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Smooth Non-Zero Rest-Mass Evolution
Across Time-Like Infinity

Helmut Friedrich

Abstract. It is shown that solutions to Einstein’s field equations with pos-
itive cosmological constant can include non-zero rest-mass fields which
coexist with and travel unimpeded across a smooth conformal boundary.
This is exemplified by the coupled Einstein-massive-scalar field equations
for which the mass m is related to the cosmological constant A\ by the rela-
tion 3m? = 2 \. Cauchy data for the conformal field equations can in this
case be prescribed on the (compact, space-like) conformal boundary J .
Their developments backwards in time induce a set of standard Cauchy
data on space-like slices for the Einstein-massive-scalar field equations
which is open in the set of all Cauchy data for this system.

1. Introduction

In his work on conformal cyclic cosmology [15] Roger Penrose conjectures the
occurrence of concentric circles in the CMB which reflect bursts of gravita-
tional radiation resulting from encounters of supermassive black holes in an
aeon preceding the big bang of our present one. A recent analysis [10] of the
CMB based on WMAP data and an independent, even more recent, study of
the CMB maps observed by the Planck collaboration [1] indeed seem to iden-
tify ring like structures in the CMB sky. While these findings indicate strong
support of Penrose’s proposal, the theoretical reasoning which led to them still
raises questions.

The underlying picture is that of a smooth, time-oriented conformal struc-
ture C of signature (—, +,+, +) on a 4-dimensional manifold M ~ R x S with
compact 3-manifold S, into which an infinite sequence of aeons, time-oriented
‘physical’ solutions to Einstein’s field equations with cosmological constant
A > 0, are conformally embedded so that any two neighbouring aeons are
separated by a crossover 3-surface X ~ S which is space-like with respect
to the conformal structure. The aeons start with a big bang that ‘touches’
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the preceding crossover surface while their future end represents an exponen-
tially expanding space-time for which the following crossover surface defines a
smooth conformal boundary in the sense proposed by Roger Penrose in [14].

Consider the Einstein equations with cosmological constant A > 0 and
vanishing energy momentum tensor and denote by Dg the set of Cauchy data
(i.e. solutions to the constraints) for these equations on 3-manifolds diffeo-
morphic to S. Not all the space-times developing from these data admit a
smooth conformal boundary diffeomorphic to S. Notable examples are the
Schwarzschild—de Sitter solution, which includes black holes and admits only
patches of a smooth conformal boundary [9], and the Nariai solution, which is
geodesically complete but does not even admit a piece of a smooth conformal
boundary [3]. Nevertheless, the class of solutions which do admit a smooth
conformal boundary diffeomorphic to S is fairly rich. This is a consequence of
a peculiar feature of Einstein’s field equations. In the vacuum case, they admit
representations in terms of the conformal fields, referred to as conformal fields
equations (see Sect. 2), which induce under suitable gauge assumptions equa-
tions that are hyperbolic even where the conformal factor vanishes or becomes
negative [5,8].

The conformal equations can be solved backwards in time with Cauchy
data which are prescribed on the future conformal boundary J+ ~ S. The
freedom to prescribe data on J7 is essentially the same as in the standard
Cauchy problem, though, due to the fact that the conformal boundary is geo-
metrically a very special hypersurface relative to the solution space-time, there
are differences in the interpretation of the data [6]. Let Ag denote the Cauchy
data pertaining to solutions obtained by such backward developments. It turns
out that Ag is an open subset of Dg (if endowed with a natural Sobolev topol-
ogy). This follows by the argument used in [7] to show the non-linear stability
of de Sitter space. In fact, due to their hyperbolicity, the conformal field equa-
tions see in principle no difference between backward and forward evolution.
The data on the conformal boundary which have been evolved backwards can
thus also be evolved forwards into domains foliated by Cauchy hypersurfaces
on which the conformal factor is negative. The resulting solutions to the con-
formal field equations extend smoothly across the conformal boundary. Cauchy
stability for hyperbolic systems then implies that data in Dg which are suf-
ficiently close to Ag also develop into domains where the conformal factor is
negative and the field equations themselves then ensure that the set where
the conformal factor vanishes defines a smooth conformal boundary for the
vacuum space-times arising from the given data in Dg (which are thus seen to
be in fact in Ag).

The solution to the conformal field equation in the future of the conformal
boundary again defines a solution to the Einstein equations we started with.
This solution is also determined uniquely by the Cauchy data we prescribed
in the past of the conformal boundary.

These results generalize to matter fields whose energy momentum tensor
is trace free and which obey conformally covariant field equations. This has
been exemplified in detail in [8] by the Maxwell or the Yang—Mills equations
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but it holds true for other such equations. It follows that if a solution to these
equations does admit a smooth conformal boundary in the future, this is true
also for all solutions which are, in terms of Cauchy data on some given time
slice, close to the given one. In all these cases, gravitational radiation or other
field excitations will travel unimpeded across the conformal boundary.

There remains the question of what will happen to the prospective confor-
mal boundary in the presence of fields with non-vanishing rest-mass, in which
case the energy momentum tensor has non-vanishing trace. In [15], it has been
assumed that there will be some past neighbourhood of the crossover surface
in which only zero rest-mass fields will be present. While it is far from obvious
how massive fields behave at the end of an unlimited spatial expansion, this
certainly seems to be a strong requirement. At present, no process is known
which would allow one to justify it. It is the main purpose of the following
analysis to show that this restriction may not be necessary.

There is a second problem, which arises right at the crossover surfaces.
The solution to the Einstein equations obtained in the future of a crossover
surface X’ by extending the solution to the conformal field equations smoothly
across X will start to contract and thus rather resemble a time-reversed version
of an exponentially expanding space-time instead of a big bang solution as
required by the standard scenario. It is suggested therefore in [15] that in
the immediate future of X each aeon space-time evolves instead according to
the ‘isotropic cosmological singularity’ model studied by Paul Tod (cf. [17],
which also gives references to earlier work in this direction). In this setting, it
is assumed that the space-time admits a conformal rescaling which blows up
the space-time near the big bang so that the latter can be represented by a
space-like hypersurface smoothly attached to the past end of the original space-
time. The idea then is to identify this hypersurface and the fields obtained on
it by the blow-up procedure with the preceding crossover surface and the data
induced on that by the smooth conformal extension from the previous aeon.

