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Abstract

Background: Yeast cells live in a highly fluctuating environment with respect to temperature, nutrients, and especially
osmolarity. The Hog1 mitogen-activated protein kinase (MAPK) pathway is crucial for the adaption of yeast cells to external
osmotic changes.

Methodology/Principal Findings: To better understand the osmo-adaption mechanism in the budding yeast
Saccharomyces cerevisiae, we have developed a mathematical model and quantitatively investigated the Hog1 response
to osmotic stress. The model agrees well with various experimental data for the Hog1 response to different types of osmotic
changes. Kinetic analyses of the model indicate that budding yeast cells have evolved to protect themselves economically:
while they show almost no response to fast pulse-like changes of osmolarity, they respond periodically and are well-
adapted to osmotic changes with a certain frequency. To quantify the signal transduction efficiency of the osmo-adaption
network, we introduced a measure of the signal response gain, which is defined as the ratio of output change integral to
input (signal) change integral. Model simulations indicate that the Hog1 response gain shows bell-shaped response curves
with respect to the duration of a single osmotic pulse and to the frequency of periodic square osmotic pulses, while for up-
staircase (ramp) osmotic changes, the gain depends on the slope.

Conclusions/Significance: The model analyses suggest that budding yeast cells have selectively evolved to be optimized to
some specific types of osmotic changes. In addition, our work implies that the signaling output can be dynamically
controlled by fine-tuning the signal input profiles.
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Introduction

Cells have evolved to sense and respond to various changes of

their environmental conditions such as hormones, nutrients,

temperature and osmotic stresses. One of the well-studied

examples is the adaption of budding yeast cells (Saccharomyces

cerevisiae) to high external osmolarity: information about the

osmotic stress is transmitted through the high-osmolarity glycerol

(HOG) mitogen-activated protein kinase (MAPK) signaling

pathway [1]. The increase of external osmolarity is recognized

by two osmosensing proteins, Sln1 and Sho1, which in turn

independently lead to the phosphorylation of the MAPK kinase

(MAPKK) Pbs2. The Sln1 branch first activates two functionally

redundant kinases, Ssk2 and Ssk22 (MAPK kinase kinase,

MAPKKK), which then activate Pbs2. Upon stress stimulation,

the Sho1 branch triggers the activation of a distinct MAPKKK

Ste11, which then activates Pbs2. Once the MAPKK Pbs2 is

phosphorylated and activated, it subsequently phosphorylates and

activates the MAPK Hog1, which shuttles rapidly between the

cytoplasm and nucleus. Activated Hog1 accumulates in the

nucleus and regulates different processes to increase glycerol

accumulation, thereby compensating the increase of external

osmolarity [1,2,3]. A schematic picture of this process is shown in

Figure 1A.

Previous computational and experimental studies have high-

lighted the response of the key MAPK protein Hog1, especially

its phosphorylation and enrichment in the nucleus, to specific

profiles of osmotic changes [4,5,6,7,8,9,10,11,12]. These analyses

revealed the principles of negative feedback for osmo-adaption

and demonstrated that Hog1 response is crucial for the regula-

tion of gene expression, cell cycle progression, and osmo-

adaption. Moreover, recent studies with microfluidic devices

indicated that periodic variations of external osmolarity (input

signal) also affect the output of Hog1 response [7,10], which

suggests that the Hog1 MAPK signaling pathway has evolved to

selectively respond to different types of osmotic changes. To

better understand how budding yeast cells respond to different

types of osmotic changes, we developed a mathematical model to

investigate the dynamics of the Hog1 response to different

scenarios of stress signals: simple step increase, single pulse,

periodic square pulses and up-staircase increase of osmotic

changes (Figure 1B).
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Different modeling strategies have been previously applied to

the osmotic stress signaling network to study specific questions.

While our previous comprehensive model captured the detailed

dynamics and regulation of the osmosensing network [8,13], other

simple models revealed some general properties of the osmo-

adaption mechanism of this network [6,10,11]. In this work, we

keep the model as simple as possible, reducing it to the key

components for the regulation of the osmo-adaption process. Our

model accounts for the following processes: (1) biophysical changes

including internal pressure, external pressure, turgor pressure, and

volume changes (for details, see our previous study [8]); (2) The

phosphorylation and dephosphorylation of Pbs2 and Hog1; (3)

Hog1 nuclear-cytoplasmic shuttling; (4) The regulation of glycerol

production and leakage. The scheme of the model is shown in

Figure 1A. The development of the model is described in the

Methods section.

Results

The Mathematical Model Can Reproduce Various
Experimental Observations of the Hog1 Response to
Osmotic Stress

Having established the mathematical model, we needed to

estimate the parameter values and to check whether our model

was able to reproduce the experimental observed Hog1 response

to osmotic stress. We estimated parameter values by fitting them to

the experimental data sets generated with micro-fluidic devices.

