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Abstract
TheWillandra Lakes complex is one of the few locations in semi-arid Australia to preserve

both paleoenvironmental and Paleolithic archeological archives at high resolution. The stra-

tigraphy of transverse lunette dunes on the lakes’ downwind margins record a late Quater-

nary sequence of wetting and drying. Within the Willandra system, the Lake Mungo lunette

is best known for its preservation of the world’s oldest known ritual burials, and high densi-

ties of archeological traces documenting human adaptation to changing environmental

conditions over the last 45 ka. Here we identify evidence at Lake Mungo for a previously

unrecognised short-lived, very high lake filling phase at 24 ka, just prior to the Last Glacial

Maximum. Mega-lake Mungo was up to 5 m deeper than preceding or subsequent lake full

events and represented a lake volume increase of almost 250%. Lake Mungo was linked

with neighboring Lake Leaghur at two overflow points, creating an island from the northern

part of the Mungo lunette. This event was most likely caused by a pulse of high catchment

rainfall and runoff, combined with neotectonic activity which may have warped the lake

basin. It indicates a non-linear transition to more arid ice age conditions. The mega-lake re-

stricted mobility for people living in the area, yet archeological traces indicate that humans

rapidly adapted to the new conditions. People repeatedly visited the island, transporting

stone tools across water and exploiting food resources stranded there. They either swam or

used watercraft to facilitate access to the island and across the lake. Since there is no evi-

dence for watercraft use in Australia between initial colonization of the continent prior to 45

ka and the mid-Holocene, repeated visits to the island may represent a resurrection of

waterfaring technologies following a hiatus of at least 20 ky.

Introduction
Lake Mungo is the best known basin within the Willandra Lakes World Heritage Area in semi-
arid Australia. Its significance is threefold. Firstly, the transverse lunette dune on its downwind
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margins preserves Australia’s oldest known human remains and widespread archeological
traces documenting human behavioral change [1–3]. Second, the lunette’s stratigraphy pro-
vides a comprehensive record of paleoenvironmental and hydrologic change over the last full
glacial cycle, in a region with poor preservation of such archives [4–6]. Finally, the conjunction
of paleoenvironmental and archeological evidence presents a unique archive of human-envi-
ronmental interactions over the last ca. 50 ka [6, 7]. The strategies people developed in re-
sponse to changing environmental conditions, and the nature and duration of climatic
transitions in the region, however, remains poorly defined [7].

Lake Mungo is an overflow lake within the presently dry Willandra Lakes system (Fig 1).
Lake filling and drying responded to rainfall and runoff in the catchment headwaters—the
temperate highlands of southeastern Australia, located more than 600 km to the east [8, 9].
This regime persisted until ca. 14 ka when the major inflow channel, the Willandra Creek—a
paleochannel of the Lachlan River [10–12]—ceased to flow [4–6]. Since then, the Willandra
lakes have remained dry. The direct connection between climate variability in the catchment
headwaters, fluvial activity in the Lachlan River and Willandra Creek, and the hydrology of the
Willandra Lakes, is difficult to test due to the scarcity of reliably dated paleoenvironmental evi-
dence [11–14]. The lakes were driven by distant climatic drivers, whereas the surrounding
dunefields responded to local conditions relating to the expansion and contraction of the conti-
nental arid zone [15–17].

It has been assumed that the lakes always filled to the same level, defined by the altitudes of
overflow points [5]. The shoreline levels of individual lakes were determined by their relative
positions within the overflow system [4, 5]. Lake Mungo was therefore assumed to fill repeated-
ly from its neighboring lake, Leaghur, to 68–70 m (Australian Height Datum; AHD), through-
out its lifespan as an active lake [4, 5]. However, this assumption was based on limited early
surveying using methods which lacked the precision now available with differential global posi-
tioning systems (dGPS). This limitation prevented accurate comparison of relative shoreline
levels, and definition of the influence of neotectonic activity on lake shoreline levels through
basin warping [4, 18–22].

It remains a challenge to establish what the archeological traces preserved at Lake Mungo
reveal about the way in which technological, economic and social strategies changed in re-
sponse to variable conditions. The poorly understood broader climatic context for landscape
change is one limitation. Systematic archeological surveys aimed to quantify occupation densi-
ty and subsistence strategies during different hydrologic phases began only recently [7]. The
landscape palimpsest at Lake Mungo indicates that humans continuously occupied the lunette,
or at least repeatedly visited the area, since arriving in the region during lake full conditions ca.
50 ka. Amongst the earliest traces of their activities are burials indicative of complex funerary
practices [3]. Evidence for direct interaction between people and the lakes is limited to the pres-
ence of fish remains within hearths created during lake drying phases [4, 5, 23]. The exploita-
tion of aquatic resources appears not to have been common during lake full periods [23],
despite occupation of the lunettes at these times [6, 7].

