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An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics
under continuous measurements. In many experimental arrangements the system of interest is monitored by
means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement
apparatus. Here we present a method of adiabatic elimination when the transducer consists of an arbitrary number
of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially,
our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily
achieved with other methods. We show that this approach provides a significant improvement in the readout of
superconducting qubits in circuit QED already for a few thermal excitations and makes it possible to adiabatically
eliminate optomechanical transducers relevant for frequency conversion between microwave and optical fields.
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I. INTRODUCTION

Quantum limited, continuous measurements and
measurement-based feedback [1,2] represent important
concepts for fundamental studies of open quantum systems
and the measurement process in quantum mechanics, and
beyond that they are highly useful tools for applications in
quantum information processing. Since the first demonstration
of quantum limited, continuous measurements with single
ions [3] and atoms [4], the concepts of quantum dynamics
under continuous monitoring have gained great experimental
relevance in recent years in the field of circuit QED [5]. Here
measurement and feedback have been used for preparation
of qubit states [6–8], including preparation of entangled
states [9,10], or for observing and stabilization of quantum
trajectories [11–13].

Only very recently have cavity optomechanical systems
[14] entered the parameter regime of quantum limited, con-
tinuous measurement [15] and feedback within the thermal
decoherence time [16], where the tools of continuous mea-
surement theory will unfold their full strength.

In a typical measurement scenario, the system of interest
(e.g., a superconducting qubit or a mechanical oscillator)
interacts with an ancillary system, such as a cavity mode,
whose continuously emitted output field is then sent to a
measurement device; cf. Fig. 1. In the most simple case the
ancilla is a single-cavity mode transducing the signal photons
emitted from, e.g., a superconducting qubit to the measurement
apparatus. Beyond that, the ancillary transducer can consist of
a much more sophisticated subsystem, e.g., an arrangement for
frequency conversion of photons from microwave to optical,
which is subject to its own nontrivial dynamics, losses, and
sources of thermal noise. The precise dynamics of the auxiliary
system is oftentimes irrelevant and we are interested only
in obtaining the equation of motion of the system alone.
Obtaining the reduced dynamics of the system is crucial for two
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reasons. First, auxiliary systems quickly make any numerical
simulations intractable due to the increased Hilbert space
dimension. This becomes especially troublesome when the
transducer is thermally excited at finite temperatures. Second,
in more complex setups, where the transducer is composed
of several coupled subsystems, the structure of the ancilla
easily obscures the effect of the continuous measurement on
the main system and makes it difficult to design feedback
protocols.

The dynamical degrees of freedom of the transducer can be
adiabatically eliminated from the dynamics if their evolution
(e.g., the cavity decay) is fast on the time scale of the interaction
with the system. In the context of stochastic quantum dynamics
under continuous measurements perturbative techniques used
for adiabatic elimination of fast degrees of freedom received
significant attention in the theoretical literature in this field
[17–24]. However, these methods become cumbersome or
intractable when the ancillary system becomes large (i.e.,
consists itself of several subsystems) and/or thermally ex-
cited at finite temperature. Both of these cases are highly
relevant for current experiments: On the one hand, thermal
excitations typically cannot be neglected in the frequency
domain of circuit quantum electrodynamics [5]. On the other
hand, optomechanical systems composed of several coupled
mechanical, optical, and microwave modes can be used as
transducers in order to convert photons at vastly different
frequency scales [25–30].

In this paper, we present a method for adiabatic elimi-
nation in conditional dynamics which applies to transducers
composed of an arbitrary number of bosonic modes whose
dynamics is Gaussian [31,32]; that is, the dynamics is
generated by a quadratic Hamiltonian, linear jump (decay)
operators, and the transducer is subject to continuous homo-
dyne detection. We use the fact that the dynamics of such
systems can be described using their first and second statistical
moments—the mean values and the covariance matrix—to
obtain a stochastic master equation for the system of interest
only. The main advantage of this method is the possibility
to eliminate a subsystem of arbitrary dimension coupled to
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FIG. 1. (Color online) (a) Schematic of the considered setup: A
quantum system is monitored by coupling it to an ancillary system—
the transducer—whose continuously emitted light field is detected.
The most simple example of such a setup—a qubit coupled to a
cavity mode with monitored output—is shown in (b). The transducer
can also be a much more complex device, e.g., an optomechanical
converter of microwave to optical photons.

thermal baths, which implies a broad range of applications for
superconducting and optomechanical systems.

We introduce the method in Sec. II and illustrate the
method with several examples in Sec. III. Not only do we
show that our method of adiabatic elimination outperforms
more naive approaches when dispersively reading out a qubit
using a cavity with just a few thermal excitations, we also
study measurement-induced entanglement generation in such a
setting, generalizing the results of Ref. [19]. Finally, in Sec. IV
we conclude and suggest other applications of our method in
quantum control scenarios with optomechanical transducers
[25–30].

II. EFFECTIVE DYNAMICS

We consider the scenario depicted in Fig. 1(a): Some quan-
tum system of interest couples to a transducer whose output
fields are continuously measured in a homodyne detection.
Ultimately we are interested in the quantum state of the system
conditioned on the result of the homodyne detection regardless
of the state of the transducer. In the simplest example, shown
in Fig. 1(b), the system of interest is a qubit (e.g., an atom or
superconducting circuit realizing a two level system), and the
transducer is a cavity mode to which the qubit couples in some
way (e.g., via disperse interaction). Homodyne detection of the
field emitted from the cavity can then provide information on
the qubit state, which can be used for readout or quantum state
preparation. In more sophisticated setups the transducer might
consist of several coupled modes, for example, when the signal
emitted by the system has to be converted in frequency in order
to enable high efficiency in transmission and/or detection.

In the following we provide a general method which makes
it possible to adiabatically eliminate the transducer degrees
of freedom and to derive an effective equation of motion for
the conditional quantum state of the system of interest. We
first state our main result regarding the effective equation of
motion (Sec. II A) and then provide an elementary illustration
for the example of the dispersive qubit readout (Sec. II B).
Finally, we provide technical details of the derivation of the
effective equations for the two cases of time-independent and
time-dependent system-transducer interaction in Secs. II C and
II D, respectively. The reader interested in applications of our
method rather than its derivation can jump from Sec. II A
directly to Sec. III.

A. Effective equation of motion

The measurement scenario we have in mind is illustrated
in Fig. 1. The system of interest (e.g., a qubit) couples

to a transducer (e.g., a cavity mode) whose output fields
are continuously measured in a homodyne detection. The
conditional dynamics of the overall system, including losses,
noise, and the effect of continuous diffusive measurement, is
described by the stochastic master equation

dρ = LSρdt + LT ρdt + Lintρdt +
∑
m

H[λm]ρdWm. (1)

LS is the system Liouvillian that contains, in general, some
coherent dynamics given by a system Hamiltonian HS and
some Lindblad operators describing decoherence, but will
be left unspecified for the moment. The Liouvillian for the
transducer is

LT ρ = −i[HT ,ρ] +
∑

i

D[ji]ρ,

where HT is the Hamiltonian and the Lindblad termsD[ji]ρ =
jiρj

†
i − 1

2 (j †
i jiρ + ρj

†
i ji) describe decoherence and measure-

ment channels. We further assume that the transducer is
Gaussian; i.e., it consists of N bosonic modes with Hamil-
tonian HT and jump operators ji which are, respectively,
quadratic and linear in canonical operators. It is convenient
to collect the canonical operators into the 2N -dimensional
vector r = (q1,p1, . . . ,qN ,pN )T , with commutation relations
[ri,rj ] = iσij and σ = ⊕N

i=1 ( 0 1
−1 0) being the symplectic

matrix. The transducer Hamiltonian and the jump operators
can then be expressed as, respectively,

HT = 1
2 rT Rr, ji = ξT

i r,

with a real symmetric matrix R = RT ∈ R2N × R2N and
complex vectors ξi ∈ C2N . Furthermore, we assume the inter-
action between system and transducer linear in the transducer
operators

Lintρ = −iε[Hint,ρ], Hint = sT r,

where s is a 2N -dimensional vector of Hermitian operators
acting on the system S. We use the small parameter ε to remind
us that the interaction is weak and can be treated perturbatively.
Finally, for the transducer to be Gaussian, the measurement
terms correspond to a homodyne detection, i.e.,

H[λm]ρ = (λm − 〈λm〉)ρ + ρ(λ†
m − 〈λ†

m〉),
and the measurement operators are linear in the canonical
operators,

λm = (cm + imm)T r, (2)

with cm,mm ∈ R2N . The measurements are independent,
dWmdWn = δmndt , and for each measurement operator λm

there should be a corresponding Lindblad term D[λm] in the
transducer Liouvillian LT . The measurements give rise to
classical measurement currents that take the form

Imdt = 〈λm + λ†
m〉dt + dWm. (3)

To zeroth order in the coupling parameter ε, the
transducer dynamics is Gaussian, which means that it can
be fully described using the first and second statistical
moments of the canonical operators, i.e., the mean values
xi(t) = 〈ri(t)〉 = tr{ρT (t)ri}, and the covariance matrix
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with an element �c
ij (t) = 〈[ri,rj ]+(t)〉 − 2xi(t)xj (t) =

tr{ρT (t)[ri,rj ]+} − 2xi(t)xj (t); here ρT = trS{ρ} is the
reduced density operator of the transducer (in zeroth order of
ε) and we use the superscript c to indicate that the moments
are calculated with respect to the conditional state ρT , obeying
the stochastic master equation

dρT = LT ρT dt +
∑
m

H[λm]ρT dWm. (4)

For the mean values and the covariance matrix this implies
equations of motion,

dx = Axdt +
∑
m

(�ccm − σmm)dWm, (5a)

�̇c = A�c + �cAT + 2N

− 2
∑
m

(�ccm − σmm)(�ccm − σmm)T , (5b)

where

A = σR − i

2
σ

∑
i

(
ξ
†
i ξi − ξT

i ξ ∗
i

)
, (6a)

N = 1

2
σ

∑
i

(
ξ
†
i ξi + ξT

i ξ ∗
i

)
σT ; (6b)

see Appendix A for details.
Averaging Eq. (4) over the measurement record, we recover

the deterministic master equation for the unconditional state

ρ̇u
T = LT ρu

T

(we use the superscript u to indicate that the state is uncondi-
tional) and the corresponding equations of motion for the first
and second moments:

ẋu = Axu, (7a)

�̇u = A�u + �uAT + 2N. (7b)

Note that in both cases, conditional and unconditional dynam-
ics, the covariance matrix obeys a deterministic equation of
motion of Ricatti or Lyapunov type; cf. Eqs. (5b) and (7b),
respectively, which can be solved efficiently.