There appears to be a basic difference, however, between the ‘blow-down’
procedure underlying the construction of the conformal boundary considered
above and the blow-up procedure defining the isotropic cosmological singu-
larity picture. The latter seems to admit no version of conformal field equa-
tions which induce hyperbolic evolution equations near the conformal bound-
ary under fairly general assumptions. In fact, the freedom to prescribe initial
data for the future evolution on the past boundary turns out to be rather
restricted [17]. Evolving such restricted data into the future, performing a
slight generic perturbation of the data induced on some Cauchy hypersurface,
and then evolving backwards will, more likely than not, result in a space-time
which does not admit a conformal blow-up leading to a smooth setting.

In general, it is not clear to what extent data induced on X from the pre-
vious aeon can be evolved further in the new setting and if they can the exten-
sion procedure will not be stable. Moreover, it is not clear which mechanism
should convert on X the evolution law carried across X with the conformal

L Other such cases have recently been worked out in [11] and [12].
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field equations into an evolution law consistent with the isotropic cosmological
singularity setting. This problem will be addressed again in Sect. 5.

Required is an insight into the asymptotic behaviour at time-like infinity
of fields with non-vanishing rest-mass, coupled to Einstein’s equations

1. R R
R;w - 5 Rg;w + )\g,w/ = KTuv; (1'1)

with cosmological constant A > 0. The precise properties of the equations will
depend very much on the specific nature of the chosen matter field and each
of them will need a special analysis. We shall concentrate here on the case of
a non-linear scalar field ¢ which obeys an equation of the form

VuVio — (m? ¢+ V'(9)) =0, (1.2)

with energy momentum tensor

Tyw = V36 V6 — (; (Voo VP +m?§%) + V(¢)> Gy (13)

and a potential V(¢) = p ¢® + ¢* U(¢) with an arbitrary real coefficient 1 and
a smooth real-valued function U.

The future stability of such systems has been studied under quite general
assumptions by Hans Ringstrom [16]. His analysis will not be followed here.
Employing a general wave gauge, he made a skillful choice of gauge source
functions which allowed him to obtain estimates that conveniently control the
long-time behaviour of the fields, which is at the focus of his work. A sharp
statement about the asymptotic behaviour of the fields, however, which is our
main interest here, requires an optimal control (whatever that may mean in
the end) on the fields as well as on the coordinates with respect to which the
behaviour of the fields is expressed. It is not easy to see whether Rinstrom’s
coordinates admit a precise description of the asymptotics of the gravitational
and the matter fields.

To see precisely what may go wrong at the prospective conformal bound-
ary we study instead in Sect. 2 the conformal field equations for general matter
fields along the lines indicated in [8] and then specialize in Sect. 3 the mat-
ter model to that of a non-linear massive scalar field. As expected, it turns
out that the conformal equations for the scalar field as well as those for the
geometric background fields are in general strongly singular; if the equations
are written so that the principal parts are well behaved independent of the
sign of the conformal factor €2, in general factors of the form Q=% k = 1,2,
occur in the lower order terms. These will blow-up precisely at the set where
the conformal factor Q approaches zero, i.e. at the prospective location of the
conformal boundary. One type of singularity is associated with the coefficient
. Assuming that p = 0, we get rid of it. The remaining singularities are
related to the mass m. It turns out that the singular terms occur in the scalar
field equation as well as in the geometric background equations always in the
form (m2 - % )\) Q=% k =1,2. Somewhat unexpected, the complete system of
conformal field equations will thus be regular if the single condition
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(%) m° == A,

is imposed. We note that it can be non-trivially satisfied for real m # 0 only
with the present sign of the cosmological constant. In the rest of the introduc-
tion we shall assume this condition to be satisfied.

The construction of initial data for the system (1.1), (1.2), (1.3) has been
studied under fairly general assumptions in [4]. From the discussion above, it is
clear, however, that not all of these data will develop into solutions that admit
a smooth conformal boundary. To get an insight into the class of solutions
which do admit such boundaries, we analyse in Sect. 4 the constraints induced
by the conformal field equations on the set {2 = 0}, assuming it to be given as
a smooth compact 3-manifold in the conformally extended solution space-time.
As observed already in the vacuum case [6], the Hamiltonian constraint drops
out. This leads to a considerable simplification; the data can be prescribed
freely up to solving a linear system.

In a suitable gauge, the conformal field equations for the coupled system
induce again hyperbolic evolution equations that preserve the constraints and
the gauge conditions. They can be used to determine forward and backward
time developments of the data on {2 = 0} which provide away from {2 = 0}
solutions to the system (1.1), (1.2), (1.3). Denote by Ag the Cauchy data
induced on the Cauchy hypersurfaces of these solutions and by Dg all Cauchy
data for the system (1.1), (1.2), (1.3). It follows then as before, that the set Ag
is open in Dg. In fact, it follows with the observations mentioned above that
the solutions, their asymptotic behaviour, as well as their smooth extensibility
across the conformal boundary are not only stable under perturbations of the
scalar field and the geometric background fields but the perturbations may
also involve zero rest-mass fields.

That there has to be observed a specific relation between the mass m and
the cosmological constant A could give rise to worries if each of these quantities
already had a specific meaning of its own independent of the other one. So far,
however, the matter field and its mass have no specific interpretation and if
they are given one, the relation to the cosmological may even acquire some
predictive power (‘a relation between the cosmological constant and the dark
matter’ 7). All this depends on the choice of the matter field and the role
assigned to it in a space-time model. In this context, it should be emphasized
that the discussion in this article has been restricted to the scalar field only
for the purpose of illustration, other fields could be considered as well.