With 22 optimized parameter values, the model fits several

hundreds of experimental data points very well. For example, it

can reproduce the Hog1 response to a simple step increase of salt

stress (NaCl) and its behavior in a Pbs2-underexpressing mutant

[10] (Figure 2). In addition, the simulation results quantitatively

match the experimental observations of the Hog1 response to

different frequencies and strengths of NaCl pulses [10] (Figure 3).

The model also confirmed a previous experimental observation

that stronger osmotic stress increases the glycerol production rates

(Figure S1) [10].

We next challenged our model by testing whether it could

predict other observations from previous experimental studies. It is

worth noting that these experimental data had not been used for

the parameter estimation of the model. First, we checked whether

the model could predict the Hog1 response to periodic square

pulses of 0.2 M NaCl in a Pbs2 under-expressing strain. Indeed,

the model qualitatively reproduced the experimental observations

that a reduced expression level of Pbs2 will decrease the maximum

response of Hog1 and slows down the adaption of Hog1 response

(Figure S2) [10]. In addition, our model predicted that this effect

depends on the under-expressing level of Pbs2: Pbs2 should be

significantly down-regulated in order to obtain a different Hog1

response profile. Otherwise, the Hog1 responses in ‘‘low Pbs2’’

mutant would resemble the one in the wild type (Figure S3).

Furthermore, the model also confirmed our previous results for

Hog1 response to a double continuous NaCl stress (Figure S4) [8].

Finally, the model agrees well with the experimentally observed

Hog1 phosphorylation profiles in different mutants. For example,

a mutant with catalytically inactive Hog1 (Hog1K52R) shows to a

stronger phosphorylation level of Hog1 upon osmotic stress

(Figure 4A): this prediction is consistent with previous reported

results [6,9,14]. We also checked whether the model could

correctly predict the effect of different knockout of the protein

tyrosine phosphatases, Ptp2 and Ptp3. As shown in Figure 4B–4D,

the model confirmed that a knockout of the cytoplasmic protein

tyrosine phosphatase Ptp3 (ptp3D) alone has almost no effect on the

Hog1 tyrosine phosphorylation level, while deletion of the nuclear

protein tyrosine phosphatase Ptp2 (ptp2D) or its deletion together

with Ptp3 (ptp2D, ptp3D) significantly changes the Hog1 phos-

phorylation profile [15,16].

Signal Response Gain: A Measure for Quantifying the
Signal Transduction Efficiency

To quantify the signal transduction efficiency of Hog1 response

in different scenarios of osmotic stress, we introduced the concept

of ‘‘signal response gain’’ (Gs), which is defined as the ratio of the

integrated output change to the integrated input (signal) change

(Equations 1–3):

DIs~

ðb
a

S tð Þ{S t~0ð Þj jdt a : start time b: end time ð1Þ

Figure 1. Model scheme for osmosensing network and the
osmotic stress signals. (A) Scheme of the model for osmosensing
network. ‘‘Non-transcriptional feedback loop’’ denotes the Hog1 kinase
dependent regulation of glycerol production. ‘‘Transcriptional feedback
loop’’ stands for transcriptional regulation of the enzymes responsible
for glycerol production. The gray boxes are modeled with coarse-
grained black box approaches. (B) Different types of osmotic change
signals considered in this work.
doi:10.1371/journal.pone.0009522.g001

Modeling of Hog1 Response
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DIo~

ðb
a

O tð Þ{O t~0ð Þj jdt a : start time b: end time ð2Þ

Gs~
DIo

DIs
ð3Þ

where S(t) denotes the signal level at time t and S(t = 0) denote the

basal level of the signal; O(t) is the output level at time t and O(t = 0)

corresponds to the basal level of the output.

The signal response gain is schematically illustrated in Figure 5.

It represents how much output change is provoked by the input

change, both measured with respect to the basal level of the

system. Since the signal response gain is normalized to the amount

of signal input, it quantifies how efficient the signal output is

transmitted from a given amount of signal input. The higher is the

value, the more efficient is the signal transmitted from the input to

the output. In this study, we choose nuclear phosphorylated Hog1

(denoted as Hog1PPn in the model) as the output of this pathway

because it regulates the expression of hundreds of genes (reviewed

in [1,2]). In addition, as nuclear phosphorylated Hog1 (Hog1PPn)

is highly correlated with nuclear Hog1 enrichment and the total

Hog1 phosphorylation level, its dynamic profiles should be

comparable with other experimental observations of nuclear

Hog1 localization by imaging analysis [7,10].

Hog1 Response to Single Pulse of Osmotic Stress
After calibrating the model by a data-based modeling approach,

we used it to study the following question: if cells are exposed to

osmotic stress, what is the minimum duration of the stress that is

necessary for cells to induce a Hog1 response? To answer this

question, we simulated the model with the addition of a single

pulse of NaCl. This corresponds to an experiment in which cells

are exposed to NaCl stress for a certain period and then switched

to fresh medium without NaCl. As shown in Figure 6, when the

duration of 0.2 M NaCl single pulse stimulation is too short

(, = 0.1 min), there is almost no Hog1 response. However, once

the stress stimulation lasts longer than 1 min, Hog1 becomes

phosphorylated and its integral level increases with the stimulation

time (Figure 7A–7B).

