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We consider the cross-correlation search for periodic gravitational waves and its potential application to
the low-mass x-ray binary Sco X-1. This method coherently combines data not only from different
detectors at the same time, but also data taken at different times from the same or different detectors.
By adjusting the maximum allowed time offset between a pair of data segments to be coherently
combined, one can tune the method to trade off sensitivity and computing costs. In particular, the
detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in
amplitude sensitivity for a search with a maximum time offset of one hour, compared with a directed
stochastic background search with 0.25-Hz-wide bins, is about a factor of 5.4. We show that a search of
one year of data from the Advanced LIGO and Advanced Virgo detectors with a coherence time of one
hour would be able to detect gravitational waves from Sco X-1 at the level predicted by torque balance
over a range of signal frequencies from 30 to 300 Hz; if the coherence time could be increased to ten
hours, the range would be 20 to 500 Hz. In addition, we consider several technical aspects of the cross-
correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows
still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-
correlation search, in general, and as applied to a neutron star in a circular binary system. We consider the
effects of using a signal template averaged over unknown amplitude parameters: The quantity to which the
search is sensitive is a given function of the intrinsic signal amplitude and the inclination of the neutron-
star rotation axis to the line of sight, and the peak of the expected detection statistic is systematically offset
from the true signal parameters. Finally, we describe the potential loss of signal-to-noise ratio due to
unmodeled effects such as signal phase acceleration within the Fourier transform time scale and gradual

evolution of the spin frequency.
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I. INTRODUCTION

The low-mass x-ray binary (LMXB) Scorpius X-1 (Sco
X-1) [1] is one of the most promising potential sources of
gravitational waves (GWs) which may be observed by
the generation of GW detectors—such as Advanced
LIGO [2], Advanced Virgo [3] and KAGRA [4]—which
will begin operation in 2015 with the first Advanced
LIGO observing run, and Advanced Virgo and KAGRA
observations expected to follow in the coming years. Sco
X-1 is presumed to be a binary consisting of a neutron
star which is accreting matter from a low-mass
companion; its parameters are summarized in Table I.
Nonaxisymmetric deformations in the neutron star can
give rise to gravitational radiation, most of which is
emitted at twice the rotation frequency of the neutron
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star [10].] Such deformations can be maintained by the
accretion of matter onto the neutron star. It has been
conjectured [12] that the neutron star’s rotation may be in
an approximate equilibrium state, where the spin-up
torque due to accretion is balanced by the spin-down
due to gravitational waves. Scorpius X-1’s high x-ray
flux implies a high accretion rate, which makes it the
most promising potential source of observable GWs
among known LMXBs [13].

Since Sco X-1 is not seen as a pulsar, its rotation
frequency is unknown. There is also residual uncertainty
in the orbital parameters which determine the Doppler
modulation of the signal, monochromatic in the neutron
star’s rest frame, which reaches the solar-system barycenter
(SSB). This parameter uncertainty limits the effectiveness of

1Additionally, unstable rotational modes of the neutron star, or
r modes [11], can lead to GW at 4/3 of the neutron star’s
rotational frequency.
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TABLE 1. Parameters of the low-mass x-ray binary Scorpius
X-1. Since the sky position is determined to microarcsecond or
better accuracy, the relevant astrophysical parameters with
residual uncertainty are those describing the orbit. Those are
the projected semimajor axis a, = asini of the neutron star’s
orbit, the orbital period P, and the time 7, at which the neutron
star crosses the ascending node (moving away from the observer),
measured in the solar-system barycenter. The orbital eccentricity
of Sco X-1 is believed to be small [1], and the present work
presumes the orbit to be circular for simplicity; consideration of
eccentric orbits would add two search parameters which are
determined by the eccentricity and the argument of periapse [5,6].

Note that the observational constraint in [1] is not on a,, itself, but

on the radial velocity amplitude K| = 2,,”—“;’ of the primary. We

could have formulated the parameter space in terms of K; and
Py, rather than @, and P, but this has no significant impact on
the accuracy of the method, since the uncertainty in a, is
dominated by that associated with K. Finally, note that the
orbital reference time 7, (which we quote as the time of
ascension of the compact object, 1/4 cycle before the time of
inferior conjunction of the companion quoted in [7]) can be
propagated to a later epoch by adding an integer number of
periods, at the cost of increasing the uncertainty due to the
uncertainty in the period itself.

Parameter Value Reference(s)
Right ascension 16"19™55.0850° [8] from [9]
Declination —15°38'24.9” [8] from [9]
Distance (kpc) 2.84+0.3 9]
a, (sec) 1.44 +0.18 [8] from [1]
t,se (GPS sec) 897753994 + 100 [7]
Py, (sec) 68023.70 + 0.04 [7]

the usual coherent search for periodic gravitational waves
[10]. The first search for GW from Sco X-1 with the first
generation of interferometric GW detectors, using data from
the second LIGO science run [8], was limited to six hours of
data for this reason. A subsequent search with data from the
fourth LIGO science run [14] used a variant of the cross-
correlation method developed to search for stochastic GW
backgrounds, treating Sco X-1 as a random unpolarized
monochromatic source with a known sky location [15].2
The stochastic analysis formed the inspiration for a new
method to search for periodic gravitational waves with a
model-based cross-correlation statistic which takes into
account the signal model for continuous GW emission from
a rotating neutron star [21]. (This method has also been
adapted [22] to search for young neutron stars in supernova
remnants.) The present work further develops some of the
details of this method and the specifics of applying it to

?Other methods have been developed, specialized to search for
LMXBs. These include summing over contributions from side-
bands created by Doppler modulation [16,17], searching for such
modulation patterns in doubly-Fourier-transformed data [18,19],
and fitting a polynomial expansion in the Doppler-modulated
GW phase [20].
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search for gravitational waves from Sco X-1 and, by
extension, other LMXBs.

The paper is organized as follows: Section II reviews the
basics of the method and the construction of the combined
cross-correlation statistic using a new, streamlined formal-
ism. Section III works out the statistical properties of the
cross-correlation statistic, including the first careful deter-
mination of the effects of signal leakage and the unknown
value of the inclination angle of the neutron star’s axis to
the line of sight. It also considers in detail how the
sensitivity of the model-based cross-correlation search
should compare to the directed unmodeled cross-
correlation search for a monochromatic stochastic back-
ground. Section IV considers two effects related to the
dependence of the statistic on phase-evolution parameters
such as frequency and binary orbital parameters: a sys-
tematic offset of the maximum in parameter space from the
true signal parameters (which depends on the unknown
inclination angle), and the quadratic falloff of the signal
away from its maximum. The latter is encoded in a
parameter space metric, which we construct in general,
as well as for the LMXB search both in its exact form and in
a limiting form relevant if the observation time is long
compared to the orbital period. In Sec. V we consider
limitations to the method from inaccuracies in the signal
model, either due to slight variations in frequency (“spin
wandering”) arising from an inexact torque-balance equi-
librium, or due to phase acceleration during a stretch of data
to be Fourier transformed. Finally, in Sec. VI we summa-
rize our results and consider the expected sensitivity of this
search to Sco X-1.

II. CROSS-CORRELATION METHOD

The cross-correlation method is derived and described in
detail in [21]. In this section, we review the fundamentals,
using a more streamlined formalism and including a more
careful treatment of signal-leakage issues and nuisance
parameters.

A. Short-time Fourier transforms

Because the signal of interest is nearly monochromatic,
with slowly varying signal parameters, it is convenient to
describe the analysis in the frequency domain by dividing the
available data into segments of length 7'y and calculating a
short-time Fourier transform (SFT) from each. Since the
sampling time ¢ is typically much less than the SFT duration
T ., we can approximate the discrete Fourier transform of the
data by a finite-time continuous Fourier transform. If we use
the index K to label both the choice of detector and the
selected time interval, which has midpoint ¢, the SFT will be’

*Note that the factor e=#/:Tst appears in Eq. (2.25) of [21] with
the wrong sign in the exponent. However, given (2.2) for integer
k, this phase correction is simply the sign (—1) so the complex
conjugate does not change it.
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N-1
Xgr = ZXK(tK — T/2 + jot)e 12715k T 5y
=0

. tx+T/2 .
~ e~ imfiTsw / g xK(t)e—lzﬂfk(f—fk)d[
tK_Tsﬁ/z

tx+Tq/2 .
= (=1) / U (1) e 2=t gy, (2.1)
13

K _Tsfl/ 2
where the frequency corresponding to the kth bin of the SFT'is
k

f = kéf =
¢ Tsft

(2.2)

In practice, the data are often multiplied by a window
function w; = w(/‘s;;ﬂ”() before being Fourier transformed,
so that (2.1) becomes

N-1
.%}?k = ijKje_izﬂjk/N(St
Jj=0
tx+ T /2 r—t .
~ (—l)k/ w( K xg (1)e 2nfi=tx) gy,
tx—Te/2 Tsfl

(2.3)

In this work we assume that the windowing function is
nearly rectangular with some small transition at the
beginning and end, so that leakage of undesirable spectral
features is suppressed, but the effects of windowing on the
signal and noise can otherwise be ignored. The implications
of other window choices are considered in Appendix A.

B. Mean and variance of Fourier components
Let the data

xg (1) = hg (1) + ng(1) (2.4)
in SFT K consist of the signal hg(¢) plus random
instrumental noise ng(¢) with one-sided power spectral
density (PSD) Sk(|f]) so that its expectation value is

Elng ()] =0 (2.5)
and*
Elng (), (1)) = b5 / m%‘f')e—izﬂfv—wdf. 2.6)

If we write the noise contribution to the SFT labeled
by K as

4Strictly speaking, we should allow for data from adjacent SFT
intervals in the same detector to be correlated, but we assume that
the autocorrelation function K, (1 — ¢) = [ %Iﬂ) e 2l =) g f
falls off quickly compared to T, so that we can neglect the
correlation between noise in different time intervals.
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N-1 )
ﬁKk = Z nKje_lz’”k/Nél
j=0

Ts/2 .
~ / T (f)em2Ri-l=Ta/ D) gy
tx—Tyt/2

(2.7)

then (2.5) implies E[fix;] = 0 and we can use (2.6) to show
that

SK(fk)‘

Elngiit; ;| = 6k 10 Ty >

(2.8)
(As detailed in Appendix A, this is not the case for
nontrivial windowing, where noise contributions from
different frequency bins are correlated.) If we can estimate

the noise PSD Sk (fy), we can “normalize” the data to
define (as in [23])

- 2
Kk = XKk TSk (2.9)
which has mean
Elzga) = e = i = (2.10)
TSk
unit covariance
E[(zxx — #xi)(zLe = Hee)'] = Sk LOke, (2.11)
and zero “pseudocovariance”
El(zxx — pxa)(2Le = ure)) = 0. (2.12)

(This is because the real and imaginary parts of each zx, are
independent and identically distributed.)

C. Signal contribution to SFT

The signal from a rotating deformed neutron star is
determined by various parameters of the system, which can
be divided into the following categories [10].

(1) Amplitude parameters: intrinsic signal amplitude /),
the angles 1 and y which define the orientation of the
neutron star’s rotation axis (z is the inclination to the
line of sight and y is a polarization angle from
celestial west to the projection of the rotation axis
onto the plane of the sky), and the signal phase P, at
some reference time.

(ii) Phase-evolution parameters: intrinsic phase evolu-
tion (frequency and frequency derivatives) of the
signal, as well as parameters such as sky location
and binary orbital parameters which govern the
Doppler modulation of the signal.
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Those parameters determine the signal received by a
gravitational-wave detector at time ¢ as

h(t) = ho(F A, cos®(t) + F, A, sin®(z)) (2.13)
where F | and F, are the antenna pattern functions [10,24]
which change slowly with time as the Earth rotates. The
signal contribution to a SFT can be estimated by

hg(t) m ho{ FX A, cos(®x + 2af[t — 1k])

+ FEA, sin(®g + 2zf [t — 1x])} (2.14)
where we have Taylor expanded the phase about the
time fx:

D(t(r)) ~

The validity of this approximation will be one of the
limiting factors which determines the choice of SFT
duration T, as detailed in Sec. V B.

