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Abstract

Min proteins in E. coli bacteria organize into a dynamic pattern oscillating between the two cell poles.
This process identifies the middle of the cell and enables symmetric cell division. In an experimental
model system consisting of a flat membrane with effectively infinite supply of proteins and energy
source, the Min proteins assemble into travelling waves. Here we propose a simple one-dimensional
model of the Min dynamics that, unlike the existing models, reproduces the sharp decrease of Min
concentration when the majority of protein detaches from the membrane, and even the narrow MinE
maximum immediately preceding the detachment. The proposed model thus provides a possible
mechanism for the formation of the MinE ring known from cells. The model is restricted to one
dimension, with protein interactions described by chemical kinetics allowing at most bimolecular
reactions, and explicitly considering only three, membrane-bound, species. The bulk solution above
the membrane is approximated as being well-mixed, with constant concentrations of all species.
Unlike other models, our proposal does not require autocatalytic binding of MinD to the membrane.
Instead, it is assumed that two MinE molecules are necessary to induce the dissociation of the MinD
dimer and its subsequent detachment from the membrane. We investigate which reaction schemes
lead to unstable homogeneous steady states and limit cycle oscillations, and how diffusion affects their
stability. The suggested model qualitatively describes the shape of the Min waves observed on flat
membranes, and agrees with the experimental dependence of the wave period on the MinE
concentration. These results highlight the importance of MinE presence on the membrane without
being bound to MinD, and of the reactions of Min proteins on the membrane.

Introduction

The combination of chemical reactions with diffusion under non-equilibrium conditions can give rise to a range
of complex phenomena, such as formation of steady patterns, travelling waves or periodic oscillations [ 1-3].
The resulting patterns and structures often have spatial dimensions exceeding the molecular size by many orders
of magnitude, and temporal periods much longer than the time scales of the underlying chemical reactions. Still,
their size and dynamics are precisely determined by the parameters describing the interactions and motion of
individual molecules.

These self-organizing physico-chemical phenomena are important for the functioning of living matter, as
they provide accurate ‘rulers’ and ‘clocks’ that then determine the size and dynamics of the whole organism or its
part [4—6]. Most prominent examples include spatial gradients of molecular concentrations that control the
growth and development of cells, embryos and tissues [7—9], and temporal concentration oscillations forming
the basis of circadian rhythms that adjust the functioning of an organism to the day/night cycle [10, 11].

The Min proteins in the rod-like E. coli bacteria bind to the inner membrane surface, where they organize
into a dynamic pattern oscillating between the two cell poles. The resulting exclusion of one of the proteins,
MinG, from the cell center is important for accurate positioning of the cell division ring and for symmetric cell
division [12]. The Min system consists of three proteins: MinD, MinE and MinC, but only the first two are

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/4/043023
mailto:z.petrasek@tugraz.at
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043023&domain=pdf&date_stamp=2015-04-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/4/043023&domain=pdf&date_stamp=2015-04-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 043023 Z Petrasek and P Schwille

necessary for the oscillations. Although many details of the interaction of Min proteins with the membrane and
among themselves are known [12, 13], the exact mechanism of the oscillations is not yet fully understood.

An important step towards the understanding of the Min dynamics was the observation of dynamic Min
patterns on artificially created supported lipid bilayers [ 14—16], on structured membrane surfaces [17], on
unsupported lipid membranes [ 18], and within microcompartments enclosing a small volume [19]. These
synthetic systems allow easier control of all relevant parameters, such as protein concentration, membrane
composition and volume geometry, and so enable quantitative studies of their effect on the Min pattern
dynamics.

The models of Min oscillations are usually based on the reaction—diffusion mechanism. The steady state of
the reaction system is unstable, which leads to inhomogeneous oscillating protein distribution. The early models
employed effective reaction terms [20, 21] or included effective processes such as aggregation current describing
the tendency of MinD to aggregate on the membrane [22—24]. Although the introduction of sufficient non-
linearity in the rate equations in these models results in instability and complex dynamics, it does not always
allow a direct interpretation in terms of biochemical reactions.

A clear interpretation is possible with models containing only terms describing simple reaction steps. While
some models contain cubic terms corresponding to non-realistic trimolecular reactions [14], other models
employ only at most bimolecular reactions [16, 25-28]. Several other models attempt to explain the Min
dynamics by relying on the observed MinD polymerization into filaments [29], often combined with
preferential nucleation at the cell poles [30-32].

There are two classes of models that are relatively simple, contain only chemical reaction terms, make
minimum assumptions beyond firmly established facts, and exhibit Min dynamics similar to those in cells or flat
membranes. In the first of them, the finite rate of conversion of MinD—ADP, which cannot bind to the
membrane, to the MinD—ATP in the bulk solution plays an important role [25, 28]. In the other class of models,
the existence of MinE not attached to MinD on the membrane is important, and the reactions in the bulk are not
considered (i.e. are assumed to proceed fast) [16, 27].