We also quantified the relationship between the Hog1 signal

response gain (Gs) and the duration of single pulses of 0.2 M or

0.4 M NaCl, and found that the integral of Hog1 phosphorylation

(DIh) grows proportionally to the increase of stress duration (DIs).

Interestingly, Hog1 signal response gains (Gs) have bell-shaped

response curves with respect to stress durations: as the stress

duration grows, the signal response gain first increases, but then

decreases again because the cells have already adapted to the

osmotic stress after a certain time (Figure 7C–7D). This result

implies that efficiency of signal transduction from stress input to

integrated Hog1 response is optimized with respect to the stress

duration.

Hog1 Response to Periodic Square Pulses of Osmotic
Stress

We next investigated how Hog1 responds to periodic square

pulses of osmotic stress, which had been studied before with

microfluidic device [7,10]. Here, the model confirmed previous

study results that Hog1 responds periodically to periodic square

pulses of NaCl stress at low frequencies. However, at high

frequencies, Hog1 did not respond periodically, but showed a

similar response as to simple step osmotic stress (Figure S5) [7,10].

Other simulation results indicate that both the integral change of

Hog1 phosphorylation (DIh) and Hog1 response gain (Gs) have

bell-shaped response curves with respect to the frequency of stress

Figure 2. Comparison of model fits to the experimental data sets for step increase of 0.2 M NaCl in wild-type yeast and ‘‘low Pbs2’’
mutant. Circles and squares represent the experimental data sets from Fig. 2D in reference [10]. The solid curves are the simulation result from our
model. For the ‘‘low Pbs2’’ mutant, we set Pbs2 concentration in the model to be 12.55% of the corresponding Pbs2 in the ‘‘wild type’’.
doi:10.1371/journal.pone.0009522.g002

Modeling of Hog1 Response
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pulses (Figure S6). Similar as the model analysis for Hog1 response

to a single pulse of stress change, the signal transduction efficiency

for the integral of the Hog1 phosphorylation is also optimized to a

frequency of periodic stress change (with period of about 1 min).

We compared the model simulations for Hog1 response to

single pulses and periodic square pulses of osmotic stress. It is

interesting that Hog1 almost does not respond to a short single

pulse of 0.2 M NaCl with a duration of 0.1 min (Figure 6A), but it

responds to periodic square pulses of 0.2 M NaCl with period of

0.2 min (T0 = 0.2 min, Figure S5A). So why can cells gain a Hog1

response from periodic NaCl stress at a high frequency, but do not

respond to a single pulse of NaCl that is removed very quickly

(0.1 min) after the first stimulation? From our model simulations

for a single pulse of 0.2 M NaCl, we know that the necessary

activation time for a Hog1 response is about 1 min. This suggests

the following explanation: cells will respond if they are exposed to

sufficient osmotic stress during the first minute, no matter whether

it is a single step stimulation or several pulses. Otherwise, cells will

Figure 3. Comparison of model fits to the experimental data sets for periodic square pulses of osmolarity. Red squares represent the
experimental data sets from Fig. S2 (A–F) and Fig. S5 (G–J) in reference [10]. Blue curves are the simulation result from our model in this study. T0 is
the period of periodic square pulses. In all cases, the time of the pulse in on phase and off phase are equal to half of T0 (Ton = Toff = T0/2).
doi:10.1371/journal.pone.0009522.g003

Modeling of Hog1 Response
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not respond if they are not sufficiently stimulated within 1 minute.

We tested this hypothesis by adding different NaCl stimulations as

inputs to the model and monitored the corresponding Hog1

response. First, 0.2 M NaCl is added for 0.1 min (time of pulses in

on phase, Ton = 0.1 min), then it is removed for different duration

and 0.2 M NaCl are subsequently added again. The time gap

between two continuous 0.2 M NaCl pulses is defined as the time

of pulses in off phase (Toff), which was also used in a previous study

[7]. As shown in Figure 8A–8E, when the pulse length is very short

(Ton = 0.1 min) and if the second subsequent 0.2 M NaCl pulse

does not come within 1 min (Toff § 1 min), the maximum

amplitudes of Hog1 responses are very weak. However, if the first

stress stimulation is sufficient (Ton § 1 min), then the off time of

the pulses (Toff) does not have a significant effect on the maximum

amplitude of the Hog1 response (Figure 8F–8J and data not

shown). These simulation results also confirmed a previous

experimental observation that if the off time of pulses (Toff) is

too short, cells cannot distinguish different pulses and respond as if

they are exposed to a constant osmotic stress [7].

