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Whole-field visual motion drives swimming in larval zebrafish via

a stochastic process

Ruben Portugues'-%** Martin Haesemeyer'-*, Mirella L.

ABSTRACT

Caudo-rostral whole-field visual motion elicits forward locomotion in
many organisms, including larval zebrafish. Here, we investigate the
dependence on the latency to initiate this forward swimming as a
function of the speed of the visual motion. We show that latency
is highly dependent on speed for slow speeds (<10 mms~") and
then plateaus for higher values. Typical latencies are >1.5 s, which
is much longer than neuronal transduction processes. What
mechanisms underlie these long latencies? We propose two
alternative, biologically inspired models that could account for this
latency to initiate swimming: an integrate and fire model, which is
history dependent, and a stochastic Poisson model, which has no
history dependence. We use these models to predict the behavior
of larvae when presented with whole-field motion of varying speed
and find that the stochastic process shows better agreement
with the experimental data. Finally, we discuss possible neuronal
implementations of these models.
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INTRODUCTION
When presented with whole-field visual motion, larval zebrafish will
turn and locomote in the direction of perceived motion (Orger et al.,
2008; Portugues and Engert, 2009). This innate reflex, called the
optomotor response (OMR), is widespread in the animal kingdom
and has been studied in a variety of animals. In insects, where the
OMR has been most widely studied, it has been used to investigate,
amongst other questions, the specifics of the elementary motion
detectors (Buchner, 1976; Srinivasan et al., 1999; Borst, 2014), the
differential tracking of translational and rotational whole-field motion
(Zanker and Collett, 1985; Junger and Dahmen, 1991) and the visual
control of flying speed (David, 1979; Baird et al., 2006; Fry et al.,
2009). In zebrafish, the OMR has been used to assay visual acuity and
identify visual system mutants (Neuhauss et al., 1999; Orger et al.,
2003). In terms of its ethological importance, it is generally believed
that the OMR ensures that animals remain in the same place with
respect to their visual environment, at least for a range of behaviorally
relevant speeds (Reichardt and Poggio, 1976; Severi et al., 2014).
Compared with other well-described innate reflexes like the
vestibular ocular (Khater et al., 1993), eye blink (Disterhoft et al.,
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1977) or optokinetic reflex (OKR) (Dieringer and Precht, 1982), we
show that the head-embedded forward OMR displays a remarkably
long latency (>1.5 s) between stimulus onset and response. There
are distinctly different models of neural dynamics that could cause
such specific delays, and the mechanics of such models are of
general interest in the field of neural coding and computation. Here,
we show that the latency to initiate swimming depends strongly on
the forward speed of the whole-field visual stimulus, which, in our
case, is a square wave grating. What is the reason for this modulation
in latency?

In order to understand which neuronal mechanisms give rise to
the latency, we investigated whether the initiation of swimming in
the context of the OMR is likely to be a history dependent or an
instantaneous phenomenon. We present and test two biologically
inspired models, which have been often used in neuroscience to
understand single-neuron or network properties.

The first model is an ‘integrate and fire’ model. In this model
the visual stimulus results in the accumulation of activity in an
integrator. When the activity reaches a given threshold, the
integrator fires a command signal and swimming is initiated.
The second model is a ‘stochastic’ model. We assume that the
initiation of locomotion is a Poisson process with a given rate, and
that this rate can be modulated by various factors. In our specific
case, the main factor is the visual stimulus that is presented to the
larva. This means that if the stimulus being presented to the larva
at time ¢ is s(¢), the probability p(¢) of it evoking a swim in the
larva in a small interval of time around ¢ (the probability density
function) is p(#)=p(s(?)), i.e. the probability is a function of the
instantaneous stimulus. Therefore, if the stimulus changes over
time, so will the probability (and rate) of the stochastic model.
Importantly, these two simple models allow us to discriminate
whether the initiation of swimming in the context of the OMR is
likely to be a memory-dependent or rather an instantaneous
process.

These models have a rich history in neuroscience and have
been used extensively to study the firing properties of neurons and
how these may relate to activity observed on a network level. In
particular, they have been used to address the question of how
observed stochastic cortical activity (Softky and Koch, 1993) can
be reconciled with the rather deterministic firing properties of
individual neurons (Shadlen and Newsome, 1998; Stevens and
Zador, 1998). The suggested mechanisms — balance of excitation
and inhibition (Shadlen and Newsome, 1998; van Vreeswijk and
Sompolinsky, 1996) or influence of short bursts of activity (Stevens
and Zador, 1998) — have constrained many future studies of
neuronal computation.