To get an idea of the order of magnitude of the mass considered here we
use the value A ~ 1.7 x 10712! in Planck units given in [2] (ignoring the fact
that the cosmological model underlying the derivation of this value is different
from the one referred to in the beginning of this article). Replacing m in the
equation above by "¢ and converting units we find the exceedingly small mass
m a4 x 10733 eV/c?. Tt is interesting to note that in a study concerned with
the recent acceleration of the universe, Leonard Parker and Alpan Raval were
led to consider, by a completely different reasoning, masses of a similar order
of magnitude [13].
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This article focusses on the unexpected fact that the conformal equations
can be regular at the conformal boundaries. This does not mean that cases
of the Einstein scalar field system for which condition (x) is violated cannot
be of interest. On the contrary, it would be most interesting to understand
the significance of condition (x) with respect to the asymptotic behaviour of
solutions in this set and to see whether the system (1.1), (1.2), (1.3) admits
a range of masses for which the notion of crossover surface can be generalized
and the conformal structure can be extended in a unique way. After all, it
can be expected that transitions from exponentially expanding to big bang
phases are accompanied with losses of smoothness and that the insistence on
too strict smoothness requirements may obstruct modelling such transitions.

In Sect. 5, we discuss whether the evolution of massive fields across the
crossover surfaces may allow us to get some insight into the problem of this
‘phase transition’. To simplify matters, we set k = 1 (or absorb it into the
scalar field) and assume a scaling by a constant overall factor so that A = 3
whence m = /2. Then we consider spatially homogeneous solutions with a
linear massive scalar field so that the physical fields are of the form

= —dt’ + f*k, ¢=¢(t) on RxS,

g
where f = f(t) > 0 and k denotes a Riemannian metric with constant cur-
vature Rapeqlk] = 2€kqiekap, € = 1,0,—1. In a convenient conformal and
coordinate gauge the conformal metric then takes the form

g=—dr’ +k,

and the conformal field equations reduce to a regular system of ODE’s of
second order for Q and the rescaled matter field ) = Q7' ¢ and a constraint
which involves 2, ¢ and their derivatives of first order. We consider solutions
determined by the backward development of data on {r = 0} = {Q = 0}.
The constraint is satisfied if Q'(0) = —1, while the data 1(0), ¢'(0) can be
prescribed freely.

The most interesting case € = 1 is discussed in some detail. If ¢ (0), ¥’(0)
are chosen to vanish, the solution is given by Q45 = —sin7, g5 = 0. Its
restriction to the interval —m < 7 < 0 is conformal to the de Sitter space-time.
The stability properties of 45, ¥gs then ensure that there exists a large set
of smooth solutions €, ¢ # 0 so that Q(7,) = (0) = 0 for some 7, < 0 and
Q> 0 in the interval |7,,0[, in which it assumes its absolute maximum value
Q. at a point 7,,. The corresponding physical solutions can be thought of as
arising from asymptotic data on the ‘crossover surface’ {7 = 7.}, developing a
‘waist” of volume €2 Vol(S?) at 7,,,, and then expanding exponentially until
they approach the next crossover surface at {7 = 0}. We denote the set of these
solutions by B. All solutions in B are non-linearly stable under generic pertur-
bations involving the scalar field, the geometric fields, and zero rest-mass fields.

There is a solution not belonging to B which is of particular interest in
our context. It is given by Q, = —7, 1, = /2. Its restriction to the domain
where 2 > 0 defines a physical field that is given in terms of the coordinate
t = —log(—7) by
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G=—dt> +e*k, ¢=+2et

As t — —oo the matter field ¢ grows unboundedly while it decays and the
metric shows a de Sitter-type expansion behaviour as t — oo. If the solution
O, ¥, could be approximated on any given interval of the form [z,0], z < 0,
by solutions in B there will exist solutions with an arbitrarily narrow waist.
The restriction of such solutions to the range |7,,,0[ would, from the point
of view of observational data, hardly be distinguishable from solutions which
start with a big bang and then expand exponentially. No attempt is made in
this article to decide about this question because it requires a detailed analysis
of the solution space.

2. The Conformal Field Equations

We consider a 4-dimensional manifold M with smooth boundary J and interior
M =M\ J. Let § and g denote Lorentz metrics on M and M, respectively,
which satisfy

Guv = 0? g;w on Ma
with a conformal factor €2 that is given by a smooth function on M such that
Q>0 on M, Q=0,d2#0 on J.

In the following, J will be thought of as being space-like with respect to g,
though in the end this will be a consequence of the field equations (cf. (4.3)).
It is assumed that ¢ satisfies Einstein’s field equations

. 1. R .
R#,,* §Rg#y+)\g#y = RT#V? (21)
with cosmological constant A > 0. The matter fields will be specified later.

To formulate these equations in terms of the conformal metric g, the
conformally transformed matter fields, and a number of fields derived from
them, we note the contraction

—~R+4\=kT, (2.2)
and use the general conformal transformation relation
2 1 3 R
R/Lu + 6 vlt VVQ + (Q V,, VPQ — @ va VPQ> Guv = RI‘/’/’ (23)
and its trace
6 B 12 p 1 -
R+5va Q—@V[,QV QzﬁR, (2.4)

where the covariant derivative operator V and the index operations on the
left-hand side refer to the metric g. With the definition

1 1
=- Q4+ —Q 2.
§=7 vV, VPO + 51 R, (2.5)
equation (2.4) takes the form

6Qs—-3V,QVQ=—_R, (2.6)

1
4
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and equation (2.3) can be rewritten
VoV Q=—QL,, + 56 +Q25S,,, (2.7)

where
Ly, = % (RW —~ éRg#,,) and S, = % (RW — iﬁgw> :

denote the Schouten tensor of g and (half of) the trace-free part of the Ricci
tensor of g, respectively. To derive a differential equation for s we observe that
the general conformal transformation relations for covariant derivatives and
derived tensor fields and the Bianchi identity imply

1
802
Applying a derivative to (2.7), commuting on the left-hand side covariant deriv-
atives, and performing a contraction then gives

- 1 PN 2 N
9" N Sy = §”" Vp Sy + ﬁvaSPu =

A A 2 N
ek ViRt 5V Q8.

