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Abstract
Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria.

Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of

which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron

and fluorescence light microscopy, as well as studies using over-expressed, purified BacM,

indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that fur-

ther associate into higher ordered fibers of about 10 nm. Here we use a multipronged ap-

proach combining secondary structure determination, molecular modeling, biochemistry,

and genetics to identify and characterize critical molecular elements that enable BacM to

polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into

an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymeriza-

tion into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These

patches form the interface allowing head-to-tail polymerization during filament formation.

Biochemical analyses of these processes show that folding and polymerization occur

across a wide variety of conditions and even in the presence of chaotropic agents such as

one molar urea. Together, these data suggest that bactofilins are comprised of a structure

unique to cytoskeleton proteins, which enables robust polymerization.

Introduction
All living cells organize their cytoplasm to ensure efficient growth and cell division. This orga-
nization relies in part on cytoskeleton proteins, versatile scaffolds that are crucial for essential
processes ranging from cell shape maintenance to morphogenesis, polarity determination, cell
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growth and division, chromosomal segregation, and transport of cellular cargoes (for reviews
see [1–8]). While research has focused for decades on the eukaryotic cytoskeleton proteins
actin, tubulin, and intermediate filaments [9–11], it has only recently been realized that bacte-
ria possess structural homologues of these proteins, as well as a number of uniquely bacterial
cytoskeletal proteins thus far not described for eukaryotes [12,13].

While sequence homology searches initially failed to identify prokaryotic homologues to eu-
karyotic cytoskeletal proteins, determination of the structure of the cell-division protein FtsZ
revealed that it is a close structural homologue to eukaryotic tubulin, showing particularly high
similarity in the GTP-binding domain [5,14]. In contrast, the bacterial actin protein MreB was
initially identified based on sequence homology mapped to the eukaryotic actin ATPase do-
main [15] and later confirmed as an actin-like cytoskeletal protein through sequence homology
in regions responsible for actin’s overall structure [16]. Outside of these regions, MreB lacks se-
quence homology to actin, but was found to possess a strikingly similar tertiary structure [17].
Like its many homologues and paralogs, MreB controls the cellular morphology of non-spheri-
cal bacteria. Finally, bacterial intermediate filament-like proteins were identified in bacteria
with the discovery of crescentin in Caulobacter crescentus [18]. Like their eukaryotic counter-
parts, bacterial intermediate filament (IF) assembly is non-polar via long coiled-coil domains,
structural elements that are found in many bacterial proteins, indicating that IF-like cytoskele-
tons are potentially widespread in bacteria [19–23]. Together, these discoveries underscore the
necessity of determining the structure of cytoskeletal proteins, as this helps not only to under-
stand the assembly and function of these structures, but also to identify evolutionarily distant
homologues and relatives. This is particularly true for cytoskeleton protein families that are
found uniquely in bacteria and lack obvious eukaryotic counterparts. One such uniquely bacte-
rial cytoskeletal system is the Walker A cytoskeletal ATPases (WACAs), a family of proteins
defined by their ATP-binding domain [5]. The best-studied example of a WACA is the ParA
protein, which forms a rudimentary mitotic apparatus that partitions chromosomes or plas-
mids into daughter cells during cell division [24].

Another recently discovered family of uniquely bacterial cytoskeletal proteins is the bactofi-
lins (reviewed in [13]). Bactofilins are small proteins, nearly ubiquitous in Gram-negative bac-
teria, which are defined by the presence of the highly conserved domain DUF583 [25]. The
first member of this family to be identified, the protein CcmA of Proteus mirabilis, was discov-
ered in a transposon-based genetic screen [26]. Insertion of the transposon at the C-terminal
region of the ORF led to expression of a truncated CcmA, and resulted in mechanically fragile
cells with severe morphological deformations. Later, homologues of CcmA were discovered in
C. crescentus,Helicobacter pylori, and M. xanthus and, in all cases, found to be important for
cell shape maintenance [27–29]. Deletion of the bactofilin gene bacA in C. crescentus led to a
reduction in stalk length, while overexpression of either bacA or bacB fused to a large fluores-
cent protein caused an increase in the curvature of the cell [27]. Similarly, deletion of the bacto-
filin gene ccmA in H. pylori resulted in the loss of the characteristic helical cell shape,
dramatically straightening the cells [28]. Finally, lack of BacM in the normally rod-shapedM.
xanthus produced aberrant morphologies ranging from mildly bent to severely crooked cells
[29]. The cytoskeletal nature of bactofilins was further confirmed by immunofluorescence mi-
croscopy, which revealed that BacM has a filament-like staining pattern inM. xanthus, and,
when biochemically isolated, is recovered as bundle-forming fiber [29]. Similarly, when bacA
from C. crescentus or theM. xanthus bactofilins were exogenously over-expressed in E. coli, fil-
amentous forms of the proteins were recovered, indicating that these proteins have a high pro-
pensity to polymerize [27,29]. Based on bioinformatics [28], protein-protein interaction
studies [27], and increased sensitivity of bactofilin mutants to cell-wall targeting enzymes [29],
it appears that bactofilins may exert their influence over the cell morphology by contributing to
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proper peptidoglycan (PG) maintenance. In addition to morphology, bactofilins may affect
other cellular functions. In a recent report, a BacM paralog inM. xanthus, BacP, was found to
recruit and localize SofG, a small GTPase important to cell motility, to the cell pole [30]. Addi-
tionally, an mCherry fusion of SO1662, the only bactofilin identified in Shewanella oneidensis,
assembled as a fluorescent band at midcell suggesting a possible involvement in cell division
[27]. Thus, bactofilins may be versatile scaffolds that recruit and localize enzymes (i.e. PG syn-
thesis and remodeling enzymes) and structural proteins (i.e. components of the type IV pilus
and cell division machineries) to specific cellular locations.

Other than electron microscopic analyses of negatively stained, purified filaments, no other
structural information has been reported for any of the bactofilins [27,29]. Since these proteins
do not share sequence homology to other structurally analyzed cytoskeletal or filament-form-
ing proteins and have not yet been subjected to further ultrastructural analysis, no data exist
about the molecular basis for their ability to polymerize. Detailed analyses of their amino acid
sequences suggest a three-domain structure in which N- and C-terminal domains with broad
sequence variability flank the highly conserved bactofilin domain DUF583. The N-terminus of
bactofilins from several species appears to be used to anchor the protein to membranes [26,29],
and appears to play no role in polymerization [29]. No information has yet been reported for
the function of the C-terminus, although one plausible idea is that this part of the protein is in-
volved in the recruitment of interaction partners. Moreover, given the extreme variability of
the amino acid sequences of the N- and C-termini it can currently not be ruled out that for
some bactofilins, the roles of the two termini are reversed.

In this study, we express the bactofilin domain and C-terminus of BacM and find that poly-
mers form spontaneously in the absence of nucleotides under a wide variety of conditions. To
determine the basis of this polymerization, we sought to analyze the structural features of
BacM. Circular dichroism and infrared spectroscopic analysis of the protein indicate that the
bactofilin domain contains no α-helices, but an extended β-sheet. Bioinformatic analysis of
bactofilin homologs reveals a repeat region containing highly conserved glycines and hydro-
phobic residues. We use these data to evaluate in silico 3D models of the bactofilin domain of
BacM and predict a left-handed β-helix-like fold, a structural motif not previously demonstrat-
ed for any bacterial cytoskeleton proteins. Using this in silicomodel, we examine potential pro-
tein-protein interactions that would result in the extended β-sheet structure we measured, and
could result in spontaneous filament formation. We hypothesize that homo-dimer interactions
occur via head-to-tail stacking of individual subunits. Systematic mutations of predicted im-
portant amino acids abrogate the function of the protein in vivo and disrupt filament formation
in vitro, in support of the model. In summary, these results enhance our understanding of this
important family of cytoskeletal proteins and pave the way towards assigning individual do-
mains and amino acids to specific functional and structural aspects of the protein.