Here, we use the integrate and fire model and the stochastic
Poisson model in a behavioral rather than neuronal setting to
describe the initiation of behavior as opposed to the generation of a
spike. Our aim is to provide constraints on the neuronal mechanisms
that could be involved in initiation of locomotion.
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List of symbols and abbreviations

a acceleration

IG inverse Gaussian distribution
L latency

OKR optokinetic reflex

OMR optomotor response
Tin total activity threshold
v speed

RESULTS

Latency to initiate swimming as a function of grating speed
Zebrafish larvae were head restrained as described in the Materials
and methods (Fig. 1A). A trial began when the grating started
moving in the caudo-rostral direction at a fixed speed between 1 and
30 mm s~'. The grating stopped moving as soon as the larva started
swimming, although data acquisition was terminated 1 s after the
fish started swimming (Fig. 1B). The inter-trial interval was 30 s.
All integer speeds between 1 and 30 mm s~! were tested twice in a
randomized fashion, resulting in 60 total trials per fish (V=112 fish
total). The results for this latency L(v) (measured in seconds) as a
function of grating speed v are shown in Fig. 1C. For each fish, we fit
the dependence of its individual latency on grating speed with a
curve of the form:

Lv) =a+Be ™. (1)

One such fit is shown in Fig. 1C as a blue line. This functional form
was chosen because it both captures the most salient features of the
behavior, namely a decay for small speeds to an asymptotic value,
and it allows an analytical solution to be found for certain models to
be considered later. The average population fit was evaluated by
fitting the parameters o, B and y to the fish average latencies. The
population fit was found to be:

L(v) = 1.579 + 2.922¢~ "%, (2)

which is shown as a red line in Fig. 1C. A qualitatively similar
dependence of initiation latency on stimulus speed has been
observed in the OKR of frogs (Dieringer and Precht, 1982).
Even though the average response latencies in the case of the
OKR are considerably lower, it does suggest that this type
of speed dependence may be shared across different visual
behaviors.

It is interesting to note that although the latency to initiate
swimming depended on the speed of the grating, the duration
of the bout did not (Fig. 1E-G). As we know that bout
parameters depend on grating speed (Severi et al., 2014), this may
be attributed to the fact that in our experiments, the grating came
to rest as soon as the bout was initiated. This indicates that bouts
are not performed in a ballistic fashion and that fish dynamically
update their swimming based on changes in grating speed within a
bout as has been previously reported by Portugues and Engert
(2011).

Distribution of latencies

Apart from the dependency of average latencies on grating speed,
we wished to gain some insight into the distribution of these
latencies in order to understand their neuronal underpinning. As
each constant speed was only tested twice, we did not have enough
trials to address this question. Therefore, we binned trials for each
fish into six bins depending on their speed: bin 1 included trials
with speeds between 1 and 5 mm s~!, bin 2 included trials with

1434

speeds between 6 and 10 mm s~! and so on up to bin 6, which

included trials with speeds between 26 and 30 mm s~!. Thus each
bin contained ten trials.

We then asked for each larva whether the distribution of
latencies in each bin differed significantly from that expected
from an exponential distribution with the same mean (Fig. 1D).
Using a Kolmogorov—Smirnov test we were able to reject the null
hypothesis (P<0.05) in only 72 of the 612 bins. In fact, correcting
for multiple comparisons using a Bonferroni correction led us to
reject the null hypothesis in only 16 out of the 612 cases. We
therefore interpreted this as an indication that the distribution of
latencies we observed could have arisen from an exponential
distribution underlying a stochastic model. We do note, however,
that given the small sample size and noise inherent in biological
systems this observation cannot rule out an underlying history-
dependent process.

Modeling the distribution of latencies

The aim of our study was to investigate whether these observed
latencies are the result of a history-dependent process that
accumulates sensory evidence over time or whether they arise as
the output of a stochastic model whose rate is set by the
instantaneous sensory input being perceived and is therefore a
history-less process. Processes that involve the accumulation of
sensory evidence require three main steps. The first is the translation
of sensory input into a rate or activity. Subsequently, this activity
has to be integrated over time. Finally, a criterion needs to be
implemented: when does the accumulation of evidence trigger a
decision, which in our case would result in the initiation of
locomotion. The most common criterion to implement is that of a
threshold. Threshold models are rather general and could
encompass various a priori plausible strategies. For example, we
could imagine fish starting to respond a given fixed amount of time
T after noticing whole-field motion. This would correspond to a rate
r=1/T independent of the velocity. By contrast, a different strategy
would have fish initiate swimming after the visual scene had moved
forward a given distance D (a fixed amount of optic flow). This
would correspond to a rate #(v)=v/D. The rate we observe (given in
Eqn 7 in the Materials and methods, which is deduced from Fig. 1C)
is inconsistent with either of these two simple strategies. We
therefore propose a model in which the whole-field motion results in
a rate that is a function of the velocity and where this rate is
integrated over time until a threshold is reached, upon which
swimming is initiated (Fig. 2A). We call this an ‘integrate and fire’
model.

We based our stochastic model on a Poisson process. A Poisson
process is memory-less by construction, with average response
latencies depending on the instantaneous response probability
alone. A Poisson model therefore allows us to contrast a history-
independent process with evidence accumulation represented by an
integrate and fire model. Like threshold models, a Poisson model
could encompass various a priori plausible strategies through its
simple relationship of average response latency L to rate A (see
Materials and methods). For the same reasoning as presented
above, we construct a model in which the rate of a Poisson process
is a function of grating velocity. However, instead of the rate
setting the accumulation in an integrator, it directly influences the
response probability p(s) and hence the average latency to respond
(Fig. 2B).