N 1 ~ 4
Vs ==V QLo+ V'S5 + 572 Vi R (2.8)

With the decomposition
Ryupurn = Chpvr + 2{9ulv Lnjp + Ly 90} -

of the curvature tensor into the conformal Weyl tensor and the Schouten ten-
sor the once contracted Bianchi identity for the curvature tensor of g can be
written

VMC“’ pvA = QV[V L/\]p, (2.9)
and the analogue for § reads
VuCF pux = 2V, Ly, (2.10)

With the conformal covariance relations
cr pYA — CA’M 223 v,u(971 cr pu)\) = Qil @,u CVH 2%
and the definition
w prN = Q_l cr 2%
equation (2.10) can be written
v# Wupz/)\ = 29_1 @[u i/)\]pv (211)

while (2.9) reads

Vo Ly, —VaLy, =V, Q WH,\+2V), Ly,. (2.12)

Taking now into account the the field equations (2.1), we get the equations
above in the form

GQs—3VpQVpQ—)\:—gT, (2.13)

(2.14)

nZ

VuVoQ+ QL — s g = gQT*

V,s+VPQL,, = gvm T — N, T (2.15)
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Vy L)\p -V Lup - V[I.Q w prA — 2 @[V IA/)\]pa (216)
V[L w prAx = 29_1 @[u -i/)\]pv (217)
with

AP R - ke (o 1.
15, = Thp — 1 T gops VoLl = 9 V, (Tuv -3 Tgw) .

The first of these equations may be considered as a constraint which will
be satisfied if the initial data are arranged accordingly: If (2.13) holds at a
point p and (2.14), (2.15) are satisfied on a connected neighbourhood U of p,
then (2.13) holds on U. In fact, a direct calculation using (2.14), (2.15) implies
that

v, (6st3vp9vmm+§f) = 0.

The equations above for the tensorial unknowns €2, s, L,,, W# , 5, have to
be combined with equations which determine the metric and the connection.
One possibility to do this is to write the structural equations as equations for
the unknowns e” j, I'; ¥ ;, where the first set of fields is the coefficients of a g-
orthonormal frame field e, = e* | O, with respect to a coordinate system z* so
that g(e;, ej) = guv e/ ; €’ ; = n;; and the second set of fields is the associated
connection coefficients T'; * j defined by V;e; =T k jex with V; = V., which

satisfy I'jjr = —L'ir; where L'y, = I L M. In terms of these unknowns the
structural equations take the form of the torsion-free condition
e“i,l,e”j—e“j7l,e”i:(I‘jki—l‘ikj)e“k, (2.18)

and the Ricci identity
Dyt jouet e —Th'jue s+ 200 Ty — 207 Ty
= QW ji+2{g" (v Ly + L' e gu;}- (2.19)

If equations (2.13) to (2.17) are expressed in terms of the frame and com-
bined with the structural equations, they are equivalent to Einstein’s vacuum
equations where €2 # 0.

The vacuum case is characterized by vanishing right-hand side of equa-
tions (2.13) to (2.17). If the resulting system is written with respect to a
suitable choice of coordinates and frame field, and if the conformal factor is
controlled by specifying the Ricci scalar as a function of the coordinates (which
can locally be prescribed in an arbitrary way), the combined system implies
equations which are hyperbolic even where Q0 changes sign. Moreover, they pre-
serve the constraints and the gauge conditions. Discussions of this fact, giving
various versions of hyperbolic systems, can be found in [5-7]. The case of zero
rest-mass fields for which the energy momentum tensor is trace free is similar
and has been discussed in [8]. The details will not be reproduced here.

In the following, we will be interested in fields with non-vanishing rest-
mass. The further analysis depends very much on the specific behaviour of the
matter fields and the associated energy momentum tensor under conformal
rescalings.
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3. The Non-Linear Massive Scalar Field

In the following, we consider a scalar field ¢ that satisfies an equation of the
form

VuVie — (m? ¢ +V'(9) =0, (3.1)
with energy momentum tensor
~ - ~ 1 - -
rf;w = V;AZS qub - (2 (vp¢ qus + m2 ¢2) =+ V((b)) Q,LLV) (32)

and a potential of the form

V(g) = o’ +¢'U(9), (3:3)
where p is a real coefficient and U a smooth real-valued function. This form is
assumed because we wish to discuss the cosmological constant, the mass term,
and the constant coefficient p separately and because V/(0) = 0 ensures that
the coupled Einstein scalar field equations admit solutions with ¢ = 0.

In four dimensions holds for arbitrary smooth functions ¢ the transfor-
mation law

1 1 -
(oo-r) 0= (0y- 1 R) i) (3.4
In terms of the new unknown
v=0""1¢,
equation (3.1) takes then with (2.2) the form
1 2 « .
<Dg 63) [)] = Q2 (m2 - 3)\+2T) Y+ Q3V(Q), (3.5)

where
Q3V(QY) =3uQ Y2 443 UQy) + QU (Q).

To ensure the regularity of this term where €2 — 0 it will be assumed in the
following that

n=0.
The trace of the energy momentum tensor (3.2) now reads
T =-02{V,(Q¢) V/(Qy) +2m? > +4Q72 V() }, (3.6)
so that
T, = Q72T = —V,(Q9) V°(Q9) — 2m?¢? — 4072V (Q), (3.7)

is well behaved as Q — 0. The relations (2.2) and (2.6) imply
A
VPQV”Q:—§+293+%QQT*, (3.8)
and thus

T. = (2 _2m2> Y2 =20 (59 + 9 VA Q VTY)

-0 (VT + Ve V) - 4072 V(Q4). (3.9)
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From this we get

-1 A
T, = (1+%¢292) {(3 —2m2) W2 —2Q (s¥? + 1 VL Q V™)

VLV - 4Q72V(Q w)}, (3.10)

which is a smooth function for all (real) values of the unknowns v, V4, €,
and s. In the following calculations it will be convenient, however, to use the
equation in the form (3.9). It follows

Og% — Rz/) Q- <m—A>¢+ Totp + 443 U(Q0p) + QU (Q).

(3.11)
We note that if the background fields are given this is a semi-linear equation
for 1 whose right-hand side depends via T also on the derivative V1. Its
most conspicuous feature, however, is the first term on the right-hand side,
which is singular where Q2 — 0.
We are in a position now to state our main result.

Theorem 3.1. Consider the energy momentum tensor given by (3.2), a poten-
tial (3.3) with p = 0, and the coupled system of equations (2.13), (2.14), (2.15),
(2.16), (2.17), (2.18), (2.19), (3.11) for the unknowns

e'uk, Fikj7 Q, S, L;wa 1% PUNs ¢ (312)
If and only if the single condition

m° ==\, (3.13)

18 satisfied this system is reqular in the sense that on the right-hand side of the
equations no terms of the form Q=% k > 0, occur and the right-hand side is
in fact a smooth function of the unknowns.

