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Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good
short-term stability. Most suitable ion species lack closed transitions for state detection, so the clock
signal must be read out indirectly by transferring the quantum state of the clock ions to co-trapped
logic ions using quantum logic operations. Existing methods of quantum logic readout require a
linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic
readout whose overhead scales logarithmically with the number of clock ions in both of these respects.
We show that the readout can be performed with a single application of a multi-species quantum
gate, which we describe in detail for a crystal of Al+ and Ca+ ions.

Tremendous progress has recently been made in opti-
cal frequency metrology [1, 2]. Optical clocks now reach
fractional frequency inaccuracies and instabilities in the
10−18 regime [3–8], outperforming Cs fountain clocks by
two orders of magnitude and vying to serve as a new
definition of the SI second [9, 10]. Among the promis-
ing candidates for such a redefinition are ion-based fre-
quency standards featuring very small systematic fre-
quency shifts. However, the poor signal-to-noise ratio of
single-ion systems entails averaging times of many weeks
to reach a fractional uncertainty of 10−18 [11, 12]. Clocks
based on strings of ions confined in a linear trap promise
to overcome this limitation [13, 14]. Due to unavoidable
electric field gradients in such a trap, suitable clock ion
species may have only negligible electric quadrupole mo-
ments to avoid systematic frequency shifts [15]. This re-
quirement is met by group 13 ion species featuring a 1S0

↔3P0 transition [16], as well as some highly-charged ions
[17–20]. Most of these candidates (with the notable ex-
ception of In+) lack a suitable transition for laser cooling
and state detection, so that quantum logic spectroscopy
(QLS) [21] is required for readout. In QLS, the inter-
nal state of the clock ion is transferred by a series of
laser pulses onto a logic ion, where it can be efficiently
detected. However, existing methods for quantum logic
readout require a large overhead in either time or logic
ions when an ensemble of clock ions is used.

Here, we suggest using a quantum algorithm originally
developed in the context of entanglement concentration
for a quantum non-demolition (QND) measurement of
the clock signal. The number of logic ions and gate oper-
ations required both scale as the logarithm of the number
of clock ions. We show that the algorithm can be imple-
mented efficiently using the multi-ion Mølmer-Sørensen
gate [22–25], a well-established tool for quantum control
of ion crystals [26, 27]. We demonstrate the feasibility of
such gates in multi-species crystals, for instance with 3
Al+ and 2 Ca+ ions. The QND readout we propose opens
up rich perspectives for more complex clock protocols.
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FIG. 1. (a) In an atomic clock based on NC trapped ions
the frequency of a laser is locked to an atomic transition of
frequency ω0 e.g. in a Ramsey sequence of two π/2-pulses
(Hadamard gates H) enclosing a free evolution time T (with

Hamiltonian H). Measurement of the number N̂ of clock
ions in |1〉 yields an error signal for the deviation of the laser
from resonance. (b) For ion species lacking the cycling transi-
tion needed for direct state detection, a quantum algorithmic
readout can be used to map N̂ onto NL co-trapped logic ions
whose state can be detected efficiently.

Working principle of ion clocks with direct readout—
We consider a string of NC clock ions with a narrow-band
optical transition of frequency ω0 between two internal
states |0〉 and |1〉 which provides the frequency reference
for the clock. The goal is to stabilize to this transition fre-
quency ω0 a laser field of frequency ω. To this end, pulses
of light from the laser drive the clock ions, transferring
them from |0〉 to the excited state |1〉 with a frequency-
dependent probability. In the simplest schemes, such as
Rabi and Ramsey interrogation, this probability is inde-
pendent for each ion. The clock readout then consists in
measuring the number of excited ions N̂ =

∑NC

i=1 |1〉i〈1|
and using it to infer the excitation probability and thence
the frequency offset ∆ = ω − ω0, which can then be
corrected. For definiteness we illustrate our proposed
scheme with Ramsey interrogation (cf. Fig. 2a), but note
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FIG. 2. Quantum algorithmic readout illustrated for NC = 3 clock and NL = 2 logic ions: after a Ramsey sequency (blue,
dash-dotted box) the clock ions are in a superposition of states |N〉C where N ∈ [0, NC] is the number of ions in excited states
|1〉 (their Hamming weight). A quantum algorithmic readout U (red, dashed box) maps N in binary representation onto a
number NL = dlog2(NC + 1)e of logic ions. Detection of the logic ions in the {|0〉, |1〉}-basis provides the number N . (a)
Quantum algorithm for the indirect measurement of the Hamming weight, taken from [28, 29]: (1) Logic ions are initialized in
|0〉L = |00〉L (states |N〉L denote the binary representation of N). (2) The state is quantum Fourier transformed into |0〉L. (3)
Controlled-phase gates rotate the state in Fourier space to |N〉L for a state |N〉C of clock ions. (4) An inverse Fourier transform
yields the state |N〉L of logic ions. (b) The same algorithm decomposed in terms of multi-ion Mølmer-Sørensen (MS). The
Hadamard gates shown in grey need not be executed. Removing Hadamard gates displayed with dashed boxes merges the
algorithmic readout with the Ramsey sequence, and requires the laser fields in the MS gates to be phase coherent with the
Hadamard gates in the Ramsey sequence. Explicit, general forms of all gates are given in the Appendix.