To that end, we first fitted both models to the data summarized in
Eqn 2 and then tested their predictive power with experiments
described below.
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Fig. 1. Latency to initiate swimming in larval zebrafish depends on the speed of whole-field motion. (A) Head-restrained larval zebrafish with its tail free
to move. (B) The tail is tracked and the cumulative angle of all ten body segments is computed in real time (top trace). The start of bouts can be detected
automatically when tail motion intensity (bottom trace) exceeds a threshold. This particular trial corresponds to a trial of speed 11 mm s~ for one example fish.
(C) The latency as a function of forward grating speed averaged over 102 larvae (black trace, s.e.m. in gray). The fit of the form a+Be™"" is shown for the average
data (red curve, 0=1.579, B=2.922 and y=0.296) and for the same example fish as in B (blue curve, 0=1.892, $=6.921 and y=0.754). (D) Distribution of latencies
for trials in two speed bins: grating speeds from 6 to 10 mm s~ (left) and from 16 to 20 mm s~" (right) for the same sample fish as C. The insets show the
histograms of counts and the main graphs in black show the cumulative density. In red are the cumulative probability functions for an exponential distribution
with mean equal to the mean of the latencies in that bin. (E) Average bout duration across all fish as a function of the speed of the grating that was presented and
triggered their initiation. (F,G) Average bout durations for the experiments in which gratings accelerated from rest at a constant acceleration (F) and decelerated
from 10 mm s~ with a constant deceleration (G). The bout duration is plotted as a function of the acceleration.

Latency to initiate swimming when presented with a grating
of varying speed

For gratings moving at constant speed, both the integrate and fire
(Fig. 2A) and the Poisson model (Fig. 2B) will, by construction,
predict the same average latency to initiate swimming (Fig. 2C). The
integrate and fire model presented above is purely deterministic: it
will produce the exact same outcome every time. We expect
biological models to be noisy and exhibit variance, and our data
indeed does so. We therefore also considered the introduction of
noise into the integrate and fire model (see Materials and methods).
Fig. 2C shows that the addition of noise to the integrate and fire
model has the effect of turning a purely deterministic response into a
wider distribution of response latencies without affecting the mean
latency.

We next sought to devise a set of experiments that would allow us
to test which model better predicts the distributions of latencies. As
shown in Fig. 2D,E, when presented with either an accelerating or
decelerating grating, both the deterministic and the noisy integrate
and fire model predict a different average latency than the Poisson

model. Therefore, we presented fish with either an accelerating or

decelerating grating, according to the linear formula:

v(t) = v(0) + at, (3)
where v(0) is the initial velocity of the grating and a is the
acceleration, which may be positive or negative. For the accelerating
grating experiment, v(0)=0 and «=0.1, 0.2, ..., 2 and for the
decelerating grating experiment v(0)=10 and a=—0.1, —0.2, ..., —2.
Just as before, we measured how long it takes for the larvae to
initiate swimming as a function of the acceleration. Fig. 3A shows
for each positive acceleration the mean latency to respond overlaid
on the grating speed which linearly increases with time. Note that as
the acceleration increases, the latency to respond decreases, which is
expected based on the dependence of response latency to grating
speed (Fig. 1C). Importantly, the responses occur neither at a fixed
time after grating start nor at a fixed velocity. Fig. 3B shows the
equivalent data for decelerating gratings. For these experiments the
relationship between acceleration and latency is more complex as
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Constant speed

Fig. 2. Example distributions of modeled
latencies. (A) lllustration of the integrate and fire
model, showing history dependence. The light
green line symbolizes a high rate or fast
accumulation (steep gradient) resulting in a
short latency and the dark green line a low rate
(shallow gradient) leading to a longer latency.
Shaded areas represent variance for our
integrate and fire (IF) model with noise.

(B) lllustration of the Poisson model. The model
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across trials is then determined by the
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(C) Distribution of modeled latencies for the
integrate and fire model, the integrate and fire
model with noise and the Poisson process at
constant velocity v=15 mm s~' Mean latencies,
indicated by vertical lines, are 1.61 s for the
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(E) Distribution of modeled latencies for
decelerating gratings. Initial grating speed was
vo=10 mm s~" and the acceleration was
a=—1.6 mm s~2. Mean latencies are 1.82 s for
the integrate and fire model, 1.87 s for IF with
noise and 1.53 s for the Poisson model.
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fish occasionally fail to respond (see Fig. 3F) before the grating
speed reaches v=0, at which time we stop the experiment. This
results in an apparent decrease of mean response latency for more
negative accelerations because failures to respond do not contribute
to the mean latency.