Remarks. We note that the condition above can be satisfied with real m only
with the de Sitter-type sign of the cosmological constant.

Because some of the equations involve derivatives of the energy momen-
tum tensor they contain derivatives of v of second order. Applying a deriva-
tive to (3.11) and commuting operators one obtains a wave equation for Vv
and thus altogether a quasi-linear, overdetermined system of equations for the
unknowns (3.12) and V9. After fixing a suitable gauge one can extract from
the complete set of equations a hyperbolic evolution system which preserves
the gauge conditions and the constraints. Since various versions of this proce-
dure have been discussed at length in the references given above we shall not
go into the details here.

It should be noted that the compactness of the manifold S plays no role
in this result.

Proof of Theorem 3.1. It follows immediately that (3.13) renders equation
(3.11) regular. Equations (2.18) and (2.19) are obviously regular. We discuss
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the nature of the singularity of the remaining equations. The trace-free part
of the energy momentum tensor takes the form

= VulO) Vo (@) — 1 V(@) V() g

1
= 1/)2 <V“Q V.0 — 1 V.QV™Q g/w)
1
+2Q4 (V(MQ V,,)¢ — 1 V.0 V‘“’¢ guu)

+ 0? (v;ﬂ/} VV,(/J - i VTF,(/J Vﬂw g;w) ) (3'14)

and is thus regular. It follows that equation (2.13), given now by (3.8) and

equations (2.14), and (2.15) with V, T = V,, (Q2T.), are regular as Q — 0.
Critical are equations (2.16) and (2.17). With the notation above we have

. K - A

Lpw=ors — Eopg, 2

s R s VI L

While the first two terms on the right-hand side are regular since T Juv =

T guv, the last term is singular if it is expressed in terms of g,,,. However, this

Juv-

term is annihilated by the operator @ and it follows

\ v,,T;;y—24 2V, (T g
:KVT VTgW——Q_lT*V,,QgW

9 P HV_
+507! (3v( QT + VT, + V,QTE,
g TV — g, T:5V5Q),
whence
A K N 1
VipLyy = by {v[p T — 12 Vi 9w
1
+07! (V[pQ T* + V™) T*[p Gl ~% T, V[pQ gM,,) } . (315)
Direct calculations using (3.14), (2.14) and (3.8) give
Vi T:]v
A 3 501 .
=% YV,Y 9 =Y V2V 9 V,Q— B s t3 YV QVTY | V,Q9,,
1 1
+Q {—2 Vo VT V1,29, — (2 s+ 3 Vi V”w) Vip¥ 9w
1
+ 2 (V[pQ Ly + 5 VTQ Ly, gu]t/)

1
- (V[pQ VM]V,/I/) + 5 vTQ VWV[;)?/J gu]y>
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VOV Vot — 3 VT, f¢2 VTOTY, g }
0 {940 Ly = Vi VgV = 5 VTVt g,

K R *
o VLNV Y Gy — 9 YV TH]V} ’

1
12 VipTs Guv

m? A

= <3 - 18) YV g + % (s + YVQAVTY)V Q9.
L0 { (; s+ Lv0 vw) Vipt Gt + 5 Vel VU Vg0
+é WVTQV V0 g — 11/)2 V™ Q Ly Gy + zp? VT, 9w }
+Q?{ WT, v[,,zbgu] wV”wT*pgmu
_é VN Ll gy + 5 V“w VaViph gu]u} ;

- % {(2 Q_3 V(Q ¢)—Q_2 /(/) V/(Q ’l/})) v[pQ g,u]l/_Q_l V/(Q¢)V[p¢ g/t]l/}

Vi QT = 2¢2V[p99mu
1
+ 0 {—2(8 P2+ VL QT VIVl gp + ¥ V], Vﬂ]vaQ}

1 K
? {v[pQ V;LW Vo — (4v7r1/} Vﬂiﬁ +@ ¢2 T*) v[pQ g,u]v} )

N A
VIQT, Guy = 2 ¥? Vi gy
3, 1 B A
+Q 551/) + 5’1/)V7TQV P V[pqu]y — g?/JV[pl/}gu]y
2 ™ -~
+Q {(25¢+vmv W+ 129¢T*) Vit G

K 1 ”
+ (16 IZ)Z T, — 1 VH/JV 7/}) v[pqu]V} )

m2

1
_gT* Vi 9y = ( -

A
3 18) ¢2 V[PQgﬂ]V

1 1
+Q (3 57112 + 3 YV Q V”ﬁ) v[pqu]u
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1 K
2( = T Vo2
+ @ (Ve VY 4 T )V,
2
+§Q 2V (Q1) Vi Q g

whence

1 * T *
Q (V[pg y + VT, g —

1
9} =T V[PQQH]V)

6

1 2\
=g (m2 — 3) Y V,Q 9.

4 1 A
+ (3 s1p? +§ YV V”z/J) Vi, +¢¥V,QV 0V, Q — 3 YV g

[ (1 N 1/’) (mz - 2;) OV g+ QK| (3.16)

with the field

Ky = (1—“8 YT - 2Vay V“w) V12 g0
n (% s+ ; VL QVY + %Q¢T*> Vot 9w
—Y VRV, Vo + ¥? Vi Ly + % $?VTQ Laip 91w
VTV g,
721&2 v[pQTﬁf]u - ng VWQT:[p Gup + 2V, QV 9 Vi

1 _» K
+4 {_v[fﬂ/’ Vi Vv — 3 Vi VeV gupy — 36 YTV gy

K * K T * 1 T
Y YV TM]VJFE YV DT, Gup +9 Vi Lulvfg YV P Ly, 9#]V}

1 1 .-
+3 Q7Y VI(Q9) Vi Qg + 5272 V() Vit g

which is regular as 0 — 0. From this, our assertion follows immediately. O



Smooth Non-Zero Rest-Mass Evolution

4. The Constraints on a Hypersurface {2 = 0}

In [6], it has been observed that the constraints induced by the conformal vac-
uum field equations with positive cosmological constant simplify on a hyper-
surface J = {Q = 0}. Cauchy data for the conformal field equations on such
a hypersurface are referred to as asymptotic initial data. In the following, it
will be shown that also in the case of the Einstein scalar field system satisfying
(*) the construction of asymptotic initial data is considerably simpler than the
construction of standard Cauchy data for the Einstein scalar field system (cf.
).