Materials and Methods

Bacterial Strains and Culture Conditions
AllM. xanthus strains used in this study are listed in Table 1 and are derived from the wild
type strain DK1622 [31]. Cells were grown either on CTT medium (1% casitone, 10 mM Tris-
HCl pH 8.0, 8 mMMgSO4, 1 mM KH2PO4) or CTT agar (CTT medium solidified with 1.5%
agar) containing 15 μg/ml oxytetracyclin when necessary. Escherichia coli strains were cultured
in LB medium or on LB agar plates supplemented with 100 μg/ml ampicillin or 20 μg/ml tetra-
cycline when necessary.
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Plasmid and Strain Construction
All strain constructions were performed as previously described [29]. To generateM. xanthus
strains possessing mutant versions of BacM, plasmid pMKK224 containing the bacM gene
under the control of the Oar promoter [29] was used as a template for site-directed mutagene-
sis. Pfu turbo (Stratagene, LaJolla, CA) together with appropriate primers (Table 2) introduced
the desired mutations, which were confirmed by sequencing of the recovered plasmids. The
plasmids were then introduced into anM. xanthus ΔbacM strain (EH301) via electroporation,
and integration into the chromosome was selected by resistance to oxytetracycline. Expression
of the mutated versions of BacM was confirmed by immunoblotting with an anti-BacM anti-
body as described [29]. For expression in E. coli, plasmid pTET151-7475 TR [29] was used as a
template for all mutagenesis reactions.

Protein Expression in E. coli
Plasmids containing either N-terminally truncated wild type bacM or bacMmutant sequences
generated through site-directed mutagenesis were transformed into E. coli strain BL21 (DE3).
Transformants were selected on LB agar containing ampicillin. To induce protein expression,
overnight cultures were inoculated into fresh LB media and grown at 37°C to an OD600nm ~0.6.
1 mM isopropyl β–D-1-thiogalactopyranoside was added to the cultures and the cells were cul-
tivated at 16°C overnight. Cells were harvested and stored at -80°C. For protein purification,
cells were thawed, re-suspended in lysis buffer (100 mMNaH2PO4, 10 mM Tris-HCl pH 8.0,
8 M urea) and incubated at RT for 1 h. Cell debris was removed by centrifugation (10 min
10,000 x g) and the BacM-containing supernatant was added to equilibrated Ni-NTA agarose
beads (Invitrogen, Carlsbad, CA) and incubated for 1 h at RT. Beads were washed with wash
buffer (100 mMNaH2PO4, 10 mM Tris-HCl pH 6.4, 8 M urea) and eluted with elution buffer
(100 mMNaH2PO4, 10 mM Tris-HCl pH 5.8, 8 M urea). Purified protein aliquots were stored
at 4°C.

Table 1. Bacterial strains used in this study.

Strain Relevant description Source or
reference

M. xanthus

DK1622 Wild type [31]

EH301 ΔbacM [29]

EH344 [EH301] Poar:bacM. Complementation at the chromosomal attB site
under control of the oar promoter. TetR.

[29]

EH106 [EH301] Poar:bacM ΔC-term. Complementation at the chromosomal
attB site under the control of the oar promoter. TetR.

This study

EH171 [EH301] Poar:bacM I124D/F125R. Complementation at the
chromosomal attB site under control of the oar promoter. TetR.

This study

EH175 [EH301] Poar:bacM L35E. Complementation at the chromosomal attB
site under control of the oar promoter. TetR.

This study

E. coli
BL 21 Star
(DE3)

E. coli host for protein expression. Invitrogen

TOP10 E. coli host for plasmid maintenance. Invitrogen

doi:10.1371/journal.pone.0121074.t001
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BacM Polymerization Assay
Electron microscopic visualization was used to assess the polymerization of wild type BacM
and various mutants. Purified BacM in 8 M urea was diluted to ~10 μM (unless otherwise
indicated) and dialyzed overnight against various buffers and solutions. For wild type BacM
the following conditions were used: 20 mM Tris-HCl, pH 7.5 (control); 20 mM glycine-HCl,
pH 3.5 and 4.5; 20 mM glycine-NaOH, pH 8.5, 9.5 and 10.5; 20 mMNa2HPO4-NaOH, pH
11.5; 20 mMNaH2PO4, pH 6.0 (pH adjusted with citric acid); 20 mM Tris-HCl, pH 7.5 con-
taining 0.25, 0.5, 1 or 2 M NaCl; or 1, 2, 3 or 4 M urea. To test the specific effects of glycine,
BacM was dialyzed against 20 mM Tris-HCl, pH 7.5, CHES, pH 9.5 or CAPS, pH 10.5 with or
without 20 mM glycine (pH adjusted after the addition of glycine to final pH). For the re-con-
stitution of fibers from various mutant BacM, protein solutions were diluted to 10 μMwith
20 mM Tris-HCl, pH 7.5 and dialyzed against this buffer overnight.

Table 2. Plasmids and primers used in this study.

Plasmids Relevant description Source or
reference

pMKK224 pSWU30 with Poar:bacM. Template for
site-directed mutagenesis

[29]

pDMZ106 pSWU30 with Poar:bacM with a stop
codon at aa 131. For construction of
EH106

This study

pDMZ171 pSWU30 with Poar:bacM I124D/F125R.
For construction of EH171

This study

pDMZ175 pSWU30 with Poar:bacM L35E. For
construction of EH175

This study

pTET151–7475 TR Expression plasmid for His-tagged
BacM protein lacking the N-terminus.
Template for site-directed mutagenesis.

[29]

pTET151–7475 N-Hydro Expression plasmid for His-tagged
BacM protein lacking the N-terminus
with an L35E mutation.

This study

pTET151–7475 C-Hydro Expression plasmid for His-tagged
BacM protein lacking the N-terminus
with I124D/F125R mutations.

This study

pTET151–7475 Δ-Cterm Expression plasmid for His-tagged
BacM protein lacking the N-terminus
with a stop codon at aa 131.

This study

Primers Sequencea

BacM L35E CCACACGCTCGAGGGCAAGGGGAG

GC—BacM L35E CTCCCCTTGCCCTCGAGCGTGTGG

BacM I124D/F125R GACCGCGGTGTCGACCGCGAGGG
CTCGCTG

GC—BacM I124D/F125R CAGCGAGCCCTCGCGGTCGACACC
GCGGTC

BacM 131 stop GGCTCGCTGAAGTAGGAGAACCTG
GGC

GC—BacM 131 stop GCCCAGGTTCTCCTACTTCAGCGAG
CC

a. Bolded residues are mismatches for site-directed mutagenesis.

doi:10.1371/journal.pone.0121074.t002
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Circular Dichroism (CD) Spectroscopy
Wild type or BacMmutant proteins (as indicated in the text) were purified from E. coli and dia-
lyzed against 20 mM Tris-HCl, pH 7.5 to a final concentration of 0.5–1 mg/ml. Under these
conditions, wildtype BacM, but not mutant BacM, formed polymers. CD spectra were recorded
from 320–180 nm in continuous mode at a scanning speed of 50 nm/min using a Jasco J-810
Spectropolarimeter and the Spectra Manager Software (Jasco Inc., Easton, MD). For compari-
son, the α-helix-only myosin A-tail interacting protein, MTIP was used [32,33]. Data points
were subtracted from a background reading of the buffer, and the molar ellipticity was calculat-
ed. Data are presented as the molar ellipticity (deg cm2/dmol) at each wavelength (nm).