The form of (2.14) includes the following parameters

and definitions:

(i) A, =1 and A, = cos: depend on the inclina-
tion 1 of the rotation axis to the line of sight.

(ii) The antenna patterns FX and FX depend on the
detector in question, the sidereal time at tg, the sky
position a, J, and the polarization angle .

(iii) The relationship t(7) between the SSB time and the
time at the detector depends on the sky position and
time.” Thus the phase ®(t(r)) depends on time,
detector, ®,, fo.f1,..., sky position and—in the
case of a binary—the binary orbital parameters.

The signal contribution to bin k of SFT K is

Dy + 27f i (t —tx). (2.15)

~ o FKA, —iFKA,
th ~ ho(—l)kel(I)K SR ) m(f fK) (216)
where we have defined
61, (fx = fx) = /’K+T5u/2 e~ 2 fo)(=1) gt
l _Tsfl/2
= TsftSinc([fk - fK]Tsft) (217)

in terms of the normahzed sinc function sinca = 72 This
is plotted in Fig. 1.° The signal contribution will be largest
in the k,(th Fourier bin, defined by

Specifically, if 74 is the position of the detector and k
is the unit vector pointing from the source to the SSB, t(r) »
t— 7det . ]} / C.

®Previous sensitivity estimates [21,22] noted that 6r,(0) =
T and therefore replaced each of the finite-time delta functions
with the SFT length T, but a more careful treatment requires
that we keep track of spectral leakage caused by the signal
frequency not being centered in a SFT bin.
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- f
ki = —K1 L/ kT st (2.18)
whose frequency f i is closest to fg. (We have introduced

the notation that |« is the closest integer to a.) It will prove
useful to define, similarly to [23],7

Je—=Sk _
of

kgk =k = fxTon = =i+ (k—kg) (2.19)

where

Kx = Kb‘if = kg — fx T (2-20)

so that —5 < Kg < A simple search would consider, from
each SFT K, only the Fourier component x Kie closest in

frequency to the signal frequency f at the search param-
eters. However, as we will see, the sensitivity of the search
can be improved by including contributions from additional
adjacent bins, so we indicate by /Cg the set of bins to be
considered from SFT K, and we will construct a detection
statistic using Xg; for all k € K.

We can then write

- _ o FKA, —iFKA,
hir = ho(=1)*sinc (g ) e — 5 Ty (2.21)
which means that, from (2.10),
Elzxi] = Hxk

K K

~ ho(—1)*sinc (kg ) e'®% Frd, —iFA ZTSﬂ.
2 Sk
(2.22)

D. Construction of the cross-correlation statistic

For a given choice of signal parameters, which determine
kg for each SFT, and therefore kg; for each Fourier
component, it is useful to define®

o ZkeKK(_l)kSinC<KKk)ZKk

K = -
\/ Zk’echSIHCZ(Kkk/)
Z (=1)ksinc (i) 2g-

K kel

| -

(2.23)

[1]

"Note that our definition of kg differs by a sign from the one
used in [23].

Note that computations can be made more efficient by use of
the identity sinc(kg;) = (—l)kK‘k% so (—1)*sinc(kg;) =

(-1 )%K sin(7k ) )}Kk where only the final factor depends on the bin
index k € K.
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FIG. 1. Plot of 67, (f — f') defined in (2.17) which determines
the signal contribution to a given frequency bin of a short Fourier
transform (SFT) of duration Ty according to (2.16). Since the
spacing between frequency bins is 6f = 1/T;, there will be, for
a given signal frequency fk, one bin whose value of kg, =
(fr — fx)/8f lies between each pair of vertical solid lines.

This is still normalized so that

El(zx — px)(z — p)*] = ke, (2.24a)

E[(zx —px)(zp —p)] =0 (2.24b)

where now

o FKA, —iF¥ 2T
Jix ~ hye® TAL . iFy A, cH : sft. (2.25)
K

If we define vectors indexed by SFT number, we can write
(2.24) and (2.25) in matrix form as

Elz] = p, (2.26a)
El(z - w)(z—p)'] =1 (2.26b)
El(z - )z — )] = 0 (2.260)

where 1 is the identity matrix, O is a matrix of zeros, (-)"
indicates the matrix transpose and (-)" is the matrix adjoint
(complex conjugate of the transpose).

A real cross-correlation statistic p can be constructed
by defining a Hermitian matrix W and constructing
p =12'Wz = Tr(Wzz"). [Our chosen form of W will be
defined in (2.35).] Equation (2.26) tells us that

Elzz'] =1+ pyu’ (2.27)
where the second term is a matrix with elements
) 2T
prh; = WEREL ATy — 0 (2.28)

VSKSL

where APy, = & — P, is the difference between the
modeled signal phases in the two SFTs and I'x; is a
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geometrical factor which depends on i and y as follows
[compare Eq. (3.10) of [21]]:

1

Ty =3 (FYFLAL + FEFLAL +ilFSFL - FEFEALA,)

(A A

4 2

+id, A, (a¥bt —bKal)
A2 - A2

t— [(aXal —bXbL) cosdy

+ (a¥ bt + bKat) sin41//]>

(aKaL +beL>

(2.29)

where we have used the fact that the y dependence of the
antenna patterns FX , can be written in terms of the
amplitude modulation (AM) coefficients aX and bX as

FX = aX cos 2y + bX sin 2y, (2.30)

FX = —aXsin 2y + bX cos 2y. (2.31)

The AM coefficients [10] are determined by the relevant
sky position, detector, and sidereal time. They can be
defined [25] as af = e%dK, and bX = £ dX, where e
and €% are a polarization basis defined using one basis
vector pointing west along a line of constant declination
and one pointing north along a line of constant right
ascension. Note that : and y are properties of the source
which do not change for different SFT pairs, while a* and
b¥ depend only on the SFT (detector and sidereal time) and
sky position. It is also useful to note that the combinations

FKFL + FKFL = aKab + bKbL = 10I%F,  (2.32a)

FXFL — FEFL = aXpt — bKak = 10I%F  (2.32b)
are independent of .

Since terms in ['g; change signs if we vary cos: and v,
which are unknown, it is convenient, as proposed in [21], to
work with the average over those quantities, which picks
out the “robust” part:

1
Fall(vf = <FKL>cosz,x// = E (aKaL + beL)'
Note that I'¥} is real and non-negative, while I'g; is
complex. On the other hand, I'g; can be factored into ygyj,
while 'Y} cannot. If we define (again as in [23], but with a
different overall normalization) “noise-weighted AM coef-

(2.33)

ficients” aX and b¥ by dividing by ;r—"f and construct ['g;
sft
from those, we can write

ppy = hExE 2%l = h3Gy, (2.34)

or, as a matrix equation, g’ = h2G. Note that [21] did not
consider issues of spectral leakage responsible for Zg, and
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used a different convention for the placement of complex
conjugates in the atomic cross-correlation term, so their

in the present notation.
g1
2

oKL

@KL would be equal to EiKELL

.. G ..
Similarly, our :K’;LL corresponds to the combination

from [21].°
As noted in [21], an “optimal” combination of cross-

correlation terms would use a weight W proportional to G.

However, as described above, we work with G%| =

ExE, 225 % in order to avoid specifying the parameters
coszand y. For reasons of computational cost to be detailed
later, we limit the possible set of SFT pairs KL included in
the cross correlation to some set P, in particular, by
requiring that K < L and |tg — f;| < Tpax- Then we define

the Hermitian weighting matrix W by

N G‘We KL eP
Wi =< N(GE)* LKeP (2.35)
0 otherwise
so that the cross-correlation statistic is
p=12"Wz = Tr(Wzz")
=N Z Rz + GRE 2x2y)
KLeP
=N Z frave Z Z “sinc(kgy )sinc(kpz)
KLeP kely ek,
x (e ziz, + e Az 2] ). (2.36)

Since we assume that the list of pairs P includes no
autocorrelations, the matrix W contains no diagonal ele-
ments,'’ which implies Tr(W) = 0. We will later introduce,
and use when convenient, the notation that « labels a
(nonordered) pair of SFTs KL € P.

III. STATISTICS AND SENSITIVITY

In this section we consider in detail the statistical
properties of the cross-correlation statistic p which were
sketched in a basic form in [21]. In particular, we consider
the impact on the expected sensitivity of spectral leakage
and unknown amplitude parameters, and compare the
sensitivity of a cross-correlation search to the directed
stochastic search by analogy to which it was defined.

*Note that Eq. (3.10) of [21] is also missing a factor of
(—1)kk which should appear in I h , - This omission was

pointed out in [22], but Eq. (5) of [22] mcluded the wrong sign in
the phase correction and failed to stress that the relevant
frequency is f3 i rather than f.

"Note that 1f we analogously constructed the matrix to include
only diagonal terms, i.e., constructed a statistic only out of

autocorrelations, the statistic would be equivalent to that used in
the PowerFlux method [26].
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A. Mean and variance of cross-correlation statistic

The expectation value of the cross-correlation statistic is

E[p] = E[Tr(Wzz")] = Tr(W)
= RTr(WG) = p' W

+ W2Tr(WG)
(3.1)

where we have used the fact that W is traceless. The
variance is
Var(p) = Elp?] = El? =

E[z"Wzz"'Wz] — (u"Wp)?2.

(3.2)

The first term can be evaluated by writing z = (z — ) + p;
after some simplification we have

Var(p) = E[(z —p)"W(z —p)(z — ) W(z - p)]

+2u"W?p. (3.3)
Ordinarily we would need to know something about the
fourth moment of the noise distribution to evaluate the
expectation value, but since W contains no diagonal
elements, and the different elements of z — u are indepen-
dent of each other, the expectation value can be evaluated
using only the variance-covariance matrix of z to give
Var(p)

= TrW2 4 25" W2 = TrW? + 212 TrW2G.

(3.4)

We choose the normalization constant N so that p has unit
variance in the limit #3 — 0, i.e.,

1 =Tr(W?) = ZZ Wi Wig = 2N |GRE
KLeP
(3.5)
1.e.,
2_9 Z | ave|2 =9 Z :%(:% ave)2 (36)

KLeP KLeP

Written in terms of SFT pairs, the expectation value of
the statistic is

Elp] = B2Tr(WG)
=N3> (GRiGiy + GRiGry)
KLeP

= Nh32 Y ZRERel
KLeP

(3.7)

Looking at (2.29) we see that the real part of I'g; has a
piece proportional to I'Y; and a piece that depends on y:
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S5AT+ AL AT - AL

Rel'y) =5———Tki +—— (FEFL — FXFY).

(3.8)

The sum over SFT pairs KL can be broken down as a sum
over detector pairs, over time offsets g — ¢;, and over the
time stamp % (tx + t;) halfway between the time stamps of
the SFTs in the pair. In an idealized long observing run, if
the detector noise is uncorrelated with sidereal time, the
sum over 1(rg +1,) means we are averaging the two
expressions (aXal + bXbE)? and (aXat + bXbL)(FEXFL -
FXFL) (the latter of which depends on the polarization
angle ) over sidereal time. Because the former is positive
definite and the latter is not, this average tends to suppress
the y- dependent term. This is in addition to the fact that
A ;A; > A =, possibly substantially, depending on the
value of i, as illustrated in Fig. 2. If we neglect the second
term in (3.8), Eq. (3.7) becomes

5"42 +"42 =2 = ave
Elpl » NGS5 2250 S =
KLeP

= (k") \/ Y SE )’ (3.9)
KLeP
where
SA + A2
heT = hy EL;A (3.10)

is the combination of s, and cos: that we can estimate by
filtering with the averaged template.

