by the information supplied by the transport
equations on the cylinder I at space-like infinity.
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An important open problem is the numerical calculation of Corvino-
type data. In the time reflection symmetric case there has been proposed a
general method how to obtain such data by solving PDE systems [7]. But this
needs further analytical and numerical study. If such data can be provided
numerically, it will help analyzing the effect of Corvino-type deformations
on the developments of solutions in time, a subject of greatest interest from
our point of view. In the conformal picture the solutions seem to be modified
by such deformations only in some ‘thin’ neighbourhood of J − ∪ i0 ∪ J +.
But to what extent do they affect the structure of the radiation field in
the causal future of that part of the initial hypersurface where the essential
physical processes take place ? What is the difference in the radiation fields
resulting from two different Corvino-type deformations ? If the radiation
field on J + in the causal future of a merger process would hardly be affected
by deformations that are performed sufficiently close to space-like infinity,
there would be no reason to worry about the data asymptotics. If it would
be affected in an essential way, however, choosing the ‘correct’ asymptotics
of the Cauchy data would become a delicate matter in any case.

5. Anti-de Sitter-type solutions

The AdS/CFT correspondence proposed by Maldacena [81] sparked an
enormous interest in solutions to Einstein’s field equations with cosmological
constant λ < 0. There exists, however, no observational evidence which
would motivate the choice λ < 0 physically and the analysis must be guided
by what looks mathematically natural and reasonably general. We shall only
consider four-dimensional solutions with λ < 0 and view them, like de Sitter-
and Minkowski-type solutions, as classical relativistic objects representing
cosmological models or subsystems thereof.

The model to be generalized in the following is the simply connected,
conformally flat anti-de Sitter covering space, short AdS, which is given by

M̂ = R × R
3, ĝ = − cosh2 r dt2 + dr2 + sinh2 r hS2 ,

where r ≥ 0 denotes a radial coordinate on R
3. It solves (3.1) with

λ = −3. A clear picture of its global and asymptotic structure is obtained
by combining the coordinate transformation ρ = 2 arctan(er) − π

2 with
a rescaling by the conformal factor Ω = cosh−1 r = cos ρ to obtain the
conformal representation

g = Ω2 ĝ = −dt2 + dρ2 + sin2 ρ hS2 , 0 ≤ ρ < π
2 .

The metric g and the conformal factor Ω extend smoothly as ρ → π
2 and

then live on the manifold M = R×S3/2 where the second factor denotes the
closure of a hemisphere of S

3. The boundary J = {ρ = π
2 } ∼ R×S

2 attached
by this process to M̂ is time-like for g and its points can be understood as
endpoints of the space-like and null geodesics of ĝ so that J represents
space-like and null infinity for AdS.
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Any solution of Einstein’s equations (3.1) with λ < 0 which admits in a
similar way a smooth conformal extension that adds a time-like hypersurface
J which represents space-like and null infinity will be referred to as an
AdS-type space-time. Two basic features distinguish the global causal resp.
conformal structure of AdS from that of de Sitter- or Minkowski-space. The
obvious one is the fact that AdS (in fact any AdS-type space-time) fails to
be globally hyperbolic. A less obvious one will be discussed in the context of
the AdS stability problem, where it will become as important as the presence
of a time-like boundary.

If more general AdS-type solutions to (3.1) are to be constructed by
solving PDE problems, one needs to analyze the freedom to prescribe
boundary data. The formal expansions at the the conformal boundary found
in the literature amount to analyzing Cauchy problems with data on J .
This may be of interest in some contexts but will not suffice for us. Cauchy
problems for hyperbolic equations with data on time-like hypersurfaces are
known to be ill-posed. Moreover, if the formal expansions can be shown
to define real analytic solutions in some neighborhood of J (see [75])
the analytic extension into the interior will, more likely than not, end in
a singularity and it remains unclear whether these solutions admit any
extension at all which is regular in the sense that it contains a complete
(in the induced metric) space-like hypersurface that intersects J in a space-
like surface.