Hog1 Response to an Up-Staircase/Ramp Input of
Osmotic Stress

Recently, during the preparation of this manuscript, Muzzey et al.

have shown that Hog1 cannot perfectly adapt to a ramp input of

osmotic stress [11]. Although this result was not taken into account

during the construction of our model, the conclusion was

independently verified by our model simulations (Figure S7). We

implemented more analyses of the relationship between Hog1

response and the profiles of different up-staircase/ramp inputs of

osmotic stress. The simulation results showed that Hog1 can adapt

well, although not perfectly, to an up-staircase input of osmotic stress

when the frequency of up-staircase steps (the inverse of duration of

each staircase step) is below a certain threshold (f,0.1 min21,

Figure 9D, 9E, 9I, 9J). It is worth noting that the adaption of Hog1

response in these cases is not perfect because after each step of

osmotic increase, Hog1 activity reaches a slightly higher level than

before. On the other hand, when up-staircase stress changes are too

fast (f .0.2 min21, which resembles a ramp input of stress), Hog1

cannot adapt and will persist at a high response level (Figure 9A, 9F).

Figure 4. Model predictions for Hog1 phosphorylation response to step increase of 0.4 M NaCl in different mutants. (A) Hog1
catalytically inactive mutant (Hog1K52R), In the model, we set ks1_Glyc = 0 for this mutant. (B) Knockout of cytoplasmic protein tyrosine phosphatase
Ptp3 (ptp3 D). In the model, we set kdepho_Hog1PPc = 0 for this mutant. (C) Knockout of nuclear protein tyrosine phosphatase Ptp2 (ptp2D). In the
model, we set kdepho_Hog1PPn = 0 for this mutant. (D) Knockouts of Ptp2 and Ptp3 (ptp2D, ptp3 D). In the model, we set kdepho_Hog1PPc = 0 and
Kdepho_Hog1PPn = 0 for this mutant.
doi:10.1371/journal.pone.0009522.g004

Modeling of Hog1 Response
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Figure 5. Schematic description of signal response gain (Gs). The integral change of signal input (DIs) corresponds to the area formed by the
signal input curve and the basal line of signal input. The integral change of signal output (DIo) corresponds to the area formed between signal output
response curve and the basal line of signal output. The signal response gain is defined as the ratio of DIo to DIs.
doi:10.1371/journal.pone.0009522.g005

Figure 6. Nuclear phosphorylated Hog1 (Hog1PPn) response to single pulses of 0.2 M NaCl. DIs: NaCl integral change, DIh: integral
change of Hog1PPn response, Gs: Hog1PPn response gain. The intersection curve in the lower part of panel A is a zoom-in shown in different scale.
doi:10.1371/journal.pone.0009522.g006

Modeling of Hog1 Response
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In addition, the model simulations indicate that the integral of

Hog1 response (DIh) grows with the integral of the osmotic stress

input (DIs) (Figure 9). More interestingly, the Hog1 response gain

(Gs, ratio of DIh to DIs) depends on the slope of the up-staircase. If

different up-staircase profiles have the same slope, then Hog1

response gains are similar and do not depend on the frequency of

up-staircase steps (Figure 9A–9E). However, the Hog1 response

gain declines with the reduction of up-staircase slope (Figure 9F–

9J). Taken together, our model suggests that the step frequency in

up-staircase signal affects the adaption performance of Hog1

response, while the slope of the up-staircase signal is the key factor

that determines the overall Hog1 response gain.

Discussion

Relevance of the Model to Different Experimental Setups
The model presented in this work was calibrated with data sets

of Hog1 nuclear enrichment in budding yeast cells upon changing

salt concentration, measured with the microfluidic device [10]. In

this experimental setup, cells are exposed to a constant flow of

external media which come from different reservoirs [7,10]. The

external concentration of glycerol is kept constant at a level close

to zero. In contrast, in a normal Erlenmeyer flask system, cells are

exposed to a medium with high osmolarity, in which the external

glycerol level is also increased. Therefore, different experi-

mental devices might cause some quantitative difference of the

Hog1 response. In addition, different kinds of high-osmolarity

or different budding yeast strains also affect the quantitative

dynamics of Hog1 response. Nevertheless, the qualitative dynam-

ics of Hog1 responses in different experimental setups should be

similar and consistent. When we compare the model predictions

with other experimental data obtained in different experimental

setups, we need to focus on the qualitative principles of Hog1

response.

Comparison to the Concise Linear Time Invariant Model
Mettetal et al. developed a concise linear time invariant (LTI)

model for predicting the Hog1 response to periodic square pulses of

osmotic changes [10]. Although the LTI model has only two

differential equations describing three major feedbacks, it revealed

that the dynamics of the osmo-adaptation response are mainly

controlled by the fast Hog1-dependent negative feedback loop and

suggested that changes in gene expression have a minor effect on

Hog1 response. The predictions from this simple model were later

confirmed by experimental analysis and our new model analyses.