Since we have normalized the statistic so that Var(p) =
1 for weak signals, the expectation value (3.9) is an
expected signal-to-noise ratio for a signal with a given
e, This means that if we define a SNR threshold p™ such
that p > p™ corresponds to a detection, the signal will be
detectable if

ave 2) ~l/4

eff / i =222 (
hg™ 2 <22KLGP“K“L (3.11)
B. Impact of spectral leakage on estimated sensitivity

Finally, we consider the impact of the leakage factors of
=2 _ a2 :
the form Z = > kekx sinc (kkx) on the expectation value.
Expanding these expressions, we have

Elp] ~ ()2 (2 S (g

KLeP

X Z sinc? (kgy) Z sinc? (K,j)> 1/2. (3.12)

keky ek,
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FIG. 2. Plot of === AL +A and A*ZAX, the coefficients of the two

A2+ A2
contributions to ReF 1 1n (3.8). The factor

2
5< 22> where (hgT)? is the combination of / and cos: approx-

1mately measured by the cross-correlation statistic, as shown in,
e.g., Eq. (3.9).

is also equal to

If we choose only the “best bin” kx = l~cK from each SFT,
defined by (2.18), we have

=2 = sinc?(kg).

(3.13)
If, instead of the best bin whose frequency f i is closest to

fx, we take the m closest bins to define Kg, the sum
becomes

IEK+L(m—1)/2J
sinc? (kky)
ke=kx—[(m=1)/2]

=2 = E sinc? (kky)

keky
Lm=1)/2]
= Z sinc? (kg + )
s=—[(m-1)/2]

(3.14)

where |a| < a and [a] > a are the integers below and
above a, respectively. Note that, because of the identity'!
So® _sinc?(k + s) = 1, valid for any «, the best we can
do by including more bins is =% < 1 and therefore'

Elp] < (k') \/W
KLeP

The sensitivity associated with the inclusion of a finite
number of bins from each SFT will depend on the value of
—1 < kg <1 corresponding to the signal frequency fx in
each SFT. We can get an estimate of this by assuming that,

(3.15)

""This is most easily proved by writing sinc(k + s) =
f_l{fz e +)tdt and using Y2 e =30 51—t +5).
Previous sensitivity estimates [21,22] were missing the factor

of Z2=2 and therefore slightly overestimated the sensitivity.
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over the course of the analysis, the Doppler shift evenly
samples the range of k values, and writing

Elp] ~ (5" ¢2<EZ>2 > ()

KLeP

= (R 2> (%) (3.16)
KLeP
with
= <Zssincz(1< + s)> (3.17)
where (-), indicates an average over the possible offsets

within the bin. We can numerically evaluate

(B%) = Z(sincz(lc +5)),
[(m—l)/2J 1/2
= Z 2/ sinc?(k + s)dk
s=—[(m-1)/2] 0

m/2
=2 / sinc?xdx
0

as shown in Table II.

Since most cross-correlation searches will be computa-
tionally limited, the question of how many bins to include
from each SFT is one of optimization of resources. The
value of E[p] for a given g, and therefore the sensitivity of
the search, can be increased by including more frequency
bins from each SFT, but this will involve more computa-
tions and therefore more computational resources. If
instead those resources were put into a search with a larger

T max» the value of 3, <p(I%F)? would be higher. Naively,
one might expect the computing cost to scale with the
number of terms to be combined, and therefore with the
square of the number of bins taken from each SFT. So
increasing from m = 1 to m = 2 could take up to 4 times
the computing cost. On the other hand, for a fixed number
of bins, we suppose that the cost will scale with the number
of SFT pairs to be included times the number of parameter
space points to be searched. Typical behavior will be for the
density of points in parameter space to scale with T, for
some integer value of d; as described in Sec. IV B, for a
search over frequency and two orbital parameters of an
LMXB, as long as T, is small compared to the binary
orbital period, d = 3. Since the number of SFT pairs at
fixed observation time will also scale like 7', the overall
computing cost will scale like 74£!, and quadrupling the
computing time would mean multiplying the possible T,

(3.18)

and thus the number of terms in the sum (3.16) by 47+, This
would increase E[p] for a given AT by a factor of

4707 = 271, For d = 3, this is 2'/4 ~ 1.19, which is very
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TABLE II. Contributions to (Z?), defined in (3.18), from
inclusion of multiple SFT bins. We see that using a single bin
from each SFT leads to only around 77.4% of the maximum
sensitivity given by (3.15), but that we can recover over 90% of
this sensitivity by using two bins and over 95% by using four bins
from each SFT. This table applies for rectangularly windowed
data; using other window options further reduces the expected
SNR, as described in Appendix A. The table also assumes that the
various Doppler modulations move the signal frequency around
to accomplish an average over the fractional offset of the signal
frequency from the center of the bin. The validity of this
approximation is explored in [27].

m 1 2 3 4 5 6

0.774 0.129 0.028 0.019 0.009 0.007
0.774 0903 0.931 0.950 0.959 0.966

Contribution
Cumulative

slightly more than the benefit 83(7)3 ~ 1.17 from including a

second bin from each SFT. However, the assumption that
computing cost scales like m? is likely an overestimate
(since most of the operations can be done once per SFT
rather than once per pair), so it is generally advisable to use
at least two bins from each SFT.

C. Sensitivity estimate for unknown
amplitude parameters

The cross-correlation statistic is normalized so that
Var(p) ~ 1 and, according to (3.16), and now adopting
the notation that a refers to an unordered allowed pair

of SFTs,
IZZ I—~ave hett) ave (319)

where AST is the combination of /iy and cos: given in
(3.10), and ¢™° is a property of the search which can be
determined from noise spectra, AM coefficients, and
choices of SFT pairs, without knowledge of signal param-
eters other than the approximate frequency and orbital
parameters. Even if the noise in each data stream is
Gaussian distributed, the statistic, which combines the data
quadratically, will not be. It was observed in [21] that each
individual cross correlation between SFTs is Bessel dis-
tributed; the optimal sum is considered in Appendix B
both in its exact form and a numerical approximation. For
simplicity, in what follows we assume that the central limit
theorem allows us to treat the statistic as approximately
Gaussian, with mean (4§")%0* and unit variance.'

E[,D] (heff

“Note that this approximation is less accurate in the tails of the
distribution. Unfortunately, for a search over many independent
templates, the most interesting statistic will necessarily be in the
tails. For example, with 108 templates, even a 1% false alarm
probability for the loudest statistic value would correspond to a
single-template false alarm probability of 107!°. See [28] for
specific examples of this.
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We consider the sensitivity estimates in [21], which
implicitly assume the values of 1 and y are known and used
to construct the expected cross correlation used in weight-
ing the terms in the statistic. [In our notation this would

mean using G, rather than G& in the definition (2.35) of
W.] Here we perform the analogous calculation, assuming

we are using G2 in the construction of the statistic. Thus
the probability of exceeding a threshold p™ will be

P(p > p®lho,1,w) =/ fplho.1.w)dp
r

1 0 1
~ ex N P heff 2 ave 2) d
\/2—7[ g p < 2 M ( 0 ) Q ] P

th _ (peff\2 jave th _ 7,2
:1erfc<p (ho")"e ) :lerfc<p th(’))
2 V2 2 V2

(3.20)

where

5A% + AL
o(1) ~ E%gm T (1 + 6c0s?1 + cos*1)g™.

(3.21)
The threshold associated with a false alarm probability « is
P = V2erfe™! (2a) (3.22)

but the sensitivity g™ associated with a false dismissal
probability # will now be defined, following a procedure
analogous to the one in [29], by marginalizing over the
unknown inclination 1 (since we have neglected the y
dependence in E[p))"*

L=p=Plp>p"lhg = hi™)
= <P(p > pth‘hﬂ = h?)em’l’ l//)>cosl,t/f

()L

So to get a sensitivity estimate, we need to find the A"
which solves (3.23), i.e.,

2(1-p)
th sens\2 ,ave
14 (ho )7e™° 5 2 4 )>
~ ( erfc[ —=——"———"(1+6c0s%1 +cos*1
(e G- 5 )]
1 5
—A erfc <erfc‘1 (2a) —Seff1—6 [1+642 +){4]> dy

(3.24)

(3.23)

“Note that if we had kept the y-dependent term in (3.8), the
resulting E[p]/hj would depend not only on both : and y, but also
on the detector geometry and pairs of SFTs, and a numerical
solution to the equivalent of (3.23) would have to be performed
anew for basically each sensitivity estimate.
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so that the approximate sensitivity is

hg™s = \/SZ;? = ((&m2E@)2> 2 (we2)

(3.25)

Equation (3.24) defines S°' as a specific function of a and
p, so the approximate sensitivity correction due to mar-
ginalizing over cos: can be worked out independently of
the details of the search. We show some sample values
Table III for a and f values between 1% and 10%, and also
for single-template a values corresponding to overall false
alarm probabilities in the same range, assuming a trials
factor of 10%. We see that the hj sensitivity is modified by
between 39% and 67% in these cases.

D. Scaling and comparison to directed stochastic search

We consider here the behavior of (3.25) [or equivalently
(3.19)] with parameters such as the observing time 7', and
allowed lag time T, which is effectively a coherence
time. As noted in [21], the detectable (3.25) scales like one
over the fourth root of the number of SFT pairs included in
the sum 3, "

ens = ((Seff)—2<52>2Npairs<(f‘2Ve)2>)—1/4
4(0%5)°

-1/4
= <NpairSTzft(Seff)_2 <E2>2<—>) . (326)
‘ SkStL

The approximate number of pairs for a search of data from
N4 detectors, each with observing time T, (so that the
total observation time iS Nge T ops), With maximum lag time
Tmax > Tsft is

2 Tobs Tmax
det
Tsft Tsft

Npairs & N (3.27)

so the sensitivity scaling is

o _ 4(Tave)2 -1/4
haens ~ (Nge[TobsTmax(Seff)_z<*:*2>2< g KSL) >) )
KOL

(3.28)

We wish to compare this sensitivity to that of the directed
stochastic search (also known as the “radiometer” method)
defined in [15] and used to set limits on gravitational
radiation from Sco X-1 [14,30]. The directed stochastic
search is also an optimally weighted cross-correlation
search, but only includes contributions from data taken
by different detectors at the same time. We first consider the
sensitivity of a cross-correlation search using our method

“Note that the averages here are not the weighted averages
introduced in Sec. IV.
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TABLE III.