To derive and analyse the constraints, the compact manifold J will be
thought of as being embedded as a Cauchy hypersurface into a smooth solution
to the conformal field equations. It will be convenient to assume the solution
metric g to be given in terms of Gauss coordinates based on J so that 2 > 0
in the past and 2 < 0 in the future of 7 close to it. Then

g = —dr? + hap dz® dz?,
with 2° = 7 = 0 and 0,92 < 0 on J. The Christoffel symbols are given by

1
L% = 3 habo = Xabs Lo s[g] =0, T.%0lgl =0, Ty o[g] =0,
FaCO[g] = FOCa[g] = h¢ Xeb Facb[g] = Facb[h]~

where yq, denotes the second fundamental form and h® the inverse of the
metric hqp induced on {r = const.}. With this notation, we can state the
following result.

Proposition 4.1. Assume A > 0. On a smooth, orientable, compact 3-manifold
J let be given a smooth Riemannian metric hqy, with covariant derivative oper-
ator D, and smooth scalar fields g, 11 so that

/ X% pgdup, =0 for any conformal vector field X admitted by h, (4.1)
s

where

K ' N
Pang(woDai/Jl—Qz/qDaz/Jo) with ¥ = — 5

Furthermore, let wqp, be a smooth, symmetric, trace-free solution to the equa-
tion

D“wab = Pb- (42)
Initial data (i.e. solutions to the constraints) for the conformal Einstein scalar
field equations with cosmological constant A and mass m > 0 satisfying the
condition (%) are then derived in a suitable conformal gauge from these data
on J as follows.

— The fields 1o, 11 constitute the Cauchy data 1 and Vo for the scalar field
P on J.

— The inner metric and the second fundamental form on J are given by

hap and  xap = 0.
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— The conformal factor, its time derivative, and the function s are given by
=0, V=% s=0.
— The Schouten tensor of g is given by

Lafg) = Laslt],  Loalo] = Laolg) = 0, Looly] = § RIk] — 5 Rig),

where R[g] is to be considered as a smooth conformal gauge source function
which can be given arbitrarily.

— The rescaled conformal Weyl tensor WH 5, is specified in terms of its elec-
tric part with respect to J, which is given by wgap, and its magnetic part
which is given by

1
wig =~ Da Lyc[h] €4 ab,

Proof. Regularity of T, and the relation 7' = Q2 T, imply that
T:0, @uT:O on J.
The restriction of (2.13) to J thus gives

Vol =% =— % (4.3)

The restriction of (2.14) with u = a, v = 0 is satisfied because of the values of
the Christoffel symbols and because V(2 is constant on 7 while it gives with
= a, v =>b the relation

0=VoeVd —56ga = —Xab 2 — 5 hap,

which implies that the trace-free part of y,; vanishes and its trace is given
by x = —X7!s. So far we did not make use of the conformal gauge freedom.
It allows us to perform arbitrary rescalings with positive conformal factors 6
and can be removed by prescribing the Ricci scalar R[g] as given function near
J and by prescribing 6 and its time derivative on J. Leaving the freedom to
choose # on J untouched, its time derivative can be chosen there to achieve

x=0 whence s=0 and xu,» =0 on [J.

Observing now that C* ,,n = QW*#* 5 = 0 on J the last relation implies

with Gauss’ equation that
1 1 1
3 Raplg] — B R[g] hav = Laplg] = Lap[h] = Rap[h] — 1 R[h)hay on J,

and thus by contraction
R[g] + 2 Roolg] = R[A],

whence
1 1 1 1
Loolg] = 3 Roolg] — B R[g] goo = 1 R[h] — 5 Rl[g].

It holds
1
Ty, = *(VQV,0 - 7 V-V Qgu) on J.
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The constraint induced by (2.15) with y = a reduces thus to
Loalg] = Laolg] = 0.

It follows that the initial data for L, [g] can be expressed completely in terms
of Lap[h] and the gauge-dependent quantity R[g] which can be prescribed arbi-
trarily near 7.
Because @[,, ﬁ/\]p =0on J by (3.13) and (3.16), the constraints induced
by (2.16) are given by
Va Loy — Vi Lap =3 Wpoas.

The relation with p = 0 is satisfied by the fields given above and implies no
condition. The remaining relation can be written in the form
Dq Lie[h] = Dy Lac[h] = £ wiy €t o,

where D, denotes the h-covariant derivative operator and w}, = —%Waocd €p
the J- magnetic part of W# ,,\. It is saying that the magnetic part of the
rescaled conformal Weyl tensor is given on J by the Cotton tensor defined by
hap-

One of the constraints implied by (2.17) is obtained by restricting

VW gy = 27V, Lyjo = £ Kaso,
to J. With the results above it follows that the restriction of K.,9 to J
vanishes and the constraint reduces to
Da w;:b - 0.
This is just the differential identity satisfied by the Cotton tensor and gives
no new condition. The only remaining constraint is given by the restriction to

J of

cd

VW =201 ﬁ[a ﬁo]o = r Kaoo,
which can be written with the results above
DPwia = pa with pa = 5 = (o VaVoth = 2Vt Vat).
Because

Vavo¢ = 3avow — Xa © Ddﬁ = aaaowv

the field p, can be expressed completely in terms of x, 3, and the data 1y and
Vot for the scalar field on J. For any smooth vector field X* on J holds

1
/ X pg dpp, = / X Db wep dpp, = / way (DX — gDcXch“b)dﬂh.
S S S

because wgy is trace free. It follows that the data h, ¥, and Vi) must be
given such that (4.1) holds true. If this condition is satisfied, the well known
properties of the operator L, = div o L}, then imply that the equation Ly X = p
is solvable and a solution to (4.2) is provided by the tensor (£, X )qp calculated
from X. Here the divergence of a covariant, symmetric, trace free tensor field
Wayp 18 the 1-form (divw), = —D%w,;, and the conformal Killing operator £
acts on a 1-form X, by (L, X)ap = D Xq) — %DcXchab. O
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Remarks. All possible smooth asymptotic initial data for which €2 is decreasing
near J are obtained by the procedure described above.