However, a detailed comparison of the LTI model prediction to the

experimental data sets shows that with 4 parameters, this model is too

simple to fully reproduce the quantitative dynamics of the Hog1

nuclear enrichment (Figure S8, Figure S9). Not surprisingly, due to

more number of the parameters, our new model fits the time course

dynamics of Hog1 response better than the LTI model (Figure S8–

S9). In particular, the experimental data sets and our model

simulations suggest that budding yeast cells can remember the first

pulse of high osmolarity and need less time to adapt to the subsequent

pulses of stimulation (Figure S9G–S9H). The LTI model fails to

capture this dynamic property because the integral feedback property

of glycerol accumulation was not modeled in this simple model

(Figure S9C–S9D). Muzzey et al. from the same group later found

that Hog1-dependent glycerol accumulation is crucial for the perfect

adaption of budding yeast to simple step increase of osmotic change

and they also proposed a revised concise model taking glycerol

production into account [11]. This shows that the regulation of

glycerol accumulation is important for controlling the dynamics of

both Hog1 response and osmo-adaption in budding yeast.

Figure 7. Relationship between nuclear phosphorylated Hog1 (Hog1PPn) response and the duration of single pulses of NaCl
change. DIh: integral change of Hog1PPn response. Gs: Hog1PPn response gain.
doi:10.1371/journal.pone.0009522.g007
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Hog1 Phosphorylation and Nuclear Localization Are
Highly Correlated in Different Scenarios of Osmotic
Stresses

Previous experimental studies have shown that there is a

correlation between Hog1 phosphorylation and its nuclear

localization upon constant osmotic stress stimulation [17,18,19].

Accordingly, Hog1 nuclear enrichment has been used as an

indicator for the Hog1 response to normal and periodic

osmotic stresses because it is convenient for imaging analysis

[7,10,11,17,18,19]. Here, we took advantage of mathematical

analysis to check the correlation between Hog1 phosphory-

lation and nuclear localization upon different kinds of osmotic

stress: simple step increase, periodic square pulses and up-

staircase increase of osmotic changes. The simulation results

indicate that total phosphorylated Hog1 (x1), nuclear Hog1 (x2)

and nuclear phosphorylated Hog1 (x3) are highly correlated

in all three stress stimulation scenarios (Figure S10). The

correlation coefficients between each pair of these three variables

(x1, x2, x3) are larger than 0.98, with p-values of almost 0, which

means that their correlations are highly significant. Therefore,

our model analysis quantitatively supports the assumption that

Hog1 nuclear enrichment is a good indicator for studying

Hog1 response upon osmotic stress, which had been extensively

used before.

Figure 8. Nuclear phosphorylated Hog1 (Hog1PPn) response to different periodic square pulses of 0.2 M NaCl. (A–E) The time of
pulse in on phase (Ton = 0.1 min) of periodic square pulses is very short, while the time of pulse in off phase (Toff) of periodic square pulses varies from
0.1 min to 5 min. The intersection curve in low part of panel E is a zoom-in of Hog1PPn response in different scale. (F–J) The time of periodic square
pulse in on phase (Ton = 1 min) is long enough to induce Hog1PPn response, the time of periodic square pulse in off phase (Toff) varies from 0.1 to
10 min.
doi:10.1371/journal.pone.0009522.g008
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Hog1 Dependent Non-Transcriptional Regulation of
Glycerol Production Is the Key Factor Controlling Perfect
Osmo-Adaption

Previous studies implied that the transcriptional feedback loop

on glycerol production (slow feedback loop denoted in Figure 1A)

plays only a minor role in the regulation of osmo-adaption [3,10].

To evaluate different contributions of the transcriptional and non-

transcriptional feedbacks on the osmo-adaption ability, we

implemented in silico knockouts of the fast non-transcriptional

and the slow transcriptional feedback loops on glycerol produc-

tion, respectively. As shown in Figure 10, the simulations suggest

that the perfect adaption of Hog1 is only slightly affected by the

knockout of the slow transcriptional feedback loop. However,

perfect adaption is almost lost when the non-transcriptional

feedback loop (Hog1 kinase dependent) is knocked out (Figure 10).

Therefore, our model independently confirmed the recent

experimental result that perfect adaptation requires Hog1 kinase

activity, which regulates glycerol production [11].

Figure 9. Nuclear phosphorylated Hog1 (Hog1PPn) response to different staircase NaCl stimulations. DIs: NaCl integral change, DIh:
integral change of Hog1PPn response, Gs: Hog1PPn response gain, s: slope of the staircase profile of NaCl, which is the ratio of final NaCl
concentration to the duration of NaCl stimulation. f: frequency of the staircase steps, which corresponds to the inverse of the interval between
staircase steps.
doi:10.1371/journal.pone.0009522.g009

Modeling of Hog1 Response
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Methods

Model Development
(1) Model assumptions. We made the following assump-

tions during the development of this model.

(1) Although cell growth is observed after cell adaption to

osmotic stress, we ignore the effect of cell growth on the volume

change during the time scale of osmo-adaption.

(2) When cells are exposed to constant osmotic stress, their

volumes decrease and then reach the initial volume again.

Previous studies indicate that the nuclear volume of yeast cells

also changes during growth [20]. Here we assume that the

volumes of cytoplasm and nucleus change simultaneously and that

their ratio does not change. In other words, the cytoplasmic

volume and nuclear volume both change proportionally to their

initial volume percentage of the whole cell volume.