5.1. An existence result. The natural problem to consider is the
initial-boundary value problem with boundary data prescribed on J and
Cauchy data given on a space-like slice that extends to the boundary.
Existence of AdS-type soutions local in time [50]: Suppose λ is a

negative number and (Ŝ, ĥab, χ̂ab) is a smooth Cauchy data set for (3.1) with

κ̂ = ĥab χ̂ab = const. �= 0 so that Ŝ is an orientable 3-manifold and (Ŝ, ĥab)
is a complete Riemannian space. Let these data admit a smooth conformal
completion

Ŝ → S = Ŝ ∪ Σ, ĥab → hab = Ω2 ĥab, χ̂ab → χab = Ω (χ̂ab − 1
3

κ̂ ĥab),

where (S, hab) is a Riemannian space with compact boundary ∂S = Σ, Ω a

smooth defining function of Σ with Ω > 0 on Ŝ, and Wμ
νλρ = Ω−1 Ĉμ

νλρ

extends smoothly to Σ on S where Ĉμ
νλρ denotes then conformal Weyl

tensor determined by the metric ĥab and the second fundamental form χ̂ab.
Consider the boundary J = R × ∂S of M = R × S and identify S

with {0} × S ⊂ M and Σ with {0} × ∂S = S ∩ J . Let on J be given
a smooth 3-dimensional Lorentzian conformal structure which satisfies in
an adapted gauge together with the Cauchy data the corner conditions (see
below) implied on Σ by the conformal field equations, where it is assumed
that the normals to S are tangent to J on Σ.
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Then there exists for some to > 0 on the set Ŵ = ]−to, to[×Ŝ ⊂ R× Ŝ ⊂
M a unique solution ĝ to (3.1) which admits with some smooth boundary
defining function Ω on M (that extends the function Ω on S above) a smooth
conformal extension

Ŵ → W =] − to, to[×S, ĝ → g = Ω2ĝ,

that induces (up to a conformal diffeomorphism) on S and Jo =]−to, to[×∂S
the given conformal data.

This is the first and still the only well-posed initial boundary value
problem for Einstein’s field equations that admits a covariant formulation
and which is general in the sense that no symmetries are required (see
[64], [77] for analyses of finite initial boundary value problems and [58]
for a critical discussion). It supports the view that the setting of asymptotic
simplicity is natural for Einstein’s equations. The idea of a smooth conformal
extension is basic for the formulation of the PDE problem which leads to
this result. All possible AdS-type solutions local in time (with |to| sufficiently
small) are obtained. In the following we point out the particular features
of AdS-type vacuum solutions which allow one to obtain this result, and
comment on a particular choice of boundary condition. In [50] has been
observed a correspondence between Cauchy data sets as required above and
hyperboloidal Cauchy data for Einstein’s equations (3.1) with λ = 0. This
has been worked out in detail in [73]. It is not known whether the existence
result local in time can be extended to hyperboloidal data which only admit
poly-homogeneous expansions at infinity. Most likely the non-smoothness
will spread into the physical manifold.

Because the data on J are not subject to constraints the discussion
of the boundary conditions looks simple. The covariant formulation rests,
however, on specific properties of AdS-type solutions and is obtained in two
steps. In the first step boundary conditions/data are considered which relate
directly to a well-posed PDE problem. AdS-type solutions have the special
feature that the second fundamental form κab induced on J can be made to
vanish on J in a suitable conformal gauge. As a consequence there exists a
certain geometric gauge in which the location of the boundary J is known,
the conformal factor Ω with Ω = 0 and dΩ �= 0 on J is known explicitly,
and on J the gauge is determined in terms of the inner metric induced on
J . In this gauge the conformal field equations imply hyperbolic evolution
equations which assume in Newman-Penrose notation the form