Here we propose a model related to the second type. Contrary to most other models, the model we suggest
does not require autocatalytic binding of MinD to the membrane. Instead, it assumes that two MinE molecules
are necessary to induce MinD detachment from the membrane. This assumption is based on MinD being a
dimer with two binding sites for MinE and two bound ATP molecules. The model is very simple, not far from (in
terms of complexity) the minimal chemical model that can exhibit instability and periodic oscillations [33]. It
includes only reactions on the membrane and explicitly contains only three, membrane-bound, species. In
comparison to other models, it provides so far the best qualitative description of the shapes of the observed
invitro concentration profiles of MinE on lipid bilayers, and reproduces the experimental dependence of the
wave period on the MinE concentration.

We first study the dynamical behaviour and stability of this model considered as a well-mixed system,
neglecting diffusion. We explore modifications of the model concerning the way of attachment of MinE to the
membrane and the necessity of two MinE molecules for MinD membrane detachment. Then we add diffusion
and observe its effects on the wave shape and propagation. Finally, we briefly consider this model in closed
geometry with a finite pool of MinD and MinE molecules.

Results

The model

To capture the essential features of the Min dynamics and pattern formation we aim to keep the model as simple
as possible. This means using small number of species and reactions, and a simple geometry of the reaction
domain.

The two proteins, MinD and MinE, are necessary and sufficient to produce the dynamic patterns on lipid
bilayers. The following experimental facts concerning their interactions are generally accepted: MinD in its
ATP-form binds to the membrane [34]; once bound, it strongly enhances binding of MinE to the membrane
[35,36];and MinE on the membrane stimulates the ATP-ase activity of membrane-bound MinD, leading to the
release of both MinD and MinE from the membrane [35, 37].

These facts are usually incorporated into the kinetic models in form of the following three reactions: MinD
binds to the membrane resulting in membrane-bound MinD species; MinE binds to MinD on the membrane,
forming a MinD-MinE membrane-bound complex, and MinD-MinE complex dissociates (following ATP
hydrolysis) and leaves the membrane. These reactions alone, if assumed to take place in their simplest form, are
not sufficient to make the steady state of the system unstable, and no interesting behaviour, such as oscillations
or creation of patterns, takes place. A certain increase in complexity is therefore necessary.
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Figure 1. Models of MinD and MinE membrane interactions. A: the three monomers, MinD in the ATP- and ADP-form and MinE,
are the basic units of the membrane-bound species in the models considered in this work: MinD dimer (concentration y, ), MinD
dimer with one MinE bound (y,) and MinE (). B: the structure of the MinD dimer [38] with two ATP molecules at the interface
between the two monomers, and the two MinE binding sites formed at the contact points of the two MinD monomers. The interacting
helices of MinE are shown in red (Image from the RCSB PDB (www.rcsb.org of 3QIL). C: the model M, based on the assumption
that two MinE molecules are required for the MinD,~MinE complex to dissociate and leave the membrane. D: the direct MinE
attachment model Mg : analogous to M,, but with direct binding of MinE to the membrane. E: the model M;p with autocatalytic
attachment of MinD to the membrane.

All models based on chemical kinetics (i.e. not using effective reaction terms) additionally assume
enhancement of MinD binding by MinD already present on the membrane. This is typically represented as an
autocatalytic term in the differential equation for the concentration c of the membrane-bound MinC of the
form ¢ = +kc..., where the rate constant k is a linear function of the concentration of MinD in the solution
above the membrane.

The published models additionally add at least one more species, in addition to the membrane-bound MinD
and MinD-MinE complex. One possibility is based on the assumption that MinE from the dissociated MinD-
MinE complex stays on the membrane for a certain time during which it can bind to another MinD and form a
new MinD-MinE complex [16, 27]. This idea results from experiments showing a longer residence time of
individual MinE on the membrane in comparison to MinD [39], and on biochemical evidence [40].

A model combining autocatalytic MinD attachment with MinE as a third membrane-bound species (model
M,p ) is depicted in figure 1(E). It is closely related to the models recently used to describe the Min
dynamics [16, 27].

The model proposed here includes MinE as a third species, but does not require autocatalytic MinD
membrane attachment. It is inspired by the fact that MinD in its ATP-form is a dimer (figure 1(B)), with the two
ATP molecules at the interface between the two monomers [38]. Upon ATP hydrolysis the dimer dissociates;
one can imagine that the ATP molecules act as a ‘glue” holding the dimer together as long as they are not
hydrolysed. The dimer has two symmetrically positioned binding sites for MinE at the interface of the two
monomers. We assume that MinE binding to one binding site stimulates the ATP-ase activity of MinD, leading
to hydrolysis of one of the ATP molecules. Binding of another MinE to the other symmetric site stimulates
hydrolysis of the other ATP. Aslong as at least one ATP is not hydrolyzed, the whole complex holds together.
Only after both ATP are converted to ADP, the MinD dimer dissociates, releasing also both MinE molecules
since their binding sites at the MinD monomer interfaces cease to exist.

While MinD dimer is stably attached to the membrane by two membrane-targeting sequences (mts), the
MinD monomer is anchored by only one mts, providing only a weak membrane affinity, and therefore
dissociates from the membrane quickly.

The susequent binding of two MinE molecules to MinD, and their simultaneous release from the complex
makes the reaction system sufficiently complex to exhibit instability and consequently rich dynamics. As we
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show below, the requirement of two MinE molecules for the complex dissociation is not stringent, and a certain
degree of the MinD,~MinE complex dissociation stimulated by only one MinE can be tolerated.