Comparing the goodness of fit

Fig. 3C depicts the observed latencies for accelerating grating as
well as the predicted latencies for the integrate and fire model
(with and without noise) and the Poisson model. We note (also
see Fig. 3A) that for the slowest acceleration (¢=0.1 mm s?)
experimental fish respond while the grating speed is smaller than
I mms~!. Since we did not test any constant speeds below
1 mm s~!, our fit in Eqn 1 is not able to predict the latency well for
these speeds. We therefore do not expect our models to fit the
experimental data well for the lowest presented accelerations.
Fig. 3D compares observed and predicted latencies for the
decelerating gratings. Qualitatively, both figures show a better fit
of the Poisson model to the experimental data.

In order to quantitatively compare the models and determine
which one fits the observed experimental data better, we evaluate
their goodness of fit by determining the sum of the square residuals,
that is, the sum of the squares of the difference between the data and
the model fit. We determined the latencies of our integrate and fire
model without noise and ran 10,000 simulations for the Poisson
model and the Integrate and fire model with noise, averaged the
results and computed the goodness of fit (see Materials and

1436

Latency (s)

methods), which is shown in Fig. 3E. These indicate that the
Poisson model provides a better fit to the data for both the
accelerating and decelerating grating experiments than either of the
integrate and fire models. In fact for the decelerating grating, both
integrate and fire models have less predictive power than the mean
of the data. For the accelerating grating, the integrate and fire model
with noise performs better than the purely deterministic model, but
this is reversed for the decelerating grating experiment.

As mentioned above, a consequence of the decelerating grating is
that fish will not always respond before the grating has come to rest.
This is shown in Fig. 3F for the experimental data, as well as for the
model predictions. Failures to respond are an important outcome of
the decelerating grating experiment because they effectively remove
the tail of the experimental and model response latency distributions,
which results in a reduction of the apparent mean latency. While
neither of our models fully predicts the fraction of failed responses
observed in the experimental data, Fig. 3F shows that this feature is
better approximated by the Poisson model than by the noisy integrate
and fire model. The noiseless integrate and fire model is completely
deterministic and therefore cannot result in a failure fraction that is
different from either O or 1, depending on the starting speed of the
simulation. It therefore cannot represent this feature of the data. The
addition of a leak-term to the noisy integrate and fire model can
improve the goodness of fit for the decelerating grating experiments
(Fig. 3G). However, even for an optimized leak term of p=2x107%,
the model is still worse than the data mean in predicting the
experimental results with R>=—0.12. In summary, we note that the
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Poisson model is considerably better in predicting different features
of the experimental data than the integrate and fire model (Fig. 3E,F).

DISCUSSION
In this study we have shown that the latency to initiate locomotion
when presented with a whole-field moving visual stimulus depends
on the speed of the stimulus. This latency can vary by up to a factor
of two, from ~4 to ~2 s. These relatively long and variable response
times have also been observed in other species (see Hanes and
Schall, 1996; Luce, 1986). What underlies this modulation?

One way in which latencies that extend over these timescales can
arise is through the processing and integration of sensory drive. This

-08 -04 O
Acceleration (mm s2)

requires the nervous system to accumulate and store this sensory
evidence over several seconds before a ‘decision’ can be made. On
the other hand, one may envision strategies by which behavior arises
through purely local spatio-temporal rules that do not require any
memory component. This could be brought about by a stochastic
process whose rate is dependent on the sensory input at that
particular instance in time. In this way, increased sensory drive just
results in a greater chance of performing the behavior.

Both these strategies are implemented in the nervous system.
Responses of single neurons are often modeled as deterministic and
represented by integrate and fire models (Burkitt, 2006). On a
systems level, for example, the activity of integrating neurons in the
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frontal eye field is believed to control saccadic eye movements
(Schall and Thompson, 1999). More recently, modeling studies
have been used to argue that neurons in the lateral geniculate
nucleus are better described by integrate and fire models rather than
Poisson models (Lin et al., 2012): this both reproduces their
statistical firing properties better and confers higher direction
selectivity to area V1 of the visual cortex. In addition, integrators
can also be realized on a network level, as in the oculomotor
integrator (Robinson, 1989). We expect any biological system to
decay to its resting state in the absence of input. This is usually
represented by a leak term in the integrator, which for single neurons
would correspond to a decay constant in the membrane potential.
Introducing such a term into our model does not change the
conclusions we presented above (Fig. 3G).

Stochastic models have also been applied in neuroscience. It has
been observed in cortical networks that inter-spike intervals are
exponentially distributed (Softky and Koch, 1993), leading to the
idea that this activity follows a Poisson process in which it is the
spike rate that is of neuronal relevance (Shadlen and Newsome,
1994).

Both the integrate and fire model and the Poisson model require
an input that is set by sensory drive. In our case, this sensory drive is
related in some unknown way to the velocity v of the grating. These
input variables are #(v) and A(v) in Eqns 7 and 13, respectively. In
our case, these could arise from an edge-counting mechanism in the
retina (see Fig. 4 and technical derivation in the Appendix, for a
simple model).