Here we examine new evidence for a short-lived, extremely high lake phase at Lake Mungo
which occurred during the transition into the last glacial maximum (LGM), during human oc-
cupation of the region. We establish that this “mega-lake” shoreline lay 5 m above the main
lake full level and connected Lake Mungo with neighboring Lake Leaghur for a short period of
time. We assess the possible causes of the short-lived mega-lake and its implications for climat-
ic change. We discuss human responses to the sudden, extreme landscape changes associated
with the mega-lake and the archeological traces from this period. Our results provide new in-
sights into climatic change, human behavior and resilience in the deep past.
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Results

Identification and characteristics of the Lake Mungo shorelines
During geological surveys of the Mungo lunette [6, 7], an additional line of beach gravels was
observed which sits substantially higher than the main shoreline. We clarified the elevation of

Fig 1. Location of Lake Mungo and the extent of its shorelines based on digital elevation models (DEMs). A. DEMs illustrating the Mungo lake
shorelines during the mega-lake (75 m AHD) and main high lake phases (68–70 m AHD). The locations of surveyed transects of the shorelines are shown,
including the lateral 75 m AHD beach transect (WOC beach transect), the dating and sedimentology transects (1. Northern lunette; 2. Central lunette). The
location of channel sediment dating is also shown (3). B. Location of Lake Mungo within theWillandra Lakes system, and within Australia (inset). C. DEM of
the northern Mungo lunette island during the mega-lake phase, showing the extent of the two connecting channels. The locations of the northern lunette
transect (1) and channel dating study (3) are also shown.

doi:10.1371/journal.pone.0127008.g001
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the main shoreline and compared this with the newly identified, higher elevation shoreline by
surveying with dGPS; confirmed the mega-lake sediments as deriving from shoreline facies;
and reconstructed the mega-lake event using a digital elevation model (DEM).

In order to quantify relative shoreline levels, we first surveyed the main Mungo shoreline
using dGPS. Its elevation was previously assumed to lie at 68–70 m AHD, based on the level of
the Lake Leaghur overflow channel [4, 5]. The eastern and southern shoreline comprises gently
sloping gravel bands containing non-local silcrete and quartzite [4]. Erosion of the lunette has
resulted in discontinuous exposure of these gravels. On the western lake margin, the main
shoreline level is expressed by wave-cut benching. We surveyed the main shoreline along a 250
m transect in the southern locality of Joulni, and found that the shoreline lies higher (71 m
AHD; S5 Fig) than previously postulated [5]. We identified wave-cut benching corresponding
to the major shoreline at eight locations along the western lake margin. Results confirm an ele-
vation varying between 69–72 m AHD (S1 Table; S2 Fig; S3 Fig; S4 Fig). The observed variation
in shoreline elevation of 3 vertical metres across Lake Mungo provides concrete evidence for
neotectonic warping of the basin over time. Variation on this scale cannot be attributed solely
to wave set up under prevailing wind directional change.

We then undertook surveying of the newly identified, higher shoreline level. Beach gravels
associated with the mega-lake shoreline were surveyed along a 2.5 km transect of the central
portion of the lunette, and along an additional transect in the northern part of the lunette. Our
surveys yielded consistent elevations of 74–75 m AHD (Figs 1; 2; S1 Fig). Surveying along the
western shoreline (Fig 1) identified benching consistent with wave-assisted erosion at 74–75 m
AHD at four sites (S1 Table; S2 Fig; S3 Fig). These results confirm an additional, previously un-
identified shoreline consistently 3–5 vertical metres above the main shoreline.

The sediments of the mega-lake shoreline lunette on the lake’s eastern and northern mar-
gins grade from beach gravels into a sandy beach foredune, which we have named the Red Lu-
nette (RL; S8 Fig; S9 Fig). The beach gravels comprise a mixture of wave-reworked soil
carbonate nodules originally of local or distal pedogenic origin, and distally-derived quartzite
and silcretes (S9 Fig). The RL sandy foredune comprises subrounded red sand and forms a
thin, well defined dune which can be observed in exposure at several points along the central
and northern parts of the lunette. The RL foredune sands contain partially preserved iron
oxide coatings (S8 Fig) which suggest local reworking of underlying iron oxide-rich units (Gol-
gol or Lower Mungo). The RL sediments are similar in character to the Lower Mungo unit (S8
Fig; S4 Table), which also represents a lake full phase [6]. The RL sediments also contain a sub-
stantial proportion (13–28%) of silt-sized material (S10 Fig; S5 Table; “wustenquarz” [24]).
The fine silts were most likely generated by coeval eolian activity in the local dunefields [16].
The RL sediment characteristics are consistent with a high lake level phase with sufficient wave
energy to transport gravels around the lake.

We reconstructed the newly identified shoreline based on adjusted Shuttle Radar Topogra-
phy Mission (SRTM) DEMs, combined with field dGPS data (Fig 1A). The mega-lake event re-
sulted in overflow from Lake Leaghur at two points which reached 5 m depth in places, and
included two channels>190 m wide and>2 m deep. Mega-lake flooding isolated the north-
ernmost lunette as an island (Fig 1C).

The stratigraphy of the main channel linking Lakes Leaghur and Mungo (Fig 1A and 1C)
was also investigated in order to identify subaqueously deposited sediments associated with the
mega-lake phase, and to ascertain the elevation of the channel at this time. Recent gully erosion
has exposed the stratigraphy at the lowest point in the landscape (70.9 m AHD). The sedimen-
tary sequence is dominated by laminated, upward-fining packages of pale sands, interbedded
with clayey sand laminae, indicative of alternating pulses of bedload transport deposited during
lake filling, and fluvial-eolian infill deposited during oscillating lake levels, respectively. The
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sandy packages are occasionally interbedded with more clay-rich layers suggesting periodic
cessation of channel activity consistent with lake drying. Within the exposed sequence, howev-
er, no single stratigraphic package could clearly be associated with the mega-lake facies. The
RL-phase channel unit can therefore only be identified by correlating RL dune sediments with
channel sands of the same age.