Well-mixed system

First, we consider a well-mixed system: the situation where the membrane diffusion is infinitely fast and the
effects of diffusion-limited mixing are neglected. The concentrations of all species y; are then spatially
homogeneous and depend only on time. Later on we will investigate the effects of finite diffusion.

The model proposed here assumes three membrane-bound species: MinD, (concentration y; ), MinD,—
MinE complex (y,), and MinE (y3). Although MinD is thought of as a dimer, the only implication of this fact is
the existence of two binding sites for MinE. No MinD dimerization kinetics is included in the model.

The following reactions constitute the model (figure 1(C)): MinD, binds to the membrane (rate constant
kp); MinE binds to one of the binding sites on MinD,, this being either MinE from the solution (rate constant
kag) or MinE already present on the membrane (rate constant k;.); MinE binds to the second binding site on the
MinD, (again, either MinE from the solution or from the membrane); this is followed immediately by the
dissociation of the complex, and detachment of MinD from the membrane. Finally, MinE leaves the membrane
with the rate constant k, (@ in the following reactions stands for no membrane-bound reactants or products).

+MinD;

b MinDz, (1)
kl)
. +MinE . .
MinD, k:) MinD,—MinE, (2)
IE
MinE + MinD, k,_) MinD,—MinE, (3)
de
. . +MinE,—MinD; .
MinD,—MinE k:) 2 MinE, (4)
E
. . . —MinD; .
MinE + MinD,—MinE kd—» 2 MinE, (5)
. —MinE
MMEZ @. (6)

The following system of differential equations describes the dynamical system:

)71 = kD - kdeyly3 - kdEyp (7)
i = ks + kit = ks — ke gy ®
Vs = —kaenys + kaeyoys + 2kap y, — ke ys. ®)

Itis convenient to change to non-dimensional quantities t' and y/ by expressing time in the units of 1/k, and
concentrations in the units of kp /k, :

r =kt (10)
ok
n—bw (11)

Then we obtain (after dropping the primes of t" and y/) a system of equations that we will refer to as model
M,;, (the two-step MinD dissociation model):

71 =1- Kde ¥,)5 — KdE Yp» (12)
Yo = Kie )Yy + Kie Yy — Kae )oYy — Kig Ys» (13)
y3 = —Kie s + Kde ), )3 + 2K'dE}/2 — ) (14)

where the non-dimensional rate constants x;, and k;z are related to k; as:

kD kde
Kie = kez > (15)
kie
Kjg = —. (16)
"k

The whole system depends now on only two parameters, k;, and k; , making the analysis of its behaviour in
the whole parameter space tractable. The system of equations (12)—(14) has two steady states ( = 0), with only

one of them being positive: y;. = y,. = (=1 % /1 + 8kze/kar )/ (4Kze ),
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Figure 2. Solutions of the model M, , equations (12)—(14). A: the stability diagram showing the period T of the oscillatory solutions in
the unstable region. B: the concentration oscillations of the three reacting species and the total MinD and MinE for several
representative values of k;, and kg , as marked in A. C: the fit of the period dependence on kg for kg = 1 (T (k¢ ), red line) to the
dependence of the period of Min waves on the MinE bulk concentration, derived from the experimental data in [14] (blue points).

Vs = Kap (=1 £ /1 + 8Kze /Ky ) / (2K4, )- Linear stability analysis shows that the positive steady state can be
either stable or unstable, depending on the values of k4, and kg (figure 2( A)). The steady state is unstable in the
region of relatively large x;, and relatively small ;g . In other words, a stable state can be made unstable by
increasing k;, or decreasing k;p , within the parameter range in figure 2(A). This points to the importance of the
presence of MinE on the membrane for the instability: the reactions (3) and (5) in which the membrane-bound
MinE participates must proceed with sufficiently high rate compared to the reactions (2) and (4) (MinE binding
from the bulk) for the system to become unstable.

When the steady state is unstable, the system exhibits periodic oscillations of the concentrations y; of all three
species. The oscillations are close to sinusoidal near the bifurcation boundary (point 1 in figure 2(A),
figure 2(B)), and increasingly deviate from this shape as one moves deeper into the unstable region of the
parameter space (points 2—4). Although the concentration profiles vary with ;. and kg, they share common
features: starting at the minimum of MinD,, the concentration y; of MinD, increases, followed by a slower
increase of the concentration y, of the MinD,—MinE complex. The concentration y; of MinE increases only
slowly, until it is at some point sufficiently high to overturn the trend of increasing y; through the reaction (3)
and shortly thereafter to make y, decrease through the reaction (5). This reaction generates even more MinE on
the membrane, leading to a sharp increase in y; and depletion of both y; and y,. After the concentration of MinE
decreases again due to spontaneous MinE detachment, the whole cycle can start again.