In our study, we find that a Poisson model fits the experimental
data more accurately than an integrate and fire model. The noiseless
integrate and fire model is purely history dependent, whereas the
Poisson model is purely instantaneous: the rate is set at any moment
in time uniquely by the stimulus that is being presented at that
instant. The addition of noise, which by the above definition is
always instantaneous, can be thought of as shifting the integrate and
fire model from a history dependent one to a more instantaneous one
(see Appendix). We do note, however, that the moderate addition
of noise does not result in a considerably better fit to the observed
data (see Fig. 3E). This suggests that zebrafish larvae use mainly
instantaneous sensory information to initiate swimming. In fact, it
has been observed that behaviors that extend in both space and
time can arise from purely local rules, such as bacterial chemotaxis
(Berg, 1993). Our experiments do not investigate the neural
mechanisms that underlie this Poisson process. We do note,
however, that head-restrained larval zebrafish like the ones in our
experiments do perform spontaneous swims at a very low rate
(~0.01 Hz), which could be an indication of a locomotor network
that stochastically crosses threshold. It could be that visual drive
regulates this network through neuromodulation by dynamically
decreasing the difference between its internal state and the threshold
to initiate locomotion.

We do not know where in the nervous system this stochastic
network may be. One possibility is that it could control the
activation of command-like neurons akin to the Mauthner cell,
which initiates escapes (Korn and Faber, 2005), or nuclei such as the
nucleus of the medial longitudinal fasciculus (nMLF), which has
been demonstrated to be involved in the control of swim speed in
larval zebrafish (Severi et al., 2014). Command centers that can
elicit locomotion upon stimulation have long been studied in other
species such as the mesencephalic locomotor region in cats (Shik
et al., 1969) or the tegmentum in teleost fish (Kashin et al., 1974).
Alternatively, it could be implemented within the spinal cord itself,
where sensory drive sets the difference between baseline and
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(A) Geometry of the model considered. A retina R of radius r consisting of a
semi-circumference looks down on a screen S which is placed a distance s
from its center (see inset illustrating the case in our experiments). A square
wave grating of period w is shown on the screen. The coordinate x on the
screen is related to the angular coordinate 6 on the retina as mentioned in the
text. (B) Latency to initiate swimming as a function of both grating velocity and
spatial period of the grating. The plot shows the latency averaged over 26
larvae. (C) The activity from our model is either integrated by a non-leaky
integrate and fire model or used in a Poisson model to result in a latency.

threshold network activity, in which case it would be stochasticity
within the spinal network that elicits swimming (Buchanan and
Grillner, 1987).

It has been observed across many animals and behaviors that
latencies to response initiation are variable and often longer than can
be explained purely by neuronal transduction delays (see Hanes and
Schall, 1996; Luce, 1986). Here, we observe a similar phenomenon
in larval zebrafish in the context of the optomotor response. Using a
modeling approach, we propose that swim initiation is controlled by
a stochastic network. We find this to be a rather elegant mechanism
because it is an example of how local spatiotemporal rules can give
rise to seemingly more complex behaviors.

MATERIALS AND METHODS

Preparation of head-restrained fish

Larval zebrafish at 6 to 8 days post fertilization were embedded in a 35 mm
Petri dish in 2% agarose. After setting, the agarose around the tail was
removed as described by Portugues and Engert (2011) (Fig. 1A). Larvae
were shown a square-wave grating moving in a caudo-rostral direction. The
period of the gratings was 10 mm and it was projected, with a 3M mobile
projector, on a Nielstoff screen 5 mm below the embedded fish. The setup
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was illuminated with infrared LEDs and imaged from above with a Pike
camera (AVT) at 200 Hz. Custom-written software in Labview (National
Instruments) displayed the grating, and tracked the tail of the larva in real
time. Tail motion was summarized by computing the cumulative tail angle
and tail motion intensity was computed by calculating the standard
deviation of the cumulative tail angle in a 50 ms time window (Fig. 1B). The
initiation of a swim bout was detected automatically when tail motion
intensity exceeded a manually determined threshold (the same for all fish).
As soon as a bout was initiated, the grating was stopped and the trial was
terminated, although data was acquired for 1 more second. No fish were
discarded in the analysis.

Experimental paradigm

The experiment consisted of 180 trials, 60 of which were with the grating
moving at constant speed, 60 with the grating accelerating and the other 60
with the grating decelerating. The order of the trials was randomized. In the
constant speed trials, the grating moved at a speed of 1 to 30 mm s™! (in
1 mm s~ steps). In the constant acceleration trials, the grating started from
rest at the beginning of the trial and accelerated with a constant acceleration
of 0.1 to 2mms~2 (in 0.1 mms™ steps). Finally, in the constant
deceleration trials, the grating started moving at a speed of 10 mm s~
and decelerated with a constant acceleration of —0.1 to —2 mm s~ (in
—0.1 mm s~ steps).