Our main goal is to derive a closed, effective equation of
motion for the conditional state of the system ρS = trT {ρ}
which is correct to leading order of ε based on the assumption
that transducer dynamics LT is fast on the time scale of the
system-transducer interaction Hint. Under this condition the
state of the system will be given by ρ = ρS ⊗ ρT + O(ε)
where ρT is the steady-state solution of Eq. (4). The strategy
now is to determine equations of motion for the order-ε
correction to this approximation, solve them formally, and
substitute the solution into the equation of motion for ρS .
In this way we can arrive at the closed, effective equation
of motion for ρS , which will be of second order in ε in the
deterministic part and of first order in the stochastic part, as
we will see. In the following we summarize the final result of
this adiabatic elimination procedure. The derivation is given
in the next section.

So far we have left the system dynamics LS unspecified.
For the adiabatic elimination to work we have to make an

assumption regarding LS relative to Hint and LT . We consider
two main regimes.

(a) The system dynamics is trivial, LS = 0. This can be
fulfilled exactly in an interaction picture when the system
operators sj in Hint happen to be constants of motion and
covers, in particular, the important case of a quantum non-
demolition measurement. Otherwise, LS = 0 can be fulfilled
approximately if the time scales of LS are much slower than
those of Hint. Under this assumption the effective equation of
motion for the state of the system ρS is found to be

dρS = 1

2
A−1

ij �u
jk[si,[sk,ρS]]dt + i

2
A−1

ij σjk[si,[sk,ρS]+]dt

+ H
[
i	T

ms
]
ρSdWm, (8)

where we have for the measurement term

	m = (�c − iσ )Q−T cm + A−1(�ccm − σmm), (9a)

Q = A − 2(�ccm − σmm)cT
m. (9b)

We remind the reader that �c(u) refer to the covariance matrix
of the transducer attained as steady-state solutions of Eqs. (5b)
and (7b), respectively. The coefficients cm and mm are given in
Eq. (2), and the matrix A is given in Eq. (6). In the last equation
and in following equations we use the Einstein summation
convention.

As expected, the deterministic part of the stochastic
master equation [first line in Eq. (8)] depends only on the
unconditional state of the transducer through its covariance
matrix �u. Note that the stochastic term does depend on the
conditional state �c.

The effective equation of motion (8) is not manifestly in
Lindblad form. In order to bring it into the Lindblad form we
rewrite it as

dρS = −i[H,ρS]dt + Pij

[
siρSsj − 1

2 (sj siρS + ρSsj si)
]
dt

+ H
[
i	T

ms
]
ρSdWm,

where

H = i

4
sT [A−1(�u + iσ ) − (�u − iσ T )A−T ]s, (10a)

P = −1

2
[A−1(�u − iσ ) + (�u + iσ T )A−T ]. (10b)

The individual jump operators and corresponding decay rates
are given by eigenvectors vi and eigenvalues wi � 0 of the
matrix P ,

∑
i wiD[vT

i s]ρS . P is indeed a positive semidefinite
matrix, as we show in Appendix B .

Finally, the effective equation of motion has to be appended
with an equation relating the measured photocurrent to the
system observables si after elimination of the transducer
degrees of freedom [replacing Eq. (3)],

Imdt = 〈
i	T

ms − is†	∗
m

〉
dt + dWm.

(b) When the interaction and system Hamiltonians do not
commute, moving to the interaction picture with respect to the
system Liouvillian LS results in a time-dependent interaction.
In the simplest and most common case the system operators
oscillate at a particular frequency ±ω and the interaction
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Hamiltonian becomes

Hint(t) = sT (t)r, s(t) = s+eiωt + s−e−iωt ,

with time-independent operators (s+)i = (s−)†i . Since in this
case the signal of the system (i.e., the photons emitted by it)
is now carried by sidebands it will be necessary to detune the
local oscillators in the homodyne measurements such that the
canonical operators in the measurement terms become time
dependent, qi = (aie

−i�mt + a
†
i e

i�mt )/
√

2, pi = i(a†
i e

i�mt −
aie

−i�mt )/
√

2, with ai being the annihilation operator for
mode i and �m the detuning of the local oscillator from
the central frequency. The time dependence can be moved
to the coefficients of the measurement operators in Eq. (1),
λm = (cm + imm)T r(t) = [cm(t) + imm(t)]T r . Performing a
coarse graining in time (provided �m is faster than any other
time scale of the transducer), the Riccati equation (5b) has to
be replaced by

�̇c = A�c + �cAT + 2N

−
∑
m

∑
a∈{c,s}

(
�cca

m − σma
m

)(
�cca

m − σma
m

)T
, (11a)

cm(t) = cc
m cos(�mt) + cs

m sin(�mt), (11b)

mm(t) = mc
m cos(�mt) + ms

m sin(�mt). (11c)

Eliminating the transducer, the system density operator then
obeys the equation of motion,

dρS = LρSdt + H[	m]ρSdWm, (12a)

Imdt = 〈	m + 	†
m〉dt + dWm, (12b)

where the deterministic part is given by

LρS = 1
2 (A + iω)−1

ij

(
�u

jk

[
(s+)i ,[(s−)k,ρS]

]

+ iσjk[(s+)i ,[(s−)k,ρS]+]
)

+ 1
2 (A − iω)−1

ij

(
�u

jk

[
(s−)i ,[(s+)k,ρS]

]

+ iσjk[(s−)i ,[(s+)k,ρS]+]
)
, (13)

and the particular form of the measurement term depends on
the choice of local oscillator detuning, for which one has to
distinguish the two relevant cases �m = ±ω,

	m = i�T
ms+ + i
T

ms−, �m = −ω, (14a)

	m = i
T
ms+ + i�T

ms−, �m = ω, (14b)

�m = (�c − iσ )(Q + i�m)−T c+
m

+ (A − i�m)−1(�cc+
m − σm+

m), (14c)


m = (�c − iσ )(Q − i�m)−T c−
m

+ (A + i�m)−1(�cc−
m − σm−

m), (14d)

Q = A −
∑
m

∑
a∈{c,s}

(
�cca

m − σma
m

)(
ca
m

)T
, (14e)

where we denote cm(t) = c+
mei�mt + c−

me−i�mt and m±
m are

defined similarly. One should, once again, check that each
measurement term has a corresponding Lindblad term in the
unconditional part of the dynamics.

TABLE I. Overview of the various operators appearing in the
stochastic master equation (15) in their operator form [as appearing
in Eq. (15)] and in their matrix form (which is used to obtain the
effective qubit equation). Note that the vectors and matrices in the
last column should be multiplied by the quadrature vector r = (q,p)T ,
which is omitted for brevity. Thus, Hint = sT r , HT = 1

2 rT Rr , etc., as
defined in the text.

Object Operator form Matrix form

Hint χσzp s = (0,χσz)T

HT 0 R = (0 0
0 0)

j1
√

κ(n̄ + 1)a ξ1 =
√

κ(n̄+1)
2 (1,i)T

j2

√
κn̄a† ξ2 =

√
κn̄

2 (1,−i)T

λ
√

κ

2n̄+1 {(n̄ + 1)a − n̄a†} c =
√

κ

2(2n̄+1) (1,0)T ,

m =
√

κ(2n̄+1)
2 (0,1)T

B. Illustration: Dispersive readout of qubit with thermal cavity

As an illustration of this formalism we consider now a
qubit that is dispersively coupled to a thermal cavity with a
continuously monitored output; cf. Fig. 1(b). Assuming the
cavity is driven on resonance, the dynamics is given by the
stochastic master equation

dρ = −iχ [σzp,ρ]dt + κ{(n̄ + 1)D[a] + n̄D[a†]}ρdt

+
√

κ

2n̄ + 1
H[(n̄ + 1)a − n̄a†]ρdW. (15)

Here p = i(a† − a)/
√

2 is the phase quadrature of the cavity
field, a is its annihilation operator, χ is the coupling strength,
κ is the cavity linewidth, and n̄ the thermal occupation. The
measurement term represents a detection of the amplitude
quadrature q = (a + a†)/

√
2 and accounts for thermal noise

in the output channel [1]. The matrix form of the Hamiltonian,
jump operators, and measurement operator are shown in
Table I; it is now straightforward to find the covariance
matrices �u = �c = (2n̄ + 1)1, with 1 being the identity
matrix. The effective qubit equation then takes the form

dρS = 2χ2

κ
(2n̄ + 1)D[σz]ρSdt +

√
2χ2

κ(2n̄ + 1)
H[σz]ρSdW.