The depletion of the MinD,—MinE complex and of the total MinE can occur extremely fast relative to the
time window where all three concentrations increase (figures 2(A), (B), points 2 and 3). This behaviour persists
when diffusion is added to the model, as shown below, and is also experimentally observed as a sharp edge of
travelling Min waves [ 14]. In contrast, we could not find a set of parameters that would lead to similarly abrupt
concentration changes in a model including autocatalytic attachment of MinD (model M, in figure 1(E)).
Figure 3 shows the concentration oscillations in the model M,p with a relatively steep decrease of MinE
concentration. However, the difference between the overall rates of MinE concentration increase and decrease is
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Figure 3. An oscillating solution of the autocatalytic MinD attachment model Myp (figure 1(E)) with the rate parameters chosen so
that the MinE depletion is faster relative to the MinE concentration increase. However, no parameter set could be found that would
reproduce the strong asymmetry between the slow MinE concentration increase and its steep decrease as can be observed in the M,
model (figure 2(B)). The parameter values are: kg = k5 = kjp = land kg = 0.21.

much less pronounced than in the model M, or in the experimentally observed Min waves (figure 6(E)). This
failure to reproduce the sharp MinE decrease appears to be a typical feature of the models relying on the
autocatalytic MinD attachment [14, 27].

Figure 2(A) also shows the dependence of the oscillation period T on the rates &y, and kg . The rate k5 can
be assumed to depend linearly on the concentration of bulk MinE. We can therefore compare the dependence
T (k45 ) of the period T on the rate x;r with the experimental dependence of the wave period on the bulk MinE
concentration, published previously [ 14]. Fitting the experimental data to the calculated T (ks ) shows that the
trend of T (k4 ) in the model M , agrees very well with the data (figure 2(C)). The parameters of the fit are:
k.=0.3s7'and kj; = kjg/c (MinE) = 4.3 X 107> yuM~'s~!. The rate k,= 0.3 s ' implies a MinE residence time
of 3.3 s, if detachment were the only process of removing MinE species. This is compatible with the reported
membrane residence times of MinE [39] between 6 and 12 s, as these experiments cannot distinguish between
MinE and MinD,-MinE complexes, and include also the effect of MinE binding to MinD, (reaction (3)) and
therefore alonger residence time on the membrane.

Effect of direct MinE membrane binding

In the model M,; it is assumed that MinE binds to MinD, present on the membrane (reactions (2) and (4)) but
is not able to bind to the membrane directly. It is interesting to consider the opposite situation, when MinE binds
directly to the membrane, and only this membrane-bound MinE, not MinE from the solution, can bind to
MinD, present on the membrane. Thus, the reactions (2) and (4) are replaced by direct MinE attachment:

+MinE .
— MinE. (17)
ke
Assuming rate constant kg for the MinE binding to the membrane, we obtain the model M, (the direct MinE
membrane attachment model) as a mathematically simpler alternative to M,, (figure 1(D)):

W =1 =Ky (18)
Yy = Kae WY — Kie Yo)so (19)
Vs =Kg — KieW)s + Kie 1y)5 — V3o (20)

where the non-dimensional form of kg, kg = kg /kp is used.

The system of equations (18-20) has only one steady state, which is positive: . = y,; = 1/(Kze kg ), )3, = K-
Figure 4( A) shows the results of linear stability analysis of the steady state in the two-dimensional parameter
space (kj.,Kg ). For kg values larger than 0.5 the steady state is stable, regardless of x;,. At k. < 0.5, aregion of
unstable steady states and oscillatory solutions exists. The temporal profiles of the concentrations y;(t) of these
oscillating solutions are qualitatively similar to those of the model M,, (figure 4(C)).

As kg becomes lower, approximately coinciding with the white region in figure 4 (A), the concentrations y,
and y, reach unrealistically high maximum values, and the period T becomes very long. In reality, this behaviour
would be prevented by saturation of the membrane surface with proteins. The unbounded growth in simplified
models, such as Mg, can be eliminated by taking into account the finite number of binding sites at the
membrane (that is, by including surface saturation), or by adding reverse reactions, which have been neglected
so far [41]. Such modifications can in some cases turn the unstable steady state into stable. If we include
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Figure 4. Solutions of the direct MinE membrane attachment model Mg . A: the stability diagram of the model Mg, equations (18)—
(20). B: the stability diagram of the model Mg extended by adding spontaneous detachment of MinD with the rate constant

ki = 0.01. C: the concentration oscillations of the three reacting species and the total MinD and MinE for k;, = 1and xz = 0.34 (the
non-modified Mg model).

spontaneous detachment of MinD, from the membrane with the rate constant k, the steady state stays however
unstable, and the concentrations of all species remain finite and within reasonable limits. This back-reaction of
reaction (1) results in an additional term —x; y in equation (18). The stability diagram with instability region
extended in this way for a relatively small value of k; = 0.01is shown in figure 4(B).

The comparison of models M,, and Mg shows that the way MinEF attaches to the membrane is not crucial for
the existence of instabilities, and also for the basic characteristics of the shapes of the concentration profiles of
the reacting species. It is therefore reasonable to speculate that the combination of the models M,, and Mg,
where both ways of MinE attachment to the membrane are allowed, would also display instability and similar
concentration oscillations. This is relevant, because even though it is usually assumed that MinE does not bind
directly to the membrane, there is experimental evidence that MinE can bind to the membrane weakly [42].

Effect of hydrolysis stimulation by a single MinE

The M,; model assumes that the dissociation of the membrane MinD,~MinE complex requires subsequent
binding of two MinE to the MinD dimer. This requirement can be relaxed without destroying the instability of
the steady state and losing the oscillatory behaviour.