We calculated the area and volume of the main and mega-lake based on the DEM recon-
structions for comparison (S2 Table). The mega-lake represents a 17% increase in lake area,
and a volume increase of 249%.

Timing and duration of the mega-lake
Stratigraphically the RL postdates, and in some places truncates, a lake drying unit (Upper
Mungo). It grades upwards into alternating sands and clayey sands (Arumpo unit), which rep-
resents a phase of oscillating lake levels reaching the main shoreline level.

The timing of the mega-lake was determined by optically stimulated luminescence (OSL)
dating of beach, foredune and backdune RL sediments taken from two transects in the central
and northern lunette (Fig 2). Sediments both under- and overlying the RL were also dated. Sin-
gle aliquot and single grain quartz ages are in agreement (Table 1) and yield a weighted mean
age and standard deviation (1σ) for the RL of 23.7±1.0 ka. This indicates a relatively short-lived
high lake phase.

The timing of channel sediment deposition was likewise determined by OSL dating of the
lower and middle sediment units within exposed channel sediments linking Lakes Leaghur and
Mungo, to ascertain channel elevation at the time of the mega-lake, and consequently its maxi-
mum depth. Single grain quartz ages indicate sandy fluvial-eolian deposition at a depth of 1.5
m below the present-day surface (69.4 m AHD) at 30.7±3.5 ka, and pulse of subaqueous sandy
bedload deposition 1.0 m below the surface (69.9 m AHD) at 18.8±1.6 ka (Table 1). Several
sandy laminae too thin for sampling lie between these two samples; at least one of these must
correlate with the 23.7±1.0 ka age of the megalake, but cannot be distinguished.

The channel sediments associated with the mega-lake phase must therefore have been de-
posited at an elevation somewhere between 69.4–69.9 m AHD. Since the mega-lake shoreline
reached 74–75 m AHD, this implies a maximum channel depth within the main channel of at
least 4 m. This depth has corresponding implications for human mobility across the channels
during the mega-lake.

The mega-lake immediately precedes the LGM phase of oscillating lake filling and drying
associated with the Arumpo unit [6]. The weighted mean age of the Arumpo unit is 21.8±3.4
ka (1σ). Although the older part of this range overlaps with the RL, five of the 16 Arumpo sam-
ples dated yield ages more than 2σ younger than the RL (Fig 3A), indicating that the Arumpo
sequence is distinctly younger, and of longer duration, than the mega-lake.

The mega-lake followed a depositional hiatus indicated by truncation of the underlying
Upper Mungo unit. The unconformity suggests dry lake conditions due to lack of inflow from
the Willandra Creek. Prior to the depositional hiatus, oscillating lake levels and drying condi-
tions persisted between 43–31 ka (weighted mean age 36.6±4.6 ka).

We also provide new ages for the older lake-full Lower Mungo unit (51.2±9.9 ka), and for
eolian reactivation of the lunette following final lake retreat (7.4±0.8 ka)(Fig 2).

The mega-lake phase was therefore of relatively short duration, initiated after a depositional
hiatus associated with lake dry conditions, and immediately preceded the final phase of lake
filling (to the main shoreline level) and drying (Fig 3A). Its timing coincides with the transition
from the MIS 3 interstadial into the early glacial conditions of MIS 2.

MungoMega-Lake Event: Climate and Human Impact
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Fig 2. Schematic cross-sections showing the chronostratigraphy of the Lake Mungo lunette. A. Stratigraphy, OSL ages and sampling positions of the
central lunette transect, linking the RL beach with its backdune. B. Stratigraphy, OSL ages and sampling positions (both for OSL dating and particle-size
analyses) of the northern lunette transect. Uncertainties of the OSL ages are 1σ. The 75 m AHD shoreline is marked in both transects as a dotted line.

doi:10.1371/journal.pone.0127008.g002
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Archaeological occupation during the mega-lake
The mega-lake event postdates human arrival in the region, which took place during the Lower
Mungo lake full phase at least 20 ka earlier [3]. A 2 km survey area in the central Mungo lunette
shows that the RL contains traces of past human activity, mostly in the form of baked sediment
hearths, few of which preserve associated animal remains [7].

Table 1. Equivalent dose (De), dose rate data and OSL age estimates for the Lake Mungo lunette transects and Leaghur Channel samples.

Sample Depth (m) De (Gy) Dose rate data (Gy/ka) Age (ka)

Gammad Betae Cosmic Total

Red lunette beach–central lunette

EVA1112 1.8±0.1 38.9±1.1a 0.30±0.03 0.49±0.05 0.12±0.01 0.91±0.09 42.9±4.5

EVA1112 1.8±0.1 36.8±0.8a 0.30±0.03 0.49±0.05 0.12±0.01 0.91±0.09 40.6±4.2

EVA1113 1.2±0.1 23.4±0.6a 0.31±0.03 0.49±0.05 0.13±0.01 0.92±0.08 25.3±2.3

EVA1113 1.2±0.1 22.9±0.4a 0.31±0.03 0.49±0.05 0.13±0.01 0.92±0.08 24.8±2.2

EVA1114 1.3±0.1 24.4±0.8a 0.34±0.03 0.56±0.06 0.12±0.01 1.02±0.08 23.9±2.1

EVA1114 1.3±0.1 24.1±0.8a 0.34±0.03 0.56±0.06 0.12±0.01 1.02±0.08 23.6±2.1

EVA1115 1.3±0.1 11.1±1.0a 0.24±0.02 0.36±0.04 0.12±0.01 0.72±0.08 15.4±2.1

EVA1115 1.3±0.1 5.3±0.2b,c 0.24±0.02 0.36±0.04 0.12±0.01 0.72±0.08 7.4±0.8

EVA1115 1.3±0.1 12.9±0.5b 0.24±0.02 0.36±0.04 0.12±0.01 0.72±0.08 17.9±2.0

Red lunette backdune–central lunette
EVA1116 4.0±0.1 42.5±1.6a 0.33±0.03 0.50±0.05 0.09±0.01 0.92±0.08 46.4±4.5