Fourier Transform Infrared (FTIR) Spectroscopy
250 μg purified BacM fibers were centrifuged at 6°C in a tabletop centrifuge (10,000 x g for
10 min). After washing the pellet with water, the fibers were re-suspended in 100 μl de-ionized
water and 80 μl of the sample was evaporated to dryness on the surface of a germanium crystal
under a stream of dry nitrogen gas. A Bruker Vertex 70 FTIR spectrometer (Bruker, Billerica,
MA) equipped with a TGS detector was used to collect in the mid-infrared region (4000 to
800 cm-1) 1024 scans in ATR mode at a resolution of 2 cm-1. To record the spectrum of the
deuteriated BacM fibers, the sample was re-measured after a 30 min continuous exposure to a
D2O-saturated nitrogen gas stream in a custom-made chamber containing the crystal. 16 scans
each were used to record the HD exchange kinetics in 2 to 5 min intervals. To enhance absorp-
tion bands for analysis, Fourier self-deconvolution (FSD) of the OPUS software (version 6) was
applied to spectra using a noise reduction parameter of 0.25 and a bandwidth of 18.7 cm-1. For
comparison the antiparallel β-strand-containing porin Omp32 was used [34].

In silicoModeling of BacM
Homology models of BacM were generated using the online servers QUARK [35], I-TASSER
[36,37], Robetta [38], MUFOLD [39], MULTICOM [40,41], and Phyre2 [42]. All six servers
were run using the default server settings. I-TASSER, MUFOLD, and MULTICOM each select-
ed ten templates for threading of the target sequence, which was then divided into fragments.
The fragments of the threaded sequence were then combined to build initial models, energy
minimized, and clustered to generate five top models for each I-TASSER and MUFOLD pre-
diction, and one top model for MULTICOM. The Robetta and Phyre2 servers generated top
models based on traditional homology modeling, using a single template for each generated
model. See S1 Fig. for the templates used by the five template-based servers.

The top I-TASSER model was selected for docking studies, based on its agreement with the
repeat sequence prediction (see Results for rationale). The full-length model and a model trun-
cated after Lys130, were docked using the ClusPro 2.0 server [43] and default settings with no
restraints. The ClusPro server generated models were grouped into four categories based on
the weighting of the interactions calculated: balanced, electrostatic-favored, hydrophobic-fa-
vored, and Van der Waals combined with electrostatics. Models were selected for their ability
to form head-to-tail interactions that matched with in vitromicroscopic observations. The
changed solvent accessible surface areas for the various models were calculated using the Pisa
server [44].

Light and Fluorescence Microscopy
Light and fluorescence microscopy were performed essentially as previously described [29].
Briefly, for light microscopy, cells were grown in liquid culture to mid-logarithmic phase and
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spotted on a glass slide.Samples were imaged using a Nikon Eclipse 90i microscope with a
100x/NA 1.4 phase-contrast oil immersion objective (Nikon, Melville, NY). Individual images
were recorded using an ORCA ER CCD camera (Hamamatsu, Bridgewater, NJ) and processed
using the Volocity software package (PerkinElmer, Waltham, MA). For immunofluorescence
microscopy, cells were grown in liquid culture and then placed in submerged culture and al-
lowed to adhere overnight to autoclaved glass cover slips in 35 mm plastic dishes at 32°C. Cells
were rinsed with phosphate magnesium (PM) buffer (20 mMNa-phosphate, 1 mMMgSO4,
pH 7.4) and fixed for 40 min at room temperature with 4% paraformaldehyde diluted in PM
buffer. Finally, cells were permeabilized with 0.2% triton X-100, lysozyme-treated (1 mg/ml),
washed, blocked with 2% BSA, and probed with an affinity-purified anti-BacM antibody as de-
scribed [29]. Samples were imaged as above, using a DAPI or TRITC filter cube.

Electron Microscopy
Polymerized BacM was applied to glow-discharged carbon-coated 400 mesh copper grids
(Electron Microscopy Sciences, Hatfield, PA) and negatively stained with un-buffered 2% ura-
nyl acetate. The grids were examined in a Philips BioTwin CM120 microscope (FEI, Hillsboro,
OR) or a Hitachi 7600 microscope (Hitachi High Technologies America Inc., Schaumburg, IL).
Digital images were captured on 4k x 4k CCD cameras (Gatan, Warrendale, PA).

Results

Circular Dichroism and Infrared Spectroscopy of Purified BacM Fibers
indicate a Primarily Parallel β-sheet Structure
To begin characterization of the structure of the newly discovered bactofilin family of proteins,
we purified fibers of exogenously expressed BacM from E. coli and analyzed them by circular
dichroism (CD). The recorded spectrum indicated a minimum at 218 nm that is characteristic
for a β-sheet-only structure [45], showing no resemblance to the CD spectrum of the control
α-helix-only protein MTIP of P. falciparum (Fig. 1A). To confirm this assessment, we exam-
ined the fibers using Fourier transform infrared spectroscopy (FTIR) (Fig. 1B). The amide I re-
gion of the recorded spectrum revealed a prominent peak at 1631 cm-1, which is characteristic
of β-sheets (for assignments of peaks to secondary structure elements see [46,47]). In agree-
ment with the CD results, no indication of α-helices was found as the peak between 1650 and
1655 cm-1 in the spectrum (characteristic of α-helices or unstructured loops; [46,47]) disap-
peared when the protein was deuterated, which is typical for unstructured regions, here pre-
sumably coinciding with the proline-containing C-terminus. Moreover, the FTIR-
measurements were consistent with β-strands forming parallel β-sheets, since the peak at
1690–1695 cm-1 that is characteristic of anti-parallel β-sheets such as the core structure of
porin Omp32 [34] was very weak. Finally, the significant shift of the major β-structure peak
from 1631.9 to�1625 cm-1 upon deuteration is characteristic of a so-called "extended β-sheet".
This structure is the result of intermolecular β-structure-like interactions of aggregating or sys-
tematically polymerizing protein molecules (Fig. 1B, [46–48]). In summary, the results of the
CD- and IR-spectroscopy indicated that BacM: (i) lacks α-helices, (ii) contains a small amount
of unstructured secondary structure, and (iii) mainly consists of parallel β-sheets that through
the formation of fibers (iv) form extended β-sheet structures.