Let us add the possibility that binding of the first MinE to the MinD dimer can be followed by hydrolysis of
both ATPs, complex dissociation and detachment of MinD from the membrane. We combine all these reactions
into a single step, described by the rate constant x;; :

—MinD,
MinD,—MinE a MinE. (21)

This reaction enters the model equations by adding the term —#, y, to equation (13) and the term +x; 3, to
equation (14). The system has now three steady states, only one of which is positive.

The MinD,-MinE membrane complex can now disappear in essentially two ways: the newly added reaction
(k71) competes with the two reactions (4) and (5) requiring a second MinE (k. , ;5 ). The balance between the
two groups of reactions affects the stability behaviour. The limiting case of x4, and xzz dominating over ky is the
model M,, analyzed above. The other extreme, x;; dominating over k;, and kg, leads to a stable steady state for
all values of the remaining rate constants. In the intermediate cases there is an instability region, shrinking as x;;
increases (figure 5).

This shows that even if not all of the MinD,—MinE complex decays via reactions (4) and (5) the reaction
system can be destabilized in a certain part of the parameter space.
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Figure 5. The stability diagram for the M,, model extended by the possibility of a single MinE inducing the hydrolysis of both ATP
molecules bound to the MinD dimer (rate k;; ). The boundary between the stable and unstable regions is shown for k;; values between
Oand1.1.

Including diffusion on infinite domain
So far we have considered a well-mixed chemical system without spatial coordinates. Finite diffusion prevents
efficient mixing of the reacting species and can in general lead to inhomogeneous concentrations and formation
of spatial patterns. The obvious questions one might ask are: can the system of chemical reactions in the model
M, , together with finite diffusion, exhibit travelling wave patterns as observed in the experiments on supported
membranes [14], and how similar are the shapes of these waves in the simple model M,, to the experimental
waves?

To account for diffusion, the diffusion terms with generally different diffusion coefficients D; are added to
the reaction equations (18)—(20):

Vi =1 = Kae)ys — Kie Y, + DAy, (22)
Yy = Kde Vs T Kie i — Kae JoYs = Kie ¥, + D24y, (23)
Vs = —Kae iy + Kie )oYy + 2kip ¥, — 5 + DAy, (24)

We consider one-dimensional space, and look for periodic travelling wave solutions in form
3 (x, t) = y (t — x/v) propagating with velocity v. This allows us to replace the space derivatives with time

derivatives:
W =1—Kienys — KW + biji (25)
Yy = Kie)i)s + Kae ), — Kie)p)s — Kag )y + b2 (26)
Vs = —KaeWys + Kae 0o)s + 2Kip y, — ¥y + b3, (27)

where we defined b; = D;/v?. Further, we express the diffusion coefficients D, and D5 via D, by defining:

p, = D,/Dyand p, = D;/D;. In the following, it is assumed for simplicity that the diffusion coefficients of
MinD, and MinD,-MinE complex on the membrane are equal: p, = 1. The system of equations (25)—(27)
contains then two additional dimensionless parameters, b; and ps, in comparison to the system without
diffusion (equations (12)—(14)).

The parameters b; can be understood as a relative measure of diffusion speed compared to the wave
propagation velocity. Low b; means small dispersion of molecules due to diffusion compared to the propagation
of the phase of the wave over the intrinsic time scale of the reaction—diffusion system (determined by the
reaction rates), and therefore a weak effect of mixing due to diffusion.

Solving equations (25)—(27) numerically gives a periodic wave solution for every value of b;. This means that
for a fixed values of the reaction rates and the diffusion coefficients D; there is a range of solutions with different
propagation velocities vand wavelengths 4 = vT. The parameters of the propagating wave are therefore not
determined uniquely.

Some solutions can be excluded on basis of their stability with respect to small perturbations: in unstable
solutions even the smallest perturbations will grow, eventually causing the system to converge to a stable
solution. In two dimensions the waves are usually circular or spiral, and only approximately planar; the stability
conditions are therefore likely to differ from the 1D case considered here. Nevertheless, investigating the stability
of solutions in 1D still provides important insights. Linear stability analysis of equations (22)—(24) identified a
region in the space of the parameters b; and p; where the solutions are stable (figure 6(A)). In general, the waves
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Figure 6. Travelling wave solutions of the reaction—diffusion model, equations (25)—(27). A: the stability diagram for x;. = 1and

Kie = 0.017-0.040; the stable region shrinks with increasing ;g . B: the variation of the wave period T'with b, and p; for x;, = 1and
Kig = 0.017. C: the wave profiles for p; = 1(i.e., D; = D3) and b; = 0,0.4,0.78, 1.2 and 1.6 (in the direction of the arrow). The thick
profiles correspond to the waves at the bifurcation point b, = 0.78. D: the wave profiles for p, = D;/D; = 1and 4. Thearrows indicate
the sharp maxima of MinD,-MinE and MinE concentrations. E: the experimental concentration profiles of MinD and MinE planar
waves; adapted from [39].

are stable for small values of b,, that is, for large propagation velocity and wavelength. The size of the stability
region depends on the rate constants of the chemical reactions; for a fixed value of k. it becomes larger with
decreasing k. The Min dynamics are spatially synchronized into coherent waves due to diffusional coupling. In
the stable region, this coupling is not strong enough to destabilize the waves through strong mixing, which
would otherwise lead to a homogeneous oscillating state.