PHYSICAL REVIEW D 91, 102005 (2015)

Approximate modification of search sensitivity, as a function of desired false alarm probability a (corresponding to a

statistic threshold of p) and false dismissal probability /3, resulting from filtering with a template averaged over the signal parameters
cosand . (The second set of a values is chosen to correspond to interesting single-template false alarm probabilities with a trials factor
of 108.) The detectable signal amplitude h§™ (3.25) is proportional to v ST, The table shows, for a variety of choices of a and 8, how

the corrected factor VS calculated according to (3.24) compares to the standard expression S = erfc™! (2a) + erfc™! (28) which
would apply from filtering with known values of the parameters cos: and y. Note that using the worst-case value cos: = 0 shows that

1 <8f/S <32,

S Seff /Seff/S

p p p
a o 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
0.10 1.3 1.81 2.07 2.55 3.49 4.45 6.27 1.39 1.47 1.57
0.05 1.6 2.07 2.33 2.81 4.15 5.16 7.03 1.42 1.49 1.58
0.01 2.3 2.55 2.81 3.29 5.42 6.52 8.47 1.46 1.52 1.60
10~° 6.0 5.15 5.40 5.89 12.73 14.16 16.40 1.57 1.62 1.67
5% 10710 6.1 5.23 5.48 5.96 12.96 14.40 16.64 1.57 1.62 1.67
10-10 6.4 5.40 5.66 6.14 13.48 14.93 17.20 1.58 1.62 1.67

with this restriction, and then relate this to the sensitivity of
the actual directed stochastic search. If we only allow
simultaneous pairs of SFTs, the number of pairs included in
the sum (3.25) becomes

T
1) obs

Nslmu ~ Ndct (Ndet -
Tsft

pairs

(3.29)

which makes the signal strength to which the search is
sensitive

(hBens ) simul

ave )2 —1/4
 (Vantoa =TT 52222 (X))

SkS;
Nhge“([l— : }—Tsﬁyw.
Ndet Tmax

The directed stochastic search is not quite the same as this
hypothetical cross-correlation search with simultaneous
SFTs, however. Most of these differences are irrelevant
or produce effectively identical calculations. For instance,
since the At, appearing in (4.17) is zero for simultaneous
SFTs, the phase difference A®, = 2zf,Ad, just encodes
the difference in arrival times at the two detectors.
Likewise, while the stochastic search assumes a random
unpolarized signal rather than the periodic signal from a
neutron star with unknown parameters, this has the same
effect as our choice to use 'Y} as the geometrical weighting
factor. In fact (as noted in [21]) 2P« %% is, up to a
normalization, the overlap reduction function for the
directed stochastic search. The one significant difference
is that, since the stochastic search does not model the
orbital Doppler modulation, it does not have access to the
signal frequency [ corresponding to SFT K, and therefore
cannot localize the expected signal frequency to a bin of
width 0f = . Thus, instead of the optimal combination

described by (2 23) or (2.36), it must sum, with equal

(3.30)

weights, the contributions zx,z; , across a coarse frequency
bin of width Af > 2;,’(:: fo (see Sec. IVB?2 for the defi-
nitions of the binary orbital parameters relevant to Doppler
modulation).16 The effect is to increase the variance of the
= AfTg; (since there
are AfTy bins being combined, only one of which
contains a significant signal contribution) so that

cross correlation due to noise by g—)f:

( h (s)ens ) stoch

To S 4(Tave)2 -1/4
~ (NaalMi = )2 502 (*TH )

~ Jens <E2>—2 1= 1 1 _1/4.
0 Ndet AfTrnax

The appearance of the factor containing (=) in the
comparison is because the directed stochastic search, by
combining a larger range of frequency bins, as well as
techniques such as overlapping windowed segments,
avoids some of the usual leakage issues. On the other
hand, if Af is chosen to maximize the sensitivity for a given
frequency, there will be similar issues, with part of the
signal falling outside the coarse bin at the extremes of
Doppler modulation.

To insert concrete numbers, Eq. (3.31) tells us that for a
search with data of equivalent sensitivity from three

(3.31)

"*This was not the original motivation for the coarse frequency
bins in the stochastic cross-correlation pipeline; see for example
[31], but it has this effect when using the method to search for
monochromatic signals from neutron stars in binary systems.
Note also that it is sufficient to perform a single sum  ,zx1z},
across the coarse bin rather than a double sum such as
>k >.rZkiZ;, because, while the frequency bin containing
the signal is not known, it will be the same bin for both detectors
because the unknown phase shift due to the orbit is the same for
simultaneous SFTs.
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detectors, a cross-correlation search with 7,,, = 3600 s
and (Z?) = 0.9 would provide an improvement in h
sensitivity over a directed stochastic search with Af =
0.25 Hz of a factor of about 5.4."” This is consistent with
the performance of the two searches in the Sco X-1 Mock
Data Challenge [32], in which the cross-correlation method
was able to detect signals with A, almost an order of
magnitude lower than those detected by the directed
stochastic method.

Note that, unlike the model-based cross-correlation
search, the stochastic search is not computationally lim-
ited, with year-long wide-band analyses being achievable
on a single CPU [32]. Additionally, since it does not
assume a signal model (beyond sky localization and
approximate monochromaticity), it is robust against unex-
pected features such as orbital parameters outside the
nominally expected range. However, its sensitivity is fun-
damentally limited by its ignorance of orbital Doppler
modulation, with a maximum effective coherence time

1 Pog 100 H
fAfﬁzfmbf ( Z)75 sec.

IV. PARAMETER SPACE BEHAVIOR

So far we have implicitly assumed that the parameters
used to construct the signal model (2.16), other than the
amplitude parameters hg, cosi, and y, were known when
constructing the weighted statistic. In order to determine
the phase evolution of the signal, and therefore ®x and f,
we need various phase-evolution parameters {4;}. (For
example, for a neutron star at a known sky location with a
constant intrinsic signal frequency f, in a binary orbit,
these are f, and any unknown binary orbital parameters.) A
slight error in these would lead to the @ appearing in g and
that used to construct W being slightly different. In this
case we need to go back to (3.7) and distinguish between
the true APy, and the one assumed in the construction of
the filter."® If we write these parameters as {4;}, let the

"This does not include the fact that the directed stochastic
method includes a relatively coarse search over frequency, while
the model-based cross-correlation method must search over many
more points in frequency and orbital parameter space, as
described in Sec. IV B. This seemingly significant increase in
trials factor turns out to be swamped by the gain in sensitivity. In
the comparison above, the same signal will generate a factor of
almost 30 larger rho value in the cross-correlation search. On the
other hand, the p threshold to achieve a 5S¢ false alarm probability
would need to be increased only from 5 to 7.8 to overcome a
trials factor of 10%. Additionally, the search over signal param-
eters in the cross-correlation method allows estimates of those
pargmeters.

"Bt is also possible for I k1. and/or Zx=; to differ from their
assumed values, e.g., if the search parameters include sky
position which can change the amplitude modulation coefficients,
or a change in Doppler modulation affects the location of the
signal frequency within the bin. We follow the usual procedure of
focusing on the dominant effect, which is the change in the
expected signal phase, and thereby obtain a “phase metric” for the
cross-correlation search.
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parameters assumed in constructing p be 4; and the true
parameters of the signal be 1. Let A®%; and APy, be the
phase difference ®x — ®; constructed with the true signal
parameters and the parameters assumed in W, respectively.
The effect will be to reduce the expected SNR E|[p] from the
value given in (3.19) which it would attain with 4; = 4;.
The modified value is

Elp] m IN(22) x 3 (Fei(0%-a%)

a

+ [ emi(A%a—a,))frave (4.1)
Now, for 4; close to 47,
fa PlAR-AD,) 4 fz o—i(ADL-AD,)
= 2Rel", cos(ADS, — AD,) — 2ImI ", sin(ADS, — AD,,)

A~ 1 .
~2Rel, (1 5 (A%~ A(I)g;)2> +2Iml, (AD, — ADS,),

(4.2)
if we write the phase difference as
LAY A4 — &)
1
+ EZA@M‘]‘ (4 = A1) (4 = 43) (4.3)
L]

where A®,; = %,

parameter difference,

we obtain, to second order in the

Elp] ~ (hy)?N(Z2 <ZZFaV°ReF>

x{l—z (4 = 25) Zg,, V(4= &)
(4.4)
where
25" f2[m[” A, .
6‘? Za a m a a,l (45)

L2y IEeRel,
and the parameter space metric is

12355, 19 (Ref AR, AP, + Iml AP, ;)
9i=3 25" fo<Rel,

(4.6)

If we once again neglect the y-dependent piece of Refa as
well as the second derivative term in the metric, we have
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1Y grep(@®at + 050" )2 Ad, AP,

gij =
T2 Ykrep(@ at + b¥bh)?
13, [8°AD, AD, . 1
2 8RB0 (g, 00,),  (47)
ZKLEPFa
where (-), indicates a weighted average with weighting

factor (I'9)? [recall ['YF (“K"SLM) ] and

o L 2ALAL
€ Az 4 A2
> krep(@Xal + bXb")(aKb" — b¥al)Ady,
> kiep(@¥al 4+ bXb")?
CO2ALA S TRCTERAD,,
A%’ + ‘Ai Z(l (f‘zve)z

X

(4.8)

A. Systematic parameter offset

The result (4.4) not only tells us how the expected SNR
falls off when the parameters {4;} used in constructing the
statistic differ from the true signal parameters {4} }, it also
shows that the maximum of E[p] is not actually at the signal
point A; = 4}, but at the point 4; = A} defined by

0=e+ Y 20, - ),
J

(4.9)

1.e., at

Zzgu j

where {g;;'} is the matrix inverse of the metric {g;;}.

(4.10)

If the metric is approximately diagonal, so that g;;' ~ qi
then the offset of the true signal parameters from the

maximum value of E[p] is

leg  2ALA, Y IRT9°A®,,
24 Ai + A% S (P22 Ad, ,AD

(Il (ll

(4.11)

A A=

This offset depends on the (generally unknown) value of
the inclination angle 1 via A, = 1“2"5 ‘and A, = cosu. In
particular, it has the opposite sign for ¢ € (0,7/2) and
1 € (n/2,r). For a signal detection with unknown ¢, this
will have the effect of a systematic error in the measure-
ment of the phase-evolution parameters {4;}. (Of course,
one could perform a subsequent analysis which would
produce an estimate of z, such as a coherent followup of the
signal candidate, or a cross-correlation search using il'{' in
place of I'Y} in the construction of W.)
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B. Parameter space metric

We return now to the consideration of the metric defined
by (4.7),

1Ep|; 1
= LO] ! 5 <A(I)a,iA(1)a,j>a'

9= "2 Ep] [

(4.12)

1. Comparison to standard expression for metric

We can relate this to the usual notation for the phase
metric. [See, e.g., Eq. (5.13) of [33], which was also used in
[22].]

= <(I),iq),j> - ((1)J.><<I>‘j>, (4-13)
Note, first of all, that while the standard definition of the
parameter space metric defines the mismatch as the frac-
tional loss in signal-to-noise squared, our cross-correlation
statistic p is actually the equivalent of what is usually called
p?. This is because it is quadratic in the signal (as is the F
statistic, and its expectation value is proportional to h3).

The connection between (4.12) and (4.13) is made by
noting that the averages in (4.13) are over data segments,
while the expression in (4.12) is a weighted average over
SFT pairs, where the weighting factor is (I%'®)2. We can
relate the two in the special case where the set of pairs P
contains every combination of SFTs (e.g., by choosing
Thax to be the observing time), and by neglecting the
influence of the weighting factor in the cross-correlation
metric. In that case, the average can be written as a double
average over SFTs K and L:

(Pg; — ‘I’L.i)(q’&j - (I)L,j)>KLeP

e
~.

(P P+ Pp P — Pr P — PriPk ) krer

NI_NIHNM—‘

(g i Px )k + (PP )1

— (ki) k(P = (Pri) L {Prj)k)

= <‘I)K,i‘1)l(,j>1< - <‘I’k.i>K<‘I>L,j>L (4.14)
which is just (4.13). Note that this identification can only be
made in the case where the cross correlation includes all
pairs of SFTs (or all pairs within some time stretch). With a
restriction such as |tx — #; | < Tp.x, One must consider the
weighted average over pairs, not separate averages
over SFTs.

2. Metric for the LMXB search

We now consider the explicit form of the parameter
space metric for a neutron star in a circular binary system,
assuming a constant intrinsic frequency f,. Although the
actual values of phase ®x = P(t(zx)) and frequency
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L p = dolt(0)

dt |t=tK
expected cross correlation G, include relativistic correc-
tions, it is sufficient for the purposes of constructing the
parameter space metric to limit attention to the Roemer
delay, which gives us

used via (2.15) to construct the

rdel'k

k + 7:orb ) /A<>
C
27
Porb (tl( - tasc>:| }

(4.15)

‘I)K_‘I)O‘f’z’ffo(fK—

= (I)() +2ﬂ'f0{[[( _dK —ap sin |:

where we have defined the following:

(1) dg = ”“’T"k, the projected distance, in seconds, from
the solar-system barycenter to the detector, along the
propagation direction from the source. (Note that
this depends on the detector, but also on the time 7x.)

(i) a, = “Scini is the projected semimajor axis of the
binary orbit, in units of time.

(iii) P,y is the orbital period of the binary.

(iv) t, is a reference time for the orbit, defined as the
time, measured at the solar-system barycenter, when
the neutron star is crossing the line of nodes moving

away from the solar system.