that arbitrary clock protocols involving entangled states
and correlations between ion excitation probabilities can
always be designed to yield NC + 1 measurement eigen-
values corresponding to the different possible numbers of
excited ions [30]. A method to measure N̂ can thus be
used to read out any NC-ion clock.

As explained above, a direct measurement of the ex-
cited state population N̂ is impractical for many inter-
esting species of clock ion. Instead, one can map N̂ onto
an ensemble of NL co-trapped logic ions which can be
detected efficiently, as shown in Fig. 1b. In direct exten-
sion of established readout techniques based on quantum
logic [21, 31] one could use as many logic ions as clock
ions (NL = NC), performing successive quantum gate
operations to transfer the state of each clock ion to the
corresponding logic ion. Alternatively, one could use a
single logic ion, transfer the state of each clock ion se-
quentially to the logic ion, and measure it there. This
imposes a long readout time as the ion crystal must be
cooled between each measurement and subsequent state
swap operation. Both strategies have prohibitive over-
head in additional ions or number of gate operations and
readout time. The last is crucial because time spent on
readout adds to the clock cycle’s dead time and thus,
through the Dick effect, to the clock instability [32, 33].

Quantum algorithmic readout— From the perspec-
tive of Quantum Information Theory the quantity of in-
terest — the number of clock ions in state |1〉 — is the
Hamming weight of the string of NC quantum bits (a
number with NC + 1 possible values between 0 and NC).
In the context of entanglement concentration protocols a
quantum algorithm has been developed for the indirect

determination of the Hamming weight of a quantum bit
string [28, 29], cf. Fig. 2a. The algorithm uses an ancil-
lary string of NL = dlog2(NC+1)e quantum bits on which
the Hamming weight of the NC primary quantum bits
is stored in binary representation. Thus the necessary
number NL of logic ions (ancillary quantum bits) scales
logarithmically with the number of clock ions. Suitable
combinations of clock and logic ion numbers (NC, NL)
are, for example, (3, 2) and (7, 3). Given NC quantum
bits (clock ions) in a state |N〉C with Hamming weight N
and NL ancillary bits (logic ions) initialized in |00 . . . 0〉L,
the algorithm effects a unitary transformation U such
that U|N〉C|00 . . . 0〉L = |N〉C|i1i2 . . . iNL

〉L where |N〉C
denotes the normalized, symmetric superpostion of N
clock ions in |1〉 and all others in |0〉 [34] and the bit string
i1i2 . . . iNL

(in = 0, 1) in the state of the logic ions gives
the binary representation of the Hamming weight of the
state of clock ions, N =

∑NL

n=1 2n−1in. We will denote
by |N〉L = |i1i2 . . . iNL〉L the state of logic ions represent-
ing N . The state of the clock ions after one clock cycle
is a superposition |ψ(∆)〉C =

∑NC

N=0 cN (∆)|N〉C where
the dependence of the amplitudes cN (∆) on the detun-
ing carries the clock signal. Application of the readout
algorithm generates an entangled state of clock and logic
ions

|Ψ(∆)〉 = U|ψ(∆)〉C|0〉L =

NC∑
N=0

cN (∆)|N〉C|N〉L.

From a measurement in the {|0〉, |1〉}-basis of each logic
ion one can extract the observable corresponding to the
estimated Hamming weight of the clock ions N̂est =∑NL

n=1 2n−1|1〉n〈1| =
∑NC

N=0N |N〉L〈N |. In a perfect im-
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plementation measurement of N̂est on the logic ions ex-
hibits exactly the same statistics as measuring N̂ on the
clock ions directly. In particular, the error signal can be
extracted from N(∆) = 〈Ψ(∆)|N̂est|Ψ(∆)〉 and used to
correct ω exactly as in a direct readout.