(3) Before cells are exposed to osmotic stress, we assume that the

system is in a steady state, which means that the Hog1 distribution

in cytoplasm and nucleus, the glycerol and the Pbs2 phosphor-

ylation level are constant before osmotic stress stimulation.

(2) Modeling of Pbs2 activation. Our previous integrative

model [8] contains a phospho-relay system, in which the SLN1

and SHO1 branches sense the osmotic stress signal and both

activate the MAPKK, Pbs2. Here, we simplified and modeled the

phosphorylation of Pbs2 with a Hill function using turgor pressure

as input (Equation 4). During parameter estimation, we found that

a large value of the Hill coefficient (with a value of 8 in this model)

is necessary for fitting the experimental data sets well, which

suggests a non-linear cooperative effect for Pbs2 phosphorylation

in the phospho-relay system. The rate of Pbs2 phosphorylation

reaction is

v
pho
Pbs2~

K
pho
Pbs2

: Pbs2½ �

1z
PIt

a

� �8
ð4Þ

(3) Modeling of glycerol production. Moreover, we

simplified the metabolic regulation process for the production of

glycerol and considered two regulation levels of glycerol

production by Hog1: (1) non-transcriptional feedback on the

enzyme activities and (2) transcriptional feedback on the synthesis

of the enzymes that regulate glycerol production. Westfall et al.

have shown that the non-transcriptional feedback is independent

on Hog1 nuclear localization [3]. Here, we use a Hill function to

model the non-transcriptional feedback on glycerol synthesis, with

a total Hog1 phosphorylation level that reflects the overall Hog1

kinase activity (Equation 5).

v
Glyceraol
feedback1~

K
Glyc
s1

: totalHog1PPð Þ4

b4z totalHog1PPð Þ4
ð5Þ

where totalHog1PP denotes the total percentage of Hog1

molecules being phosphorylated.

In the transcriptional feedback loop on glycerol production,

active Hog1 induces the expression of the glycerol-producing

enzymesGpd1 and Gpp2. This process involves gene expression

and protein translation. Therefore, there is a time delay between the

activated nuclear Hog1 and the production of Gpd1 and Gpp2. We

used a linear chain of length N variables with linear differential

equations to model the delay between nuclear Hog1 activity and the

transcriptional feedback on the expression of glycerol-producing

proteins, which are symbolized as Yt in the model [21].

Figure 10. Model predictions of Hog1 responses for the
knockouts of different feedback loops involved in glycerol
production. We set K

Glyc
s1 = 0 to simulate the knockout of the non-

transcriptional feedback loop (Hog1 kinase, totalHog1PP, dependent)
on glycerol production. The simulation results are shown in red curves
in panel B–D. We set K

Glyc
s2 = 0 to simulate the knockout of the

transcriptional feedback loop (nuclear phosphorylated Hog1, Hog1PPn,
dependent) on glycerol production. The simulation results are shown in
blue dotted curves in panel B–D.
doi:10.1371/journal.pone.0009522.g010
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d z1½ �
dt

~
N: Hog1PPn½ �{ z1½ �ð Þ

t
ð6Þ

d z2½ �
dt

~
N: z1½ �{ z2½ �ð Þ

t
ð7Þ

d z3½ �
dt

~
N: z2½ �{ z3½ �ð Þ

t
ð8Þ

d z4½ �
dt

~
N: z3½ �{ z4½ �ð Þ

t
ð9Þ

d Yt½ �
dt

~KYt
s0 zKYt

s1
: z4½ �{KYt

t
: Yt½ � ð10Þ

v
Glyceraol
feedback2~K

Glyc
s2

:Yt ð11Þ

We set N = 4, t (delay time) = 20 min. This represents a rea-

sonable approximation of the time delay for the production of

glycerol-producing proteins Yt after an osmotic shock [8,10].

We also consider a constitutive Hog1-independent production

of glycerol and model it with the following rate equations.

v
Glyceraol
constitutive~K

Glyc
s0 ð12Þ

(4) Modeling of glycerol leakage. Previous studies indicated

that the glycerol channel protein Fps1 might contribute to

the regulation of intracellular glycerol accumulation [22].

Similar to our earlier comprehensive model, we modeled the

effect of the Fps1 glycerol channel on glycerol leakage with a

switch-like Hill function linked to turgor pressure (PIt). With

equation (12), the model assumes that the Fps1 glycerol channel

closes when the turgor pressure disappears in response to high

osmolarity stress.

v
Glyceraol
leakage ~ K

Glyc
exp0z

K
Glyc
exp1

: PItð Þ12

cð Þ12
z PItð Þ12

 !
: Glycin{Glycexð Þ ð13Þ

where K
Glyc
exp0 is the diffusion constant for Fps1-independent export

of glycerol and K
Glyc
exp1 corresponds to the maximum export rate of

glycerol through the Fps1 channel. Glycin denotes the intracellular

glycerol concentration; Glycex stands for extracellular glycerol

concentration, which is assumed to be a constant with a value of 0

in the flow cell microfluidic system.