(16)

The role of the thermal noise is now twofold: It increases the
dephasing rate of the qubit—which is to be expected—and
it reduces the measurement rate. This latter effect is also not
surprising since thermal noise reduces the signal-to-noise ratio,
thus weakening the measurement.

In the rest of this section, we present detailed derivations of
the equations of motion Eqs. (8) and (12). Readers interested
in applications of these results may thus jump straight to
Sec. III, where we illustrate the use of these equations on
several examples concerning qubit readout in circuit QED.
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C. Effective equation of motion for time-independent
system-transducer interaction

We start the adiabatic elimination by simply tracing out the
transducer dynamics from the stochastic master equation (1),
leading to

dρS = trT {dρ} = −iε[si,ηi]dt + 2cmiμidWm, (17)

where we defined

ηi = trT {riρ}, μi = ηi − xiρS. (18)

In view of μi = trT {ri(ρ − ρT ⊗ ρS)} we can give a sim-
ple physical meaning to the quantities μi : They mea-
sure the deviation of the exact state ρ from the tensor
product state ρT ⊗ ρS with respect to the first-order moments
of the transducer’s canonical variables ri . Accordingly, for the
tensor product state ρ = ρT ⊗ ρS we have μi = 0, and, as we
will see, the μi are of first order in ε. Next, we derive equations
governing the evolution of ηi and μi , solve them formally to
first order in ε, and plug the solutions into Eq. (17).

To obtain an equation for ηi , we need to evaluate

dηi = trT {ridρ}
= trT {riLT ρ}dt − iεtrT {ri[sj rj ,ρ]}dt

+ cmj trT {ri[rj − xj ,ρ]+}dWm

+ immj trT {ri[rj ,ρ]}dWm

= Aijηjdt − i

2
ε
(
�c

ij + 2xixj

)
[sj ,ρS]dt

+ 1

2
εσij [sj ,ρS]+dt + cmj (Uij + 2xiμj )dWm

− σijmmjρSdWm. (19)

Here we used the fact that the first term on the right-hand
side of the above equation is completely analogous to terms
appearing in the equation of motion for the mean values of the
canonical operators Eq. (5a) and is therefore equal to Aijηj .
For the other deterministic part we further used

〈rirj 〉 = 1
2 〈[ri,rj ]+ + [ri,rj ]〉

= 1
2

(
�c

ij + 2xixj + iσij

)
, (20)

and ρ = ρS ⊗ ρT to zeroth order in ε. Finally, we defined
Uij = trT {[ri − xi,rj − xj ]+ρ}. To solve Eq. (19), we also
need an equation of motion for xixjρS ; since this quantity is
a first-order correction to ηi (which is a first-order term in the
equation for the reduced density matrix ρS), it is sufficient
to consider its deterministic part to zeroth order in ε—the
stochastic part would give rise to a stochastic contribution
of second order for ρS . Using the Itō product rule, d(XY ) =
(dX)Y + XdY + dXdY , we have

dxi = trS{dηi}
= Aijxjdt + εσij 〈sj 〉dt

+ (
�c

ij cmj − σijmmj

)
dWm, (21a)

d(xiρS) = (dxi)ρS + xidρS + dxidρS

= AijxjρSdt + εσij 〈sj 〉ρSdt

+ (
�c

ij cmj − σijmmj

)
(2cmkμkdt + ρSdWm)

− ixiε[sj ,ηj ]dt + 2xicmjμjdWm, (21b)

d(xixjρS) = AikxkxjρSdt + xixkρSA
T
kjdt

+ (
�c

ikcmk − σikmmk

)(
�c

j lcml − σjlmml

)
ρSdt,

= AikxkxjρSdt + xixkρSA
T
kjdt

+ 1
2

(
Aik�

c
kj + �c

ikA
T
kj + 2Nij

)
ρSdt, (21c)

where we used the Riccati equation (5b) in the last equation;
moreover, we used μi = ηi − xiρS = O(ε).

Equation (21c) is a Lyapunov equation; generally, the
steady-state solution of a Lyapunov equation AX + XAT +
B = 0 can be written as

X =
∫ ∞

0
dteAtBeAT t . (22)

A straightforward calculation shows that in this case this
amounts to

xixjρS = 1
2

(
�u

ij − �c
ij

)
ρS, (23)

which can be plugged into Eq. (19), which thus gets the form

dηi = Aijηjdt − i

2
ε�u

ij [sj ,ρS]dt + 1

2
εσij [sj ,ρS]+dt

+ (
�c

ij cmj − σijmmj

)
ρSdWm; (24)

here we used ρ = ρS ⊗ ρT + O(ε), which gives
trT {[ri,rj ]+ρ} − 2ηixj = �c

ij ρS . We formally solve this
equation; a straightforward calculations leads to

ηi = i

2
εA−1

ij �u
jk[sk,ρS] − 1

2
εA−1

ij σjk[sk,ρS]+

−A−1
ij

(
�c

jkcmk − σjkmmk

)
ρS

dWm

dt
. (25)

We can already see that the unconditional part of the reduced
equation will not depend on the conditional state, as expected;
since μi enters Eq. (17) only in the stochastic term, the
unconditional part of (25) gives the only contribution to the
unconditional dynamics of the system density operator ρS .

We proceed similarly to obtain an equation of motion for
μi . Combining Eqs. (19) and (21b) and keeping terms to first
order in ε, we have

dμi = dηi − d(xiρS)

= Aijμjdt − 2
(
�c

ikcmk − σikmmk

)
cmjμjdt

+ 1

2
εσij [sj − 〈sj 〉,ρS]+dt − i

2
ε�c

ij [sj ,ρS]dt

+�ij cmjdWm, (26)

where �ij = Uij − �c
ij ρS . The quantities �ij can be inter-

preted in a similar way as the μi in Eq. (18): �ij measure
the deviation of the exact state ρ from the tensor product
state ρT ⊗ ρS with respect to the second-order moments of the
transducer’s canonical variables ri . The equation of motion
for �ij can be derived in a similar way as for μi and shows
that this is a second-order quantity, �ij = O(ε2); refer to
Appendix C for more information about this quantity and the
general structure of the equations of motion for the deviations
of the exact and tensor states with respect to the statistical
moments of the transducer. Therefore, the stochastic term can
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be dropped in Eq. (26), and the solution is

μi = −1

2
εQ−1

ij σjk[sk − 〈sk〉,ρS]+ + i

2
εQ−1

ij �c
jk[sk,ρS],

(27)

where Q = A − 2(�ccm − σmm)cT
m. Plugging the results (25)

and (27) into the equation of motion of the system density
operator, Eq. (17), we recover the effective equation (8).
To show that the resulting equation is a valid Belavkin
equation, we need to show that each measurement channel
has a corresponding decay term. This issue is addressed in
Appendix B.

D. Effective equation of motion for oscillating
system-transducer interaction

When moving to the rotating frame with respect to the
system Hamiltonian, the interaction stays time independent
only for special cases. Generally, the system operators will
become time dependent. To go beyond the model presented in
Sec. II C, we now consider the simplest case of time-dependent
operators: those oscillating at frequency ±ω. We thus write
the interaction Hamiltonian as Hint = sT (t)r , where s(t) =
s+eiωt + s−e−iωt , and the operators s± are time independent.
Although this is not a completely general form of system-
transducer coupling, together with the time-independent case,
it can cover a large range of scenarios, including arbitrary qubit
dynamics.

Since the system operators now oscillate at frequency ω,
the essential part of the signal will no longer be transmitted
in the carrier frequency of the transducer but by the sidebands
instead. To recover this signal, we perform the measurements
with local oscillators that are detuned from the standard refer-
ence frame. Denoting the frequency of the standard reference
frame (corresponding, e.g., to the frequency of the laser light
used for the readout) as ω0 and the frequency of the local
oscillator as ωm, we can follow the approach of Ref. [34]. This
adjustment results in time-dependent measurement operators
λm = (cm + imm)T r(t), where we have

qi = aie
−i�mt + a

†
i e

i�mt

√
2

, pi = i
a
†
i e

i�mt − aie
−i�mt

√
2

, (28)

with �m = ω0 − ωm. Alternatively, we can also rewrite the
measurement operators so that the time dependence enters
through the coefficients, λm(t) = [cm(t) + imm(t)]T r , which
will prove useful when adiabatically eliminating the transducer
dynamics. Overall, the stochastic master equation thus takes
the form

dρ = −iε[sT (t)r,ρ]dt + LT ρdt +
∑
m

H[λm(t)]ρdWm, (29)

where we explicitly write the time dependence of the interac-
tion Hamiltonian and the measurement operators.

Before proceeding with the elimination procedure, some
attention has to be paid to the conditional steady state of
the Gaussian system. Since the measurement terms are now
time dependent, the Riccati equation (5b) for this system
is ill defined. To circumvent this problem, we perform a
rotating-wave approximation in the measurement terms by

introducing the coarse-grained Wiener increments

dW c
m =

∫ √
2 cos(�mt)dW, (30a)

dW s
m =

∫ √
2 sin(�mt)dW. (30b)

For integration intervals long on the time scale of �−1
m but short

on all other time scales, this produces two independent Wiener
increments, dWa

mdWb
n = δmnδabdt , a,b = {c,s}, effectively

turning every measurement into two,

H[λm(t)]ρdWm → 1√
2
H

[
λc

m

]
ρdW c

m + 1√
2
H

[
λs

m

]
ρdW s

m,

(31)
where λa

m = (ca
m + ima

m)T r and

cm(t) = cc
m cos(�mt) + cs

m sin(�mt), (32a)

mm(t) = mc
m cos(�mt) + ms

m sin(�mt). (32b)

These measurement operators are time independent and thus
give rise to a valid Riccati equation,

�̇c = A�c + �cAT + 2N

−
∑
m

∑
a∈{c,s}

(
�cca

m − σma
m

)(
�cca

m − σma
m

)T
. (33)

We treat the matrix Q [Eq. (9b)], which now also becomes
time-dependent, in a similar manner; it becomes

Q = A −
∑
m

∑
a

(
�cca

m − σma
m

)(
ca
m

)T
. (34)

With these adjustments, we are now ready to adiabatically
eliminate the transducer dynamics and obtain an effective
equation for the system.