EVA1116 4.0±0.1 39.8±0.9a 0.33±0.03 0.50±0.05 0.09±0.01 0.92±0.08 43.5±4.0

EVA1117 2.4±0.1 19.7±0.5a 0.25±0.03 0.37±0.04 0.11±0.01 0.72±0.08 27.2±2.9

EVA1117 2.4±0.1 17.0±0.3a 0.25±0.03 0.37±0.04 0.11±0.01 0.72±0.08 23.5±2.5
EVA1118 2.8±0.1 21.2±0.7a 0.32±0.03 0.50±0.05 0.10±0.01 0.92±0.08 23.0±2.1

EVA1118 2.8±0.1 20.3±0.4a 0.32±0.03 0.50±0.05 0.10±0.01 0.92±0.08 22.0±2.0

EVA1119 4.5±0.1 17.5±0.7a 0.11±0.01 0.15±0.01 0.08±0.01 0.34±0.07 51.5±10.1

EVA1119 4.5±0.1 17.4±0.7a 0.11±0.01 0.15±0.01 0.08±0.01 0.34±0.07 51.2±9.9

Red lunette transect–northern lunette

EVA1255 1.3±0.1 42.8±1.1a 0.40±0.04 0.58±0.06 0.12±0.01 1.10±0.09 38.9±3.2

EVA1256 1.0±0.1 23.4±0.7a 0.26±0.03 0.36±0.04 0.13±0.01 0.75±0.08 31.2±3.3

EVA1257 0.6±0.1 28.7±2.0b 0.53±0.05 0.61±0.06 0.14±0.01 1.27±0.10 22.5±2.4
EVA1258 0.7±0.1 18.7±0.5a 0.20±0.02 0.25±0.03 0.13±0.01 0.58±0.07 32.2±4.2

EVA1259 1.2±0.1 17.3±0.5a 0.18±0.02 0.19±0.02 0.12±0.01 0.50±0.07 34.7±5.1

EVA1260 0.5±0.1 21.6±2.4a 0.32±0.03 0.44±0.04 0.14±0.01 0.89±0.08 24.1±3.5

EVA1261 1.8±0.1 23.4±0.6a 0.36±0.04 0.54±0.05 0.12±0.01 1.02±0.08 22.9±1.9

Leaghur Channel

EVA1265 1.5±0.1 23.2±0.7a 0.29±0.03 0.35±0.04 0.12±0.01 0.76±0.08 30.7±3.5

EVA1269 1.0±0.1 39.8±1.0a 0.74±0.07 1.26±0.13 0.13±0.01 2.12±0.17 18.8±1.6

Single aliquot results are shown in plain text; single grain results in italics. Water contents of 5 ± 3% were used for all samples, with the exception of the

Leaghur Channel sands (3 ± 2%). Red lunette ages are shown in bold type.
a Calculated using the central age model of Galbraith et al. (1999).
b Calculated using the finite mixture model of Galbraith et al. (1999).
c This younger component represents 47% of the total population using finite mixture modelling, and most likely reflects the most recent reactivation

phase, and therefore the true age of this unit.
d Attenuated; determined using high resolution germanium gamma spectrometry.
e Attenuated; determined using beta counting.

doi:10.1371/journal.pone.0127008.t001
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More varied archeological traces were observed within the RL on the island that formed be-
tween the two inflow channels from Lake Leaghur (Figs 1C; 4). In situ archeological traces in-
clude baked sediment hearths and carbonate hearth stones, clusters of burned and fragmented

Fig 3. Lake Mungo chronostratigraphy and palaeohydrology, compared with palaeoenvironmental conditions in the Murray-Darling Basin (MDB).
The likely duration of the mega-lake phase (within 2σ of its weighted-mean age) is highlighted by dotted lines. A. Age-ranked chronology and relative
probability distributions for the stratigraphic units at Lake Mungo, based on combined OSL ages from this study and [6]. The numbers of age estimates are:
Reactivated Unit H (2), Arumpo (13), RL (4), Upper (7), Lower Mungo (4). The interpreted duration of the different stratigraphic units, and the
palaeoenvironmental summary, is shown at the top of the diagram. The weighted-mean ages for each of the units are shown at the base. Uncertainties of the
OSL ages are 1σ. B. Probability density distribution of sandy bedload units fromMDB rivers (N = 73; after [16]). Age-ranked individual OSL ages for
increased fluvial activity in the Lachlan River (N = 10; [15]) are also shown. Global marine oxygen isotope chronozones [53] are shown for context.

doi:10.1371/journal.pone.0127008.g003
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animal bones and fish otoliths, and stone artefacts (S17 Fig). In the survey transect on this for-
mer island, 8 hearths and 5 stone artefact scatters were identified in situ (Fig 4). At one locality,
two hearths were observed at different elevations within the RL dune stratigraphy, with 13 cm
of sediment accretion between them (S18 Fig). This indicates repeated human exploitation of
food resources on the island. The greater diversity of activity traces on the island compared to
the central lunette suggests that stranded prey rendered the island an attractive hunting