(5) Kinetics for other reactions. All other reactions

included in this model are modeled by mass-action kinetics. We

did not choose Michaelis-Menten kinetics for these signaling

transduction steps because this would require that the total

concentration of the enzyme (also being a substrate in signaling

pathways) concentration is much smaller than the substrate

concentration, which may not be valid. Nevertheless, we tried

Michaelis-Menten kinetics for some of these reactions. This

increases the number of parameters but did not improve the fit

to the experimental data sets.

Model Availability
The initial conditions, parameter values, and the whole

system of ordinary differential equations are provided in the

Tables S1, Table S2, Table S3. As this model includes volume

changes and discrete events describing stress signal change,

most current systems biology markup language (SBML) suppor-

ting tools cannot deal with these situations [23]. The Matlab

source code for the model and simulations is provided in

Code S1. The simulations in this study were done with a

revised version of our customized program SBML-SAT [24] in

Matlab and they are consistent with those solved with Matlab

ODE solver.

Parameter Estimation
(1) Osmotic pressures. For the osmotic pressure values in

the unstressed cells, we used the values from our pre-

vious integrative model [8], namely 0.8756106 J m23 for turgor

pressure (PI0
t ), 1.56106 J m23 for internal osmotic pressure (PI0

i )

and 0.6256106 J m23 for external osmotic pressure (PI0
e ) for

unstressed cells.
(2) Cell volume size. The reported cell volume values of

yeast cells are estimated to lie in the range of 37–83 fL [25,26,27].

Biswas et al. estimated that the cytosol and nucleus occupy about

50% and 7% of the total cell volume in yeast cells of Exophiala

dermatitidis, respectively [28]. The simulations of our model are not

very sensitive to the percentage of cytosol and nucleus. Based on

this information, we set the cell volume size (V0
cell ) to be 58 fL. The

cytoplasmic volume (V0
cyt) is 29 fL and nuclear volume (V0

nuc) is

4.06 fL. The fixed part of the cell volume (Vb), which is not

affected by osmotic changes, is set as 40% of the total volume,

corresponding to 23.2 fL. The osmotic volume before osmotic

change (V0
os) is 34.8 fL. We modeled osmotic volume change by

equation (13), similar to our previous model [8].

d Vosð Þ
dt

~{G:Lp: PIezPIt{PIið Þ ð14Þ

(3) Estimation of the unknown parameter values.

Although we chose some parameter values based on the

reported values in the literature, there are still 22 parameter

values which were not known and should be estimated. Here we

used a global optimization algorithm (SRES) to minimize the sum

of squared differences between experimental data sets and the

model simulation results. SRES (stochastic ranking evolution

strategy) is an evolutionary optimization algorithm, which is

encoded in our software SBML-PET [29]. SBML-PET is able to

simultaneously fit the data sets generated from NaCl stress pulses

of different frequencies. We estimated 22 unknown parameters

values of the model by fitting to several hundreds of data points

generated from 13 different conditions of NaCl stimulations [10].

We used these data sets from Mettetal et al. for parameter

estimation: the data sets for constant 0.2 M NaCl stimulation

(Fig. 2D in reference [10]), 0.2 M NaCl pulse stimulation at

different frequencies (Fig. S2 in reference [10]) and different

strength of NaCl pulse stimulation (Fig. S5 without CHX in

reference [10]). The raw data in the studies of Mettetal et al. were

quantified by the Hog1 nuclear localization function Rt, which is

defined as:

Rt~
YFP½ �nuc

YFP½ �cell

ð15Þ
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In our model, the Rt value is correspondingly defined as:

Rt~
Hog1n½ �z Hog1PPn½ �

Ntotal
Hog1

Na

 !

Vcell{Vwall
cell

� �
ð16Þ

where Ntotal
Hog1, the total number of Hog1 molecules per cell, is set

with value of 6780 according to previously reported values [30].

Na = 6.0261023 is the Avogadro’s number. Vos is the osmotic

volume and Vb is the fixed part of the cell volume that is not affected

by osmotic stress (for details, see our previous model [8]). YFP

proteins are not expressed in the cell wall (Vwall
cell ), which occupies

about 20% percentage of the whole cell volume [28]. Therefore, the

whole cell concentration defined in Mettetal et al. study should be

redefined by subtracting the cell wall volume in our model.
(4) Initial conditions. We assume that the system starts in a

steady state. In order to estimate the initial concentration of the

proteins in the model, we first estimated the total number of

molecules per cell for the proteins, using the yeast GFP Fusion

Localization Database (http://yeastgfp.ucsf.edu) [30]. Since the

initial conditions of the components in the system are given by the

steady state values and therefore depend on the other kinetic

parameter values, we updated the initial conditions of the proteins

during the parameter estimation and forced the system to be

approximately in steady state. In the end, the total number of

proteins per cell matched the value reported in the yeast GFP

database [30]. The values for the initial conditions are

summarized in Table S1.