If we use the identity
B A—-B

A
sinA —sinB = 2cos< i
we have

AD, = 2ﬂf0{Ata — Ad,

At 2
—2a, sin T4 cog [—” (T, — tasc)] } (4.17)

orb P orb

where we have defined Adyg; = dg — d;, Atgp = tx — 11,
and T, =57,

Note that Adg; will be much less than Atg; unless the
SFTs K and L are simultaneous. (This is because the
duration of a SFT will be long compared to the light travel
time between detectors on the Earth, and the Earth’s motion
is nonrelativistic.)

We can now calculate the derivatives appearing in (4.12):

OAD, {
— 27d At — Ad,
9fo
At 2r
—2a, $in =" cos [ z (T, — tasc)] }, (4.18a)
orb orb
0AD At 2
© — _4nfysin’ “cos[ ” (za—rasc)], (4.18b)
aap Porb orb
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0AD 87’ At 2w
o % fodp sin 2% sin [—ﬂ (1, — tasc)], (4.18¢)
atasc P orb P orb P orb
0AD, dnfoa, [ 27 _
F) - - ([a - tasc)
Porb Porb Porb
At 2
X sin % sin [—” (7, — tasc)]
orb Porb
At At 2r
I g T2 [—” (1, — tasc)] }
Porb Porb Porb

(4.184)

3. Approximation for long observation times

It is relatively simple and straightforward to construct the
phase metric for a given observation; calculate the deriv-
atives (4.18) for each SFT pair and then insert them into the
weighted average (4.12). However, we can gain insight into
the behavior of the metric if we consider an approximate
form which should be valid if the observing time (e.g., one
year) is long compared to the orbital period of the LMXB
(e.g., 6.8 x 10* s~ 19 hr for Sco X-1 [1,7]). Since the
orbital period is not commensurate with any of the relevant
periods of variation such as the sidereal or solar day [the
former being relevant for (I'4®)? and the latter for the noise

2z

spectra], it is reasonable to assume that P—b(fa— fasc)

samples all phases roughly equally, and therefore

2w
F t,—1
(Foces [ -] ),

2r
= (F, sin |— (¢, —t =0,
< a Sln |:POrb ( a asc):| >a

2z .| 27
<Fa Cos |:Porb (ta - tasc>:| sin |:Porb (ta - tasc)i| >a = 07

(4.19b)
(Faso? | 25 = 100)| )
= (R | 2 1= 10| ) =3 (e @19)

where F, is any expression not involving 7,.
We then have metric components, from (4.12), of

At
Ifofo = 2ﬂ2<(Atrx - Ada>2>a + 4ﬂ2a%<sin2 %> )

orb

ﬂAt,,>
P orb / «a

(4.20a)

Ifoa, = 471'2f0ap<sin2 (4.20Db)
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3 2
IfoPor = ~4 ;20 = <Ata sin71[D "cosi; “> . (4.20c)
orb orb orb / «a
At
Jaya, = 4ﬂ2f3<sin2 ﬂ—> : (4.20d)
Y Porb a
Ifotee = Japte = 05 (4.20e)
4”3 2a At At
Ga, Py = —#<Ata sin % cos — “> . (4.20f)
! Porb Porb Porb a
167* f2a? At
Itysetae = 2fo ’ <Sin2ﬂ a> . (4.20g)
Porb Porb a
P 167*f3a? ((Z)a - tasc> <sin2 erta>
fuco P grb P orb P ob / a
(4.20h)
1671'4]‘%61?, = 2 .2 At
9PoPory, = ﬁ <(ta - tasc) >a<51n ?rba>a
At 202 A
+ % <At%;cos2 u> : (4.20i)
orb ob / «a

The metric is not diagonal, but we can neglect the off-
diagonal elements if

(gij)2 < 9ii9jj- (4.21)

One can show that (g7,q,)* < 9,7, 9a,a

9fofo9PopPor, AS long as

and (gfoporb)z <

p

((At, — Ady)?), > a3 (4.22)
which should be the case; for Sco X-1, a, = 1.44 s [1,8].
Note also that, as long as we include cross correlations
between nonsimultaneous SFTs, ((At, — Ad,)?), ~
((At,)?), because the detectors are moving much slower
than the speed of light.

We will also have (g, p,,)* < Gaa,9pp., 25 lONg as
the square of the typical time lag Az, is much less than
(T, — tae)?),» Which will be the case if the maximum
allowed time lag is much less than the length of the run. We
can see this by considering the ((7, — f,s)?),; if we define

pr = (Ta)q (4.23)

then

6%' - <(i(x - ﬂT)2>a (424)
should be on the order of the square of the duration of the
run. In particular, for a run of duration 7'y, during which
the sensitivity of the search remains roughly constant,
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1 [Ton/2 T2
ot~ / " Rdr = obs (4.25)

Tobs —Tops/2 12

But
<(Ea - tasc)2>a = 5% + (/"T - tasc)z > 5%‘- (4'26)
This leaves only the ratio
(gtascPoﬂ,)z ~ (<;a>a - tasc)z _ (/’lT B tasc)z
gtusctaSCgPoerorb <(?a - tasc)2>a 6%" + (/’lT - tasc)z

(4.27)

Whether or not this can be neglected seems to come down,
then, to whether the reference time ¢, falls during the run.
If it falls outside the run, (i — t,.)> = 6% and the off-
diagonal metric element g, p =~ cannot be ignored.
However, it is always possible to replace one reference
time t,,. with another ., = ft,o. + nP.y separated by an
integer number n of cycles, and thus it is always possible to
arrange for (ur — th)? < P2, < 6% and thus obtain an
approximately diagonal metric. This comes at a cost,
though, since there will be a contribution to the uncertainty
in the new reference time due to the uncertainty in the
orbital period. If the uncertainties in the orbital period and
the original reference time are independent, the uncertainty
in the new reference time will be given by

(Atfls(?)z = (Atasc)z + n2(AP01’b)2

2 (t;lsc - tasc)z 2
= (Atasc) + f(APorb) . (428)
orb
This will become the dominant error if
At
|[;sc - tasc| > Fisrcbporb- (429)

For Sco X-1, using the parameter uncertainties from [7]
(see Sec. VI), this is about

100
—— x 68023.70 sx 5 yr.

4.
0.04 (4.30)

Since the 7, quoted in [7] (chosen to minimize their At,.)
corresponds to June 2008, this will be the case for any GW
observations using Advanced LIGO and/or Advanced
Virgo data, unless additional Sco X-1 ephemeris updates
are made.

Subject to the aforementioned approximations, the
metric can be treated as diagonal with non-negligible
elements,

ngfO ~ 27T2<Atg>a,

., AL,
a,a, = 47r2f%<sm2 P—> ,
a

orb

(4.31a)

(4.31b)
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167* f2a At
gtasctasc - éfo . <Sin27[ a> 3 (4.31C)
A Porb Porb a
1671'4 2 2 At
9P oy Posy #O’%<Sin2 u> . (4.31d)
Porb Porb a

The quantities (A2), and (sin? ’;,A’ )
parameter space metric are constructed by a weighted
average over SFT pairs. If we consider a search which
includes all pairs up to a maximum time lag of T, the
parameter space resolution, and therefore the required
number of templates, will depend on T,,,,. We can get a
rough estimate on this dependence by assuming that we

can write
1 /Tmax
~ S
2Tmax —T nax

which assumes T s > Ta > T O that we can replace
the sum over specific lags with an integral, and it neglects
the variation of (I'%*®)? from pair to pair. Subject to this
approximation, we have

which appear in the

(f(Ala))q (t)dt (4.32)

1 Tmax T2 q
(A£2), / rdt = 2= (4.33)

2Tmax ~T max 3

and"’
At 1 Tmax t
<s1n2 ﬂ > ~ / sin2 2L g

P ob / «a 2Tmax —T max P orb

= % <1 — sinc 217;'““) (4.34)
orb

where once again sincx = % Note that this is only a
rough approximation, since increasing the time offset Az,
between a pair of SFTs from the same instrument (or from
well-aligned instruments like the LIGO detectors in
Hanford and Livingston) will tend to decrease the expected
cross correlation as the detectors are rotated out of align-
ment with each other. We confirm this by comparing the
approximate expressions to more accurate values calculated
using the geometry of the LIGO and Virgo detectors and
the sky position of Scorpius X-1, in Fig. 3.

"Note that for T max < Py (coherent integration times small

compared to the binary orbital period), the factor (sin’ ’;#’h“)a

z Tm’“ (so the number of templates in each direction grows

tends to

like the coherent integration time), while for T, > Py
(coherent integration times long compared to the binary orbital
period), it tends to a constant % 3 S0 the growth in number of
templates in the a,, and 7, dlrectlons saturates. This is analogous
to an effect described in [34].
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Note that some care needs to be taken when comparing
our metric expressions to those in [6]. For example
combining (4.13a) with (4.33) gives us gy s, ® ~ 272 L ';“,
which seems at odds with the analogous expression in, e.g.,
Eq. (61) of [6], where the corresponding metric element is

n? @. The difference is that the semicoherent search in
[6] is defined by combining distinct coherent segments of
length AT, which makes the mean squared difference

1 AT [AT N2 dsds
— t—t tar
<Ar>% I
1 AT—|At]/2
= —2/ / (Ar)*didAt
(AT) |Adl/2

= Gy |, (A0aT -

(3o

|At])dAt

(4.35)

whereas our maximum lag rule | — /| < T, gives a mean
square time difference

Tobs min(tl+Tmax’To s) 2
fO ’ fmax(t’ T dx.O)b ( - /) ddt’
foTobs fmm(t +Tmax obq dtdt

max (7 =T pax,0)

obs—|A1]/2
A [ AV (ArPdida

obs ‘A[‘/z

AT \Atb|/2 didAt
_ (2/3)T0bsT?nax - (2/4)Tﬁnax Nl
2T0bsTmax - Trznax 3

Ty (436)

where the assumption 7T, << Tops
result (4.33).

gives us the

V. IMPLICATIONS OF DEVIATION FROM
SIGNAL MODEL

So far, we have assumed that the underlying signal
model contained in (2.21), along with the phase evolution
(4.15), is correct, although some of the parameters may be
unknown. We consider two effects which violate this
assumption and their potential impacts on the expected
SNR (3.19). These are (1) spin wandering, in which the
frequency is not a constant f; but varies slowly and
unpredictably with time and (2) the impact of higher terms
in the Taylor expansion of ®(t(z)) about ¢ = ¢, which are
neglected in the linear phase model (2.15). The former
effect will place a potential limit on the coherence time
Thax by providing an intrinsic limit to the frequency
resolution, whereas the latter will constrain our choice of
SFT length T in order that neglected phase acceleration
effects do not cause too much loss of SNR.
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FIG. 3 (color online). Plot of weighted averages (Af2), and (sin
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0.5F R R b
-- HL 3
2 - g
"2 04 approx >
A ‘
E 0.3
2 02p R L S L SR s .
() SRR
O'OO 2 4 6 8 10 12
Maximum time offset T}, (hr)
2 ’;A’b“>a appearing in the metric components (4.31) as a function of

maximum allowed lag time T,,,. The dotted lines show the approximate values (4.33) and (4.34) neglecting the variation of the
weighting factor. The solid line (labeled HLV) shows the value for a search using detectors at the LIGO Hanford, LIGO Livingston, and
Virgo sites, assuming a source at the sky position of Sco X-1, and that all detectors have the same sensitivity at the relevant frequency,
and all sidereal times are evenly sampled. The dashed line (HL) shows the same thing for a search using only the LIGO detectors at
Hanford and Livingston. The actual weighted averages (and therefore the number of templates needed to cover the parameter space) are
less than the approximate ones, because the geometrical factor (I'4"¢)? weights smaller lag times more.