∂τu = F (u, ψ, xμ), (1 + A0) ∂τψ + Aα ∂αψ = G(u, ψ, xμ),
where τ = x0 is a time coordinate, xα are spatial coordinates, and the
unknown u comprises besides the pseudo-orthonormal frame coefficients
(eμ

k)k=0,..,3 also the connection coefficients and the Schouten tensor Ljk =
1
2 (Rjk − 1

6 R gjk) of the metric g with respect to this frame. The matrices Aμ

depend on the frame coefficients and the coordinates and ψ = (ψ0, . . . ψ4)
represents the essential components of the symmetric spinor field ψABCD
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that corresponds to the tensor field W i
jkl. The frame is chosen so that the

future directed time-like vector field e0+e1 is tangential to J and the space-
like vector field e0 − e1 is normal to J and inward pointing. Then e2, e3 are
tangential to J , e0 is inward and e1 is outward pointing on J . General
results on initial-boundary value problems then give boundary conditions of
the form

ψ4 − a ψ0 − c ψ̄0 = d = d1 + i d2, |a| + |c| ≤ 1 on J ,

where the smooth complex-valued function d on J denotes the essential free
boundary datum and the smooth complex-valued functions a and c on J
can be chosen freely within the indicated restrictions.

Given the conformal Cauchy data on S in the gauge used above, the
formal expansion of the unknowns u, ψ in terms of the coordinate τ is
determined at all orders on S, in particular on Σ. On J let be given smooth
functions a and c as above. Using their formal expansion in terms of τ on Σ,
the formal expansion of the term on the left hand side of of the boundary
condition on Σ is obtained. The corner conditions consist in the requirement
that this formal expansion coincides on Σ with the formal expansion of the
free boundary datum d. Borel’s theorem guarantees that there always exist
smooth functions d on J which satisfy this requirement. Away from Σ they
are essentially arbitrary.

With Cauchy data as stated in the theorem and boundary conditions
as above where d satisfies the corner conditions one obtains a well-posed
initial-boundary value problem which preserves the constraints and the gauge
conditions. This implies the existence and uniqueness of smooth solutions
on a domain as indicated in the theorem.

The formulation so obtained has the drawback that the boundary condi-
tion depends implicitly on the choice of of the time-like vector field ne0 +e1.
In the case of AdS-type solutions it can be overcome by using the observa-
tion that such solutions must satisfy the relation w∗

ab =
√

3/|λ| Bab on J ,
where w∗

ab denotes the J -magnetic part of W i
jkl, obtained be contracting

the right dual of W i
jkl twice with the inward pointing unit normal of J ,

and Bab is the (dualized) Cotton tensor of the metric kab induced on J .
With the particular choice ψ4 − ψ̄0 = d1 + i d2 of the boundary condition
this allows one to express certain components of the Cotton tensor in terms
of the real-valued functions d1, d2. If these components are given, the struc-
tural equations of the normal conformal Cartan connection defined by the
conformal structure on J provides in our gauge a hyperbolic differential
system on J which determines, with the data given on Σ, the inner metric
kab uniquely in terms of d1 and d2. Conversely, the function ψ4 − ψ̄0, whence
the free data d, can be calculated in the given gauge uniquely from the inner
metric kab on J .

Irrespective of the functions a and c, any boundary condition with
d = 0 on J can be considered as a reflective boundary condition. With
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an additional requirement on Σ = S ∩ J it implies the relation Bab[k] = 0
of local conformal flatness on J . This will be referred to as the reflective
boundary condition. It appears so natural to many authors that they refer
to it as the AdS-boundary condition. There seems to be no particular reason,
however, why it should be preferred. Moreover, when conditions are imposed
on the boundary data, the clean separation between the evolution problem
and the problem of the constraints we are used to from the standard Cauchy
problem, is not maintained any longer. If reflective boundary conditions
are imposed on J , consistency with the corner conditions requires that the
Cauchy data on S satisfy besides the underdetermined elliptic constraint
equations on S an infinite number of differential conditions at Σ [61].