Since we made no assumptions about time dependence of
the system operators in deriving equations of motion for ρS , ηi ,
xixjρS , and μi [Eqs. (17), (19), (21c), and (26), respectively],
these equations are valid also in the present case. It is only
their formal solution where the time dependence of the system
and measurement operators starts to play a role. The solution
is, nevertheless, analogous to the time-independent case, only
with additional oscillation terms, e±iωt . Solving the equations
of motion for xixjρS , ηi , μi formally and performing the
rotating-wave approximation, keeping only stationary terms,
a straightforward calculation recovers Eq. (12). To bring the
deterministic part of this equation to Lindblad form, we can
proceed similarly to the time-independent case. Since now
the system operators (s±)i are non-Hermitian, we first need to
express them using some Hermitian basis (in the case of qubits,
for instance, that would be the set of the Pauli operators and
the identity). We can then recover the Hamiltonian part and
the dissipative part, the diagonalization of which reveals the
individual decay channels. It then remains to show that the
measurement channels are included in the decay, for which we
refer to Appendix B .

III. EXAMPLES

In this section, we illustrate the use of the adiabatic elimi-
nation method presented in Sec. II on a few simple examples.
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(a) (b)

(c)

FIG. 2. (Color online) Schematic illustrations of the setups we
consider to illustrate the Gaussian adiabatic elimination method. In
Secs. III A and III C, we analyze dynamics of a qubit coupled to
a thermal cavity via dispersive and Jaynes-Cummings interaction,
respectively, shown in (a). (b) Setup for entanglement generation
by measurement as discussed in Sec. III B. Here two qubits interact
dispersively with the same cavity but not with each other. Starting
from a suitable initial state and using the measurement record, it is
then possible to postselect an entangled state of the two qubits. In
Sec. III D, we study a qubit coupled to a two-oscillator transducer,
where the first oscillator couples to a thermal bath and the second
oscillator is used for readout of the qubit state, as shown in (c).

The model scenarios are taken from circuit QED where
thermal noise—typically not accounted for by other adiabatic
elimination methods—can be present even in cryogenically
cooled systems. We show that our adiabatic elimination
method, which we henceforth refer to as Gaussian adiabatic
elimination, can provide significantly increased accuracy for
thermal noise at the level of few quanta.

The examples we consider are illustrated in Fig. 2. In
Sec. III A, we consider dispersive readout of a qubit from a
cavity that is coupled to a thermal reservoir; see Fig. 2(a). We
compare Gaussian adiabatic elimination with results obtained
by density operator expansion and show that significant
qualitative and quantitative improvements can be achieved
with the former method. We extend this system in Sec. III B,
where we study the effect thermal noise has on generating two-
qubit entanglement by measurement, following the approach
of Ref. [19] [Fig. 2(b)]. Next we illustrate the use of Gaus-
sian adiabatic elimination with time-dependent interaction in
Sec. III C, where we consider a single qubit coupled to a
cavity field via Jaynes-Cummings Hamiltonian. Finally, in
Sec. III D, we consider the system shown in Fig. 2(c)—a
transducer consisting of two coupled oscillators, one of which
is coupled to a thermal bath. This setup differs from all other
scenarios considered here by having a different unconditional
and conditional steady state of the transducer, and we show
how the Gaussian adiabatic elimination fares in this case. All
numerical calculations in this section are done using QUTIP

[35,36]; for more details on the particular implementations of
these examples, the reader ought to refer to Ref. [37].

A. Single-qubit QND readout

We consider the system shown in Fig. 2(a), where a qubit
couples in a quantum nondemolition (QND) interaction to
a cavity mode whose output field is subject to continuous
homodyne detection. In such a system the cavity itself serves

just as a transducer, and can be adiabatically eliminated if the
cavity decay rate is sufficiently large (faster than the QND
coupling). In this case, adiabatic elimination is usually based
on expanding the density operator in the Fock basis of the
cavity around its vacuum state assuming no thermal excitations
in the cavity [17,19],

ρ = ρ00|0〉〈0| + ρ10|1〉〈0| + ρ01|0〉〈1| + ρ11|1〉〈1| + · · · ,

(35)

where the elements ρij are operators acting on the Hilbert space
of the system, and are of the order i + j in the small coupling
parameter ε. Expanding up to second order, the reduced state
of the qubit is given by ρS = trT {ρ} = ρ00 + ρ11, and the
elements ρ00, ρ11 depend on ρij with i + j � 2. However,
such an approach is limited to zero temperature where the
cavity is essentially in the vacuum state. Our method makes it
possible to drop this assumption and take thermal noise in the
cavity into account in a systematic fashion.

Before we illustrate our method on the basis of this example,
we note that more refined versions of adiabatic eliminations
exist which employ a polaronlike transformation [20,23] and
cover regimes of strong interactions between cavity and
qubit. We believe that a similar approach, i.e., using different
conditional steady states for different states of the system,
is possible also with Gaussian adiabatic elimination; such a
generalization is, however, beyond the scope of the present
paper.

We start from the standard dispersive interaction with the
qubit-cavity Hamiltonian of the form

H = ω

2
σz + �a†a + ga†aσz + (ε∗a + εa†). (36)

We move to the interaction picture with respect to the free
qubit evolution, canceling the first term. The second term
gives the free cavity dynamics; we choose to drive the
cavity mode at the center frequency, � = 0, maximizing the
measurement efficiency. The third term gives the standard
dispersive interaction, and the last term describes the cavity
drive.

To obtain an interaction that is linear in the cavity quadrature
operators, we linearize the Hamiltonian by moving to the
displaced frame, ρ → D†(α)ρD(α), with D(α) = exp(αa† −
α∗a) being the displacement operator, and α = −2iε/κ , where
κ is the cavity decay rate. (The linearization also makes it
possible to eliminate the cavity field using density operator
expansion approach.) This procedure brings the interaction
Hamiltonian to the form g(α∗a + αa†)σz + ga†aσz. If the
driving field is strong enough, we can drop the second
term, getting the interaction Hamiltonian Hint = χrφσz, where
rφ = 1√

2
(aeiφ + a†e−iφ) and χ = √

2g|α|. The phase φ is set
by the field ε driving the cavity.

Since the cavity field couples to a thermal bath, the measure-
ment term takes the form

√
κ/(2n̄ + 1)H[(n̄ + 1)a − n̄a†]ρ

[1]. The full dynamics of the qubit-cavity system is thus
described by the equation

dρ = −iχ [σzrφ,ρ]dt + κ{(n̄ + 1)D[a] + n̄D[a†]}ρdt

+
√

κ

2n̄ + 1
H[(n̄ + 1)a − n̄a†]ρdW. (37)
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Here we assume that the cavity leaks only through its
output port at rate κ and the homodyne detector has unit
efficiency; our numerical simulations indicate that additional
decay has little effect on the accuracy of the adiabatic
elimination methods. The measurement signal has the form
Idt = √

2κ/(2n̄ + 1)〈q〉dt + dW .
Following the recipe from Sec. II A, we have for

the transducer Hamiltonian HT = 0, jump operators j1 =√
κ(n̄ + 1) a, j2 = √

κn̄ a†, and measurement operator λ =√
κ/(2n̄ + 1)[(n̄ + 1)a − n̄a†], or

R = 0, (38a)

ξ1 =
√

κ(n̄ + 1)

2

(
1
i

)
, (38b)

ξ2 =
√

κn̄

2

(
1
−i

)
, (38c)

c =
√

κ

2(2n̄ + 1)

(
1
0

)
, (38d)

m =
√

κ(2n̄ + 1)

2

(
0
1

)
. (38e)

It then follows that A = − κ
21, N = (n̄ + 1

2 )1 (1 being the
identity matrix), and both the unconditional and conditional
steady states are the thermal state �u = �c = (2n̄ + 1)1.
Furthermore, from the interaction Hamiltonian, we can read off
s = χσz(cos φ,− sin φ)T . Plugging everything into Eq. (8), a
straightforward calculation reveals the effective equation

dρS = 2χ2

κ
(2n̄ + 1)D[σz]ρSdt

+
√

2χ2

κ(2n̄ + 1)
H[−i(2n̄ cos φ + e−iφ)σz]ρSdW,

(39a)

Idt = −
√

8χ2

κ(2n̄ + 1)
sin φ〈σz〉dt + dW. (39b)

Obviously, the optimal phase for an efficient readout of the
qubit state is φ = π/2, which is not surprising—this phase
choice corresponds to an interaction of the from Hint = χσzp

accompanied by a q measurement.
In contrast, using the density matrix expansion method, the

qubit equation of motion takes the form

dρS = 2χ2

κ
(2n̄ + 1)D[σz]ρSdt

+
√

2χ2

κ
H[e−i(φ+π/2)σz]ρSdW, (40a)

Idt = −
√

8χ2

κ
sin φ〈σz〉dt + dW. (40b)

Here we took into account the effect of thermal noise in the de-
terministic part (first line), which can be easily done using, e.g.,
projection operator method [33]. The only difference between
Eqs. (39) and (40) is thus in the measurement term. Qual-
itatively speaking, the density operator expansion approach
overestimates the strength of the measurement by a factor of
∼1/

√
n̄. This means that for a zero-temperature bath, both

methods give the same results. In the presence of thermal ex-
citations, however, this difference quickly starts to play a role.