Even though the solutions in the unstable region can be excluded, there is still a broad range of stable
solutions that could in principle be realized. The experimentally observed Min waves on supported bilayers
sometimes exhibit variations of wavelengths within one sample [43], although in many cases this range is rather
narrow. Other chemical reaction—diffusion systems commonly show a broad range of wavelengths in different
parts of the same sample and at the same time [44]. The experimental waves are likely to be to some extent
influenced by the boundary conditions imposed by the sample container, and by the initial condition defined by
the way the wave was initiated. In experiments, one strives to minimize the effects of these factors by using a large
membrane area and by introducing a sufficient delay between the wave initiation and observation.

The period T of the waves depends rather weakly on b, and p; (figure 6(B)), in comparison with its
dependence on the rates ky, and ;g (figure 2(A)). One can therefore state that the wave period T'is determined
predominantly by the reaction part of the system.

The temporal (or equivalently, spatial) concentration profiles of the Min proteins vary with both b;and p;
(figure 6(C)and (D)). For a fixed value of p, = 1thewavesatsmall b, (b; — 0) approach the concentration
profiles in the absence of diffusion. With increasing b,, that is, with decreasing velocity and also wavelength, the
wave maxima and the wave modulation depth (the relative difference between the concentration minima and
maxima) decrease. On the boundary between the stable and unstable regions, the wave modulation is still
relatively high (more than 85% for the concentration profiles shown in thick lines in figure 6(C)). This is in
agreement with the observed fact that the experimental Min waves exhibit deep modulation, that is, relatively
high contrast between the concentration minima and maxima [ 14, 15, 39, 43].
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The MinE molecule is smaller than the MinD dimer or the MinD,—-MinE complex; it is therefore interesting
to consider the situation when MinE diffuses faster on the membrane than the other two species (p, > 1).
Figure 6(D) compares the Min concentration profiles for equal diffusion of all three species (p; = 1) and for
faster MinE diffusion (p; = 4). When MinE diffuses faster, the concentration profile y, of the MinD,—

MinE complex and, more dramatically, the total MinE concentration (y, + y,) exhibit a sharp narrow
maximum before a steep decay. Such a sharp peak near the falling edge of the MinE wave on a supported bilayer
isindeed observed experimentally [14, 39] (figure 6(E)), and is reminiscent of the MinE ring observed in

cells [45].

Observing the MinE reactions around the narrow peak of MinE (y3, red curve in figure 6(D)) provides an
insight into the mechanism of the Min wave propagation: at the falling edge of the MinE peak the dominant
reaction of MinE is its detachment from the membrane (reaction (6)). Contrary to this, at the rising edge of the
MinE peak the concentration of MinD,—MinE is high, leading to net production of new MinE mainly via the
reaction (5). The balance between these processes at the rising and falling edges of the MinE peak resultsin a
peak of stable shape moving in the direction of high MinD,—MinE concentration. The localized MinE peak (or a
line, in 2D) resembles a propagating dissipative soliton [46].

Bounded domain with finite pool of reactants
The main differences between the conditions of oscillating Min patterns within living cells of E. Coli and the Min
waves on supported lipid bilayers are the closed membrane geometry of the cell and the constant total number of
reacting Min molecules in the cell. As an approximation of the situation in a living cell we consider here the
reaction—diffusion model from the previous section with two modifications: first, the one-dimensional domain
has a finite length L, with reflective boundary conditions for all three species: dy; (x, t)/0x = 0.Second, the total
numbers of MinE and MinD molecules on the membrane and in the bulk solution are constant.

The reaction—diffusion system of equations (22)—(24) then becomes:

. ds €5
n=l1=—|—keyy —ke|l——|n + DAy, (28)
d; e
)’2 = Kde)/lyg, + Kig 1- e_ )/1 - Kdey2y3 — K4E 1- 6_ }’2 + DZA)/Z) (29)
t t
. e
Vs = —Kie WYy t+ Kieh)s + 21<d5(1 - e_s))’z -y + D34y, (30)
t

where d, and e, are the total numbers of MinD dimers and MinE molecules, respectively, and dy(f) and e,(t) are
the surface-bound numbers of MinD, and MinE, respectively:

d, = _/01 (yl +y2)dx, e = _/01 (yz +y3)dx. (31)

Thelengths x are expressed in the units of the domain length L; the integrals in equation (31) therefore cover the
whole domain. Consequently, the units of the diffusion coefficients are L’k, .

Since the parameter space became rather large through the addition of two more parameters (d, and e;) we did
not perform a detailed analysis of equations (28)—(30) but present here a few numerical solutions relevant for the
comparison with the published experimental findings. The following parameter values were used: k;, = 1,

Kip = 0.017, D, =D, =3 x 107>, p; = 4,d,=12and ¢, = 8. These non-dimensional values can result, for
example, from the following parameters equations (10), (11), (15), (16): kp = 100 p gm™'s ™}, kg, = 9 x 1074
plums Lk =03sLkp=51x107s",D,=9x10*um?s™,D; =3.6 X 107 yum?s~,

L = 10 pm, ¢(MinD,) =400 p ym~'and ¢ (MinE) = 267 p um~!, where ‘p’stands for ‘particle’ and the one-
dimensional concentrations are expressed in ‘particles per um’.