Latency distribution

As outlined in the Results, we tested whether the observed latencies
could arise from an exponential distribution by binning latencies for five
consecutive speeds (a total of 10 trials) and using a Kolmogorov—Smirnov
test to test the null hypothesis that the observed latencies come from an
exponential distribution with the same mean as the data mean. The total
number of bins across all experiments was 612 (6 bins per fish, 102 fish
total). The null hypothesis was rejected for p<o with 0=0.05 or 0=0.05/612
after Bonferroni correction for multiple comparison, respectively.

Modeling

Numerical modeling was performed by using custom written software in
MATLAB (MathWorks). Explicitly, integrate and fire models were modeled
using the initial conditions:

N(t=0) =0, (4)
together with the evolution equation:
N(t+dt) = N(t) + 8N, (5)

where 8N is given by Eqns 6, 8 or 9 for the pure integrate and fire, noisy
integrate and fire and leaky integrate and fire models, respectively. The
latency was defined as the first time point for which N>1.

Integrate and fire model

Integrate and fire models have been extensively used to describe single
neuron membrane potentials. In these models, voltage changes resulting
from the opening of conductances integrate in time and result in a membrane
potential which is history dependent. Furthermore, when the membrane
potential reaches the threshold voltage for the particular neuron, it fires
before resetting itself and returning to its resting value. Our model is closely
analogous to this (Fig. 2A). Instead of representing the firing of a neuron, we
aim to describe a different outcome: initiation of locomotion. The stimulus
is perceived and processed and a signal is passed onto an integrator, which
may be a brain region or a single neuron. When activity in the integrator
reaches threshold, a command is sent that results in swimming and activity
in the integrator is reset to its original value.

To explain our base experiment, the rate of increase in the activity of the
integrator must be a function of grating speed, as this is the only parameter
varied in the experiment. Explicitly, the assumptions that enter this model
are: (1) swims are initiated when the activity N(¢) in the integrator reaches
threshold; (2) the activity threshold Ny, that elicits swimming is constant and
equal to 1; (3) the rate of increase in activity 7(v) is a function of the

instantaneous grating speed v only; and (4) the integrator can be a simple
integrator or a leaky integrator.

The above assumptions imply that activity in the integrator changes
according to the formula:

N (1) = r(v)dr. (6)

We define the latency L(v) as the time at which N(¢) crosses threshold. We
are considering models with a constant threshold and non-constant rates
(Hanes and Schall, 1996), so without loss of generality, we set the threshold
of the integrator of our model to 1. Therefore, the product of the rate and the
latency is equal to 1, which implies, together with Eqn 1, that:

1 1

V(V):m:m- ()

Integrate and fire with noise

The integrate and fire model presented above is purely deterministic: it will
produce the exact same outcome every time. However, we expect biological
systems to be noisy and exhibit variance and our data indeed does so. A
natural way to do this is to add Gaussian noise to the above model

dN(t) = r(v)dt+¢ where &~ N(0,0%). (8)

This model is analogous to the random walk models with drift (see Burkitt,
2006 and Tuckwell, 1988, where they are also referred to as Wiener
processes) that were first introduced to simulate stochastic neuronal
responses (Gerstein and Mandelbrot, 1964). These models have more
recently been used to understand cortical neurons in the context of decision
making tasks (Shadlen and Newsome, 1994, 1998). In terms of parameters,
the rate (v) in Eqn 8 corresponds exactly to the drift parameter of the
random walk. The introduction of noise renders the integrate and fire model
non-deterministic and allows a more natural comparison with the stochastic
Poisson model introduced below (see Appendix for details).

The leaky integrator
The equation governing the change of activity in a leaky integrator model
with leak rate u is a modified version of Eqn 6 given by:

N (t) = r(v)dt — uN(1)dt. 9)

Poisson model

A Poisson process is a stochastic process which occurs at a constant rate in
time determining the average latency of events. The probability of an
occurrence in a small time period 8¢ is given by:

(10)

This process is memory-less in the sense that the probability of an
occurrence during the time window 8¢ is completely independent of what
has happened before (Fig. 2B). The time between these occurrences is
described by an exponential distribution of latencies with parameter A and
probability density function:

P(occurrence in time period 8¢) = A\8z.

F(H)=xe ™

The mean 7 is equal to the variance o:

(11)

t=0=1/\ (12)
In our model, we consider swim initiation to be a stochastic process, with a
rate imposed by the speed v of the grating. This implies that from Eqn 1:

1

MY = e

(13)
A consistency test that is often used to check whether a process could be
Poisson or not is that its coefficient of variation (CV), that is, the ratio of
the mean to the standard deviation of the measurements should be equal
to 1. This indicator is not sufficient to prove this and instead as discussed
above, we decided to test whether the latencies were consistent with an
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exponential distribution (Fig. 1D). We also note that in both our models,
we could include sensory-relaying delays in the order of tens of
milliseconds. For simplicity, given that we expect these delays to be
much shorter than the timescales of the behavior, we decided to proceed
without them.