Generation of a 3-dimensional in silicoMolecular Model of Mature BacM
To further explore the structure of bactofilins, we used multiple homology modeling servers to
build a model of BacM lacking the proteolytically removed N-terminal region. Most of these
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servers were chosen from the top 10 competitors in the latest CASP competition for template-
based modeling [49]. We used six servers, which operate by three different modeling ap-
proaches: single-template-based modeling; multi-template, threading-based modeling; and ab
initiomodeling. Reference structures were chosen automatically by the modeling programs,
primarily based on percent sequence identity with the target and other scoring criteria unique
to each server. For single-template-based modeling the Phyre2 server [42] used the trimeric
LpxA-like protein YdcK from Salmonella cholera as template [DOI:10.2210/pdb2f9c/pdf],
while the Robetta server [38] used the human dynactin p27 subunit [PDB 3TV0] [50]. For

Fig 1. Generation of an in silicoBacMmodel. (A) The CD spectrum of isolated purified BacM fibers indicates a β-structure-only protein devoid of α-helices.
(B) The observed peak at 1631 cm-1 of the amide I region of the FTIR spectrum of purified BacM fibers is likewise characteristic of β-sheets. No indications of
α-helices are found as the peak between 1650 and 1655 cm-1 in the Fourier self-deconvoluted (FSD) spectrum disappeared upon deuteration. This behavior
is indicative for unstructured regions. The shift of the major β-structure peak from 1631.9 cm-1 to 1625 cm-1 upon deuteration is characteristic of an “extended
β-sheet” which is the result of intermolecular β-structure-like interactions of the polymerized BacM. (C) Ribbon diagrams of various BacMmodels generated
by five different molecular modeling servers. All models predict that nearly the entire protein is formed by a left-handed β-helix with the non-structured flexible
C-terminus variously oriented with respect to the barrel-shaped molecule. No α-helices are present in the models of the protein.

doi:10.1371/journal.pone.0121074.g001
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multi-template, threading-based modeling, we used 3 servers: I-TASSER [36,37], MUFOLD
[39], and MULTICOM [40,41]. These servers selected ten unique templates, threaded the
query sequence into the structures, generated fragments, and reassembled the fragments to
build models. A sixth server, QUARK, was used to generate an ab initiomodel of the entire
BacM protein [35]. A comparison of the top models from the template-based modeling servers
are presented in Fig. 1C and the sequences of the templates used by the various servers can be
found in S1 Fig.

All template-based modeling servers produced top models with a type-T, left-handed β-
helix (LBH) fold, consistent with the CD- and IR-spectroscopy data (Fig. 1A, B). In contrast,
the QUARK-generated ab initiomodel (not shown) predicted a β-sandwich or β-roll structure
containing unstructured regions. As this model disagreed with the spectroscopy data, it was
not considered further. A superposition of the top models generated by each of the five, tem-
plate-based servers is shown in Fig. 1C. All models were essentially in agreement regarding the
overall structure of BacM, converging on related structures despite the variety of the templates
and modeling methods used. Consistent with our experimental observations, all template-
based servers predicted that the majority of the protein is made of β-sheets and lacks α-helices.
This model of a β-stranded structure would thereby represent a structural motif that has not
been previously demonstrated in any bacterial cytoskeleton protein. As expected from the se-
quence alignments, the highest degree of confidence for this structure prediction lies in the
highly conserved bactofilin domain. No good template structure was identified for the short C-
terminus due to the highly flexible nature predicted for this region, and the highest variability
between the models from the different prediction programs was in this region (Fig. 1C). In
summary, the template-based models indicated that BacM (i) lacks α-helices, (ii) contains a
small amount of unstructured secondary structure, and (iii) mainly consists of parallel β-sheets
that form a characteristic LBH fold structure.

Sequence Analysis reveals a Repeated Motif Common to Bactofilins,
which predicts the Stacking of Hydrophobic Residues
While all template-based models for BacM are generally similar in that they predict a β-sole-
noid structure of six stacked repeat-elements, there are differences in the specific details regard-
ing alignment and lengths of the β-strands. In order to determine if any of these models appear
more likely to represent the structure of BacM than the others, we undertook a bioinformatics
approach. To identify potential repeating units, we analyzed the sequences of the four bactofi-
lin paralogs ofM. xanthus using the HHrepID server [51] to identify conserved repeats. The
server used BLAST to search for similar sequences to aid in identification of repeat sequences,
and six repeats were identified for each bactofilin. The six repeats of each of the four bactofilins
are aligned in Fig. 2A and A sequence logo, graphically representing sequence conservation at
different positions in the repeat, was generated using the WebLogo server [52,53]. For clarity,
we slightly adjusted the output so that the beginning of each repeat started with a β-strand and
ended with a turn that would lead into the next strand (Fig. 2B). As seen in the alignments, the
length of each repeating unit varies from 16 to 18 residues, and gaps in the alignment are all
near the first conserved glycine of the repeat, suggesting variation in the length of the loop be-
tween strands (see below). We identified several highly conserved residues within these repeats,
particularly hydrophobic residues which appear to anchor each β-strand to neighboring
strands, and glycine residues that are located at the turns. From this sequence analysis and our
spectroscopy data, we expect the structure to have repetitive units consisting of a β-strand an-
chored by two hydrophobic residues (Leu/Ile/Val), followed by a turn of varying length that
contains a highly conserved Gly, followed by a shorter β-strand anchored by one hydrophobic
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residue (Val or Phe), followed by a shorter turn with a conserved Gly/Ala, and ending with a
longer β-strand with two conserved hydrophobic residues (varying) and short turn. This se-
quence pattern is clearest and most highly conserved for repeat number 4 (Fig. 2B) and also
conserved among bactofilins of multiple species, suggesting it is important to the function or
structure of bactofilins (S2 Fig.). The repeat pattern identified by sequence alignment, con-
served hydrophobic positions, and repeat length match well with the predicted β-solenoid
structure output of the modeling servers (Fig. 1C).

Using our bioinformatics analysis, we next evaluated the models we had generated
(Fig. 1C); we first evaluated the models for incorporation of 6 repeating units. All single-tem-
plate and multi-template-based models contained this feature, supporting the strength of this
prediction. We next determined whether the β-strands and conserved anchoring residues were

Fig 2. Bactofilins contain repeat regions with conserved hydrophobic residues within β-strands. (A) Alignment of the repeat regions in the 4 bactofilin
paralogs ofM. xanthus identified by HHrepID reveal that each paralog contains 6 repeats (top); Sequence logo showing conservation of residues at each
position in the repeat, generated using the server at weblogo.berkeley.edu (bottom). (B) Repeat regions of BacM are aligned, revealing the highly conserved
hydrophobic residues. S: β-strand; Orange box: highly conserved Gly residue; Red box: long second-strand anchor. (C) Conserved hydrophobic residues
align along the β-sheet sides of the solenoid structure. Side and top views of the ribbon diagram of the I-TASSER BacMmodel with the first two hydrophobic
residues of each repeat highlighted in purple. (D) Table of parameters used to judge the quality of the predicted models by the five template-based servers.
Models were evaluated based on the number of repeats and their alignment as well as ordered N- and C-termini. Checks and minuses denote that a given
model possesses or lacks a given quality, respectively.