Fig 4. Surveyed archaeological traces and OSL sampling sites in the northern, former island, transect. A number of these traces are illustrated in the
Supplementary Information. The context for A3 and A4 are shown in S17A Fig; the baked sediment hearthstones are shown in detail in S17B Fig, and its full
assemblage in S17C Fig; A8 is shown in S17D Fig; the context for A5 and A6 is pictured in S17E Fig; A7 and A8 are shown in S18 Fig.

doi:10.1371/journal.pone.0127008.g004
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ground. However, it is also conceded that there were additional advantages to visiting the is-
land, not least being the substantially reduced travelling distance and time involved in passing
over the island in order to travel between the western and eastern shorelines, compared with
travelling by foot via the southern perimeter.

In situ stone artefacts have been observed in the RL sediments both on the island (Fig 4)
and on the main lunette east of the lake. There is no raw material source for stone tool manu-
facture at either of these localities, implying transport of raw stone from a distant quarry or de-
posit. Although the raw (silcrete) material source cannot be identified, the nearest possible
sources are located on the Lake Mungo western shoreline or further to the west or north.

Discussion

Causes of the mega-lake event
The mega-lake event indicates a substantial, short-lived, rapid rise in shoreline level up to 5
vertical metres above the main lake shoreline, around 24 ka. The two most likely drivers for
this event are climate and neotectonic warping of the lake basin. Climate is more likely to have
been the main influence on the mega-lake event, although there was probably interplay be-
tween the two factors.

The flooding of Lake Mungo to mega-lake level implies a higher availability of water in the
catchment due to increased precipitation and runoff efficiency. The rise in shoreline level up to
5 vertical metres above the main shoreline–and corresponding increase in lake volume above
main lake full levels by 249%—suggests that the flooding process was a sustained, if short-lived,
event rather than the result of seasonal flooding. Fluvial and lacustrine archives within south-
eastern Australian catchments also indicate that more water was available in the hydrologic
system up to 24 ka [11–13, 25–27]. Larger river channels and higher bedloads in the Lachlan
[12], and in other rivers of the Murray-Darling system [13], peaked just prior to the mega-lake
event (Fig 3B). Lake Urana, on the Riverine Plain upstream of Lake Mungo, also filled at this
time [28].

The greater availability of water during the mega-lake event was accompanied by decreasing
temperatures corresponding to the initial onset of the MIS 2 glacial phase. This is indicated by
a transition to glacial conditions [29] and periglaciation of highland regions neighboring the
Willandra/Lachlan catchment headwaters [30, 31].

The additional influence of neotectonic activity on the Mungo shorelines through basin
warping cannot be precluded [18, 19, 21]. Variation in elevation of the main gravel and wave-
cut benching shoreline across Lake Mungo by up to three vertical meters indicates that some
degree of warping, potentially over multiple events, has influenced basin morphology during
the late Pleistocene. Seismic warping has been identified in the form of morphotectonic linea-
tions across southeastern Australia [19, 21, 32, 33], and has affected lake basin morphology at
sites south and west of Lake Mungo [21, 34]. However, at present the magnitude of seismic ac-
tivity and its mechanism is poorly understood [22]. Neotectonic activity is unlikely to have
been the main cause of mega-lake shoreline level, since its elevation is consistent across the
basin, and the event was so short-lived. Therefore, while neotectonic influence is possible, cli-
mate is more likely the main driver of mega-lake flooding.

Implications for climate
The timing of the mega-lake at 24 ka corresponds to the early transition into the LGM. The
sedimentary characteristics of the RL yield a snapshot of both distant and local climatic condi-
tions prevailing at this time. Lake Mungo filled in response to a pulse of increased precipitation
and runoff in the distant headwaters [12, 13]. At the same time, local eolian activity in the
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dunefields [16, 17] and distal dust transport [35, 36] intensified. The event took place against a
backdrop of decreasing temperatures [13, 14]. Collectively this evidence suggests coeval
humid, cooling conditions in the temperate highlands, with aridification and cooling–and ex-
pansion of the arid zone–on the semi-arid desert margins where the Willandra Lakes are locat-
ed. The apparent disparity in rainfall regimes across the temperate latitudes of southeastern
Australia contrasts with the prevailing view of the Australian LGM as a simple descent into
cold, arid climates [8, 17, 37]. Evidence from the Mungo mega-lake suggests that the transition
into the LGM was not only non-linear, but also spatially variable.

Implications for human behavior
The sudden flooding of Lake Mungo during human occupation of the area indicates highly
flexible responses to short-lived, extreme conditions. Occupation of the Mungo lunette was
continuous since the first arrival of humans to the region from ca. 50 ka, through subsequent
lake level oscillations including the mega-lake event, until the present dry lake conditions [3,
6]. Potential effects of the mega-lake on people are manifold, with implications for mobility in
the landscape–including navigation across water–and the accessibility of food resources.

Mobility across the landscape around Lake Mungo was substantially reduced during the
mega-lake event. The flooding of Mungo separated the western shoreline from the eastern lu-
nette by>600 m of water, including a 190 m wide channel>2 m deep (Fig 1). Access across
the lake bed (e.g. [38]) or around the northern lake margins would no longer have been possi-
ble. The distances needed to reach the surrounding open plains to access large mammalian
prey or high quality raw materials for stone tool manufacture would have
increased substantially.