Implementation based on Mølmer-Sørensen gates—
Following [28, 29], the operation U can be imple-

mented by a sequence of quantum Fourier transforms
and controlled-phase gates as shown in Fig. 2a. This
requires a number of gates linear in NC, so provides lit-
tle advantage over the complete state swap mentioned
above (apart from the reduction in the number of logic
ions). Fortunately, the algorithm can be decomposed
much more efficiently using the tools of quantum con-
trol available in linear ion traps. Many experiments on
quantum computations and simulations [26, 27] exploit
multi-ion Mølmer-Sørensen (MS) gates [22–24], which are
unitary transformations UMS = exp(−iS2) where

S =
∑
α=L,C

Nα∑
i=1

dαi
(
σxαi cosφαi + σyαi sinφαi

)
, (1)

and σ
x(y)
αi denotes a Pauli x(y)-operator for the i-th clock

or logic ion for, respectively, α = L,C (i = 1, . . . , Nα).
A MS gate involves driving the ions simultaneously with
bichromatic laser fields at frequencies ω0 ± (ν + δ) for
a time t where ν denotes the frequency of one of the
collective modes of vibration in the ion crystal, and δ > 0
is the detuning from the respective sideband transition,
cf. [25] and Appendix. The coefficients in S are given by

dαi = Ωαiηαi
√
t/δ (2)

where Ωαi is the Rabi frequency of the laser and ηαi
is a Lamb-Dicke factor. Off-resonant driving requires
|Ωαiηαi/δ| � 1. The angles φαi in (1) are set by the
phase of the laser fields. Here, we assume transverse il-
lumination of the crystal, driving sideband transitions to
a collective mode of radial vibration, so that the laser
field at each ion can be adjusted separately. We consider
the feasibility of tailoring suitable values of Ωαi and φαi
below, with a concrete case study of a multi-species MS
gate.

A decomposition of the desired transformation U in
terms of multi-ion MS gates and single ion rotations is
shown in Fig. 2b. Remarkably, only a single two-species
MS gate is required. The inverse Fourier transform on
the string of logic ions involves NL − 1 single-species MS
gates such that the total number NL of multiqubit gates
grows logarithmically with the number of clock ions NC

(cf. Appendix). What is more, the clock ions are in-
volved only once in the first MS gate. In contrast, a
readout relying on a state swap between NC clock and
NL = NC logic ions requires NC gate operations each
of which acts on a pair of one clock and one logic ion.
Compared to this, the readout strategy introduced here

offers a considerable advantage even for the small ion
numbers (NC, NL) = (3, 2) and (7, 3) most relevant to
experiments.

In the first MS gate of Fig. 2b the laser phases must be
chosen as φαi = 0 or π, such that S involves σx-operators
only, and the coefficients dαi in Eq. (1) must satisfy

dCidLje
i(φCi+φLi) = −π 2−(j+2), (3)

dLjdLk = π njk (j 6= k), (4)

where i = 1, . . . , NC, j, k = 1, . . . , NL and njk are inte-
gers. Condition (3) ensures that the MS gate executes
the controlled phase gates between logic and clock ions
as shown in Fig. 2a. Condition (4) guarantees that the
logic ions effectively do not interact with each other dur-
ing the MS gate operation. The solution that minimizes
the size of the largest coefficient is

|dLj | =
√
π 2NL−1−j , |dCi| =

√
π 2−(NL+1). (5)

The signs of dαi are determined (through the Lamb-Dicke
factors ηαi) by the sense of each ion’s motion in the nor-
mal mode used in the MS gate. For a given normal mode
the laser phases φαi must be chosen to yield the correct
sign in condition (3). The MS gates in the subsequent in-
verse Fourier transform concern logic ions only (dCi = 0).
The required values of dLi are similar to those in the first
MS gate, and at most

√
2π · 2NL−3. The explicit expres-

sions are given in the Appendix.

In the remainder of this article we discuss in more
detail the realization of multi-species MS gates for the
concrete case of Al+ and Ca+ as clock and logic ions
respectively. The main requirement for an efficient MS
gate is a well-resolved normal mode of vibration that in-
volves both clock and logic ions, so we start by finding
the normal mode spectrum of the two-species crystal. We
assume the ions are held in a linear RF Paul trap with
soft confinement along the crystal axis (z-axis) at vibra-
tion frequency νL

z (for logic ions, as a reference), and
much tighter confinement in the transverse directions.
We also assume that transverse oscillations are effectively
restricted to one direction (x-axis) by stiff confinement in
the other. It is important to note that the two species
of ions experience different radial potentials because the
pseudopotential generated by the radial AC fields in a
Paul trap is mass-dependent. As a result, lighter ions
feel a tighter transverse potential. The corresponding
trap frequencies of clock and logic ions are denoted by
νC
x and νL

x , where νL
x < νC

x since mAl/mCa = 27/40.
Let a = νL

x /ν
L
z be the asymmetry parameter between the

axial and the smaller of the two radial frequencies. Tak-
ing into account the Coulomb repulsion and assuming a
particular ordering of ions along the axis, we determine
the average position of ions and the normal modes of vi-
brations following [35–37], see also the Appendix. The
generic result is that for large asymmetry parameter a
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FIG. 3. (a) Normal mode frequencies of transverse vibration
for a crystal of NC = 3 Al+ clock ions between NL = 2
Ca+ logic ions (see b, inset) versus asymmetry parameter
a = νLx /ν