doi:10.1371/journal.pone.0121074.g002

BacM ofM. xanthus Forms a Polymer of Extended β-Sheets

PLOS ONE | DOI:10.1371/journal.pone.0121074 March 24, 2015 10 / 25



aligned, as expected in the core of the model. We found that I-TASSER, Robetta, and Phyre
aligned the β-strands consistent with the prediction from the sequence alignment, while the
MULTICOM and MUFOLDmodels had frame-shifts of the repeats. In the MULTICOM
model, the last two repeats were shifted by one turn, with the strand of a preceding repeat
shifted into a loop. For the MUFOLDmodel, the shift occurred due to a loop insertion in a
strand of repeat 4, shifting the alignment of subsequent repeats. Our final criteria were to evalu-
ate the N- and C-terminal repeats and determine if they were aligned and if they stacked well,
or were disordered. The quality of the N- and C-terminal repeats in terms of their order and
alignment of the repeats is important because we expected that the monomers dimerize in a
head-to-tail manner to form filaments and then laterally associate to form fibers (see below). If
the N- and C-terminal repeats are not well ordered or properly aligned, then subsequent dock-
ing attempts would likely produce results inconsistent with our electron microscopic observa-
tions of BacM forming straight filaments. The N-termini of the I-TASSER, MULTICOM, and
Robetta structures were correctly aligned and stacked. Additionally, the Phyre2 model had a
well-ordered N-terminus, however, the second strand of the first repeat was shifted into the
turns, and therefore was not correctly aligned. The first strand of the MUFOLD N-terminal re-
peat did not lay down on top of the second repeat and would interfere in docking. Looking at
the C-terminus, many models were disordered, likely due to the C-terminal domain with no
known homology to any structure. To determine which models to use in subsequent protein
docking analysis, we evaluated how well the last repeat of the bactofilin core was ordered and
aligned. In the Robetta model, the C-terminal repeat did not lie flat against the other repeats
and the rest of the C-terminus was in a position that would block dimer formation. Both the
Phyre2 and MUFOLD models had a poorly ordered C-terminal repeat. The MULTICOM and
I-TASSER models both had ordered C-termini. In addition to a completely ordered sixth re-
peat, the I-TASSER model generated the first strand of what would be an unidentified seventh
repeat. It is possible that this partial “pseudo repeat” exists, as there is a Leu and Thr that could
fit into the sequence conservation and repeat alignment. However, our analysis using HHrepID
did not identify these residues as part of a seventh repeat, and it is not currently possible to tell
whether this additional strand is present or if it only is an artifact of the model building process.
Despite this uncertainty, however, we chose to proceed with our experiments using the I-TAS-
SER model, as this model was superior for accommodating stacking of the hydrophobic resi-
dues in the conserved repeat regions, and for having well-ordered N- and C-termini (Fig. 2C).
A table comparing the various models in terms of the qualities discussed above is provided in
Fig. 2D.

BacM assembles in vivo and in vitro into Filaments, Fibers, and Ribbons
Previous electron microscopic examinations had revealed that BacM fibers isolated from cells
were uniform, ~10 nm wide structures. Closer inspections of these fiber structures showed that
at their ends they were occasionally frayed exposing thinner roughly 3 nm wide filaments [29].
Although these thinner filaments could not be isolated from cells per se, these observations sug-
gested that in vivo the protein might polymerize into thin filaments, which associate into the
10 nm BacM fibers. To understand these processes better and to test whether exogenously
overexpressed BacM could be used to recapitulate them in vitro, we purified the protein ex-
pressed in E. coli under denaturing conditions (8 M urea) and reconstituted BacM polymers by
removal of the urea through dialysis (Fig. 3). When diluted to ~10 μM and dialyzed against
Tris at pH 7.5, BacM was primarily observed as native-like fibers about 10 nm wide (Fig. 3B).
Occasionally, thicker, multi-stranded ribbon structures were observed. These ribbons were
more prevalent when BacM was dialyzed against a pH 6.0 buffer, or when higher protein
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concentrations (>100 μM) were used (Fig. 3A). Both fibers and ribbons appear to comprise
multiple filaments, and we observed individual filaments of about 3 nm following dialysis
against a strongly alkali glycine buffer (S3 Fig., pH 10.5). Under these buffer conditions,
BacM assembles exclusively into the 3 nm filaments. When dialyzed against a less alkali buffer
(pH 9.5), a mixture of 3 nm filaments and 10 nm fibers was observed, and 10 nm fibers were
exclusively observed following dialysis against a pH 8.5 glycine buffer (S3 Fig.). While glycine
is an appropriate buffer in this pH range [54], it is also a charged molecule. Thus, glycine may
contribute to BacM filament formation by acting as a counterion, leading to a reduction in lon-
gitudinal binding. Such an effect was recently reported for the disassembly of microtubules in
spermine-containing buffers [55]. To separate out the possible contributions of glycine as a
buffer, and glycine as a counterion to BacM, we dialyzed BacM against Tris, pH 7.5, CHES,
pH 9.5, and CAPS, pH 10.5 with or without glycine present. At all pH tested, 10 nm fibers were
recovered in buffers lacking glycine (Fig. 3). The addition of glycine to each buffer favored re-
covery of 3 nm filaments, with exclusively filaments in the pH 10.5 buffer, a mixture in pH 9.5
buffer, and partial “unraveling” of fibers at pH 7.5, similar to the results of glycine alone, indi-
cating that glycine is most likely exerting its effect as a counterion. To test if the 3 nm filaments
constitute BacM polymers that form due to the presence of glycine, or comprise the elementary
polymeric structure of BacM, we generated 10 nm fibers in a Tris, pH 7.5 buffer and subse-
quently dialyzed these fibers against an alkali, glycine containing buffer. These 10 nm fibers
separated into 3 nm filaments (S4 Fig.). Together, these data suggest that BacM polymerizes
into 3 nm filaments and that these filaments are either unstable or possess a high propensity to

Fig 3. Structure of BacM fibers, ribbons, and filaments after dialysis against various buffers. Exogenously expressed and purified BacM polymerizes
into different structures upon dialysis against different buffers. (A) In a phosphate-citric acid buffer (pH 6.0, top), or at high concentrations (100 μM, bottom),
large ribbon-like structures were observed. (B) In Tris, CHES or CAPS buffers (pH 7.5, 9.5 or 10.5, respectively), 10 nm fibers resembling those isolated from
M. xanthus cells predominate (top row). The addition of 20 mM glycine to the buffers (bottom row) favors the formation of 3 nm filaments at increasing
abundance with increasing pH. Scale bar = 50 nm.

doi:10.1371/journal.pone.0121074.g003
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bundle into fibers, and that, under high protein concentrations, this interaction can lead to
higher-ordered ribbon-like structures.

The BacMMonomer Model predicts Hydrophobic Patches Important for
Filament Formation and a Charged Surface
Since BacM forms homo-monomeric filaments and fibers in vivo [29] and, like all bactofilins
studied, similar fibers in vitro (see also [27]), we modeled the protein-protein interface respon-
sible for dimerization using the ClusPro 2.0 docking server [43] in conjunction with our elec-
tron microscopic data (Fig. 4). The BacMmodel indicated a monomer size of roughly 3x3x3 nm
and the electron microscopic data revealed ~3 nm wide filaments, suggesting an end-to-end
stacking of monomers. Additionally, the extended β-sheet structure observed by FTIR suggest
the most likely arrangement was a head-to-tail dimer. Using the best-predicted model from
I-TASSER, we performed docking calculations to attempt to identify residues important to
dimer formation.

We proceeded to dock the full-length I-TASSER model, resulting in a head-to-tail dimer
that involved the C-terminal residues Met131 to Ala139, which included the “pseudo-seventh re-
peat.”However, it is known that this C-terminal region of BacM is not necessary for filament
formation. Fibers isolated fromM. xanthus contain a high proportion of proteolyzed BacM
[29], which lacks this “pseudo-repeat” region and the C-terminal residues identified by the
ClusPro server to be at the interface; therefore, we reasoned that the bactofilin domain alone is
sufficient for polymerization. To experimentally test this prediction, we expressed the bactofilin
domain alone in E. coli and purified it under denaturing conditions. Upon dialysis into a poly-
merization buffer, we observed robust polymerization of the protein, though the architecture
of the fiber was twisted and highly kinked, and filaments tended to be shorter relative to the
wild type protein (Fig. 5D). This suggests that the C-terminus is indeed dispensable for poly-
merization but contributes to the stability of the fiber, and the lateral packing of filaments,
which are responsible for the “smooth” appearance of the wild type fibers.