The relation (4.3) (already observed in [14]) shows that the set {Q = 0}
is necessarily a space-like hypersurface.

The initial data for the wave equation which needs to be derived for V
from (3.5) (or from (3.11) with (3.13)) are given by V.9 = utbo, Votb = 1,
VoV = VVotp = 0,91, and the datum V( V1, which can be read off from
(3.5), is found to be

VoVoth = h® D, Dythg — éR[Q] o + (l€6)\ - 4U(0)) v

Given an asymptotic initial data set as above and a space-time gauge in which
the conformal field equations imply hyperbolic evolution equations, the latter
allow us to determine a past Cauchy development of the data which provides,
where > 0, a unique maximal, globally hyperbolic, future asymptotically
simple solution § = Q72g, ¢ = Q1 of the system (1.1), (1.2), (1.3) with
(3.13).

There exists, however, also a unique maximal, globally hyperbolic future
Cauchy development of the data on which 2 < 0. The conformal field equations
are left invariant by the transition under which Q — —Q, W# 5, — —W* 5,
1) — —1) while all other unknowns remain unchanged. The fields § = Q72 g,
¢ = Q1 obtained from the future development thus define again a solution to
(1.1), (1.2), (1.3) with (3.13), which now is asymptotically simple in the past.

Because the metric hg;, is not subject to an analogue of the Hamiltonian
constraint, neither the topology of 7 nor the conformal structure defined by
hap is restricted in any way. It may appear then that the procedure offers too
much freedom. This is not the case. As discussed in the proof, there remains
the freedom to perform on J transitions of the form

QO—-Q"=0Q, g—g" =0,

with positive conformal factors 6. The effect of these rescalings on the free
data is

hab — hiy = 0% hap, Yo — 15 = 07" o,

Y1 — V=021, wep — why =0 wey.

These rescalings change the conformal representation of the solution to the con-
formal field equations but leave the associated ‘physical solution’” unchanged.

To assess the freedom to prescribe data one should observe that (4.2)
leaves the freedom to add to a given solution of the inhomogeneous equation
an arbitrary solution of the homogeneous equation D% wg;, = 0. In spite of the
condition x4, = 0 on J, which reflects the particular nature of the conformal
boundary, the procedure described above thus admits essentially the same
freedom to prescribe data as the standard Cauchy problem for the system
(1.1), (1.2), (1.3) with (3.13). This conclusion is supported by the following
observation.
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Denote by S a smooth 3-manifold diffeomorphic to 7, by Dg the set of
smooth Cauchy data on S for the system (1.1), (1.2), (1.3) satistying (*), and
by Ag the subset of the Cauchy data dg € Dg for which the corresponding
solution space-times develops so as to admit a smooth conformal boundary
Jt ~ 8 ~ J in the future. S can be thought of as being embedded as a Cauchy
hypersurface into this solution so that the data induced by the solution are
isometric to the data dg. The solution induces on J T an asymptotic initial data
set d§ for the conformal field equations. The past development of the data dg
with the conformal field equations is conformal to the solution developed from
ds. It induces on S data d) for the conformal field equations. As discussed
above, the future evolution of these data by the conformal field equations
extends smoothly beyond J into a domain which can be foliated by Cauchy
hypersurfaces on which Q < 0.

With data ds on S which are obtained by a small (non-linear) pertur-
bation of dg we can associate data d for the conformal field equations which
represent a small perturbation of d so that in terms of suitable Sobolev topolo-
gies diy — dly as ds — ds and vice versa. Cauchy stability for the conformal
field equation implies that data cifg which are close enough to d’y will then also
develop into a domain foliated by Cauchy hypersurfaces on which ' < 0 and
the analogue of (4.3) for €', which is a consequence of the field equations where
Q' =0, ensures that the set {Q" = 0} is a smooth hypersurface diffeomorphic
to S. Solutions arising from data close enough to dg will thus be asymptotically
simple in the future and belong to Ag. The set Ag is thus open in the set Dg
if the latter is endowed with a suitable Sobolev topology. From the results of
[8] this statement can be generalized to include perturbations involving fields
with trace-free energy momentum tensor which satisfy conformally covariant
field equations.

5. Spatially Homogeneous Solutions

In the following, we study solutions to the equation considered in Theorem 3.1
for which the conformal factor €2 and the metric g are defined on R x S with
S =83 T3 or H? (a factor space of hyperbolic 3-space) and take the form

Q=Q(r), g=-dr*+Pk,

with a function I = I(7) and a 3-metric k¥ = ko dov®dx® = k. of constant
curvature Rapealk] = 2 € kq[ kyja, where € = 1,0, —1 respectively. We write also
7 = 20 and assume for simplicity

V:O’ H:17 )\:3,

and thus m? = 2 to take care of (3.13). The non-vanishing Christoffel symbols
and the second fundamental form x,; of the slices {7 = const.} are then given
by

1
Xab = Faob[g] =11 kqp, Lo clgl =Tc"0lg] = jl/ k", Typ®clg] =Ty [K],
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where ' = %. The Ricci scalar and the Ricci tensor are given by

l//

Rl = 5 (410" + @), Roolgl= -3, Ruolg] = Raulo] =0,

Raplg] = {2 + 11" +2(I')*} ks,
and the Schouten tensor by

Loolg] = 575 (€ =21+ (1), Laolg) = Loalg) =0, Laslg] = 5 (1)) ks,

Because the line element above is conformally flat it follows that W* 5, = 0,
which leads to a considerable simplification.