L
z (ratio of transverse to axial trap frequencies for

logic ions, νLz = 2π 874 kHz). (b) Lamb-Dicke factors ηCi and
ηLj of, respectively, the three clock and two logic ions for the
normal mode of highest frequency (thick line in (a)). For large
asymmetry parameter transverse motions of clock and logic
ions decouple due to the mass-dependent transverse confine-
ment. The dotted line in (a) and (b) marks the case studied
in the text.

the NL +NC normal modes split into two groups involv-
ing either the NL logic or the NC clock ions. To have
truly collective normal modes involving both species of
ions (as required for the MS gate) the asymmetry must be
kept moderate. However, below a critical value of a the
normal modes become unstable and the crystal changes
to a zig-zag configuration [35–37].

In Fig. 3a we show the spectrum of the transverse nor-
mal modes for the case of (NC, NL) = (3, 2) in the or-
dering shown in the inset of Fig. 3b. For moderate trap
asymmetry the highest-lying mode is sufficiently collec-
tive while exhibiting a substantial gap ∆ν to the neigh-
boring mode. This gap sets the time-scale for the gate
operation: the detuning in the MS gate must be small
enough (δ � ∆ν) to avoid coupling to the wrong mode,
and the Rabi frequencies must obey |Ωαiηαi| � δ. Fi-
nally, the Ωαi and the gate duration t in Eq. (2) must be
chosen to satisfy the conditions in Eqs. (5) for the MS
gate. For an axial trap frequency of 2π 874 kHz and an
asymmetry parameter a = 2.5 the highest-lying trans-
verse mode has a frequency ν = 2π 3.14 MHz and the
gap to the next mode is ∆ν = 2π 480 kHz. Assuming all
laser beams are aligned with the x-axis, the correspond-
ing Lamb-Dicke parameters are ηLi = 0.007 for both logic
ions and ηC1 = ηC3 = 0.097, ηC2 = 0.113 for the clock
ions, see Fig. 3b. For a detuning δ = 2π 24 kHz and a
gate duration t = 1 ms we choose the Rabi frequencies
(ΩL1, ΩL2) = 2π (500, 250) kHz and (ΩC1, ΩC2, ΩC3) =
2π (4.51, 3.87, 4.51) kHz for logic and clock ions, respec-
tively, satisfying Eq. (5). In this example δ/∆ν is 5% and
the largest of the ratios |Ωαiηαi|/δ is 15%. Note that the
carrier transition is driven off-resonantly with a Rabi fre-
quency to detuning ratio of Ωαi/ν which is also on the or-
der of 15%. However, the associated AC Stark shifts can-
cel due to the bichromatic, red- and blue-detuned drive.

The 1 ms gate duration is short enough compared to the
1.17 s D5/2 state lifetime in Ca+ that readout errors due
to spontaneous emission will be on the per mill level, as
confirmed by a full solution of a master equation, see also
Appendix. The Rabi frequencies required in the present
example can be tailored by implementing the gate with
a tightly focused TEM10 laser beam, such that each ion
is located at a position in the transverse intensity profile
corresponding to the Rabi frequency given above.

The more complex spatial structure of Rabi frequencies
needed in a longer string of ions can be engineered with
spatial light modulators [38] or multi-channel acousto-
optical modulators. Combined with the freedom to per-
mute clock and logic ions and to choose different solutions
to Eqs. (3)-(4) we expect experimentally feasible imple-
mentations for more than 15 clock and 4 logic ions. With
more ions, the narrower spacing of collective modes may
require active compensation of off-resonant couplings to
spectator modes.

Note that the quantum algorithmic readout suggested
here performs a QND measurement of the Hamming
weight of clock ions. This may allow more complex clock
protocols using repeated readouts of (sub)ensembles of
ions or preparation of the clock ions in Dicke states for
nonclassical frequency metrology.
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Mehlstäubler, Appl. Phys. B 114, 231 (2014).

[15] W. M. Itano, J. Res. NIST 105, 829 (2000).
[16] H. Dehmelt, Le Journal de Physique Colloques 42, 299

(1981).
[17] S. Schiller, Phys. Rev. Lett. 98, 180801 (2007).
[18] A. Derevianko, V. A. Dzuba, and V. V. Flambaum,

Phys. Rev. Lett. 109, 180801 (2012).
[19] V. A. Dzuba, A. Derevianko, and V. V. Flambaum,

Phys. Rev. A 86, 054502 (2012).
[20] V. A. Dzuba, V. V. Flambaum, and H. Katori,

arXiv:1411.0775 [physics] (2014), arXiv: 1411.0775.
[21] P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano,

J. C. Bergquist, and D. J. Wineland, Science 309, 749
(2005).

[22] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[23] E. Solano, R. L. de Matos Filho, and N. Zagury, Phys.
Rev. A 59, R2539 (1999).