To quantify the difference between the full model given
by Eq. (37) and the effective qubit equation (39) or (40),
we calculate the trace distance between the corresponding
qubit states (we use ρ1 to denote state obtained from the
exact dynamics and ρ2 for the approximation methods),
D(ρ1,ρ2) = 1

2 tr|ρ1 − ρ2| with |X| =
√

X†X. Since the density
matrices describe the state of a single qubit, the trace distance
can be expressed using the expectation values of the Pauli
matrices 〈σ j

i 〉 = tr{ρjσi} as

D(ρ1,ρ2) = 1

2

√ ∑
i∈{x,y,z}

(〈
σ 1

i

〉 − 〈
σ 2

i

〉)2
. (41)

To obtain an average trace distance between the full model and
the reduced dynamics, we generate a large number of quantum
trajectories. We are thus able to study how the average trace
distance changes in time. In addition, upon time averaging,
we obtain a single figure of merit quantifying the discrepancy
between the full and the reduced dynamics; the averaging
process is illustrated in Fig. 3.

FIG. 3. (Color online) Illustration of determination of the av-
erage trace distance. Starting from a single quantum trajectory
[expectation values of the Pauli matrices shown in plots (a)–(c)], we
calculate the trace distance between the full model, Eq. (37) (dotted
blue line), and the result obtained by Gaussian adiabatic elimination,
Eq. (39) (solid green line), or using the density operator expansion,
Eq. (40) (dot-dashed red line). The resulting trace distances are shown
in (d). We further average using 500 quantum trajectories in (e) to
obtain an average trace distance. Using time averaging on this result,
we further obtain a single figure of merit that determines the quality of
the two approaches. For the results shown here with n̄ = 2, χ = 0.1κ ,
φ = π/2 and initial qubit state |ψ0〉 = (|0〉 + |1〉)/√2, we have the
average trace distance D ≈ 0.05 for Gaussian adiabatic elimination
and D ≈ 0.22 for density operator expansion (cf. Fig. 4).
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FIG. 4. (Color online) Average trace distance for Gaussian adi-
abatic elimination and density operator expansion as compared to
the full model. In (a), we plot the trace distance as a function of
the measurement phase with green squares showing results for the
Gaussian adiabatic elimination and black stars for density operator
expansion. The bottom panels show the trace distance versus thermal
occupation number (b) and the overall measurement time (c) for two
choices of phase—φ = π/2 (green squares for Gaussian adiabatic
elimination, black stars for density operator expansion), and φ = 0
(blue circles for Gaussian adiabatic elimination, red crosses for
density operator expansion). The parameters used for the simulations
are χ = 0.1κ , n̄ = 2 [for (a) and (c)], measurement time Tm = 50κ−1

[(a) and (b)], and initial qubit state |ψ0〉 = (|0〉 + |1〉)/√2. The Fock
space of the cavity field for the full model is cut off at Nmax = 20.

The results of the numerical investigations are shown in
Fig. 4. In panel (a), we plot the average trace distance as
a function of the interaction phase φ for Gaussian adiabatic
elimination (green squares) and density operator expansion
(black stars). We can see that both methods provide the
best results for φ = π/2, corresponding to an interaction of
the form Hint = χpσz. This feature is particularly beneficial
since, as discussed before, this phase choice is optimal for
nondemolition readout of the qubit state.

In panel (b) of Fig. 4, we plot the average trace distance
versus thermal occupation number. While the average trace
distance with Gaussian adiabatic elimination (green squares
for φ = π/2, blue circles for φ = 0) eventually saturates (with
the phase φ = 0 this happens at n̄ ≈ 3, which is not shown in
the plot), the error with density operator expansion (black
stars for φ = π/2, red crosses for φ = 0), as expected, grows
with increasing temperature. Moreover, the Gaussian adiabatic
elimination performs a factor of about 2 better than density
operator expansion already for half a thermal excitation present
in the bath; with the phase choice φ = π/2, which corresponds
to the optimal qubit readout, the difference between the two
methods quickly grows.

In Fig. 4(c), we investigate how the measurement time
affects the accuracy of the two methods. Gaussian adiabatic
elimination remains unaffected by the length of the measure-
ment (φ = 0) or even improves with time (φ = π/2), whereas
accuracy of the density operator expansion method slowly
deteriorates over time. This feature can be seen already from
the time dependence of the trace distance [cf. Fig. 3(e)], where

the trace distance with Gaussian adiabatic elimination reaches
a maximum shortly after the start of the evolution (t ≈ 5κ−1)
and then settles at a smaller steady-state value, while the trace
distance with density operator expansion continues to grow
throughout the evolution.

Finally, we note that the choice of a single initial qubit
state |ψ0〉 = (|0〉 + |1〉)/√2 does not affect the completeness
of our analysis. Since the evolution for eigenstates of the σz

operator is trivial, the dynamics starting from the eigenstates of
σx,y is the most interesting from the point of view of solution
accuracy. As there is no preferred phase for the qubit, the
adiabatic elimination methods perform similarly for all these
states. We also remark that generating quantum trajectories
with the approximation methods is, due to smaller size of the
Hilbert space, about four times faster than with the full model;
in systems with larger thermal noise, this effect will be even
larger. Moreover, as the qubit dynamics happens on a slower
time scale than the evolution of the cavity field, it is possible
to use larger time steps in the numerical solution, speeding the
numerics up even more.

B. Two-qubit entanglement by measurement

Extending the system presented in the previous section, we
now consider two qubits dispersively coupled to a common
cavity field, Hint = ∑

j χj rφσ
j
z , where σ

j
z acts on the j th qubit.

Such a system is of particular interest as the joint measurement
of the two qubits can generate entanglement between them,
as discussed in Ref. [19] and recently realized experimentally
[10] in a similar scenario. Indeed, a straightforward generaliza-
tion of Eq. (39) (with φ = −π/2) gives the effective dynamics

dρS = 2

κ
(2n̄ + 1)D

⎡
⎣∑

j

χjσ
j
z

⎤
⎦ρSdt

+
√

2

κ(2n̄ + 1)
H

⎡
⎣∑

j

χjσ
j
z

⎤
⎦ρSdW, (42a)

Idt =
√

8

κ(2n̄ + 1)

∑
j

χj

〈
σ j

z

〉
dt + dW. (42b)

We thus get an effective measurement of the number of
excitations of the two qubits. If we now prepare the qubits
in the state |ψ0〉 = 1

2 (|0〉 + |1〉) ⊗ (|0〉 + |1〉), engineer the
interactions so that χ1 = χ2 = χ , and postselect only those
trajectories with measurement σ 1

z + σ 2
z ≈ 0, the two-qubit

state takes the form |�+〉 = (|01〉 + |10〉)/√2 since there is
one excitation in the system but we have no information on
which of the two qubits is excited. Moreover, this state is also
a dark state of the Lindblad term D[σ 1

z + σ 2
z ]ρS , so it is a

conditional steady state of the stochastic master equation (42).
We note that this approach requires postselection and

thus generates entanglement only probabilistically. Using the
dispersive interaction in the form Hint = ga†a(σ 1

z + σ 2
z ), one

can achieve also a true parity measurement σ 1
z σ 2

z , where the
initial state as above collapses onto either |�+〉 or |�+〉 =
(|00〉 + |11〉)/√2, generating entanglement between the two
qubits deterministically [9,23,38]. Although we believe it
possible to generalize our Gaussian adiabatic elimination

012124-9
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FIG. 5. (Color online) Example histograms of the integrated cur-
rent at the beginning of the readout [t = 5κ−1 (a)] and at a later time
[t = 100κ−1 (b)]. In panel (c), we plot the probability of the two
qubits to be in the state |00〉 (green dot-dashed line), |11〉 (red dotted
line), and |�+〉 (blue solid line) for an example quantum trajectory.
The simulations were run with the parameters χ = 0.1κ , n̄ = 0, and
1000 trajectories were used for generating the histograms.

to include also coupling that is quadratic in the quadrature
operators, we leave such analysis for future work and focus
here on the probabilistic protocol only.

In more detail, the entanglement is generated using the
following protocol. First, the qubits interact with the cavity
mode (we assume χ1 = χ2 = χ ) and the output field is
measured, which is described by Eq. (42). After a time Tm,
we have the integrated current

J (Tm) =
∫ Tm

0
dtI (t); (43)

if the integrated current is close to zero, the expectation
value 〈σ 1

z + σ 2
z 〉 = 0 and the qubits are in the state |�+〉. The

whole procedure is illustrated in Fig. 5. At an early time in
the evolution [panel (a)], the distribution of the integrated
current is Gaussian but at a later time [panel (b)] three distinct
peaks form with the center one corresponding to the qubits in
the state |�+〉. Quantitatively, the postselection is performed
by using a threshold ν and keeping the state if and only if
|J | � ν. A small threshold thus results in a pure entangled
state, albeit with a small success probability; increasing the
threshold value, in turn, results in a mixed state with a reduced
amount of entanglement.