Mega-lake Mungo nevertheless remained an integral part of the settlement system, which
raises questions as to how people moved around the flooded landscape. Key evidence lies in the
occurrence of hearths and stone artefacts within RL sediments on the island. The preservation
of multiple hearths at different stratigraphic levels within the RL (Fig 4; S18 Fig) indicates re-
peated exploitation of food resources on the island, rather than a single opportunistic visit. The
occurrence of stone artefacts in the RL sediments both on the island and on the main lunette,
given that there is no raw material source at either location, indicates that the stone must have
been transported to the island and lunette from a distant source, whether from the western side
of the lake or further west or north. Regardless of the exact location of the source, raw stone
material found on the main lunette must have been transported either across the flooded chan-
nels via the island, or for substantially greater distances around the southern margins of
the lake.

The presence of both hearths and stone artefacts on the island provides concrete evidence
that people repeatedly crossed the inflow channel, carrying their tools and hunting equipment
with them. The two possibilities for crossing to the island are swimming and transportation by
watercraft. Ethnographic data suggests that Aboriginal Australians occasionally transported
stone tools in their hair or in small bags [39–42], making swimming while carrying stone tools
a feasible solution. However, the more parsimonious hypothesis is that some form of watercraft
was adopted as a means of transport for repeated visits to the island.

The likely use of watercraft to travel across the mega-lake–an event which followed a dry
lake phase [6]–implies a highly flexible response to the sudden change in conditions, and possi-
bly a resurrection of boat technology. While Aboriginal Australians deliberately migrated be-
tween Sunda and Sahul by boat some time prior to 45 ka [43], and regularly used watercraft to
navigate coastal regions from the mid-Holocene [44], there is a distinct lack of evidence for pe-
lagic fishing and navigation to offshore islands around the Australian coast for the
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approximately 40 ky following initial colonization until the mid-Holocene [45]. This has led to
the assumption that watercraft technologies were abandoned after initial arrival and dispersal
on the continent [45, 46]. If waterfaring was adopted to counter the challenges to human mo-
bility about the landscape during mega-lake Mungo at 24 ka, then this represents the resurrec-
tion of a technology which had apparently been abandoned across the continent 20 ky earlier–
at a location well inland and far from any major navigable rivers in the north of Australia. The
inference from mega-lake Mungo at 24 ka is therefore that either boat technologies persisted in
and were dispersed throughout the semi-arid zone after colonization and were co-opted to
mega-lake conditions, or that people developed new technologies for water navigation in re-
sponse to the sudden change in conditions. Given the distances in time and space involved, we
speculate that the latter is more likely, but concede that a lack of more concrete evidence pre-
vents confirmation at present.

Materials and Methods
Permission to undertake fieldwork in the Willandra Lakes World Heritage Area was granted
by the Technical and Scientific Advisory Committee of the Willandra Lakes World Heritage
Area, the Elders' Council of the Paakantyi/Barkindji, Ngiyampaa and Mutthi Mutthi, and the
Office of Environment and Heritage (New South Wales National Parks and Wildlife Service).

Mapping, survey and field sampling
The mega-lake shoreline, and its associated sandy RL dune, was identified during stratigraphic
mapping of the central part of the lunette. Mapping was undertaken using ground-truthing
methods previously described [6], with air photos used as a base map and confirmed using
hand-held GPS and differential GPS (dGPS) surveys georectified to Geodetic Datum of Austra-
lia (GDA) 1994, MGA zone 54, using the Australian Height Datum (AHD). Stratigraphic maps
were then integrated with the locations of archeological traces recorded in georectified three-
dimensional space using either total station or dGPS [6]. The elevation of the mega-lake shore-
line was confirmed by dGPS surveying of beach gravel exposures along a 2.54 km transect of
the central part of the lunette. Topographic surveys of the western and southern Lake Mungo
shoreline were undertaken at 11 locations using dGPS to identify wave-cut benching during
high lake phases. Erosion of the lunette has resulted in variable preservation of stratigraphic
units along its length [6]. Thin sandy units such as the Lower Mungo and RL are particularly
susceptible to erosion, which has partially removed these units from the stratigraphic record.
Therefore we selected the two locations along the lunette where the RL was best exposed in
cross section. These central and northern lunette transects were surveyed using dGPS and
formed the focus of sedimentological and chronological investigations.

Lake shoreline reconstruction from digital elevation models
Shorelines were reconstructed in ESRI ArcMap from SRTM DEMs (v4.1) provided by CIAT
[47], reprojected to the GDA, MGA zone 54 using bilinear resampling. The greater accuracy of
the dGPS data and DEMs derived from high-resolution (1m) stereo air photos (GDA 1994,
MGA zone 54, AHD) was used to cross-check the accuracy of the SRTM DEM data. We found
that the SRTM DEMs systematically overestimated the elevations by an average of 2.7 m
(SD = 1.84) over a sampled area of approximately 25.2 km2 (S1 File). Therefore, we partially
corrected for this systematic error by flooding the DEM to 1 m higher than the lake level eleva-
tions determined using dGPS. While conservative, this correction factor was adopted because
we felt that, given the fluctuations in accuracy of the SRTM elevation data, it provided the most
reliable minimum estimate for the extent of the mega-lake.
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Sedimentology
Samples for micromorphology, were collected from different stratigraphic units along the cen-
tral lunette transect. Oriented samples were collected by driving 10 cm-long sections of rectan-
gular 10x5 cm plastic piping into cleaned exposures. Thin sections were prepared by
impregnation of the samples with polyester resin. Each thin section was analyzed using previ-
ously described methods [48] using an optical petrographic microscope with polarized light.
Mineralogy, grain shape and roundness, pedogenic development, and the presence or absence
of clay pellets were documented (S4 Table). Samples for particle-size analysis were collected
from the northern transect along the RL catena from subaqueous to backdune (S5 Table). Par-
ticle-size was analyzed using a Malvern Mastersizer 2000 laser particle size analyzer at 0.25Ф
size intervals, with a minimum diameter for analyses of 0.02 μm (S10 Fig). Samples underwent
minimal processing to prevent the breakdown of clay aggregates; water was gently added to the
samples, which were then slowly swirled within beakers prior to analysis.