[24] G. Milburn, S. Schneider, and D. James, Fortschritte der
Physik 48, 801 (2000).

[25] C. F. Roos, New Journal of Physics 10, 013002 (2008).
[26] K.-A. B. Soderberg and C. Monroe, Reports on Progress

in Physics 73, 036401 (2010).
[27] R. Blatt and C. F. Roos, Nat Phys 8, 277 (2012).
[28] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schu-

macher, Phys. Rev. A 53, 2046 (1996).

[29] P. Kaye and M. Mosca, Journal of Physics A: Mathemat-
ical and General 34, 6939 (2001).
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Appendix

Calculation of normal mode spectrum for transversal ion oscillations

We calculate the normal mode spectrum for the transversal oscillations of a two-species ion chain along the lines
of [37]. In the example setup described in the main text two logic ions (Ca+, mass mL = 40amu, laser wavelength
λL = 729.1nm) and three clock ions (Al+, mass mC = 27amu, laser wavelength λC = 267.4nm) are trapped along
the crystal axis (z-axis). The trap frequency for the logic ions is νLz = 2π874kHz. The asymmetry parameters are
defined as a = νLx /ν

L
z and ayx = νLy /ν

L
x . We fix ayx = 5 to suppress oscillations along the y-axis. The normal modes

are calculated for different values of a, because the oscillations in x-directions will be used for the gate. As sketched
in Fig. 3b the clock ions (index k = 2, 3, 4) are placed in the middle and the logic ions (index k = 1 and k = 5) on
the outside. With masses (m1,m2,m3,m4,m5) = (mL,mC ,mC ,mC ,mL) the kinetic energy is given by

T (~p) =

5∑
k=1

~p 2
k /2mk.
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The potential energy due to the electrostatic component of the trap is the same for each ion, as all ions carry a single
positive elementary charge q. Assuming a radially symmetric electrostatic trap we get a total electrostatic potential
of [36]

VS(~x) = 1
2

5∑
k=1

(
b0z

2
k − 1

2b0x
2
k − 1

2b0y
2
k

)
,

i.e.trapping in z-direction but repulsion in x- and y-direction of equal strength. The potential strenth is parametrized
by the parameter b0, in units of energy divided by length squared. To keep the ions also radially trapped, an additional
time-dependent radiofrequency potential is used to create an effective mass-dependent potential in x and y direction

VRF (~x) = 1
2

5∑
k=1

mL

mk

(
bxx

2
k + byy

2
k

)
.

The potential strength is parametrized by bx and by, in the same units as b0. The parameters b0, bx and by are fully
determined by the physical parameters of the setup: logic ion mass mL, logic ion frequency νLz and the asymmetry
parameters a and axy. In addition to the trapping potential the ions interact via the Coulomb repulsion potential

VI(~x) =
∑
k>j

q2

4πε0
|~xk − ~xj |−1

.

With these definitions we can write the total energy of the system as E(~x, ~p) = T (~p) + V (~x), where V (~x) = VS(~x) +
VRF (~x) + VI(~x).

We find the steady state position ~x0 of the ions by numerically minimizing [39] the potential energy V under the
condition z1 < z2 < ... < z5. In this study we choose large enough asymmetry parameters a so that the solution is
always a linear chain without zigzag configuration [35–37]. As the oscillations around the steady state will be small,
we use second order Taylor expansion to obtain an approximate harmonic potential. The different directions x, y and

z decouple in this approximation. Denoting pk = mkẋk and Vkj = ∂xkxjV (~x)

∣∣∣∣
~x0

the energy for motion in x-direction

only is

Ex =

5∑
k=1

p2
k

2mk
+
∑
k,j

1

2
Vkjxkxj .

In coordinates with scaled position x̃k =
√

mk
m0
xk and momentum p̃k =

√
m0

mk
pk, normalized to mass m0 = 1 amu, the

kinetic term becomes diagonal and the potential transforms as Ṽkj =
√

m2
0

mkmj
Vkj . In these coordinates Ex reads

Ex =

5∑
k=1

p̃ 2
k

2m0
+
∑
k,j

1

2
Ṽkj x̃kx̃j .

For the normal modes we numerically diagonalize Ṽ = ODOT with a dimensionless orthogonal matrix O and diagonal
matrix D of dimension frequency squared times mass. The eigenfrequencies are then given by

νk =
√
Dkk/m0.