We plot the results of the numerical simulations in Fig. 6.
We analyze the logarithmic negativity [39] of the resulting
postselected state (solid blue line) and the corresponding
success probability (dashed green line) for cavity coupled
to a vacuum bath [panel (a)] and a bath with n̄ = 2 [panel
(c)]. Generally, in the presence of thermal photons, longer
measurement times are needed to reach a maximally entangled
state; we use the measurement times Tm = 100κ−1 for the
zero-temperature bath in panel (a), and Tm = 250κ−1 for the
results plotted in panel (c). This effect is due to spreading of

FIG. 6. (Color online) Logarithmic negativity (solid blue line)
and success probability (dashed green line) versus the postselection
threshold ν for n̄ = 0 (a) and n̄ = 2 (c). The measurement time
is Tm = 100κ−1 in (a) and Tm = 250κ−1 in (c); moreover, in the
insets, we plot the logarithmic negativity and success probability for
Tm = 75κ−1 (left) and Tm = 150κ−1 (right) for both (a) and (c). In
addition, in panels (b) and (d), histograms of the integrated currents
corresponding to the results in (a) and (c) are shown. We use the
coupling χ = 0.1κ and average over 1000 quantum trajectories.

the peaks in the integrated current with growing environment
temperature; cf. Figs. 6(b) and 6(d). There one can see that the
local minima between peaks are slightly less pronounced for
n̄ = 2 even with a measurement that is longer by a factor of 2.5.

Our observations are further accentuated in the insets of
Figs. 6(a) and 6(c), where we plot the logarithmic negativity
and success probability for Tm = 75κ−1 (left inset) and
Tm = 150κ−1 (right inset). With thermal photons present, the
logarithmic negativity does not reach unity in the limit ν → 0
for the shorter time, while with vacuum bath, a plateau of unit
entanglement starts to form. For longer time, we reach a large
plateau of success probability of 0.5 with zero temperature,
making it possible to generate the |�+〉 Bell state in half the
cases; a similar plateau with the thermal bath starts to form
only around Tm = 250κ−1.

C. Single-qubit Jaynes-Cummings readout

To illustrate the adiabatic elimination with oscillating sys-
tem operators, we consider a simple example of a single qubit
coupled to a cavity mode via Jaynes-Cummings Hamiltonian,
H = ω

2 σz + �a†a + g(aσ+eiφ + a†σ−e−iφ). Moving to the
rotating frame of the qubit, this gives rise to the stochastic
master equation

dρ = −i[g(aσ+ei(ωt+φ) + a†σ−e−i(ωt+φ)) + �a†a,ρ]dt

+κ(n̄ + 1)D[a]ρdt + κn̄D[a†]ρdt

+
√

κ

2n̄ + 1
H[(n̄ + 1)ae−iδt − n̄a†eiδt ]ρdW. (44)

To obtain a full model without oscillating measurement
operators, we now move to the rotating frame of the cavity.
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Choosing � = ω = −δ, Eq. (44) simplifies to

dρ = −ig[aσ+eiφ + a†σ−e−iφ,ρ]dt

+ κ(n̄ + 1)D[a]ρdt + κn̄D[a†]ρdt

+
√

κ

2n̄ + 1
H[(n̄ + 1)a − n̄a†]ρdW, (45a)

Idt =
√

2κ

2n̄ + 1
〈q〉dt + dW. (45b)

Equation (45) will be used in numerical calculations for
comparison with the adiabatic elimination methods; it is
Eq. (44), however, that will be used as a starting point for
the elimination of the cavity dynamics. This choice enables
us, in principle, to go beyond the scenario with � = ω = −δ

in the adiabatic approximation; using the Gaussian adiabatic
elimination method, it is possible, for instance, to describe
dynamics with measurement performed at the other sideband,
δ = ω.

The transducer dynamics is given by the Hamiltonian
HT = �a†a, jump operators j1 = √

κ(n̄ + 1) a, j2 = √
κn̄ a†,

and measurement operator λ = √
κ/(2n̄ + 1)[(n̄ + 1)ae−iδt −

n̄a†eiδt ], so we have R = �1, ξ1,2 the same as for the disper-
sive readout in Eqs. (38b) and (38c), and the measurement

λ =
√

κ

2(2n̄ + 1)
[cos(δt) − i(2n̄ + 1) sin(δt)]q

+
√

κ

2(2n̄ + 1)
[sin(δt) + i(2n̄ + 1) cos(δt)]p,

cc =
√

κ

2(2n̄ + 1)

(
1
0

)
, mc =

√
κ(2n̄ + 1)

2

(
0
1

)
, (46)

cs =
√

κ

2(2n̄ + 1)

(
0
1

)
, ms =

√
κ(2n̄ + 1)

2

(
0

−1

)
,

c+ =
√

κ

8(2n̄ + 1)

(
1
−i

)
, m+ =

√
κ(2n̄ + 1)

8

(
i

1

)
,

and c− = (c+)∗, m− = (m+)∗. We thus have A = − κ
21 + �σ ,

N = (n̄ + 1
2 )1, and the cavity steady state (both unconditional

and conditional) is the thermal state �u = �c = (2n̄ + 1)1.
Together with the system operators

s− = g√
2
e−iφσ−

(
1
−i

)
, (47a)

s+ = g√
2
eiφσ+

(
1
i

)
, (47b)

and the choice of frequencies � = ω = −δ, this gives the
stochastic master equation

dρS = 4g2

κ
{(n̄ + 1)D[σ−] + n̄D[σ+]}ρSdt

+ 2g√
κ(2n̄ + 1)

H[(n̄ + 1)σ−e−i(φ+π/2)

− n̄σ+ei(φ+π/2)]ρSdW, (48a)

Idt = 2g√
κ(2n̄ + 1)

〈σy cos φ − σx sin φ〉dt + dW. (48b)

FIG. 7. (Color online) (a) Average trace distance for the Gaussian
adiabatic elimination (green squares) and density operator expansion
(black stars) as a function of the interaction phase φ. In the bottom
panels, we plot the average trace distance versus thermal occupation
(b) and measurement time (c) for the choice of phase φ = 0 (blue
circles showing Gaussian adiabatic elimination and red crosses
for density operator expansion) and φ = π/2 (Gaussian adiabatic
elimination shown in green squares, density operator expansion in
black stars). The parameters used to run the simulations are g = 0.1κ ,
n̄ = 2 [for panels (a) and (c)], measurement time Tm = 50κ−1 [for
(a) and (b)], and initial qubit state |ψ0〉 = (|0〉 + |1〉)/√2. The cavity
field for the full model has been cut off at the Fock number Nmax = 20.

Using the density operator expansion method, together with
a correction for thermal noise in the Lindblad terms, the qubit
dynamics is described by the equation

dρS = 4g2

κ
{(n̄ + 1)D[σ−] + n̄D[σ+]}ρSdt

+ 2g√
κ
H[σ−e−i(φ+π/2)]ρSdW, (49a)

Idt = 2g√
κ

〈σy cos φ − σx sin φ〉dt + dW. (49b)

Both adiabatic elimination methods, Eqs. (48) and (49), give
identical results for zero-temperature cavity bath.

The average trace distance for the Gaussian adiabatic
elimination and the density operator expansion is analyzed
in complete analogy with the dispersive readout in Fig. 7. The
error is minimized for phase φ = 0 (a), which corresponds
to a σy measurement, while for a σx measurement (phase φ =
π/2), the average trace distance reaches its maximum. We note,
however, that the Jaynes-Cummings readout is much less phase
sensitive than the dispersive readout scheme. Performance
of the Gaussian adiabatic elimination does not depend on
the thermal occupation [panel (b)], while the average trace
distance with the density operator expansion increases as
expected. Finally, for long measurement times [see panel
(c)], the average trace distance for both methods gradually
decreases as the measurement approaches a projective readout
and the qubit approaches one of its conditional steady states
|0〉, |1〉.
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D. Two-oscillator transducer

All examples considered so far had one special property in
common: The unconditional and conditional steady states of
the transducer were equal. To show how Gaussian adiabatic
elimination can be applied to systems where this is not the
case, we now consider the following example [see Fig. 2(c)]:
A qubit, our system of interest, couples to a harmonic oscillator
by means of a quantum nondemolition interaction similar to
the example in Sec. III A. This oscillator decays into a thermal
bath and, at the same time, couples to another oscillator of
much higher frequency so its reservoir is effectively in the
ground state. Finally, we measure the output of the second
oscillator.

The density operator of the overall system has the form

dρ = −i[χσzrφ + ω1a
†a + ω2b

†b + gq1q2,ρ]dt

+ γ (n̄ + 1)D[a]ρdt + γ n̄D[a†]ρdt

+ κD[b]ρdt + √
κH[beiϕ]ρdW, (50a)

Idt = √
κ〈beiϕ + b†e−iϕ〉dt + dW. (50b)

Here a describes the first (i.e., thermal) oscillator, while b

is used for the second readout oscillator, and rφ denotes a
general quadrature operator of the thermal oscillator. Such a
system can be realized by coupling a superconducting qubit
to a mechanical oscillator [40,41] and reading out the signal
in the mechanical oscillator optically. Since the oscillator
coupling has the form of standard linearized optomechanical
interaction, Hosc = gq1q2, the qubit readout is optimized by
driving the readout oscillator on the red sideband, ω1 =
ω2 = ω. The readout efficiency can further be maximized by
letting the qubit couple to the phase quadrature of the thermal
oscillator and measuring the phase quadrature of the readout
oscillator. The stochastic master equation then takes the
form

dρ = −i[χσzp1 + ω(a†a + b†b) + gq1q2,ρ]dt

+ γ (n̄ + 1)D[a]ρdt + γ n̄D[a†]ρdt

+ κD[b]ρdt + √
κH[ib]ρdW. (51)

As the transducer dynamics is more complex in this case,
we perform the whole adiabatic elimination numerically, see
Ref. [37] for details. The results of the numerical simulations
are shown in Fig. 8. In panel (a), we investigate how the
bath temperature for the thermal oscillator affects the average
trace distance in three distinct regimes: for weak (g = 0.2κ ,
green squares), intermediate (g = 0.5κ , blue circles), and
strong (g = κ , black stars) coupling. As the strength of the
coupling between the two oscillators grows, the trace distance
becomes less temperature sensitive. In Fig. 8(b), we plot an
example average trace distance as a function of time. This
plot illustrates that the time dependence has features similar to
simpler transducers considered in the previous sections—after
a short initial transient time, the trace distance saturates and
stays constant for the rest of the evolution.