It will be assumed in the following that the conformal time coordinate
7 vanishes on a set {Q = 0} and the metric ¢ satisfies the conformal gauge
condition R[g] = 6¢. Fixing R still leaves some freedom to perform rescalings.
This can be used to restrict the metric and the second fundamental form on
{Q = 0} so that I = 1 and I’ = 0 there. With these requirements and the
expression for the Ricci scalar above, it follows that

1+ 1) +e1—1%=0, 1(0)=1, 1'(0)=0,
which implies that [ = 1. Where € > 0 the physical fields can then be given
in the form
G=0"2g=—dt® + f? dw?, b= Q, (5.1)
with ) i@t )
TW=0r@y @~ am
so that the information on the geometry is completely encoded in the conformal
factor.
Because g is conformally flat we have by (2.9) and (2.10) V{, Ly, = 0
and @[,, i)\]/’ = 0 so that equations (2.16), (2.17) are trivially satisfied and we
are left with the equations

(5.2)

1
QQS—VPQV”Qzl—EQQT*, (5.3)

1 *
VHVZ,Q:—QLN,,+Sg”,,+§QTH (5.4)

v

1 | 1
VN § = — va LPN + § VPQ TPM - E VMQ T* - ﬁ QVMT*a (55)

Oy - ¢ R = 5 Tt (5.6)
where
T, = Vul00) Vol 20) = 1 V5(20) () g, (57)
T, = —V,(Qv) VA(Qy) — 442 (5.8)
The assumed symmetry implies
T. = (Q9))* — 497, (5.9)
o= (O, To=T=0, Th=1 () ke (510)
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and the equations reduce to

2Qs+(Q’)2=1—%QQT*, (5.11)
1
Q”:—ieQ—s+%Q((Qz/J)’)2, (5.12)
1 1
O=—§€Q+S+§Q((QL/))/)2, (5.13)
1 3 1 1
= e - Q) - =T, — — QT 14
s'= e — 2 () - 3 5 0T (5.14)
1
71/1"761/):6 L. (5.15)

Obviously there is some redundancy in this system. Solving for the last term on
the right-hand side of (5.13) inserting the result in the last term on the right-
hand side of (5.12) gives s = £(—Q"+€Q), which is just (2.5). Conversely, this
expression for s implies with (5.12) the relation (5.13). Solving (5.13) instead
for s and using this to replace s in (5.12) gives

Q'+ (e - % (2 W)?) Q=0. (5.16)
Using (5.9) in (5.15) gives
V" + <e + é (Q))? — ; 1/12) Y =0. (5.17)

Inserting s from (5.13) in (5.11) gives
Q)2 =1+0? <:15 P2+ % (Q))? — e) . (5.18)

The first two equations above provide a closed evolution system for € and
while the third equation should be read as a constraint. It will be satisfied
if it holds for one value of 7 and the first two equations are satisfied (not
an immediate calculation). It can be shown that (5.14) follows if the other
equations are satisfied. Using (5.2), equations (5.16), (5.17), (5.18) can be
derived where 2 # 0 directly from the equations implied by (2.1), (3.1), (3.2)
for the functions in (5.1).

If data are prescribed on {Q = 0} = {7 = 0} and if is assumed that § is
positive for 7 < 0 close to the crossover surface {r = 0}, the constraint (5.18)
shows that the equations above must be solved with initial conditions

Q(0) =0, Q(0)=—1 and free data (0), +'(0).

The vacuum solutions, obtained by setting 1(0) = 0, ¥’ (0) = 0, satisfy ¢ =0
and 2 = Q. with

Q) =—sint, 1<7<0, Q=-7, 7<0, Q_;=—sinh7, 7<0.

Observing (5.2), the corresponding physical solutions §. = Q-2 g. are then
given by the de Sitter solution

G1 = —dt® + cosh®t ki, teR,
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which expands in both time directions, and by
Go = —dt’ + e** kg, tER, G_1 = —dt? +sinh?*t k_q, ¢>0.

When ¢ # 0 it follows by (5.16) in the cases € < 0 that the functions
Qc(7) grow even faster backwards in time and most likely diverge for a finite
value 7, < 0 of the parameter 7. The precise behaviour of the solutions near
that point, or, in other words, the precise expansion behaviour of the associated
physical solutions g, = Q2 2g., € = 0,—1, at the big bang indicated by that
point, depends on the initial data for ¢ and requires a detailed analysis which
cannot be given here.

In the following we consider the case e = 1 in somewhat more detail and
drop the index € everywhere. The structure of the system (5.16), (5.17), (5.18)
implies that for data 1) and v’ at 7 = 0 which are sufficiently small the solutions
Q(7) will also be oscillatory and may stay close to the de Sitter solution for a
long conformal time 7. It is an interesting problem to characterize the initial
data 1(0) and ¢’(0) for which the solutions to the system system (5.16), (5.17),
(5.18) exist for all conformal times 7. That there do exist non-trivial data with
this property other than oscillatory solutions is shown by the solution 2., ¥,
to (5.16), (5.17), (5.18) which is given by

Q= -7, . =V2 (5.19)
The physical fields corresponding to the restriction of this solution to the
domain —oo < 7 < 0 are given in terms of the coordinate ¢ = —log(—7) by

§=—dt? + e dw?®, ¢=+V2e7?,

and are thus quite different from those in the de Sitter case. As t — —oo the
matter field diverges while it decays and the metric shows a de Sitter-type
expansion behaviour as t — oo.

Because €2, does not approach zero a second time but 2, — oo as 7 —
—00, it is not possible to obtain a global stability result by the argument
used before, but the situation may be of considerable interest in our context.
Consider the backward evolution of initial data of the form

Q0) =0, Q0)=-1, $0)=v2-46, ¢'(0)=-5, 0<5<V2, 0<5.

Numerical calculations with data so that 0 < 4, § << 1 show that there exist
solutions © which stay close to €, for 7 < 0 and |7| small enough and which
are monotonically increasing with 2 < —7. After assuming a maximum value
Q,, at some 7, < 0, the solutions decrease until they vanish at some point
7, < Tm. The corresponding physical solutions on |7,,0[ can be thought of
as arising from initial data on the ‘crossover surface’ {r = 7.}, of developing
a ‘waist’ of volume Q.3 Vol(S?) at 7,,, and approaching the next crossover
surface at {7 = 0}. Again these solutions would have the stability property
pointed out above. First calculations show that by suitable choices of the data
the value of |7,,,|, the maximum value 2,,, and the value of |7,| can be made
to increase. This raises an interesting question, which is related to the second
type of problems addressed in the introduction:
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Do there exist solutions of this type which approzimate for given z < 0 the
solution Q. on the interval [z,0] arbitrarily well ?

A positive answer would show the existence of solutions which still have the
stability property but whose waist would be arbitrarily narrow. The restric-
tion of such solutions to the range ]7,,,0[ would, from the point of view of
observational data, hardly be distinguishable from solutions which start with
a big bang and then expand exponentially. Again, no attempt is made here to
analyse this question.
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