In analogy to [37] the Lamb-Dicke factors of a mode k for an individual ion with index j are

ηkj =
2π

λj
Okj

√
~

2mjνk
,

with λj the wavelength of the laser addressing the j-th ion and Ojk the j-th entry of the eigenvector for the k-th
normal mode.
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Derivation of the effective MS-Hamiltonian

A MS-gate is achieved by the interaction of multiple ions with two laser fields equally detuned to the upper and
lower sideband of a collective motional mode [22, 25]. The two lasers A and B (red and blue detuned, respectively)
have frequencies ωA = ω0 − ν − δ and ωB = ω0 + ν + δ where ω0 is the carrier frequency, ν is the frequency of the
motional mode mediating the interactions and δ is a small detuning of the lasers to the motional sidebands. First we
assume a general setup of N arbitrary ions with individual Lamb-Dicke factors ηA/B,i and Rabi frequencies ΩA/B,i
and laser phase φi (assumed to be equal for both lasers A and B but possibly different for each ion). The Hamiltonian
of the system consists of the internal energies, motional energy and the interaction with the lasers. Changing into an
interaction picture gives a time dependent Hamiltonian in Lamb-Dicke expansion

H(t) =

N∑
j=1

ΩA,jηA,j
(
e−iδte−iφjσ+

j a+ h.c.
)

+ ΩB,jηB,j
(
eiδte−iφjσ+

j a
† + h.c.

)
.

Here a† and a are the creation and annihilation operators of the joint motional mode with frequency ν. The Lamb-
Dicke approximation was used keeping terms only to linear order in ηA/B,j and a rotating wave approximation was
applied, neglecting all terms rotating faster than δ. The laser phases can be absorbed through a unitary transformation
H(t) = V H̃V † where

V =

N∏
j=1

exp

(
−iφj

2
σzj

)
such that

H̃(t) =

N∑
j=1

ΩA,jηA,j
(
e−iδtσ+

j a+ h.c.
)

+ ΩB,jηB,j
(
eiδtσ+

j a
† + h.c.

)
.

For the MS-gate the effective Hamiltonian can be calculated from H̃(t) with a Dyson-Series

U(∆t) = T exp

(
−i
∫ ∆t

0

dt′ H̃(t′)

)

= 1+ (−i)
∫ ∆t

0

dt′ H̃(t′) + (−i)2
∫ ∆t

0

dt′
∫ t′

0

dt′′ H̃(t′)H̃(t′′) + . . .

Here T is the time-ordering operator and a rotating wave approximation is applied to derive the time independent
effective Hamiltonian. This means neglecting all terms of order eiδt or higher powers. Since the first order correction
is linear in H̃(t′) this term will be neglected because every part is proportional to either eiδt or e−iδt. Therefore the
first contributions to the effective Hamiltonian are of second order, when rotating and counter rotating terms from
H̃(t′) and H̃(t′′) cancel. The infinite series can then be summed to give the unitary time evolution of the effective
Hamiltonian

U(∆t) = exp
(
−iH̃eff∆t

)
.

Up to a constant, H̃eff can be written in a compact form as

H̃eff =
1

4δ

[
S̃2
x + S̃2

y + S̃z

]
where

S̃x =

N∑
j=1

(ΩA,jηA,j + ΩB,jηB,j)σ
x
j ,

S̃y =
N∑
j=1

(ΩA,jηA,j − ΩB,jηB,j)σ
y
j

S̃z =

N∑
j=1

2 (ΩA,jηA,j + ΩB,jηB,j) (ΩA,jηA,j − ΩB,jηB,j)
(
2a†a+ 1

)
σzj
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This representation emphasizes the different contributions to the effective Hamiltonian. S̃2
x and S̃2

y give rise to the
usual collective spin flips in a MS-gate and Sz are energy shifts for the internal states of the ions. Note that both
S̃y and S̃z are proportional to the differences in Rabi frequencies and Lamb-Dicke factors for the lasers A or B and
therefore vanish if those are equal.

Now the unitary transformation, with V given above, is applied to H̃eff to find the full Hamiltonian of the MS
interaction, namely

HMS = V H̃effV
† =

1

4δ

[(
S̃φx

)2

+
(
S̃φy

)2

+ S̃z

]
with the operators

S̃φx =

N∑
j=1

(ΩA,jηA,j + ΩB,jηB,j)
(
σxj cos φj − σyj sin φj

)
S̃φy =

N∑
j=1

(ΩA,jηA,j − ΩB,jηB,j)
(
σyj cos φj + σxj sin φj

)
and S̃z stays unchanged.

If we assume now that each ion interacts with both laser beams in the same way, meaning that ΩA,j = ΩB,j ≡ Ωj
and ηA,j = ηB,j ≡ ηj hold for each ion j, the Hamiltonian reduces to only one term.

HMS =
Ω2
jη

2
j

δ

 N∑
j=1

σxj cos φj − σyj sin φj

⊗( N∑
k=1

σxk cos φk − σyk sin φk

)

Finally, to compare this result to the quantum gate used in the main text, we calculate the unitary time evolution for
this Hamiltonian.