Setting D; to D; = 3 X 107° resulted in oscillations of Min proteins between the two ends of the domain,
reminiscent of the pole-to-pole oscillations observed in cells (figure 7( A)): the concentration of Min proteins
builds up in one half of the domain; upon reaching a certain level the molecules suddenly detach, starting near
the middle and progressing towards one end; and at the same time the population of molecules on the
membrane in the other half of the domain starts to increase.

A closer look at the concentration profiles of all three species (figure 7(B)) shows that the wave progressing
from the center towards the end of the domain is similar to the travelling waves on infinite domain (figure 6(D)).
Interestingly, the wave always propagates from the center towards the alternating ends, not from one end
towards the other. This behaviour is known from living cells [ 13] and synthetic enclosed compartments [19],
but is not observed on finite membrane patches with unlimited supply of Min molecules [16].
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Figure 7. Min dynamics within a bounded 1D domain and reflective boundary conditions. A: half-period oscillations with

D; = 3 x 107°. B: the membrane concentration profiles of all three species in A at time ¢ = 255. The arrows indicate the direction of
propagation. C: one-period oscillations with D; = 7.5 x 107°. D: transition of one-period oscillations to a travelling wave with
D;=3x 107>,

Inlong filamentous cells [27, 47] and in long artificial enclosed microcompartments [19], a standing-wave-
like pattern with the number of nodes depending on the cell length has been observed experimentally. This
pattern can be thought of as composed of several oscillating short-cell patterns aligned along each other. The
periodic oscillation between the two cell poles in the shortest cells corresponds to one half of the wavelength of
the patterns in the long cells.

Because of the reflective boundary condition, the same effect can be obtained with the system of
equations (28)—(30): doubling the domain length L, or equivalently, reducing the diffusion coefficient by a
factor of four, allows solutions with one period per domain length (figure 7(C)). Depending on the exact value of
D, this pattern may become unstable, converting into a travelling-wave pattern (figure 7(D)), which appears to
be stable. A similar travelling-wave pattern has been observed in longer cells [27].

Transitions from one stable oscillating pattern to another as the domain length slowly increases are observed
in growing cells before the division. The likely explanation is that the initially stable pattern becomes unstable
with longer domain length and converts to a new stable state. The initial state in figure 7(D) is however unstable
for the used parameters, because no change of domain length or perturbation was necessary to induce the
transition to a different pattern. Transitions between two stable patterns without any changes of parameters have
been observed in particle-based simulations of the Min dynamics in two dimensions [48]. This result points to
the importance of stochastic fluctuations for the conversion between stable patterns separated by an unstable
region, a phenomenon not directly revealed by deterministic models.

The Min dynamics shown in figure 7(A) and (C) can be viewed as waves propagating in alternating
directions. The wave propagates until it collides with the boundary or annihilates with another wave travelling
towards it; in its wake a new wave emerges, moving in the opposite direction. It appears that in closed-volume
geometries where the supply of bulk Min proteins is limited this dynamics is preffered to waves travelling in the
same direction. Indeed, this is the predominant behaviour observed in short cells [13] and in enclosed
compartments [19], in long filamentous cells [27,47], and even in larger 2D compartments where the total
volume is limited by their small height [49].

11



10P Publishing

NewJ. Phys. 17 (2015) 043023 Z Petrasek and P Schwille

Discussion

In this work we explored simple one-dimensional models of Min dynamics that consider only the species and
reactions on the membrane, and do not contain direct autocatalytic reactions.

In living cells, the supply of Min molecules in the bulk is limited, therefore it is conceivable that bulk
reactions, such as conversion of MinD—ADP to MinD-ATP, could be a vital part of the reaction system
underlying the Min oscillations. However, Min proteins exhibit complex dynamics also when the supply of Min
molecules is virtually infinite, as the experiments with wave patterns on supported lipid bilayers show [15, 39].
The fast protein diffusion in the solution above the membrane in relation to the speed of the propagating waves
in these experiments guarantees substantial mixing of the bulk solution on the relevant time scales. Although
reactions and diffusion in bulk may still influence the observed patterns, as suggested by experiments [16] and
theoretical work [27], they are unlikely to be the decisive factor behind the Min dynamics. It is further reasonable
to assume that the molecular mechanism of the Min dynamics in cells and on the planar bilayers is the same. For
these reasons we considered only reactions and diffusion on the membrane.

Experiments show that the concentration of membrane-bound MinD increases more than linearly with the
concentration of the MinD in solution [36, 50]. There is, however, no evidence that this happens as a
consequence of an autocatalytic binding process as it is commonly implemented in the models [16, 26, 27].
Similar nonlinear increase could be caused, for example, by MinD aggregation on the membrane following
simple membrane binding. As noted before [24], this type of aggregation is, however, not sufficient to generate
instabilities of the steady state leading to the observed Min behaviour. Furthermore, the autocatalytic binding
would have to be a complex process with at least two steps: transient interaction (binding) of the membrane-
bound and bulk MinD (since one promotes membrane binding of the other), and subsequent dissociation of
this complex into two membrane-bound MinD molecules. Although this process can in principle take place, it is
certainly worth inspecting alternative Min models that do not rely on its existence.