Based on the in vivo and in vitro data, which indicated that the C-terminus is not essential
for polymerization, we used only the bactofilin domain for docking of the I-TASSER model.
Using the ClusPro 2.0 server, we generated a best-balanced model that resulted in head-to-tail
dimer formation (Fig. 4A). We found that the interface of the head-to-tail dimer is largely me-
diated by hydrophobic patches at the N- and C-termini of each monomer: Thr33, Leu35, Leu45,
and Phe47 at the N-terminus, and Leu116, Met119, Val123, Phe125, and Leu129 at the C-terminus
(Fig. 4B). The changed solvent accessible surface area (SASA) was ~1307 Å. Additionally, the
top head-to-tail model was arranged so that the repeats continued to stack in order with strand
1, repeat 1 of monomer 1 found on the same side of the solenoid as strand 1, repeat 1 of mono-
mer 2, allowing a continued stacking of repeat units, mediated by the conserved hydrophobic
residues, from one monomer to the next, throughout the filament.

We next investigated the surfaces of the BacM dimer to predict how they could facilitate lat-
eral interactions. As can be seen from the electrostatic surface maps (Fig. 4C), the exposed sur-
face of BacM has strips of positively and negatively charged residues that could interact with
other filaments to form higher ordered fibers. These oppositely charged surface areas could in-
teract laterally, explaining the formation of the 10 nm wide fibers and why the thinner fila-
ments are virtually never found. Additionally, when attempting to model a head-to-tail dimer
interface using the ClusPro server, a result of two monomers interacting laterally via these elec-
trostatic patches was a common result (not shown).

In summary, these modeling data predict that the bactofilin domain of BacM is sufficient
for polymerization, and polymerizes into filaments in a head-to-tail fashion mediated by
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Fig 4. Modeling of the dimerization domain of bactofilin predicts hydrophobic interface and charged
surfaces. (A) The bactofilin domain from the I-TASSERmodel was modeled using ClusPro 2.0 and predicts
head-to-tail dimerization. Individual BacMmonomers are represented as blue and green ribbon structures,
and the dimer is presented as rotated 180o. (B) The interface between two bactofilin-domains is predicted to
contain continuous stacking of hydrophobic subunits within β-strands, with highly conserved residues at key
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patches of hydrophobic residues at the N- and C-termini. These filaments are likely further sta-
bilized by lateral electrostatic interactions that result in the formation of fibers, creating highly
stable structures.

Wild Type BacM forms Stable Filaments in vitro and Filament Formation
depends on the Hydrophobic Patches of the Predicted Interface Domain
Sequences containing hydrophobic residues at specific locations on the solenoid are predicted
to mediate interactions between repeat subunits within one BacM monomer. In order to test

positions to form a hydrophobic pocket. The residues mutated in this study are highlighted with red boxes. (C)
An electrostatic surface map of the dimer model reveals patches of charged residues that are solvent
exposed. Negatively charged areas are shown in red, positively charged areas in blue, and areas that are
charge neutral are shown in white.

doi:10.1371/journal.pone.0121074.g004

Fig 5. Evaluation of polymerization and fiber formation of recombinant mutant forms of BacM.While
the wild type (A) and the C-terminal truncation mutant (D) are able to polymerize, the L35E (B) and the I124D/
F125R (C) mutants are no longer able to form fibers and aggregate instead. (D) Despite their ability to
polymerize, the C-terminal truncation forms fibers that show a distinct aberrant “braided”morphology when
compared with the smooth wild type fibers. The scale bar in the large field is 0.5 μm, while the scale bar in the
inset is 100 nm.

doi:10.1371/journal.pone.0121074.g005
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the prediction of our dimer model that these hydrophobic repeats also mediate interactions be-
tween subunits, we performed an in vitro assembly assay. We expressed His-tagged constructs
encoding the bactofilin domain and C-terminus of BacM in E. coli, and purified the protein
under denaturing conditions (8 M urea). We expressed wild type BacM and two BacM mutants
with hydrophobic residues (within repeat 1 and repeat 6 (Fig. 2B)) mutated to charged residues
(L35E and I124D/F125R). These residues were selected for mutation due to their predicted lo-
cation at the dimer interface, and for their high degree of conservation. These proteins were pu-
rified under denaturing conditions (8 M urea). To ensure that these mutants were properly
folded, urea was removed by dialysis, and the proteins were analyzed by CD spectroscopy. The
recorded spectra closely matched that of wild type BacM, indicating a β-strand-only structure
(S5 Fig.). To assay for polymerization, the mutants were diluted to ~10 μM, and urea was re-
moved by dialysis. Spontaneous fiber formation of the dialysate was monitored by negative
staining (Fig. 5). Wild type BacM formed relatively uniform, ~10 nm fibers, while filament for-
mation was completely abolished for both mutants. Small aggregates of ~3 nm wide particles
in preparations of both mutants were observed. This observation is consistent with BacM sub-
units that fail to polymerize into filaments, but are still able to laterally associate, or alternative-
ly, the formation of short filaments (Fig. 5B and C). To discriminate between these two
hypotheses, these mutants were dialyzed against an alkali glycine-containing buffer to reduce
lateral interactions (Fig. 3). In this buffer, these small protein aggregates were completely ab-
sent, consistent with an interpretation that the aggregates observed are monomers of BacM
that are associating via lateral electrostatic charges, which can be disrupted by addition of gly-
cine in an alkali solution (S6 Fig.).

The ΔbacMmutantM. xanthus was described as having a morphological defect, where the
typical rod-shape of the bacterium was crooked or kinked [29]. In order to test if the hydropho-
bic interface is required for proper BacM function in vivo, the L35E and the I124D/F125R mu-
tations were introduced separately into a ΔbacMmutant ofM. xanthus to test for rescue of the
wildtype morhpology (Fig. 6). While introduction of wild type bacM restored the rod-shaped
phenotype, both polymerization-defective mutants failed to rescue, although they were robust-
ly expressed, as measured by immunoblot (Figs. 6A and S7A). When examined by immunoflu-
orescence with an anti-BacM antibody, the overexpressed wild type bacM displayed the
expected pattern of extended fibers across the length of the cell (Fig. 6B and [29]). BacM con-
taining mutations to either interface domain appeared to form fiber-like staining to varying de-
grees. Unlike the wild type BacM, however, this staining appeared discontinuous across the
cell. This effect was more severe with the I124D/F125R mutant than the L35E mutant, though
they both failed to rescue (Fig. 6). BacM lacking the C-terminus was unable to be visualized in
M. xanthus, as steady-state levels of the mutant protein were undetectable by immunoblot, pos-
sibly due to instability of the protein (S7B Fig.). Together, these data are consistent with our hy-
pothesis that the bactofilin domain alone mediates polymerization of BacM into filaments, and
that a hydrophobic interface is required for this interaction.