When we allow v itself to be a function of 7, according, for example, to the
trajectory in Eqn 3, the process becomes what is known as an inhomogenous
Poisson process (see Dayan and Abbott, 2001). The probability of a fish
initiating a swim in a time interval (¢, #+3f) becomes A(7)3t, where the
dependence of A on ¢ arises through the dependence of A on a time varying
velocity: M(w(1)).

Goodness of fit

The goodness of fit of the models was evaluated as the coefficient of
determination. The total sum of squared distances for each model and data
point was calculated as per:

N
del _ | datay?
Ssresiduals = Z (V;-m ¢ _yi.xta) ) (14)
i
and the total sum of squared distances of each data point from the data mean
was calculated as per:
N

— 2
SStl = Z (y;‘lata _ ydata) )

i

(15)

Using Eqns 14 and 15, R? was calculated as:

Rz —1- Ssresiduals )

16
Sstmal ( )

Therefore R? will be equal to 1 if the prediction of the model is exact and
smaller than 0 if the model is worse in predicting the data than the data mean.
We note that since we predict the data using our models, rather than fit the
data using for example linear regression, R” values are not bounded below
by —1.

APPENDIX

Adding noise to the integrator model

While our model based on a Poisson process (see the Materials and
methods) inherently generates stochastic responses, the latency of
an integrator model is deterministic. Our experimental data suggest
that response latencies are variable. We therefore sought to
introduce noise into our integrate and fire model that would
partially match the variable nature of the latencies predicted by the
Poisson model.

Non-leaky integrator
Since we do not know the actual source of the noise in our system,
we assume the simplest model, Gaussian noise that is added at each
time step as follows:

dN(t) =r(v)d +& where &~ N(0,02). (A1)
We note that this introduction of noise into the integrate and fire
model is akin to a Wiener process W(¢) with drift where our rate 7(v)
sets the drift while the noise scales the random walk of the Wiener
process (Tuckwell, 1988):

N(t) =r(v)t + o W (t). (A2)

The latencies that result from such a process follow an inverse
Gaussian distribution such that:

L(v)~IG(L(v),%> and var(L(v)) = LwPo.  (A3)

&

1440

It is therefore possible to exactly match the noise of our integrate and
fire model to the noise of the Poisson model such that Eqn 12 is
satisfied. This, however, means that:

N ~ N(r(v)dt,r(v)dt),

and therefore,

1

NZORA

We note that since (v)dr=1 for all practical purposes, it follows that
CV(3N)>1, which effectively means that this model is no longer
history dependent, but rather dominated by instantaneous input (see
Discussion). In fact, an implementation of this model behaves
almost exactly like the Poisson model (data not shown).

To keep the model history dependent and the comparison
meaningful, we therefore introduced noise that approximates the
noise in the Poisson model without leading to a coefficient of
variation equal to one. We note that our noise €, which we add in
each time step affects the value N(¢) of our integrator rather than
changing the latency L directly. We call this error Ey. After n time
steps, Ey will follow the relation:

CV(3N) =

n—1
Ey =Y & = Ey~N(0,n0%).
i=0

(A6)

From the diagram in Fig. Al together with Eqn 7, we see that
\/(na?) is related to S by r(v), the slope of our integrator. In general
(no?) can be estimated based on the spread between the points:

- L _ L -
=|(L,=——] and P,=(L,=——|, where S<L.
L-S

P ;
L+S

En
var(Ep)=0.52

Fig. A1. Noise estimation for the integrate and fire model. The relationship
between noise in the integrator value (E,) and resulting noise in the latency
(E,). As shown in the figure, per Eqn 6 for our threshold value of 1 (dashed blue
line) the mean value N(t) of the integrator rises with slope r(t)=1/L as depicted
by the solid red line, in order to reach an average latency L, depicted by the
solid black line and circle. To result in a threshold crossing at the time T=L + S
with S=L, the slope of our integrator has to be r(v)/2, shown by the dashed red
line. In that case, at time L, our integrator value N(t) would be equal to 0.5 as
shown by the solid red circle. Therefore, we set the s.d. of our total error E in
the integrator to 0.5. This does result in an error E; in the latency that has

an s.d. S < L, which is distributed asymmetrically around the latency L, as
visualized by the location of the stars.
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For § = L, P, is not defined and we note that P; = (L, 0.5). We use
the location of this point to set var(Ey) as illustrated in Fig. Al:

1
var(Ey) = no* = 0.5 = Ey ~ N (o, Z)' (A7)

Based on Eqns A6 and Al our error € per time-step needs to be
distributed as follows:

~(o 1 L
© 4n " adt)

We note that equating 76 to 0.5 results in a total error that is indeed
smaller than L as desired to keep our model history dependent.
However, the introduction of Gaussian noise into our integrator has
the desirable property that the resulting latencies L are not
symmetrically distributed around the mean L but rather have a
right-tailed distribution qualitatively similar to the exponential
distribution of latencies obtained with the Poisson model (also see
Fig. 2). We also note that random walk models with drift, such
as our noisy integrate and fire model, have been used to describe
stochastic processes in neuronal firing (Gerstein and Mandelbrot,
1964; Shadlen and Newsome, 1994). When presenting our
models with gratings of varying speed we adjust ¢ at each time
step such that:

(A8)

L(v(1))
45t

var(e;) = (A9)

Generalization to the leaky integrator

For our leaky integrator model, we make the same assumptions
about noise with Ey distributed as in Eqn A7. Our goal is therefore
to estimate ¢ such that Eqn A7 holds. We note that for the leaky
integrator with leak p at each time step i:

n—1

Ey = Zﬁi(l — ) (A10)
=0
Note that if x ~ N (0,02) = ax ~ N(0, (ao,)?)
n—1 )
= Ey ~N<0,02 (1 —u)2’> (A11)
=0

n—o00

1
= lim Ey ~ N 0,(r2><—2 , where 0 < p < 1.
I—(1—-p)

(A12)

Together with Eqn A7:

2 1—(1—P~)2

o = 7] , where 0 < <1.

(A13)

Model of the retina as an edge counter

In this section, we present a simple model of the retina as an edge
counter. The model does not attempt to be quantitative, the fact
that in this model the retina is a semi-circumference as opposed to
a semisphere is already unrealistic. Nevertheless, it aims to be
qualitative or heuristic and suggests a way in which input to the
models presented in the main text of the paper, namely the rate

r(v) in the integrate and fire model or the Poisson rate A(v), may
arise.
Consider the situation depicted in Fig. 4A: a retina R of radius r
looking down on a screen S on which a square wave grating is
presented. The question we wish to address is: what would be the
output at any instant as a measure of the rate at which edges were
passing by below it on the screen? In order to make our model more
general we will consider the dependence of this activity as a function
of both the speed of the grating and its spatial frequency. The
dependence of latency on these two parameters was tested for 26
fish and is shown in Fig. 4B.
The angle 6 is related to the coordinate x on the screen S by:
tan 6 = x/s. (A14)
Edge density on S is constant (independent of x). Assume a grating
of spatial width w=f"" such that there are f periods per mm. This
implies that we have xf periods in the interval [0, x] on S, which
implies xf periods in the angular interval [0, 6], which, in turn,
corresponds to sf tan O periods in that same interval [0, 6].
Differentiating this with respect to 6, we obtain the period density
per radian pperiod:

P period = die(sf tan 0) = sf sec’6. (Al5)
By inverting Eqn Al5 we obtain the angular extent of a full
period as a function of the angle 6. We will assume that: (1)
detectors are numerous, of equal size d and that they tile the retina
uniformly; (2) a detector can count at most one passing edge at a
time; if two or more edges pass its receptive field simultaneously
the contribution of the detector is zero; and (3) an edge must
spend a minimum amount of time Af over the detector’s receptive
field in order to be counted.

In order to take into account point 2 above, we can calculate that
there is a whole period in a detector placed at an angle 6 when the
detector’s angular extent d/r is equal to the angular extent of a whole
period. This is the case for angles which exceed 6"™, which is

given by:
pim = arccos< ﬂ) ,
V7,

where we have inverted Eqn A15 with p=r/d.

We now take into account point 3 above. From Eqn A14 we can
obtain a relation for the angular velocity d6/d¢ of the grating on the
retina

(A16)

do
— = Xcoszﬁ.

Al
dt s (A7)

The angle advanced in a time At is

vAt

—cos®f, (A18)
S

but according to point 3, this must be less than the angular extent d/r
of a receptor, from which we obtain:
ds
At )

0> Opin = arccos( (A19)
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Now consider a grating moving with constant speed v mm s~! on S.
Within any interval of size I<f~' on S, vf edges pass it per
second. Given our assumptions and as calculated above, this is
true for all the inverse images on S of the detectors for angles 6
such that 6,,;,<|0|<0"™. The activity per second 4 is therefore
given by:

Xlim O1im
A=2f J dx = 2vfs J d(tan ) = 2vfs(tan By, — tan Oy, ).
Kmin Omin

(A20)

If this activity is integrated following a non-leaky integrator, which
fired when the total activity reached a threshold T},, this would give
a latency L given by:

T = | 4dt, (A21)

S —r=

such that

T
L = .
(v.f) 2vfs(tan Oy, — tan Opiy)

(A22)

This is shown in Fig. 4C. We note that the upper and lower limits in
the integral (Eqn A20) arise as geometric constraints in our model
(namely points 2 and 3) above, and that they are responsible for the
interesting behavior we observe in Fig. 4C: the deviation from
linearity and the appearance of a long latency region for a grating of
short spatial period.

We find that, despite the numerous assumptions and
shortcomings of the model, it still manages to capture the most
general features of period and velocity dependencies of the data
shown in Fig. 4B: the increase in latency as spatial period increases,
in particular for slow velocities, and the strip of long latencies for
very fast and thin gratings. We conclude that it is definitely possible
for the brain to have a mechanism by which it may compute a rate
which can be used as input for either the integrate and fire model or
the Poisson model we have considered in the main text, and that this
rate may be calculated even by integrating over the retinal outputs.
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