The models presented here are relatively simple in comparison with other suggested models of Min
dynamics. All of them have three reacting species. This is the minimum number: it has been shown that systems
with only two reactants and at most bimolecular reactions cannot show limit-cycle oscillations [51]. Wilhelm
[33] identified the smallest chemical reaction system that exhibits instability via Hopf bifurcation. The models
M,; and especially the direct MinE membrane attachment model Mg, are close to this minimal system in terms
of their complexity, defined in terms of the number of reactive species, the number of total and bimolecular
reactions and the number of quadratic terms in the reaction equations.

The Wilhelm’s model contains an autocatalytic term; its instability can however be traced to a negative
feedback loop. Contrary to the autocatalytic MinD attachment model Mp, the models M,, and Mg have no
direct autocatalytic term, it is therefore interesting to see if it is possible to pinpoint the cause of their instability.

The origins of instability in chemical reaction systems have been classified by Tyson [52]. This classification
is based on the Jacobian matrix {g;} = dF / %, of the chemical reaction system j = F, (}ﬁ‘)' For the steady state to
be qualitatively stable (meaning stable regardless of the parameter values) the sign pattern of the Jacobian matrix
in the steady state has to fulfil several conditions. These conditions guarantee that the eigenvalues of the Jacobian
matrix have negative real parts, that is, that any perturbation of the steady state dies out. The unstable steady
states are classified depending on the stability conditions that are violated.

The steady-state sign patterns of the Jacobian matrices for the three models considered here (figure 1) are:

-0 -
M.z, Mg: + - 0} Mup:
— + —

(32)

I+ 1

0
+

I+ 1

The models M,, and Mg have two destabilizing elements: a negative feedback loop: MinD, — MinD,—
MinE — MinE 4MinD, (a,1a;3a3; < 0) and an indirect autocatalysis (competition): MinD, 4 MinE 4MinD,
(ar3a3; > 0). The model M,p has additionally another indirect autocatalysis (symbiosis): MinE — MinD,—
MinE — MinE (ay3a3; > 0). This third destabilizing factor can also appear in the model M,;, if the
approximation of equal rate constants of the reaction pairs (2)—(4) and (3)—(5) is not made.

Since there are two or even three violated stability conditions, it is not possible to identify a single reaction or
an element of these models as a sole reason for the instability. It is, however, interesting to note that the direct
autocatalysis of MinD in the model M,p, is not one of the destabilizing elements, since a;; < 0. In other words,
in the steady state of the model M,p, an infinitesimal increase of MinD concentration will induce its decrease
back towards the steady state value and not further away from it, as the autocatalytic attachment term might
seem to suggest. This happens because the combined rates of the two MinE-attachment reactions (reactions (2)
and (4), both decreasing the MinD concentration) will increase more strongly than the autocatalytic MinD
attachment (increasing the MinD concentration). The presence of the MinE species on the membrane and its
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bimolecular interaction with MinD appears therefore to be more relevant for the Min dynamics than the mode
of MinD attachment (plain or autocatalytic) to the membrane.

The model M,;, inintroduced here leads to concentration profiles of Min proteins qualitatively similar to
those observed on supported lipid bilayers. Most importantly, it reproduces the sharp concentration decrease at
the end of the wave, and even the narrow sharp maximum of MinE preceding this decrease. It also agrees with
the experimental dependence of the wave period T on the bulk MinE concentration. The rate constant of MinE
detachment from the membrane k, obtained from the fit to these data is consistent with other experimental data.

An important feature of the model is its robustness to modifications. It appears not to be particularly
important how MinE reaches the membrane—either by binding to membrane-bound MinD or by direct
binding—the existence of instability and the general shapes of the profiles are not affected. Also the assumption
that two MinE molecules are required to induce MinD detachment from the membrane is not absolute; the
instability is preserved even if this is only one of the possible pathways.

The model also exhibits qualitatively similar dynamics to those in living cells when formulated for finite
interval and constant total number of Min molecules. The difference between the model solutions and the
oscillation patterns observed in cells [53] can possibly be linked to the rather crude approximation of the full 3D
cell geometry by the one-dimensional interval. For a typical cell shape, the hemispherical end cups closing the
cylindrical cell volume, completely ignored in the 1D approximation, can amount to more than 1/3 of the total
membrane surface.

The reduction of dimensionality to 1D is also relevant for the dynamics on infinite domain: while the results
shown in figure 6 may provide a good description of the spiral waves far from the spiral center, where they can be
locally well approximated by a planar wave, the 1D model cannot accurately describe the two-dimensional
center of the spiral. When using 1D approximation, particularly when dealing with finite domains, solutions
that cannot be simply reduced to one dimension may exist in the original dimension [24], and the patterns stable
in 1D approximation may become unstable in higher dimensions due to the existence of additional perturbation
modes.

An obvious extension of this work is the solution of the presented model in various 3D geometries: normal
and filamentous cell shapes, and synthetic compartments of different aspect ratios. Exploring the theoretical
dependence of the wave parameters (period, wavelength, the shape of the concentration profile) on the Min
protein concentrations, membrane diffusion coefficients and membrane binding affinities will provide
predictions that can be tested experimentally. These experiments will ultimately show whether the proposed
interaction of two MinE molecules with MinD before the detachment of MinD from the membrane is indeed the
key factor behind the Min dynamics.
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