OSL dating
OSL dating was undertaken using previously published methods [6]. The aim was to provide a
comprehensive chronostratigraphy for the Red Lunette and its bracketing units along the two
transects, and to ascertain the depth of the channel bed during the mega-lake relative to the
present day (Table 1). Samples were collected by driving 4 cm diameter, 10 cm long stainless
steel tubes horizontally into cleaned exposures, with additional material surrounding the tubes
collected in sealed plastic bags for dose rate analyses. OSL samples were processed under low
intensity red light; sand sized quartz (180–212 μm) was isolated using a range of chemical and
physical techniques [6]. Samples from the central transect were measured using both single ali-
quots (1 mmmask; 24 aliquots per sample) and single grains (>600 grains per sample). Single
grains only were measured for the northern transect samples. Equivalent dose (De) measure-
ments were undertaken using an automated Risø TL-DA-20 reader with a single grain laser at-
tachment [49, 50], using the single-aliquot regenerative-dose (SAR) protocol [51, 52].
Individual grains were selected for analysis based on luminescence characteristics [6]. De was
determined using either the central age [53] or finite mixture model [54]. The Supporting In-
formation provides additional data regarding assessments of sample reliability for dating (S6
Table; S7 Table; S8 Table; S11 Fig; S12 Fig; S13 Fig; S14 Fig; S15 Fig; S16 Fig). Dose rates were
determined using beta counting and high resolution germanium gamma spectrometry (the lat-
ter undertaken at the VKTA laboratory in Dresden, Germany) converted to dose rates [55], in-
corporating present-day moisture content with a large error to allow for temporal variability
[56], added to the cosmic ray component [57].

Supporting Information
S1 Fig. Confirmation of the elevation consistency of the Red Lunette mega-lake shoreline
at ca. 75 m AHD, based on dGPS measurements taken during ground truthing. Clockwise
from top left: Location of the transect within the Lake Mungo lunette; transect from ground
truthing, based on observation of shoreline features; lateral view of consistency of shoreline ele-
vation, projected onto the digital elevation model generated from the aerial photos collected
from the central portion of the lunette. Note that the dGPS data and aerial photo data are more
accurate than the shoreline reconstruction based on the SRTM data, which accounts for the di-
vergence between the directly surveyed shoreline and that shown in the map top right.
(TIF)
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S2 Fig. Transect cross-sections 1–4 for the northwestern Lake Mungo shoreline. Inset shows
the location of these transects relative to the reconstructed main (ca. 70–71 m AHD) and
mega-lake (ca. 75 m AHD) shorelines.
(TIF)

S3 Fig. Transect cross-sections 5–7 for the western Lake Mungo shoreline. Inset shows the
location of these transects relative to the reconstructed main (ca. 70–71 m AHD) and mega-
lake (ca. 75 m AHD) shorelines.
(TIF)

S4 Fig. Transect cross-sections 8–9 for the southwestern Lake Mungo shoreline. Inset shows
the location of these transects relative to the reconstructed main (ca. 70–71 m AHD) and
mega-lake (ca. 75 m AHD) shorelines.
(TIF)

S5 Fig. Transect cross-sections for the southern Joulni area, transitional between the west-
ern Lake Mungo shoreline and its lunette. Transect 10 demonstrates the low elevation of the
lunette at this position of the lake. Transect 11 shows the consistent elevation of beach gravels
at ca. 70–71 m AHD.
(TIF)

S6 Fig. Accuracy of the available elevation data sources. A. SRTM DEM showing locations
where the SRTM data overestimates or underestimates elevations relative to high-resolution
(1m) AHD DEMs downsampled to match the spatial resolution of the SRTM DEM, as well as
the location of the N-S, W-E, and WOC beach transects. B. Elevation profiles of the SRTM and
downsampled AHD DEMs along the N-S transect, illustrating the systematic overestimation of
elevations in the SRTM data, as well as the extent of the water levels on the SRTM DEM if: a)
using the correct, corresponding AHD elevation value, b) applying a conservative 1m correc-
tion factor, and c) applying no correction factor. C. Elevation profiles of the SRTM and down-
sampled AHD DEMs along the W-E transect, illustrating the systematic overestimation of
elevations in the SRTM data, as well as the extent of the water levels on the SRTM DEM if: a)
using the correct, corresponding AHD elevation value, b) applying a conservative 1m correc-
tion factor, and c) applying no correction factor. D. Relationship between the elevation values
of the SRTM and downsampled high-resolution (1m) AHD DEMs, illustrating both the sys-
tematic bias in the SRTM data and the overall strong correlation between the SRTM and the
AHD DEM data. E. Relationship between the elevation values of the high-resolution (1m)
AHD DEMs and the dGPS elevation values obtained in the field, showing the strong correla-
tion between the two datasets and the lack of notable bias.
(TIF)