Finally, we also point out the numerical requirements for
the full model and the adiabatic elimination. With only two
thermal excitations in the heat bath, the full model needs 700
times more time to be simulated, compared to the adiabatic

FIG. 8. (Color online) (a) Average trace distance as a function
of thermal occupation for three regimes: weak coupling (g = 0.2κ ,
green squares), intermediate coupling (g = 0.5κ , blue circles), and
strong coupling (g = κ , black stars). In (b), we show the average
trace distance versus time for n̄ = 2, g = κ . Other parameters used
in the simulations are χ = 0.2κ , ω = 5κ , γ = 0.1κ , Tm = 50κ−1 for
(a), initial qubit state |ψ0〉 = (|0〉 + |1〉)/√2, and we averaged over
100 quantum trajectories.

elimination; this difference can be increased by using larger
time steps for the approximate dynamics since the qubit
evolution happens at longer time scales. The main limitation in
our numerical analysis, however, is the memory requirement.
With two thermal excitations (and corresponding Fock space
cutoffs at 20 and 10 excitations for the thermal and readout
oscillator, respectively), the storing of the full density matrix
for the whole time evolution requires several gigabytes of
working memory. Since the cutoff energy grows faster than
linearly with increasing temperature, and the size of the
density matrix grows quadratically with the cutoff, we were
not able to perform reliable numerical simulations for larger
bath temperatures. We still believe, nevertheless, that Gaussian
adiabatic elimination can be used for systems with tens or
hundreds thermal excitations present.

IV. CONCLUSIONS

In summary, we presented a new method of adiabatic elim-
ination of fast degrees of freedom from stochastic quantum
dynamics. Assuming the transducer (i.e., the system we wish
to eliminate) is Gaussian, we can fully describe its evolution
using first and second statistical moments of its canonical
operators; moreover, the covariance matrix of the conditional
state obeys deterministic Riccati equation. We are thus able
to treat transducers coupled to thermal bath or consisting of
multiple bosonic modes. While eliminating several modes
using the approach based on density operator expansion or
polaron transformation quickly becomes tedious, our method
requires only basic linear-algebraic tools and can be easily
applied numerically.

Since the procedure we use relies on the fact that the
system of interest itself has no free evolution, we did not
present a completely general treatment—instead, we focused
on the most relevant situations only. In the first place, we
assumed that moving to the rotating frame with respect to the
free Hamiltonian of the system leaves its interaction with the
transducer time independent, corresponding, in particular, also
to a quantum nondemolition interaction. Second, we consid-
ered a scenario, where the interaction has terms oscillating at
the frequency ±ω. Adapting the method for other forms of
coupling is straightforward.
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With these results, we have shown how our method can
be used to simulate readout of qubits in cavity QED, as
relevant, e.g., to superconducting circuit QED. Compared
with the method of expanding the density operator around
the vacuum state of the readout cavity, our method provides
significantly better results already for a few thermal excitations
present and is thus relevant to many experimental scenarios.
We believe that further improvements can be achieved with
ideas borrowed from adiabatic elimination using polaron
transformation. There, for strong coupling between the system
and the transducer, one has to consider different steady states
of the transducer for individual states of the system and
perform adiabatic elimination with respect to these conditional
states. Using similar tools for our method, it should be
possible to eliminate any Gaussian transducer with respect
to several conditional steady states. In addition, it is possible
to generalize the method for system-transducer coupling that
is quadratic in the canonical transducer operators—one could,
e.g., use such a result to analyze a full dispersive readout of a
superconducting qubit, Hint = gσza

†a.
Another field that could benefit from our results is cavity

optomechanics. Typical frequencies of mechanical oscillations
can correspond to thermal noise of a few hundred quanta even
with cryogenic cooling. Such systems cannot be eliminated
from stochastic master equations using present methods; a
toy model in our last example shows how similar tasks can
be achieved using our approach. In the future, it might be
interesting to study how optomechanical systems used for
conversion between microwave and optical fields [29,30]
could be used to entangle two superconducting qubits using
measurement and feedback [42].
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APPENDIX A: EQUATIONS OF MOTION FOR MEAN
VALUES AND COVARIANCE MATRIX OF A

GAUSSIAN SYSTEM

In this Appendix, we derive equations governing the
evolution of the mean values and the covariance matrix of
a Gaussian system. We start with the master equation

ρ̇ = −i[H,ρ] +
∑

n

D[jn]ρ. (A1)

Since the system is Gaussian, the Hamiltonian is quadratic
in the canonical operators and we can write H = 1

2 rT Rr (a
linear Hamiltonian leads to a simple displacement which can
be treated by suitably moving the origin of the phase space); the
jump operators are linear, and we write jn = ξT

n r = ∑
i ξniri .

Here r = (q1,p1, . . . ,qN ,pN )T is the vector of the canonical
operators whose commutation relations define the symplectic

matrix

[ri,rj ] = iσij , σ =
(

0 1
−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
. (A2)

The goal is to use the master equation to obtain equations of
motion for the first and second statistical moments defined by

x = 〈r〉 = tr{ρr}, �ij = 〈[ri,rj ]+〉 − 2xixj . (A3)

For the ith mean value, we have

ẋi = tr{ρ̇ri}
= −itr{[H,ρ]ri} +

∑
n

tr{D[jn]ρri}

= −itr{ρ[ri,H ]} +
∑

n

tr

{
ρ

(
j †
nrijn − 1

2
[j †

njn,ri]+

)}
.

(A4)

The commutator in the first term can be rewritten as

[ri,H ] = 1

2

∑
jk

Rjk[ri,rj rk]

= 1

2

∑
jk

Rjk([ri,rj ]rk + rj [ri,rk])

=
∑
jk

σijRjkrk, (A5)

where we used the fact that the Hamiltonian matrix is
symmetric R = RT . For the Lindblad terms, we have

tr{D[jn]ρri} =
∑
jk

ξnj ξ
∗
nktr

{
ρ

(
rkrirj − 1

2
[rkrj ,ri]+

)}

= 1

2

∑
jk

ξnj ξ
∗
nktr{ρ(rk[ri,rj ] − [ri,rk]rj )}

= − i

2

∑
jk

σij (ξ ∗
nj ξnk − ξnj ξ

∗
nk)xk. (A6)

Combining everything, we can write

ẋi =
∑
jk

σijRjkxk − i

2

∑
njk

σij (ξ ∗
nj ξnk − ξnj ξ

∗
nk)xk, (A7)

or, in the matrix form,

ẋ = Ax, A = σR − i

2
σ

∑
n

(
ξ †
nξn − ξT

n ξ ∗
n

)
. (A8)

For the covariance matrix, we need to evaluate

�̇ij = tr{ρ̇[ri,rj ]+} − 2(ẋixj + xi ẋj ). (A9)

Similar to the previous case, we have for the coherent evolution

[rirj ,H ] = 1

2

∑
kl

Rkl(ri[rj ,rk]rl + rk[ri,rl]rj

+ [ri,rk]rj rl + rkri[rj ,rl]), (A10)

which, combined with [rj ri,H ], gives

[[ri,rj ]+,H ] = i
∑
kl

(σikRkl[rj ,rl]+ − [ri,rl]+Rlkσkj ).

(A11)
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For the decay terms, we have

D†[jn]rirj = j †
nrirj jn − 1

2
[j †

njn,rirj ]+

= 1

2

∑
kl

ξ ∗
nkξnl([rk,rirj ]rl + rk[rirj ,rl])

= i

2

∑
kl

ξ ∗
nkξnl(σjlrkri + σilrkrj

− σjkrirl − σikrj rl), (A12)

where we used

[rirj ,rk] = ri[rj ,rk] + [ri,rk]rj = iσjkri + iσikrj . (A13)

Combined withD†[jn]rj ri and summed over n, this expression
gives∑

n

D†[jn][ri,rj ]+

=
∑
kl

{βkl(σjk[ri,rl]+ + σik[rj ,rl]+) − 2αklσjkσli}, (A14)

where

αkl = 1

2

∑
n

(ξ ∗
nkξnl + ξnkξ

∗
nl), (A15a)

βkl = i

2

∑
n

(ξnkξ
∗
nl − ξ ∗

nkξnl). (A15b)

Plugging everything into Eq. (A9) and using ẋixj =∑
k Aikxkxj , and writing the resulting expression in matrix

form, we get the Lyapunov equation

�̇ = A� + �AT + 2N, (A16a)

N = 1

2
σ

∑
n

(
ξ †
nξn + ξT

n ξ ∗
n

)
σT . (A16b)