Wild Type BacM forms Higher-ordered Fibers in vitro and Fiber
Formation depends on Charged Surface Areas
Although the 3 nm wide filaments appear to be the elementary polymerization unit of BacM
(Fig. 3), and can be observed in alkali buffer containing glycine, they are seldom observed from
BacM recovered fromM. xanthus or via exogenous expression in E. coli in non-ionic buffers.
Instead BacM is usually recovered as 10 nm wide fibers in vivo [29] and after over-expression
and purification in vitro [27], indicating a high propensity for lateral association and fiber for-
mation. In fact, the propensity for spontaneous polymerization and fiber formation is so robust

BacM ofM. xanthus Forms a Polymer of Extended β-Sheets

PLOS ONE | DOI:10.1371/journal.pone.0121074 March 24, 2015 16 / 25



that the isolation of exogenously expressed monomers from E. coli is only possible in the pres-
ence of high concentrations of urea (see Materials and Methods). In order to understand the
fiber formation process better, we tested various conditions and their influence on fiber forma-
tion. For this, recombinant native BacM protein was purified under denaturing conditions
(8 M urea) and then dialyzed against buffers with various salt concentrations, chaotropic
agents or pH. The ability to form fibers under these conditions was assessed by negative
staining and examination under the transmission electron microscope (Fig. 7). Under these
conditions, spontaneous formation of native-like BacM fibers was observed when the urea con-
centration was reduced to 1 M or lower. In the absence of urea, BacM formed fibers across a
wide range of pH in Tris buffer, and was only inhibited at extremes of pH (below pH 4.5 or
above pH 11.5). Like urea, salt prevented fiber formation and polymerization at concentrations
higher than 0.5 M. Unlike the samples dialyzed against glycine, however, 10 nm fibers were
still observed, suggesting that NaCl does not similarly act as a counterion, preventing lateral in-
teractions between filaments. Together these data showed that the β-sheet-based fold of BacM
is extraordinarily stable and that lateral association for fiber formation is a robust process that
occurs in a wide range of pH and even in the presence of chaotropic agents.

Fig 6. Mutations to putative BacM interface fail to rescue the morphological phenotype of a deletion
mutant. (A) Images of ΔbacM cells or the indicated rescue strains were taken by phase contrast light
microscopy. (B) The same cell lines were fixed and imaged by immunofluorescence microscopy with an anti-
BacM antibody (red) and stained with DAPI (blue). Top panel, anti-BacM. Bottom panel, merge with phase
contrast. Scale bar = 5 μm.

doi:10.1371/journal.pone.0121074.g006
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Discussion
The fact that bacteria contain multiple cytoskeletal systems was realized only recently, and
their discovery and rapid characterization owes much to macromolecular structural studies, as
there is often low sequence homology to their eukaryotic counterparts. BacM is a newly discov-
ered, uniquely bacterial, cytoskeleton protein [27] that forms highly stable, helically arranged
polymers inM. xanthus [29]. Unlike bacterial cytoskeleton proteins of the MreB and FtsZ
families [17,56], BacM polymerizes independently of nucleotides or cofactors. While this is
similar to the bacterial IF homologous CreS, which also assembles in the absence of nucleotides
or cofactors, CreS fibers disassemble when the pH is above 8.4, a hallmark of IFs [18]. Addi-
tionally, assembly of CreS, as other IF proteins, is mediated by its extensive coiled-coil do-
mains. The resilience of BacM fibers at extreme pH, as well as the lack of predicted coiled-coils

Fig 7. Evaluation of polymerization and fiber formation of recombinant wild type BacM in the electron
microscope after various treatments. Fiber formation is robust and occurs under a wide variety of
conditions. In the presence of chaotropic agents, such as urea, the wild type protein polymerizes at
concentrations of up to 1 M (upper row), while polymerization is more sensitive to low than to high pH values
(middle row) and does not occur at NaCl concentrations of 0.5 M and higher (lower row) indicating the
importance of charge for the lateral association of BacM filaments. The scale bar in the large field is 0.5 μm,
while the scale bar in the inset is 100 nm.

doi:10.1371/journal.pone.0121074.g007

BacM ofM. xanthus Forms a Polymer of Extended β-Sheets

PLOS ONE | DOI:10.1371/journal.pone.0121074 March 24, 2015 18 / 25



(or experimental evidence of α-helices at all), strengthens the notion that bactofilins comprise
a novel class of bacterial cytoskeleton.

The propensity of BacM to spontaneously form highly stable fibers presents a great difficul-
ty in crystallizing BacM protein for direct structural studies. As an alternative to X-ray crystal-
lography, we computed a 3-D model of BacM in an attempt to predict important structural
and functional residues and domains within the protein. The proposed model adopts a type-T
left-handed β-helix fold (LBH), a highly regular and symmetrical structure with little variation
in shape and size over the length of the domain [57], and is consistent with our experimental
observations. So far all LBH X-ray structures that have been solved belong to bacterial proteins,
a vast majority of which have enzymatic, particularly transferase, activities, composing the tri-
meric LpxA-like superfamily [58–60]. All but one LBH-containing proteins form homo-tri-
mers (trimeric LpxA-like proteins), the only exception being the anti-freeze protein from the
spruce budworm, which appears to be monomeric under physiological conditions [61]. Impor-
tantly, the LBH domain facilitates the trimerization of these proteins by laterally aligning into a
bundle in the center of the structures. Although additional alignments resulting in LBH do-
main-mediated fiber formation is thought possible [62], it has so far not been reported for any
protein under physiological conditions. The main reason being that the self-association of the
LBH domain is likely restricted to trimerization by additional structural elements at the N- or
C-termini of the proteins [63]. Consequently, it has been predicted that removal of these struc-
tural elements would expose the β-strands, leading to un-restricted self-assembly [62]. Analysis
of the sequence of the N-terminally cleaved mature BacM shows that ~80% of the protein is
formed by the LBH fold-containing DUF583 domain. Only 5 and 23 aa at the N- and C-termi-
nus, respectively, are not part of this structure, likely limiting their influence to restrict poly-
merization. Since BacM forms 3 nm wide filaments in vivo and in vitro, the individual protein
monomers are therefore most likely stacked head-to-tail within these filaments. This interpre-
tation is in line with (i) the electron microscopic observations, (ii) our in silicomodels of the di-
merization and filament formation, and (iii) the spectroscopic data that show the presence of
extended β-sheet structures, which indicate that the β-sheets within the BacM polymer are
highly oriented. Since these predicted 3 nm filaments are rarely observed in vitro and not re-
covered in vivo, it is clear that they either immediately interact with each other by forming the
~10 nm thick fibers or that filament polymerization and fiber bundling are coupled processes.
This finding is reminiscent of eukaryotic microtubules, which are assembled by end-to-end in-
teractions of dimer subunits to form protofilaments, which form a tube via longitudinal inter-
actions between the protofilaments [64]. Analogous to our finding that lateral interactions of
BacM filaments were disrupted by the presence of anionic glycine, it was recently reported that
incubation of assembled microtubules with the cation spermine triggered the disassembly of
microtubules into protofilaments, presumably by acting as a counterion, weakening the lateral
interactions between protofilaments and favoring disassembly [55].

We have recently reported that the bactofilin domain is necessary [29] and show here that
this domain alone is sufficient for fiber formation of BacM. Based on these findings, we com-
puted models of the protein-protein interaction interface consistent with this earlier observa-
tion, as the interface region is entirely contained within the conserved bactofilin domain.
Interactions between terminal hydrophobic regions are a novel structural principle for how
proteins containing LBH folds can oligomerize. The hydrophobic nature of the BacM self-as-
sembly is experimentally supported by in vitro examinations of BacM mutant proteins in
which the identified critical amino acid residues of the interface domain have been replaced.
These BacM mutant proteins are deficient for filament and fiber formation in vitro and are un-
able to rescue the morphological defect of aM. xanthus ΔbacM deletion strain. Moreover, these
mutant strains also failed to display the fiber-like staining pattern in vivo when examined by
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immunofluorescence light microscopy. Light microscopic observation of these fiber-forming
mutants showed that they failed to rescue the morphological phenotype of a bacMmutant
indicating that the altered fiber morphology interferes with the biological function of the
cytoskeleton protein.