The results obtained in four space-time dimensions in the cases λ ≥ 0
have been generalized to even space-time dimensions larger than four. It
is conceivable that the type of analysis of the initial boundary value prob-
lem for Einstein’s field equations in [77] can be applied to the conformal
differential system considered in [2] to obtain such a generalization also in
the case λ < 0. This requires, however, a new study of the problem of con-
straint propagation and different arguments to obtain covariant boundary
conditions.

5.2. On the stability problem. Given the local existence result,
there arises the question whether the solution can be controlled globally
in time or, more modestly, whether AdS is non-linearly stable. It turns out
that this stability problem is much more challenging than the corresponding
ones in the cases λ ≥ 0. There is the technical difficulty of controlling the
evolution for an arbitrary length of time, but it is as already problematic to
say what should be meant by ‘stability’ in the present context.

Bizoń and Rostworowski [18] presented a first study of the AdS-stability
problem by using mainly numerical methods. Their work raises extremely
interesting questions concerning solutions to Einstein’s equations (3.1) with
λ < 0 that are subject to conditions on the boundary J at space-like and null
infinity. They analyse the spherically symmetric Einstein-massless-scalar
field system with homogeneous Dirichlet asymptotics and Gaussian type
initial data and observe the formation of trapped surfaces for (numerically)
arbitrarily small initial data. They supply numerical evidence that the
development of trapped surfaces results from an energy transfer from low to
high frequency modes. They perform a perturbative analysis, which points
into the same direction but also exhibits small one-mode initial data which
develop into forever smooth solutions. There are small neighborhoods of
these data which develop into (numerically) forever smooth solutions. Their
results led them to suggest: AdS is unstable against the formation of black
holes for a large class of arbitrarily small perturbations.

While it has been formulated in the context of a particular model this
conjecture may easily be understood as applying more generally. In the
following we wish to point out that the situation considered here is extremely
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special and may obscure the view onto a scenery which is much richer in
possibilities.

The setting considered in [18], mainly motivated by questions of techni-
cal feasibility, involves reflecting boundary conditions. These are convenient
because they lead to clean initial boundary value problems but they are also
very restrictive from a physical point of view. Such systems cannot interact
with an ambient universe and thus certainly do not represent observable
objects as suggested by some of the names given to them in the literature.

For the stability problem a second feature of the global conformal
structure of AdS is of equal importance as the existence of the time-like
boundary. Contrary to what is occasionally suggested in the literature and
what does hold in the cases λ ≥ 0, AdS does not admit conformal rescalings
that put past or future time-like infinity, represented by points or more
general sets, in a finite coordinate location and extend smoothly. In this
sense AdS is always of infinite length in time, even in ‘conformal time’ (this
can be supported by rigorous arguments).

Some of the observations in [18] may then (in hindsight) not be too
surprising. By the non-linearity of the Einstein equations the spherically
symmetric field perturbation may be expected to give rise a focussing effect
when it travels towards the center and the boundary condition leads to a
reflection and refocussing of the perturbation at the boundary. Because con-
formal time is potentially unlimited, this process can repeat itself arbitrarily
often and the focussing effects, however tiny at each step, may eventually
add up to produce a collapse. The occurrence of islands of stability then
appears in fact more surprising than the tendency to develop a collapse.

The relatives sizes of the ocean of data of instability and the tiny islands
of stability may change drastically if the full freedom to impose boundary
conditions is taken into account. As long as physical considerations do not
tell us what kind of objects should be represented by solutions with λ < 0
it does not appear advisable to exclude any choices in the stability analysis.

It is instructive to compare situations of different signs of λ. In the case
λ > 0 there is no ambiguity in saying that initial data on a (compact)
Cauchy hypersurface are close to some reference data like de Sitter data.
Incoming information can be specified on J − and outgoing information
can be controlled on J +. If the information entering at J − is trivial, the
solution is trivial. Potential difficulties arising from spatial compactness are
compensated by the exponential expansion of the solutions.