Supporting Information

Figure S1 Comparison of model fit to the data of glycerol

change under square pulse 0.5 M NaCl (Ton = Toff = 30 min).

Change in total glycerol levels over 20 min was used to measure

the rate of glycerol production. Experimental data points are

plotted by scaling to the model prediction results. Experimental

data source: Fig. S6C of the reference (Mettetal et al., Science,

2008, 319: 482–484)

Found at: doi:10.1371/journal.pone.0009522.s001 (0.27 MB TIF)

Figure S2 Comparison of model predictions to experimental

data of Hog1 nuclear enrichment under periodic square pulse of

0.2 M NaCl. Blue curves: model prediction results. Red square

points: experimental data from Fig. S4 of the reference (Mettetal et

al., Science, 2008, 319: 482–484). For ‘‘low Pbs2’’ mutant, the

model set Pbs2 concentration to be 12.55% of the corresponding

Pbs2 in ‘‘wild-type’’.

Found at: doi:10.1371/journal.pone.0009522.s002 (0.39 MB TIF)

Figure S3 Model predictions of Hog1 phosphorylation response

to step increase of 0.2 M NaCl in different low expression level of

Pbs2 mutants.

Found at: doi:10.1371/journal.pone.0009522.s003 (0.30 MB TIF)

Figure S4 Model predictions for Hog1 phosphorylation re-

sponse to different double step increases of 0.5 M NaCl. (A)

Double stress profile. (B–D) Black curves corresponding to Hog1

phosphorylation response to normal step increase of 0.5 M NaCl

(single stress). Blue curves are the model predictions for Hog1

phosphorylation response to double stresses (The second stress

added at different times). The Hog1 phosphorylation level is

normalized to its maximum level in single stress.

Found at: doi:10.1371/journal.pone.0009522.s004 (0.35 MB TIF)

Figure S5 Model predictions for nuclear phosphorylated Hog1

(Hog1PPn) response to different periodic square pulses of 0.2 M

NaCl. In all cases, the on time (Ton) and off time (Toff) of square

pulses are half of the period time (T0): Ton = Toff = T0/2. DIs:

NaCl integral change, DIh: integral change of Hog1PPn response,

Gs: Hog1PPn response gain.

Found at: doi:10.1371/journal.pone.0009522.s005 (0.50 MB TIF)

Figure S6 Relationship between nuclear phosphorylated Hog1

(Hog1PPn) response and the duration of periodic square pulses of NaCl

change. DIh: integral change of Hog1PPn response. Gs: Hog1PPn

response gain.

Found at: doi:10.1371/journal.pone.0009522.s006 (0.33 MB TIF)

Figure S7 Model prediction for nuclear phosphorylated Hog1

(Hog1PPn) response to ramp increase of NaCl.

Found at: doi:10.1371/journal.pone.0009522.s007 (0.24 MB TIF)

Figure S8 Comparison of the data fitting of the LIT concise

model and our new model for periodic square pulses of 0.2 M

NaCl. The red circle points are the experimental data sets in Fig.

S2 of the reference (Mettetal et al., Science, 2008, 319: 482–484).

Found at: doi:10.1371/journal.pone.0009522.s008 (1.01 MB TIF)

Figure S9 Comparison of the data fitting of the LIT concise model

and our new model for different periodic square pulses of NaCl

stimulation. The red circle points are the experimental data sets in

Fig. S5 of the reference (Mettetal et al., Science, 2008, 319: 482–484).

Found at: doi:10.1371/journal.pone.0009522.s009 (0.97 MB TIF)

Figure S10 The total amount of phosphorylated Hog1 (x1,

Hog1PP, quantified as % of total Hog1), nuclear Hog1 enrichment

(x2, nuclear Hog1) and nuclear phosphorylated Hog1 (x3, Hog1PPn)

are highly correlated under different types of NaCl stimulation.

Numbers in the squares of the correlation map (A, F, K) denote the

correlation coefficients of two variables. Numbers within parentheses

correspond to the rounded p-values for testing the hypothesis of

uncorrelated variables. If the p-value is small (,0.05), then the

correlation of the two variables is significant. The correlation

coefficient and p-values were calculated with the ‘‘corrcoef’’ function

in Matlab. (A–E) Simple step increase of NaCl. (F–J) Periodic square

pulses of NaCl. (K–O) Up-staircase increase of NaCl.

Found at: doi:10.1371/journal.pone.0009522.s010 (0.76 MB TIF)

Table S1 Initial conditions of the state variables.

Found at: doi:10.1371/journal.pone.0009522.s011 (0.05 MB

DOC)

Table S2 Complete list of model parameter values.

Found at: doi:10.1371/journal.pone.0009522.s012 (0.10 MB

DOC)

Table S3 Complete list of ordinary differential equations and

other equations.

Found at: doi:10.1371/journal.pone.0009522.s013 (0.10 MB

DOC)

Code S1 Matlab code for some of the model simulations.

Found at: doi:10.1371/journal.pone.0009522.s014 (0.00 MB ZIP)
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