A. Spin wandering

We have assumed so far that the LMXB is in approxi-
mate equilibrium, where the spin-up torque due to accretion
is balanced by the spin-down due to gravitational waves.
Even if this is true on average, the balance will not be
perfect, and the spin frequency will “wander.” This means
that rather than a constant frequency f, appearing in (4.15),

there will be a time-varying frequency f(t), where t =

t — Lk 4 Fowk 3o the time measured in the neutron star’s rest
c c

frame. Thus the phase difference between SFTs K and L
will be, rather than just A®y; = 2xf[ty —t;],

193
AP = By — P, =21 f(t)dt. (5.1)
tx

We can consider the loss of SNR due to the existence of
spin wandering, compared to what we would expect if the
frequency truly were constant. Qualitatively, there are two
reasons for loss of SNR: first, on short time scales, the
change in frequency could disrupt the coherence between
the two SFTs in a pair being cross correlated; second, on
longer time scales, the spin could wander enough that the
SNR is distributed over different frequency templates.

To quantify the loss of SNR we follow a calculation
analogous to that in Sec. IV, e.g., in (4.1) and (4.2), to
obtain

Ew}ideal _ E[p] N

E[p]ideal ~ <<Aq>gue - A(I)a)) >a

1
3 (5.2)
where (), is a weighted average over SFT pairs
with weighting factor (I'%°)? as before. To estimate
((ADIMe — AD,))?), we assume that the wandering is slow

enough that we can expand f(t) in a Taylor series about
tkr = (tg +10)/2:

F) ~ f(ter) + F(Ex) (t =g ) min(te, t,) < t

< max(tg,t;). (5.3)
Then
tr
ADs - Ay =2 [ U7 - folat
o 2
R 2rm <[f(IKL) — folAtxy + f(tkr) %) . (54)

where Atg; = tx —t;. Subject to reasonable assumptions
about the randomness of the spin wandering, Eq. (5.2) can
be written in the form

EpI — Elpl ety py ((ap 2
E[p}ideal ~2 <[f(ta) fO] >a<(Ata) >a

+ 5 (FE)P)al(Ata) )

~ 27 ([ (T,) = fol?)al(A12)?),
2 .

T -
+ S ) o{(At0))q (5.5)
where in the last expression we have used the fact that since
a, and Ad, are small, |ty — x| < Ty The two terms in
(5.5) quantify the effects we predicted at the beginning of
the section. The second term describes a loss of SNR due to
the neutron star spin not being constant during the time
spanned by a SFT pair, while the first term indicates a loss
due to the mismatch between contributing frequencies and
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the frequency of a single template. [In fact, the first term is
just  grr ([f(f) = fo]*)e] Note that we are
free to choose the f, which maximizes the SNR for a
given instantiation of spin wandering, which will be

fo= <f(ia)>a’ By
([f(1a) = fol)a = ([f(ta) = (f(1a))a)*)a

is the weighted variance of f(¢) over the observing time.

To get a quantitative estimate of the effects of spin
wandering, consider a model where the neutron star spins
up or down linearly with typical amplitude | f] 4, changing
on a time scale Ty Where T < Tyn << Tops. For
simplicity, also neglect the impact of the weighting factor

(5.6)

(f'2ve)2, so that (AR2) ~ "‘“ and (At}) ~ " Then
(FEP)a < 1 liin (5.7)
and
< < Za B Tmld
(1) = (Fa0Phe = | T Tl
drift a
TobsTdrif y
i (5.8)
Combining these results, we have
ELO]ideal E[,O] 77: 2
W FTobsTdnftU‘ |dr1ftT12nax ]0 |f |dr1ft max *
(5.9)

So, in order to avoid a fractional loss in SNR of more than
u, one would need to limit the lag time to

. [(Vou - _ V10u, - _
T 1nax < min (T (1 laris v/ Tobs T arie) g T|f |drlif[tz :
(5.10)
For example, if |f|yi = 1072 Hz/s, Ty = 10° s,
Toos=1Yr, and p=0.1, the first limit is about

44 000 s and the second is 320 000 s. So in that case, spin
wandering would become an issue if 7T, = 12 hr.

- ) FK _ 'FK
hii % ho(=1)* e - 21 &
/’K+Tsﬁ/2
X
tx=Te/2 2
. FXA, —iFX 0
ho(—1)*el®x + A 21 e T g [IO(KKk) +i 5
D(rg)  [B(1x)]?
+ <1T—T (k) T
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Note that this is somewhat less than the estimate AT < 3
day given in [6]. The source of this apparent discrepancy is
a combination of the distinction between the coherent
segment length AT and the maximum lag time 7,
described in Sec. IV B 3, and the rough nature of some
estimates used in [6]. That work compares the change in

frequency | f]urie /T obs L arirt/2 to the frequency resolution,
which they give as ~1/AT. This is effectively an order

of magnitude estimate, since it effectively assumes y = 1,
and also leaves out the numerical factor in 1/, /g7 7 =

V/3/(zAT). On the other hand, their frequency drift is the
expected drift from the middle of the run to the end;
averaging the drift over the run gives an effective change of

(] f aritev/Tobs L aris) /2- Including these three effects to do a
calculation analogous to the one here would give a factor of

7+/5/3 ~ 4 reduction on the estimated tolerable segment

length to AT <2v/3p/7(|f |y Tobs_Tdrift)_] ~62,000 s~
17 hr. Of course, the assumptions of |f]|r and Tgr given
above are uncertain and somewhat arbitrary, so our 12-hour
number should also not be viewed as an exact constraint on
the method.

B. SFT length

Most searches for continuous gravitational waves have
used short Fourier transforms with a duration Tg; of
30 min = 1800 s. The limiting factor which sets a maxi-
mum on the reasonable T is the accuracy of the linear
phase approximation (2.15).

If we consider higher order terms in the phase expansion,
we have

D)) ~ P+ 20f (1 1) + 5 B(1k) 1~ 1)°

1 ...
3y B (1= 1) + (1) (0= 1)+

(5.11)

The effect of these corrections is to modify (2.21) to

e—i2n(fi=fx)(t=tx) exp <i [‘f(fk) (t _ tK)Z + ii5(11() (; — tK)3 + Zﬁ(t‘ ) (t - tK) })dt
P(tk)

3! 4!

‘I’(IK)

I (KKk>Tzft +i—1; (KKk)Tzft

(5.12)
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where

1/2 . i\ d
1,(k) = / s X eT 2y = (;—ﬂ) e sinc(k).

Note that for even n, I, (k) is real and even, while for odd n,
it is imaginary and odd.
We can then construct, as a replacement for (2.25),

(5.13)

1 -
pg == > (=)o (kga) g
—K keky
K - K
gt DA T AL 2T sy
2 ‘:‘K SK
where
_ = Q)( ) (b( )
Ok ==k +1i ) ZKOZTsf[ +i—7 3 x0T
Dt O(r
4! 8
and
Zkon = Zlo Kii)Ln(Kkr)- (5.16)
keky

The expectation value (3.7) of the statistic thus becomes,
including the correction for higher phase derivatives and
finite SFT length,

Nh32 Z [¥iRe(Qx Qi Tk ).

KLeP

(5.17)

As in Sec. III B we assume that the sum over pairs evenly
and independently samples the fractional frequency offset
kg from each SFT, which means we can replace Qg and
Q; with

(0}, = (2 +i 2 (575,
+ <iq)it!l(> - [q)(; x) )<204> st (5.18)

where the fact that /5(x) is odd in k means that the average
(Zo3) vanishes.

Now,
Re(QxQ;['k1) = Re(Qx 0 )Rel g, — Im(Qx Q; )Imlg,
~Re(040;) S A by
(0,0 g (519)
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We assume that the impact of the second piece is small®
and focus only on Re(QxQ; ), which leads to a fractional
loss of SNR of

,__Ell _E ’)? — (Re(Qk Q7))
Elpligea (E1)?
_ ((‘I’@ +(87) (Zoa) _ (PxDr) (o) )Tf‘ .
8 <EZ> 4 <EZ>2 sft
(5.20)

Differentiating (4.15) gives

(2r)? . [ 27
Tfoap S P

orb orb

(.I.)K = 2ﬂf0£l,( -

(tl( - tasc):| . (521)

We can neglect the first term, since the acceleration due to
the Earth’s orbit is O(10~!! s7!) and that due to the Earth’s
rotation is O(107'% s7!). In comparison, for Sco X-1,

2 2
a <—”> —123x 108 57!,

5.22
r Porb ( )

If we assume, as in the metric calculation, that the average
over pairs evenly samples the orbital phase, then

. .. (27)°f3a?
(O%) +(97) = Tp (5.23)
orb
Using the identity
1
sinAsin B = 3 [cos(A — B) — cos(A + B)] (5.24)

we can calculate

2 2
<Sin |:ij (tK - tasc):| sin |:P07:b (tL - tasc>:| >
1 2 At 4n(t, —t
=— <<cos ﬂ “> - <COSM> ) (5.25)
2 Porb a Porb a

so the fractional loss in SNR is

| __El)
E U)] ideal

o 87°f5ap ((Z0)  (Zo2)’ AN
Py <52> <52>2 Pow /a o

orb

(5.26)

1 particular, it is suppressed by averaging non-positive-
definite antenna patterns, although the same combination is the
source of systematic errors in parameter estimation.
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The factors (Xg4) and (Xg,) can be calculated by using
(5.16) along with

sin mc coszmk  Sinzmk

- 5.27

h{x) = TIK 2(7:1()2 2(zx)? (5.27)
and
1u(K) sinzk coszk 3sinzk  3coszmk  3sinzk
K) = — —
4 167k~ 4(zx)*  4(axk)®  2(zx)*  2(mx)’

(5.28)

and averaging numerically over x given the number of
frequency bins included. In Table IV, we show the two
coefficients appearing in (5.26), for various choices of the
number m of included frequency bins (see also Table II).

Note that for the cross-correlation search, choosing
shorter SFTs does not directly impact the sensitivity. For
the same allowed lag time, searches with different SFT
lengths should have approximately the same sensitivity. We
can see this by considering the SNR for a given signal
amplitude A, for example, from (3.16). Since

fhave

=T
VAT

the quantity (I'%)2 inside the sum is proportional to (7' )2
However, for a fixed maximum time lag 7., the number
of terms in the sum will be proportional to (T;)~2 and the
resulting expected SNR will be approximately independent
of T. (For example, halving the SFT length will mean
each SFT pair contributed one-fourth as much to the
sensitivity, but will double the number of SFTs and thus
quadruple the number of SFT pairs.)