If initial data are prescribed in the case λ = 0 on a Cauchy hypersurface,
the requirement that they be close to Minkowskian data leaves ambiguities
near space-like infinity which may affect the smoothness at J ±∗ . But under
fairly general assumptions we find again that there is a clear separation
between incoming information, specified in terms of the radiation field on
J −, and outgoing information, registered by the radiation field on J +. If
the incoming information is trivial the solution is trivial.
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In the AdS-type case λ < 0 there exist data ambiguities at the spatial
end of the initial slice and all along the boundary J . Refusing information to
enter the space-time through J by imposing reflecting boundary conditions
does not lead to trivial solutions. There do exist non-trivial vacuum initial
data consistent with these boundary conditions [28]. Moreover, under more
general assumptions on the boundary conditions and data it is far from
obvious how to control in- and outgoing radiation separately to achieve a
balance along J which would avoid the development of gravitational collapse
phenomena.
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[18] P. Bizoń, A. Rostworowski. On weakly turbulent stability of anti-de Sitter spacetime.

Phys. Rev. Lett. 107 (2011) 031102.



GEOMETRIC ASYMPTOTICS AND BEYOND 71

[19] H. Bondi, M. G. J. van der Burg, A. W. K. Metzner. Gravitational waves in general
relativity VII. Waves from axi-symmetric isolated systems. Proc. Roy. Soc A 269
(1962) 21–52.

[20] M. W. Choptuik. Universality and scaling in gravitational collapse of a massless
scalar field. Phys. Rev. Lett. 70 (1993) 9.
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Chruściel, H. Friedrich (eds.): The Einstein Equations and the Large Scale Behaviour
of Gravitational Fields. Birkhäuser, Basel, 2004.

[56] H. Friedrich. Is general relativity ‘essentially understood’ ? Ann. Phys. (Leipzig) 15
(2006) 84 - 108.

[57] H. Friedrich. Static vacuum solutions from convergent null data expansions at space-
like infinity. Ann. Henri Poincare 8 (2007) 817 - 884.

[58] H. Friedrich. Initial boundary value problem for Einstein’s field equations and
geometric uniqueness. Gen Relativ Gravit 41 (2009) 1947 - 1966.

[59] H. Friedrich. Conformal structures of static vacuum data. Commun. Math. Phys.
321 (2013) 419 - 482

[60] H. Friedrich. The Taylor expansion at past time-like infinity. Commun. Math. Phys.
324 (2013) 263 - 300.

[61] H. Friedrich. On the ADS stability problem. Class. Quantum Grav.. 31 (2014) 105001
[62] H. Friedrich. Smooth non-zero rest-mass evolution across time-like infinity. Ann.

Henri Poincare (2014), to appear. arXiv:1311.0700
[63] H. Friedrich, J. Kánnár. Bondi systems near space-like infinity and the calculation

of the NP-constants. J. Math. Phys. 41, (2000), 2195 - 2232.
[64] H. Friedrich, G. Nagy. The initial boundary value problem for Einstein’s vacuum

field equations. Comm. Math. Phys. 201 (1999) 619 - 655.
[65] R. Geroch. Asymptotic structure of space-time. In: F. P. Esposito, L. Witten:

Asymptotic structure of space-time. Plenum, New York, 1977



GEOMETRIC ASYMPTOTICS AND BEYOND 73

[66] R. Geroch, G. T. Horowitz. Asymptotically simple does not imply asymptotically
Minkowskian. Phys. Rev. Lett. 40 (1978) 203 - 206.

[67] G. W. Gibbons, S. W. Hawking. Cosmological event horizons, thermodynamics, and
particle creation. Phys. Rev. D 15 (1977) 2738 - 2751.

[68] R. Graham, K. Hirachi. The ambient obstruction tensor and Q-curvature. In: O.
Biquard (ed.) AdS/CFT Correspondence: Einstein metrics and their conformal
boundaries. European Math. Soc., Zürich, 2005.
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