When the dynamics is described by the conditional master
equation

dρ = −i[H,ρ]dt +
∑

n

D[jn]ρdt +
∑
m

H[λm]ρdWm,

(A17)

we also need to evaluate the contributions from the measure-
ment terms H[λm]ρ. We start by splitting the measurement
operator into its Hermitian and anti-Hermitian parts, λm =
(cm + imm)T r = ∑

k(cmk + immk)rk , so we can write

H[λm]ρ = [cT (r − x),ρ]+ + i[mT r,ρ]. (A18)

For the mean values, this gives the contribution

tr{riH[λm]ρ}dWm =
∑

k

tr{cmkρ([ri,rk]+ − 2xkriρ)

+ immkρ[ri,rk]}dWm

=
∑

k

(�ikcmk − σikmmk)dWm. (A19)

The mean values thus obey the equation

dx = Axdt +
∑
m

(�cm − σmm)dWm. (A20)

For the covariance matrix, we need to evaluate

tr{[ri,rj ]+H[λm]ρ}dWm

− 2[(dxi)xj + xi(dxj ) + (dxi)(dxj )], (A21)

where we used the Itō rule d(XY ) = (dX)Y + XdY + dXdY

for the contribution of the mean values. In the following we
concentrate on the stochastic contribution in the increments
dxj [second term on the right-hand side of Eq. (A20)] as the
deterministic contribution is trivial. We start by considering

tr{[ri,rj ]+dρ} =
∑

k

cmktr{ρ([rk,[ri,rj ]+]+ − 2xk[ri,rj ]+)}

+ i
∑

k

mmktr{ρ[rirj + rj ri,rk]}

= 2
∑

k

cmk(�ikxj + �jkxi)

− 2
∑

k

mmk(xiσjk + xjσik). (A22)

In the first sum on the right-hand side, we used the fact

〈[ri,[rj ,rk]+]+〉 = 2(�ijxk + �jkxi + �kixj + 2xixjxk).

(A23)

This can be seen by comparing the third derivative of the
characteristic function from the definition χ (r) = tr{D(r)ρ}
[here D(r) is the displacement operator] with a general
Gaussian characteristic function

χ (r) = exp
(−irT σx − 1

4 rT σ T �σr
)
. (A24)

We further use

(dxi)xj + xi(dxj ) + (dxi)(dxj )

=
∑

k

xi(�jkcmk − σjkmmk)dWm

+
∑

k

xj (�ikcmk − σikmmk)dWm

+
∑
k,l

(�ikcmk − σikmmk)(�jlcml − σjlmml)dt.

(A25)

Combining everything, the stochastic contributions to the
covariance matrix cancel out, and we are left with the term

−2(�cm − σmm)(�cm − σmm)T dt.

The dynamics of the covariance matrix is thus given by the
Riccati equation,

�̇ = A� + �AT + 2N − 2
∑
m

(�cm − σmm)(�cm − σmm)T .

(A26)

APPENDIX B: POSITIVE SEMIDEFINITENESS OF DECAY
AFTER SUBTRACTING THE MEASUREMENT CHANNELS

We start with the observation that the overall decay P

is positive. Using its definition, Eq. (10b), together with the

012124-14



ADIABATIC ELIMINATION OF GAUSSIAN SUBSYSTEMS . . . PHYSICAL REVIEW A 92, 012124 (2015)

Lyapunov equation (7b), and the definitions (6), we can write

P = A−1

[
N + i

2
(Aσ − σT AT )

]
A−T

= A−1σ
∑

i

ξ T
i ξ ∗

i σ T A−T � 0. (B1)

Next, we discuss the question whether the effective
stochastic master equations in Eqs. (8) and (12) present
a valid Belavkin equation, that is, whether they generate
completely positive maps. In order for this to be true, each
measurement channel has to have a corresponding decay
process. Quantitatively, matrix P in Eq. (10b) describing all
decay terms needs to be larger than the matrix

∑
m 	m	

†
m

characterizing all measurement channels. In other words,

P ′ = P −
∑
m

	m	†
m

has to be positive semidefinite. We did not prove this statement
in the general case, but checked it for all of the cases treated
in Sec. III.

APPENDIX C: HIERARCHY OF EQUATIONS OF MOTION
FOR CUMULANTS OF THE TRANSDUCER

In this section, we present some remarks regarding the
equations of motion for deviations of the exact and tensor-
product state with respect to the cumulants of the transducer
and their general structure. (In the following, we, for simplicity,
refer to these quantities simply as cumulants.) We use the
term cumulant here since, as we will see, these are more
fundamental for the expansion than statistical moments. The
distinction is, nevertheless, important only for higher-order
cumulants and moments: The first cumulant is equal to the
mean value, and the second and third cumulants are equal to
the second and third central moments, respectively. We start by
writing the equation of motion for the second cumulant �ij =
trT {[ri − xi,rj − xj ]+(ρ − ρS ⊗ ρT )}, which can be derived
in complete analogy with Sec. II C,

d�ij = ε(σik[sk − 〈sk〉,μj ]+ + σjk[sk − 〈sk〉,μi]+)dt

+ (Aik�kj + Ajk�ki)dt + νijkcmkdWm, (C1)

where

νijk = trT {[[ri − xi,rj − xj ]+,rk − xk]+ρ}
− 2

(
�c

ijμk + �c
jkμi + �c

kiμj

)
(C2)

is the third cumulant. We can now see from the deterministic
part of the equation that the second cumulant �ij is of second
order in ε since it couples to the first cumulant μi = trT {ri(ρ −
ρS ⊗ ρT )} (which is a first-order quantity) via ε. We further
conjecture that the third cumulant is of higher order, νijk =
O(ε3). In the rest of this section, we justify this assumption by
presenting the expected hierarchy of the cumulants.

We start by defining the deviation of the exact state from
the tensor-product state

ω = ρ − ρS ⊗ ρT . (C3)

The equation of motion for the reduced state now de-
scribes the evolution of the reduced deviation ωS = trT {ω};

note that the tensor-product state (a zero-order quantity) does
not evolve since there is no free evolution of ρS and the
equilibration of ρT is effectively instantaneous. The reduced
deviation ωS can then be viewed as the zero-order cumulant.
With this observation, we can now rewrite the equations of
motion for the zeroth, first, and second cumulants,

dωS = −iε[si,ηi]dt + 2cmiμidWm, (C4a)

dμi = Qijμjdt + 1

2
εσij [sj − 〈sj 〉,ρS]+dt

− i

2
ε�c

ij [sj ,ρS]dt + �ijcmjdWm, (C4b)

d�ij = ε(σik[sk − 〈sk〉,μj ]+ + σjk[sk − 〈sk〉,μi]+)dt

+ (Aik�kj + Ajk�ki)dt + νijkcmkdWm; (C4c)

moreover, the cumulants can be written as

ωS = trT {ω}, (C5a)

μi = trT {riω}, (C5b)

�ij = trT {{[ri,rj ]+ − 2(xirj + xj ri)}ω}, (C5c)

νijk = trT {{[[ri,rj ]+,rk]+ − 2(Vij rk + Vjkri + Vkirj )

− 2(xi[rj ,rk]+ + xj [rk,ri]+ + xk[ri,rj ]+)

+ 8(xixj rk + xjxkri + xkxirj )}ω}, (C5d)

where Vij = trT {[ri,rj ]+ρT } is the second raw moment of the
transducer.

The cumulants are now clearly generalizations of regular
cumulants that include the effect of the partial trace, such as
xixj → xi trT {rjω} + xj trT {riω}, etc. Furthermore, the equa-
tions of motion have a clear structure; for the nth cumulant,
κ (n), we can symbolically write

dκ (n) = R(n)κ (n)dt + εS (n)κ (n−1)dt

+ εT (n)M (n+1)dt + V (n)κ (n+1)dWm, (C6)

with some operators R(n), S (n), T (n), V (n), and M (n) denoting
nth central moment of the transducer. In words, the nth
cumulant (apart from its own free evolution) couples to the
(n − 1)th cumulant via ε in the deterministic part and to
the (n + 1)th cumulant in the stochastic part. In addition,
there is also coupling to a higher-order central moment of
the transducer which is, nevertheless, present only for the
first-order deviation because the transducer is Gaussian so
that M (n) = 0 for n > 2. Finally, the deterministic part of the
equation of motion for the zeroth cumulant ωS has a somewhat
different structure since it cannot couple to a lower-order
cumulant; as a result, there is coupling to ηi = trT {riρ} instead
of the first moment of the transducer. The moments appear for
ρ = ρS ⊗ ρT , which is correct to leading order only for the
first cumulant; as there is no −1st cumulant in the equation for
the zeroth cumulant, this approximation is not valid for ωS .

This hierarchy of equations of motion for the cumulants
has been explicitly constructed for n � 2 and is conjectured
for n > 2. In addition, there is a connection to the cumulant
expansion method of van Kampen [43–45]. With this method,
the effect of a bath is expressed via a series of cumulants of
the bath operators in which the nth cumulant is of the order εn

in the system-bath coupling. For Markovian systems, it is then
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sufficient to consider the first and second cumulants (i.e., the
mean and the covariance), while for a general non-Markovian
bath, represented by colored noise, higher orders have to be
considered [46]. In our treatment, the role of the bath is played
by the transducer which can, in the most general case, act
as a non-Markovian medium. For a short correlation time,
which corresponds to a quickly decaying transducer and is

thus relevant to adiabatic elimination methods, the Markovian
approximation is valid and only the first and second cumulants
play a role. Since we are interested in the deviation of the
exact and tensor product state, which is a small quantity
already, ω = ρ − ρS ⊗ ρT = O(ε), it is sufficient to consider
the contributions of the first-order cumulant μi in the effective
equation of motion for the system density matrix.
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