UMS = exp (−iHMS t) = exp
(
−iS2

)
where t is the gate time and

S =

N∑
j=1

Ωjηj
√
t/δ
(
σxj cos φj − σyj sin φj

)
This is identical to the unitary evolution used in the readout strategy if we label the N ions accordingly as clock or
logic-ions, i.e j → αi.

Generalised Algorithmic Readout

So far the readout algorithm was discussed only for NC = 3 , NL = 2. This section describes the case with arbitrary
NC and NL and gives an explicit description of all quantum gates used to implement the algorithm. The generalisation
of the schematic circuit in Fig. 2a to the case of arbitrary numbers of ions is shown in Fig. 4a. The Ramsey-sequence
is performed on all clock ions (leaving them in a superposition of states |N〉C), and the logic ions are prepared in the
ground state at the beginning of the algorithm U . After applying the quantum fourier transformation on the logic
ions the algorithm consists of controlled phase gates using the clock ions as control bits. This way an excited clock

ion gives an additional phase to the excited state in each logic ion via the unitary phase gate Rk =

(
1 0

0 e2πi/2k

)
and generates the state |N〉C|N〉L. The inverse quantum fourier transformation produces the Hamming-weight N in
binary representation as the logic ions’ state, which can then be retrieved by a measurement on the logic ions.

Generalising the implementation of the readout by means of MS gates requires some more work than the schematic
description, mostly due to the inverse quantum fourier transformation. The initial quantum fourier transformation
in U is again given by Hadamard gates on the logic ions, since they were initially prepared in the ground state. The
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Figure 1: Algorithmic Readout for a general number of clock- and logic ions
NC ,NL. 1FIG. 4. Full algorithmic Readout for a general number of clock- and logic ions NC,NL. (a) As described in the main text,

the clock cycle starts with a Ramsey sequence (blue, dash-dotted box) on all NC clock ions, uses the quantum algorithm U
(red, dashed box) to encode the number of excited clock ions onto the NL logic ions and gives Hamming weight in binomial
representation with a subsequent measurement of each logic ion. So the unitary transformation U starts at (1) with the state
|N〉C|0〉L where N clock ions are in the excited state and all logic ions are prepared in the ground state. Then the quantum
fourier transform is applied to the logic ions to give |N〉C|0〉L as the resulting state at (2). The controlled phase gates Rk add
additional phases to the logic ions for each excited clock ion to give the state |N〉C|N〉L at (3). The inverse quantum fourier
transform yields the state |N〉C|N〉L at (4) so that the detection of each logic ion gives the binary representation of N . (b)
Decomposition into quantum gates for an experimental realisation. In the first step the quantum fourier transformation is
performed via Hadamard gates on the logic ions. Then a Mølmer-Sørensen-gate connecting clock- and logic ions transfers the
information about the Hamming weight onto the logic ions. The inverse quantum fourier transformation is decomposed into
NL − 1 Mølmer-Sørensen-gates and related single ion phase gates separated by a Hadamard gate. For simplicity each phase
gate is labeled s although they all describe different phase shifts. The detailed phases for s and the coefficients for each UMS

operation are given in the text. Again, Hadamard gates shown in grey drop in pairs and do not need to be executed. Grey
dashed gates merge the readout with the Ramsey sequence.

main part of the algorithm, i.e. the controlled phase gates between clock- and logic ions, are performed by a single
Mølmer-Sørensen gate and additional single qbit phase gates. This Mølmer-Sørensen gate is described in the main
text and Eq. (5) shows the coefficients needed to implement the desired algorithm. In Fig. 4b the single phase gates
associated with this UMS are labeled as sk. Those are controlled phase gates

sk =

(
1 0
0 eiθk

)
(6)

with phases θk = 2NC π 2−(k+2) for k = 1, ..., NL. Additional single ion phase gates (and Hadamard gates) on the
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clock ions are left out in this discussion as well as in the given figures (displayed in grey). These gates are only
necessary to recover the initial state of the clock ions, but this is not the focus of the algorithmic readout presented
here. Hadamard transformations surrounding the Mølmer-Sørensen gates are used to relate the physical σx ⊗ σx to
σz ⊗ σz.