On the other hand, by increasing the number of SFT
pairs, using a shorter SFT length will mean increasing the
computing cost at the same T ,,,. If the computing budget is
fixed, the sensitivity gained by reducing the mismatch
(5.26) will be offset by the loss of sensitivity, in the form of
a lower E[plije,» resulting from a smaller T,,,. Following
the reasoning in Sec. III B, if the computing cost scales like
the number of templates (which scales like 7%,,) times the

(5.29)

TABLE 1V. The coefficients (Zo)/(Z2) and (Zg,)%/(Z?)?
appearing in (5.26), for various choices of the number
m of included frequency bins, where (%,) is the mean value

of Z,(k) = ZK'"_(I})H/ZJI 121 Lok + $)1,(k + 5),
—1 <k <1 and I,(x) is defined in (5.13) with Io(x) = sinck =
“‘x’i and I, (k) and I,(x) are given by (5.27) and (5.28). Note that

the value of (Z2) = (I) is tabulated in Table II.

averaged over

m 1 2 3 4 5 6
(Zo4)/(Z%)  0.0107 0.0086 0.0099 0.0100 0.0106 0.0108
(Z00)2/(Z2)? 0.0056 0.0042 0.0052 0.0055 0.0059 0.0060
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FIG. 4. The optimal SFT length T, defined in (5.34) and
(5.31), as a function of frequency, for a signal with the most likely
orbital parameters for Sco X-1, as given in Table I, assuming that
d = 3, i.e., the density of points in parameter space grows as the
third power of the coherence time 7',,,. This is appropriate for a
search over, e.g., frequency f, projected semimajor axis a,,, and
time of ascension t,,. (When the uncertainty in the period Py, is
small enough that a single value may be assumed), in the case
where T, is small compared with Py,. The solid line represents
a more optimistic scenario where the average cosine appearing in
the second term of (5.31) is approximately unity, which should
also be the case if T, < Py. The dashed line represents a
worst-case scenario where the average is approximately zero. The
optimal SFT length maximizes the expected SNR in (5.30) and
represents a balance between two competing effects: if 7'y is too
large, phase acceleration will lead to a loss in SNR compared to
the ideal formula (3.19); if T is too small, the large number of
SFT pairs in the computation will lead to a restriction on the
possible T, achievable at fixed computing cost, and reduce the
ideal SNR itself.

number of SFT pairs (which scales like 7.« Tobngn) then
the overall sensitivity for a fixed observing time 7', scales
like T3HIT?, and therefore the restriction at constant

computing cost will be T,y Ti’r*t‘ Since the sensitivity

scales with the square root of the number of SFT pairs, we

have E[p]idel Tﬁﬁ' and
Elp] o T5/(1 = AF3TY) (5.30)
where
8n%a% [ (X Zp)? 2nAt
AxE (<3;> _Zo) < i > ) (5.31)
POrb <E > <:‘ > POI’b a
is the mismatch scaling appearing in (5.26).2' The sensi-

tivity at fixed computing cost is thus maximized when

210f course A still depends on Ty, through (cos =5 2nliy ) but if
T max 18 small compared to Py, which we are a%sumlng in the
scaling of number of templates with T, this average is
approximately unity.
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1 — (4d + 5)Af3T4, =0, (5.32)
1.e., when the mismatch due to SFT length is
1
p=ARTH=p™ = el (533)
The corresponding optimal SFT length is
Ty = ([4d + 5]A) /4 f5 12, (5.34)

For example, if d =3, u° = %%0.059. In Fig. 4, we
show this optimal SFT length for d = 3, using a, = 1.44 s
and P, = 68023.70 s (the most likely values for

Sco X-1). The solid line shows the most optimistic

2;—Ab’“>a ~ 1 (which will be the case

for T ax << Po), and the dashed line shows the most
pessimistic scenario, in which the average goes to zero.

scenario, in which (cos

VI. CONCLUSIONS AND OUTLOOK

In this paper we have explored details of the model-
based cross-correlation search for periodic gravitational
waves, focusing on its application to signals from neutron
stars in binary systems (LMXBs) and Scorpius X-1, in
particular. We have carefully considered the impact of
spectral leakage (in Sec. III B) and the implications of
unknown amplitude parameters (in Sec. IIIC) on the
sensitivity of the method. We have also produced expres-
sions for the parameter space metric of the search (in
Sec. IV B), at varying levels of approximation, and a
systematic offset in the parameters of a detected signal
related to the unmeasured inclination angle of the neutron
star to the line of sight (in Sec. IVA). In Sec. VA we
estimated the effects of ‘“spin wandering” caused by
deviations from equilibrium in the torque balance configu-
ration, and in V B we consider the appropriate SFT duration
needed to avoid significant loss of SNR due to unmodeled
phase acceleration.

We have shown (in Sec. III D) that the method produces
an improvement in strain sensitivity over the directed
stochastic search method which inspired it; this is roughly
proportional to the fourth root of the product of the
coherence time of the model-based search and the fre-
quency bin size for the stochastic search. A mock data
challenge [32] has been carried out by comparing the
performance of the available search methods, including the
model-based cross-correlation search, on simulated signals
injected into Gaussian noise. As reported elsewhere
[28,32], the cross-correlation search is the most sensitive
one currently implemented.

To give an estimate of expected sensitivity for data from
detectors such as Advanced LIGO and Advanced Virgo, it
is necessary to make some suppositions about the param-
eters of the search, especially the time 7,, over which
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FIG. 5 (color online). Expected sensitivity (3.25) for a search of
one year of coincident data from either the two LIGO detectors
(Iabeled HL) or the three LIGO + Virgo detectors (labeled HLV),
at design sensitivity. The value plotted is the observable /i at 5%
false dismissal probability, assuming an overall false alarm
probability of 5% and a trials factor of 103 for a single-template
false alarm probability of 5x 10710 (i.e., see Sec. IIIC and
Table III). The three curves in each set are, from top to bottom, for
T max = 6 min, 60 min and 10 hr. They are compared to the signal
strength (6.2) predicted by the torque balance argument [12].

SFTs are coherently cross correlated. Since this drives both
the sensitivity and computing cost, the choice of T, will
depend on available computing resources, and will likely
vary with frequency in order to optimize the distribution of
computing resources where they can be most effective. In
[28], we performed searches with 9 min < 7' ., <90 min
for a range of frequency bands covering a total of 500 Hz
distributed in f, € [50, 1455] Hz, using moderate compu-
tational resources. On the other hand, in Sec. VA, we
considered spin wandering effects which might lead to a
significant loss of SNR for a search with 7', = 12 hr fora
one-year observation.

In Fig. 5, we show the projected sensitivity (3.25) of a
search using one year of data, either from the two advanced
LIGO detectors in Hanford, WA and Livingston, LA, or
from the two advanced LIGO detectors plus the Virgo
detector in Cascina, Italy, all operating at their projected
design sensitivity. We show the sensitivity of three
hypothetical searches, with T, =6 min, 60 min or
600 min = 10 hr, and compare the observable A, (at a
5% false dismissal probability, assuming a single-template
false alarm probability of 5 x 107!1°, corresponding to an
overall 5% false alarm probability and a trails factor of 10,
as described in Sec. III C and Table III). For comparison,
we show a representative signal strength predicted by the
torque balance argument [12,13]. By assuming that the
spin-down torque due to gravitational waves is balanced by
the spin-up torque due to accretion, estimated using the
observed x-ray flux, it is possible to estimate the strength of
the gravitational-wave signal as a function of the neutron
star spin frequency v [13]:
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F 2/ -1/2
ho~3x 1072 X s
0% <10‘8 ergcm™2s7! 300 Hz

R 3/4 M -1/4
X<10km) (1.4M®> '

The spin frequency of Sco X-1 is unknown, but v, values
inferred for other LMXBs from pulsations or burst
oscillations range from 50 Hz to 600 Hz, so we consider
the sensitivity over a wide range of GW frequencies.
For Sco X-1, using the observed x-ray flux Fy = 3.9 x
1077 ergem™2s~! from [13], and assuming that the GW
frequency f, is twice the spin frequency v, (as would be the
case for GWs generated by anisotropies in the neutron star),
the torque balance value is

(6.1)

~1/2
hy~34x10726( 25 ) 7 6.2
028 (300 Hz (62)

which is the reference curve plotted in Fig. 5. We see that
for a three-detector, one-year analysis, a signal at the torque
balance limit should be detectable for 30 Hz < f <
300 Hz with T, = 60 min (which is already computa-
tionally manageable at most frequencies), and if one could
increase to T, = 600 min through algorithmic improve-
ments, programming optimization, and/or application of
additional resources, that range could be broadened to
20 Hz < f( <500 Hz. The best-case A sensitivity of 5 x
10726 for the 60 min search is consistent with the results of
the Sco X-1 MDC [28,32], where a cross-correlation search
with 9 min < 7T ,,x <90 min was able to detect signals
with Ay =5 x 1072,

The choice of T, will in part be constrained by
computing cost; in Fig. 6 we show the approximate relative
computing cost scaling for the six searches considered (one
year of data from either the two LIGO detectors or the two
LIGO detectors and Virgo, with a maximum allowed lag
time of 7,,x = 6 min, 60 min or 600 min = 10 hr). The
computing cost is assumed to be proportional to the number
of SFT pairs times the number of parameter space points to
be searched, and we plot the relative cost per logarithmic
frequency interval. We also assume that at each frequency
the SFT length is chosen to be the optimal SFT length given
by (5.34) and (5.31). Roughly speaking, the number of SFT
pairs will scale as f(T .« (since the optimal SFT length

scales as T;;ﬁz), and the density of templates in parameter
space will scale as f3T5,.. The density of points per
logarithmic frequency interval introduces another factor of
fo» so the quantity plotted, cost per unit frequency interval,
scales approximately as fgTma. This means that, for
example, a T, = 60 min search from 100 to 200 Hz
would consume the same resources as a 7T, = 6 min
search from 1000 to 2000 Hz or a T,,, = 600 min search
from 10 to 20 Hz.
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FIG. 6 (color online). Relative scaling of expected computing
cost per logarithmic frequency interval for a search of one year of
coincident data from either the two LIGO detectors (labelled HL)
or the three LIGO + Virgo detectors (labelled HLV). The three
curves in each set, are, from top to bottom, for 7, = 10 hr,
60 min and 6 min. The calculation assumes that the computing
cost scales with the number of SFT pairs times the number of
points in parameter space. It also assumes that the optimal SFT
length Ty given by (5.34) and (5.31) has been chosen at each
frequency, and that we are searching over frequency and two
orbital parameters. The approximate scaling is as f§T .y, so for
instance a T, = 60 min search from 100 to 200 Hz would
consume the same resources as a T',,, = 6 min search from 1000
to 2000 Hz. For reference, the mock data analysis in [28], which
was accomplished in approximately 20,000 CPU-days, covered a
set of roughly logarithmically-spaced frequency bands totaling
250 Hz spread from 50 Hz to 1375 Hz at a range of T, values
from 9 to 90 min.

Finally, we consider one possible avenue for enhance-
ment of the cross-correlation method. As explained in
Sec. IIT' A, the fact that we filter with G¥} means that the
method provides an estimate of AT, a function of A, and
cos 1 defined in (3.10), rather than A. If we had a method of
independently estimating cos, or in fact any other combi-
nation of / and cos besides A, we could obtain a better
measurement of h,. In [21], a method was proposed to
obtain estimates of /y.A, and hyA,, but a more effective
procedure would seem to be adding a second statistic which
uses il [see (2.32)] in place of I'¥s and therefore
observes the quantity h3.A,.A,; between this and the
original hgff estimate, we would be able to disentangle
ho and cos . This prospect bears further investigation.
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APPENDIX A: EFFECTS OF NONTRIVIAL
WINDOWING

1. General formulation

As noted in Sec. IT A, the construction of Fourier trans-
formed data is often done with a window function w(6), as in
(2.3), as opposed to the unwindowed (or nearly-rectangu-
larly-windowed) data considered in the main body of the
text. This appendix considers the impact on the search
method and its sensitivity of using a nontrivial window
function, which is investigated in greater detail in [27].