The spontaneous polymerization of BacM under a wide range of conditions poses a funda-
mental problem for the bacterial cell. Namely, how the cells control this process. In earlier
work, we had established that BacM is post-translationally cleaved, and proposed that this
process is important for the control of polymerization [29]. Here we propose that the concen-
tration of the protein is also a factor. During our in vitro polymerization experiments, we ob-
served thick, multi-stranded ribbons of BacM that predominate at high protein concentration
(~100 μM). These multi-stranded ribbons may explain the rod-like structures observed by
immunofluorescence examination of BacM in ~20% of wild type cells [29]. Intriguingly, these
thicker BacM rods are observed in virtually all cells upon overexpression of bacM [29], suggest-
ing that at higher concentration, excess BacM filaments continue to bundle with existing fibers
eventually forming thicker ribbons.

While the monomer model has high degree of confidence for the structure prediction of the
highly conserved bactofilin domain, the structure and arrangement of the C-terminus is cur-
rently less clear. This domain most likely also accounts for the small portion of unstructured
region measured in the FTIR experiments. This interpretation is in line with the observation
that the C-terminus of BacM contains a cluster of five proline residues [29] that are usually in-
dicative of unstructured regions of proteins [65,66]. Although these poly-proline-containing
regions are “unstructured,” they have been identified as important elements engaging in the re-
cruitment, recognition, and binding of other peptides and proteins [67]. Since it has been sug-
gested that bactofilins act as scaffolds, exerting their morphogenic effect through the binding of
PG-remodeling enzymes [27,28], this region of the protein could be an important binding site
for these enzymes. Alternatively, the highly charged surface of BacM that contains negatively
and positively charged patches could interact with such enzymes and other BacM-binding pro-
teins through electrostatic interactions similar to the lateral BacM-BacM interactions described
here. Finally, the C-terminus appears also to play a role in lateral interaction between individu-
al fibers, because a truncated version of the protein polymerizes but forms characteristic kinked
bundles that look distinctly different from the smoother bundles formed by the wild type
protein.

The results presented in this study are the first prediction of a molecular model of the highly
conserved bactofilin domain, the core structure of bactofilins, a novel family of bacterial cyto-
skeleton proteins [13]. Since fiber-forming proteins are intrinsically refractory to crystalliza-
tion, so far only relatively few such proteins have been resolved at atomic resolution using X-
ray crystallography, and in some cases, like actin, more unconventional approaches such as
cryo-electron microscopy in conjunction with image analysis [68]. Using an in silico approach,
we predict that the bactofilin domain has a LBH fold and polymerizes through the interaction
of mainly hydrophobic residues into 3 nm thick head-to-tail monomer-containing filaments,
while electrostatic interactions allow the protein to laterally bundle into 10 nm wide fibers.
Both polymerization processes are extraordinarily robust and occur under a wide variety of
conditions including high concentrations of urea and extreme pH. While in silicomodels are
inherently speculative, our model has allowed us for the first time to identify important resi-
dues that are crucial for polymerization and fiber formation, thereby defining an unreported
interaction interface for LBH-fold-containing proteins that may also be relevant for our under-
standing of potential amyloid-forming LBH-containing proteins commonly associated with se-
vere human diseases [69–72]. Future mutational studies in conjunction with in vitro and in
vivo examination of the polymerization behavior of BacM should further help to understand
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the structural principles guiding polymerization and fiber formation and eventually result in
studies that will establish the atomic structure of this important novel class of bacterial
cytoskeleton proteins.

Supporting Information
S1 Fig. Sequence-based alignment of templates used for homology modeling. The 30 struc-
tures used as templates to generate homology models by five servers were aligned using Clus-
talW. The sequences have been aligned with the BacM sequence residues 28–150. ClustalX
coloring was applied to sequences in Jalview to denote amino acid conservation [73].
(PDF)

S2 Fig. Bactofilin repeats are conserved between bactofilins of multiple species. 4M. xan-
thus bactofilin paralogs are aligned with BacA and BacB of C. crescentus (CC_1873 and
CC_3022, respectively), CcmA from P.mirabilis (PMI1961) and CcmA fromH. pylori
(HPG27_1480).
(TIF)

S3 Fig. Structure of BacM fibers, ribbons, and filaments after dialysis in glycine buffers at
different pH. Exogenously expressed and purified BacM polymerizes into different structures
upon dialysis against 20 mM glycine buffer at various pH. At pH 8.5 10 nm fibers resembling
those isolated fromM. xanthus cells predominate (pH 8.5). Upon further increase of the pH,
the 10 nm fibers are more and more replaced by 3 nm filaments (pH 9.5), which at pH 10.5 are
the only observed form of polymerized BacM (pH 10.5). Scale bar, 50 nm.
(TIF)

S4 Fig. Reconstituted 10 nm BacM fibers can be laterally separated by a pH change into
3 nm filaments. BacM was purified in 8M urea, and subsequently dialyzed against 20 mM gly-
cine, pH 8.5. A sample was removed, applied to a copper grid, negative stained, and imaged by
transmission electron microscope (left). The remainder of the dialysate was then dialyzed
against 20 mM glycine, pH 10.5 and imaged as above (right). Scale bar = 25 nm.
(TIF)

S5 Fig. Non-polymerizing mutants and C-terminal truncation mutant of BacM are proper-
ly folded. The indicated BacM mutants were purified as described in Materials and Methods,
and dialyzed against 20 mM Tris, pH 7.5 to a final concentration of 0.5–1.0 mg/ml. These dial-
ysates were examined by circular dichroism spectroscopy, as described in Materials and Meth-
ods. The α–helix-only protein MTIP was used as a control [32,33].
(TIF)

S6 Fig. Polymerization-defective mutants of BacM form aggregates via lateral interactions.
The indicated mutants of BacM were expressed in E. coli and purified in 8 M urea, and subse-
quently dialyzed against 20 mM Tris, pH 7.5 (left) or 20 mM glycine, pH 10.5 (right). Samples
were applied to a copper grid, negative stained, and imaged by transmission electron micro-
scope. While aggregates were ubiquitously found at pH 7.5, they were absent in samples pre-
pared from the glycine buffer. Scale bar = 25 nm.
(TIF)

S7 Fig. BacM L35E and I124D/F125R mutants have normal steady-state levels and the ΔC-
terminus mutant fails to express. Lysates from the indicated strains ofM. xanthus were sepa-
rated by SDS-PAGE and immunoblotted with an affinity purified anti-BacM antibody [29].
(A) Lane 1: wildtype (DK1622); Lane 2: ΔbacM (EH301); Lane 3 ΔbacM with wildtype bacM
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rescue (EH344); Lane 4: ΔbacM with I124D/F125R bacM rescue (EH171); Lane 5: ΔbacM with
L35E bacM rescue (EH175). (B) Lane 1: wildtype (DK1622); Lane 2: ΔbacM (EH301); Lane 3
ΔbacM with bacM-ΔC-term rescue (EH106). Unlabeled lanes are from strains not discussed in
this report.
(TIF)
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