S7 Fig. Area used for estimating the area and volume of the Mungo mega-lake.
(TIF)

S8 Fig. Sedimentological characteristics of the stratigraphic units present in the central and
northern parts of the lunette, from youngest (top) to oldest (bottom).
(TIF)

S9 Fig. Characteristics of the Red Lunette stratigraphic unit. A. In situ exposure of the Red
Lunette gravel beach at 75 m AHD in the central part of the lunette, showing contacts between
the underlying Upper Mungo and overlying Arumpo units. B. In situ exposure of the Red Lu-
nette unit at 75 m AHD along the surveyed shorefront transect WOC 1. The beach gravels in-
clude non-carbonate rock gravels which indicate inflow of non-local clastic components. C.
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Lag surface at 73.5 m AHD in the northern part of the lunette, preserving non-local clastic
components associated with the Red Lunette unit. D. Non-local clastic components collected
from both in situ and lag surfaces associated with the 75 m AHD Red Lunette beach in both
the northern and central parts of the lunette.
(TIF)

S10 Fig. Bimodal particle size distributions, expressed as frequency percentage by volume,
for the Red Lunette stratigraphic unit along the northern lunette transect.
(TIF)

S11 Fig. Preheat plateau test results for single aliquots of sample EVA1112. Dose response
to preheat temperatures ranging between 180–280°C was measured; the results indicate no de-
pendence of dose on preheat temperature, and therefore the preheat and cutheat temperatures
of 260°C and 220°C respectively were chosen for SAR measurements of dose on all samples.
(TIF)

S12 Fig. Radial plots of dose distributions for the central lunette beach samples, EVA1112-
1115. Single aliquots are shown as open triangles and single grains as closed circles. The De for
single aliquots is shown by the shaded grey band, and for single grains is shown as a solid black
line. One exception is EVA1115, to which the finite mixture model was applied to the single
grains. In this case, the different populations are shown by multiple black lines, with the thicker
black line corresponding to the most likely age.
(TIF)

S13 Fig. Radial plots of dose distributions for the central lunette backdune samples,
EVA1116-1119. Single aliquots are shown as open triangles and single grains as closed circles.
The De for single aliquots is shown by the shaded grey band, and for single grains is shown as a
solid black line.
(TIF)

S14 Fig. Radial plots of dose distributions for the northern lunette transect samples,
EVA1255-1261. Since single grains only were measured for these samples, the radial plots
show only single grain data as closed circles and the calculated De as a shaded grey band, with
the exception of sample EVA1257, which was analysed using the finite mixture model. In the
latter case, the different populations are shown by multiple black lines.
(TIF)

S15 Fig. Radial plots of dose distributions for the channel sediment samples, EVA1265 and
EVA1269. Since single grains only were measured for these samples, the radial plots show only
single grain data as closed circles and the calculated De as a shaded grey band.
(TIF)

S16 Fig. Radial plot summarising the results of the dose recovery test applied to sample
EVA1255.
(TIF)

S17 Fig. Archaeological traces preserved within the RL, northern (island) transect. A.
Baked sediment hearth complex, looking upslope and up-section. A ruler sits immediately to
the left of the largest hearth. B.
(TIF)

S18 Fig. A. Exposure of two in situ baked sediment hearths within the RL, northern (island)
transect. The hearths sit at two elevations with 13 cm of sediment accretion between them
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(elevations shown in the insets (B) and (C)), indicating repeated occupation of the island.
(TIF)

S1 File. Supplementary file containing additional information relating to methods used for
lake shoreline surveys and shoreline reconstruction, sedimentological investigations, lumi-
nescence dating and archaeological observations.
(DOCX)

S1 Table. Summary of benching elevations representing shoreline erosion, indicating con-
sistent elevations for the main and mega-lake shorelines.
(DOCX)

S2 Table. Calculated area, volume and percentage change for the main and mega-lake
phases.
(DOCX)

S3 Table. Summary of the main characteristics and palaeoenvironmental interpretation for
each late Quaternary stratigraphic unit observed within the lunette. The location, codes and
ages for the OSL dating samples, including their position relative to the Red Lunette shoreline,
are also given.
(DOCX)

S4 Table. Summary of sedimentary characteristics for the different stratigraphic units
based on thin section micromorphology, in stratigraphic order from youngest to oldest.
(DOCX)

S5 Table. Particle size analysis data for the Red Lunette stratigraphic unit, northern lunette
transect, relative to facies. Paired OSL dating is shown, where relevant; in the cases of PSA
1–3, however, the Red Lunette unit was too thin for OSL sample collection.
(DOCX)

S6 Table. Overdispersion values for OSL samples. Single aliquot results are given in plain
text, single grain results in italics. Red Lunette samples are highlighted in bold type.
(DOCX)

S7 Table. Results from finite mixture model analyses.
(DOCX)

S8 Table. Calculated concentrations of radioisotopes determined using high resolution ger-
manium gamma spectrometry, analysed at VKTA Dresden. The gamma ray contribution to
dose rates was determined from these data, using the conversion factors of Adamiec and Ait-
ken (1998). Red Lunette data are shown in bold type.
(DOCX)
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