With more logic ions, the implementation of the inverse quantum fourier transformation become more costly in
terms of the Mølmer-Sørensen-gates needed. An efficient circuit for the quantum fourier transformation consists of
blocks with different controlled phase gates separated by Hadamard gates, see e.g. [40]. In analogy to other parts of
the readout, these steps are performed using Mølmer-Sørensen-gates and single ion phase gates. The inverse quantum
fourier transformation on the logic ions is implemented by a series of NL − 1 such steps, each involving an increasing
number of ions and ending with a Hadamard gate on the last ion involved. Every Mølmer-Sørensen gate is described
by the same mechanism as given by Eq. (1) in the main text but with phases e.g. φLj = 0 for all j. It is therefore
determined by the coefficients dj corresponding to the j-th logic ion. For the step involving logic ions 1 to k the
coefficients are

dj =
√

2π · 2j−2

for j = 1, 2, ..., k − 1 and

dk =
√

2π · 2−k

for ion k. For k = NL and j = NL−1 the coefficient dNL−1 =
√

2π ·2NL−3 gives the extreme case, requiring the largest
Rabi frequencies. This sets a limit to possible implementations of this algorithm for large NL. The corresponding
single ion phase gate for ion n in this step are therefore given by Eq. (6) with

θj = 2π · 2−(k−j)

for j = 1, 2, ..., k − 1 and

θk = 2π

k−1∑
m=1

2−(k−m)

for the k-th ion. These coefficients are chosen such that they give the desired controlled phase gates and also discard
undesired interactions among the logic ions.

Numerical Simulation of Noise Added in Readout

We denote the excitation probability of each ion after the Ramsey sequence by p. The quality of the clock is
characterized (among other parameters such as the readout time) by the derivative of the mean signal ∂p〈N̂est〉 and

the variance σ2
est = 〈N̂2

est〉 − 〈N̂est〉2 of the number of excitations N̂est. The values are taken at a detuning where
p = 0.5, as the clock is operated around that point for best results. For the ideal case of perfectly noiseless ion gates,
N̂est follows the same statistics as N̂ before readout with variance σ2 = 〈N̂2〉 − 〈N̂〉2. Any indirect readout will add
additional decoherence which decreases the signal and increases the variance. We define the readout quality ζ ≤ 1 as
the quotient

ζ =
∂p〈N̂est〉/σest

∂p〈N̂〉/σ

∣∣∣∣
p=0.5

of the physical signal to noise ratio (SNR) and the ideal SNR.
Here we consider in particular noise sources due to spontaneous decay of the ions (mostly the logic ions) as well

as additional phase noise of the logic ions, due to e.g. stray magnetic fields. The execution of the five-ion MS gate
defined just before Eq. (1) consumes by far the most time (T = 1ms for our parameters) of the readout process, as
its speed is limited by the restrictions on the Rabi frequency described in the main text. We thus simulate only these
two noise sources and only while executing the five-ion MS gate.

The numerics is implemented using the master equation solver from QuTiP [41, 42]. The Hamiltonian for the gate
operation is given by HMS = S2/T with S from Eq. (1). Note that our numerical model operates on the qubit level
and does not include possible decoherence due to excitations of other phonon modes. Defining for a given operator x
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FIG. 5. Plot of ζ for a gate time of 1ms. T ∗
2 = 2T1 = 2.34 s is the maximal possible value of T2 for the logic ions considering

their finite lifetime due to spontaneous emission.

a corresponding superoperator D[x]ρ = xρx† − 1
2x
†xρ − 1

2ρx
†x acting on a density matrix ρ, the Lindblad operator

for the spontaneous emission (index SE) of the j-th ion with lifetime τj is L
(j)
SE = 1

τj
D[σ

(j)
− ], where σ− is the lowering

operator. In total LSE =
∑
j L

(j)
SE. The lifetime of the D5/2 state in Ca+ is τL = 1.17 s [43] and the lifetime of

the 3P0 clock state of Al+ is τC = 20.6 s [31]. The dephasing due to other sources is characterized by a decay rate

γ for all ions and the corresponding Lindblad operator is LB =
∑
j γD[σ

(j)
z ]. The full master equation now reads

ρ̇ = −i[H, ρ] + LSEρ + LBρ. While the T1 coherence time of the logic ions is fixed, T1 = τL, the T2 coherence time
also depends on the experiment-dependent (phenomenological) decay rate γ via T2 = 1/(0.5τ−1

L + 2γ). The numerical
result for ζ as a function of T2 is depicted in Fig. 5. The best achievable value, reached at T ∗2 = 2T1, is ζ(T ∗2 ) = 0.999
for a gate time of 1ms.

Note that, in general terms, the concentration of information from NC clock ions into NL ∼ dlog2NCe logical
ions entails an increase in the cost of certain errors. For instance, an error in the most significant bit in the binary
representation |N〉L = |i1i2 . . . iNL

〉L is equivalent to an error on the count N of NC/2. This is acceptable as long as
the noise added by such errors is smaller than the unavoidable quantum projection noise in the readout of NC clock
ions. This implies ε � 3/4NC, where ε is the single-qubit error rate. Mølmer-Sørensen gate fidelities sufficient to
satisfy this criterion for clock operation with dozens of ions have already been demonstrated [44].
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