The use of windowing for Fourier transforms affects the
expected signal and noise contributions to the data. For the
signal contribution, Eq. (2.16) becomes
w, FEA, —iFEA

hgr ~ hy(=1)F
Kk o( )e 3

=87 (fe—fx) (Al

where 87_(fr — fx) is the generalization of the finite time
delta function defined in (2.17):

W (fe = fr) = / et/ 2W<ﬂ> e=i2afi~fx)(=1x) gp
Tin tx=Te/2 T
12 _
=T [ » w(0)e 21l d0 = T & (ki)
(A2)

with kg, = (fr — fx) Tt as before. The noise contribution
is modified by replacing (2.8) with

. S
E ["Zk”&] ~ Ok Vs T st 71{ (A3)

where

k=t
The = )
Tsft

— (_1)1(—//12 ei2n(k=£)0 [ (9)]2d(9

[T o e - par

(A4)

Note that the diagonal elements of this matrix are equal to
the mean square of the window function:

1/2 _
e O (A5)
-1/2
If we define
2
= A6
Kk Kk TsftSK ( )
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as in (2.9), we have

E [Z}?k] = HEy

o, FEAL —iFEA, 2T
2 Sk

(A7)

~ ho(—1)*8" (kg )e

and

E[(zgy — #)(@Le = HLe)'] = OkLVip (A8)

We then modify (2.23) to

=3 S (-

K keky KeKy

DA (k) (Fiwage (A9)

where {(y");}} are the elements of the matrix inverse of
{r},}, and

=w __
—K =

keky k’eICK

)iH g & (kxw)

(kx) (")
(A10)
ensures that the normalization (2.24) holds as before. Then

the derivation proceeds as before, with =) replacing =g,
and, in particular, the expected SNR (3.16) becomes

KLEP

2. Results for specific windows

Elp] ~ (h§T)%( (All)

We now consider the consequences of the modification
(A11) by investigating the form of &" (k) = Tl o7, (k/Tg)
defined in (A2) and y}, defined in (A4) for speciﬁc
nonrectangular window choices. We consider the general
family of Tukey windows, defined using an adjustable
parameter 0 < < 1 by

%(l—cos 20+1)) —

wy(0) = ¢ 1
3 (1 —cos%(20-1)) -158) <0<
(A12)

The general form of the Tukey window is illustrated in
Fig. 7. This family includes at its extremes the rectangular
window (f = 0) and the Hann window (# = 1). In practical
applications it is also common to use a Tukey window with
a small finite parameter S < 1 rather than a pure
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FIG. 7. The general Tukey window wy(6) as defined in (A12)
for a generic value of the parameter f € [0, 1], where § is the
fraction of the window length taken up by the transitions from 0
to 1 and back.

rectangular window. These two specific cases are shown in
Fig. 8, along with a Tukey window with f = %

We can insert the general form of wy(6) from (Al2)
into (A2) to obtain

&y (k) = %sincx + % (1 = p)sinc(x[1 — )

)l
(1)

the “interesting” values of f also have somewhat simpler
explicit forms. For the rectangular window (f = 0), which
was considered in the main body of the paper, we have

(A13)

&y (k) = £°(k) = sinck; (A14)
for the Hann window (f# = 1), we have
: H L. .
EV(k) = &M (k) = 5 sinck + Zsmc(l —K)
1
+Zsinc(1 +K); (A15)

and for the canonical (f = %) Tukey window, we have

o) = 10 (i)

1 1 1
=5 sinck — 1 sinc(2 + k) — Zsinc(2 —K)
+1, K+1, 1+K‘ +l, 1K
7 Sine >+ gsinc 5 ) Tgsinc 5):
(A16)

We plot these three functions in Fig. 9.
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FIG. 8 (color online). Specific versions of the general Tukey
window wy(@) as defined in (A12): the rectangular window
W=(8) = wo(6), a canonical (8 = 1) Tukey window w /,(6), and
the Hann window w4 (9) = w, (9).

To evaluate the factor of ((Z)?) appearing in (A11), we
need to construct the matrix {y},} via (A4). Substituting
(A12) into (A4), we can find

(7Pe = (=1)7(1 = p)sinc[(k = £)(1 - p)]
+ 2 psincl(k — £)f]
—%ﬁsinc[(k— Ap—1] —%ﬁsinc[(k— £)p+ 1]
—&—%ﬁsinc[(k— £)p-2] + %6/)’sinc[(k _p+2).
(A17)
We can see that, for the rectangular case § — 0, we get

(78 )ke = Ore as before, while for the Hann case f = 1, we
have

1.00F---- e
0.75 - rrrrrr
0.50 |-
0.25

(k)

0.00 k-

rectangular

—-0.25 :
- B= % Tukey | :
—0.50 - ARREEN RN U Homn B REREREE R B

1 1 T T T 1 1
-25-20-15-10-05 0.0 05 10 15 20 25
K

FIG. 9 (color online). The window leakage function &£ (k) =
T3 6% (x/Tg) defined in (A2) for the windows shown in Fig. 8.
The explicit formulas are given in (Al4) for the rectangular
window, (A16) for the canonical (f = %) Tukey window, and
(A15) for the Hann window. Note that the version for rectangular-
windowed data is just &(k) = Ty{dr, (k/Ty) = sinc(k) =
sinzx which is the finite-time delta function plotted in Fig. 1.

K
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1 1 1
Tee™ = g0ke = 30ke-1 = g 0kert T g Oke-2 g Ok
(A18)
The diagonal elements for general f are
5 _
Ve =1- gﬂ =wj (A19)

as in (AS5). This means that, in the special case where the set
of bins [ from each SFT is just the “best bin” ky defined
in (2.18), the matrix {y},} just has a single element
Vi, = 1= 5. and

15 (&g P

’:‘W)2
1-3p

—K

—~

(A20)

where &;(x) is defined in (A13). In general, though, we

need to invert the matrix (A17) and then average (Z)?
defined in (A10) over possible values of kx. We plot the
results in Fig. 10 as a function of f3, for cases where we take
the “best” m bins from each SFT. We see that, for any
number of bins, ((£¥)2) is a maximum for § =0, i.e.,
rectangular windowing. The f =0 values are just the
“cumulative” entries from Table II for the corresponding
number of bins. Specifically, for the single-bin case, when
B = 0, we have (Z2) = 0.774 (as seen in the m = 1 entry of
Table 1I), when § = 3, we have ((E™*)2) = 0.699, and
when B =1, we have ((EM*")2) =0.601. These values

g ? ? ?

i — — 6Dbins ‘ ‘
= 04H - - Bbins| o T TERPPR. .
—— 4bins : :
— — 3bins
021 ... 2 bins i
—— 1bin
OO T Il Il
0.00 0.25 0.50 0.75 1.00

B

FIG. 10 (color online). The leakage factor ((Z")?) appearing in
(A11) for a search using between one and six bins from each SFT,
assuming a general Tukey window from the family (A12). We see
that, for any number of bins, the most sensitive search is when
p =0, i.e., for rectangular windows. In particular, when a single
bin is used from each SFT, we have (Z?) = 0.774 for rectangular
windowing (f = 0), ((Z})*) = 0.699 for a canonical (§ = 3)
Tukey window, and ((EH41)2) = 0.601 for Hann windowing
(# =1). Note that the =0 value on each curve is just the
corresponding “cumulative” number from Table II.
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also appear in [27], which explains in more detail the
relevant phenomenon. While the dropoff from the maxi-
mum value of (Z%)? to its average value is greatest for
rectangular windowing, the maximum value and the
average value are also greatest for the rectangular window.

A common approach to handle the loss of signal
associated with Hann-windowed data is to divide the data
into overlapping Hann-windowed data segments, as in [18].
For the present search, however, it is easier just to include
more bins from the rectangularly windowed Fourier trans-
form, if desired, to increase the sensitivity of the search.
The only drawback to that is a slight increase in computa-
tional time, but this increase is much smaller than what
would arise from almost doubling the number of SFTs by
the use of overlapping windows.

APPENDIX B: PROBABILITY DISTRIBUTION
FOR CROSS-CORRELATION STATISTIC
IN GAUSSIAN NOISE

In this appendix, we consider the detailed statistical
properties of the cross-correlation statistic (2.36) in the
presence of Gaussian noise. If the noise contribution
to Xk, is Gaussian, the definitions (2.9) and (2.23) imply
that z—p is a circularly symmetric Gaussian random
vector [35] with zero mean, unit covariance and zero
pseudocovariance, as described in (2.26). If {wg} and
{vg} are the eigenvalues and eigenvectors, respectively,
of the Hermitian weighting matrix W defined in (2.35),
so that

W = ZVK(I)KV;(, (Bl)
K

then the statistic is
_ P T2
p= ZZTVKCOKVKZ = Za}K|VKz| .
K K

The conditions Tr(W) =0 and Tr(W?) =1 imply that
Soxwg =0 and > gw% = 1. To give an example of the
typical form of the eigenvalues, we present in Fig. 11 two
typical sets of eigenvalues, one assuming a day-long
observation with three detectors, assuming T = 900 s
and T, = 3600 s, the other combining 365 such obser-
vations with randomly staggered starting times to simulate
a year-long observation, assuming LIGO Livingston,
Hanford and Virgo detectors with identical and stationary
noise spe(:tra.22

(B2)

“Note that since G%F = ¢!®<[%¢e~1% a matrix made of the
{I'¥¢} has the same eigenvalues as one made of the {G%F}. If the
noise PSDs are (approximately) the same for all SFTs, it is also
equivalent to using the eigenvalues of a metric made of the

Ik}
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Eigenvalues {wg } of the weights matrix W defined in (2.35) for two scenarios. On the left, we show one day of observation

with the LLO, LHO and Virgo detectors, assuming equal sensitivity, with T = 900 s and 7', = 3600 s. On the right, we show one
year of observation under the same conditions, constructed as the union of 365 such days, spread throughout the year. In both cases, the
start and end of each day include data gaps of 900-1800 s, randomly and independently generated for each detector.

Each V;<Z is an independent circularly symmetric
Gaussian random variable with zero mean and unit vari-
ance, which means its real and imaginary parts are

independent Gaussian random variables with mean zero

and variance 1. Thus |vjz|* is ! times a ¥?(2) random
variable; i.e., it is an exponential random variable with unit

rate parameter. The characteristic function is thus

1
1—ir

k(1) = Eleie’] = (B3)
which means that the characteristic function of the cross-
correlation statistic is

o) = E[exp (irszwuvzleﬂ

1
= ) =—=—F7—"7—. B4
l;I(pK(wK ) H[((l _ int) ( )
This allows a straightforward computation of the exact
probability density function for the statistic p as

w2l ePlok
. >0
K,a§>0 HL#K(I—(HL/(I)K> P
flplho = 0) = 1 (B5)
—wy Pl VK
p <0

K.wg<0 HL#((I—(UL/CUK)

which is a mixture of exponential distributions. To get the
false alarm probability a at a threshold p" >0, we
calculate

a=P(p>pPlhy=0) = /m f(plhg = 0)dp
P
e—ﬂlh/wk

N K.wg>0 HL?éK(l - wL/wK) .

The problem with this expression is that the denominator
can get very small, and the signs of the terms alternate.
To see this, assume that we have ordered the eigenvalues
so that

(UN>(UN_1>"'>6()KO>O>CUKO_]>"'>0)].

(B7)
Then

3
~Q
=}
—
A
g
o)
=
Q :
2 ; ; ; :
£ 1079 e RSP e Gy B .
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& 10~12H X one day, numerical
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FIG. 12 (color online). False alarm probabilities for the cross-
correlation statistic in the day-long and year-long scenarios
considered in Fig. 11, using the explicit formula (B9) as well
as numerical integration of (B10), along with the probabilities we
would get if we assumed the statistic to be Gaussian. For a
day-long observation (with three detectors, 7y = 900 s and
T max = 3600 s), both methods give comparable results, but the
Gaussian approximation is invalid for single-template false alarm
probabilities below about 102, Note that for large signal values, a
single exponential term dominates. For a year-long observation,
practical calculation with (B9) is impossible due to underflow
issues. The numerical integration of (B10) becomes unstable for
false alarm probabilities below 10~!2, but not before quantifying
deviations from the Gaussian approximation even for a year-long
observation.
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-2 = M =5)] LI (=20
AL G

and the false alarm probability is

N

a= Y (=1)NKer" ok

K=K,

-2 G- e

The last two factors can be very large, and are larger when
the eigenvalues are closer together. (Recall that N is the
number of SFTs, which is approximately 7 s/ T s> SO there
are many factors appearing in the product.)
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Given the numerical problems with the exact false alarm
probability (B9) when the number of SFTs is large, it is
sometimes necessary to use an alternate approach. We can
perform a calculation analogous to that in [18], based on the
method of [36,37]. This uses the Gil-Pelaez expression [38]
to construct a cumulative distribution directly from the
characteristic function (B4) according to

dt

1 1 [ o
a==+ —/ Im(q)(t)e_”/’h)—.
2 0 t

. (B10)

We can then find the false alarm probability by numerical
integration of (B10). Results of both of these methods are
shown in Fig. 12, for the two scenarios considered in
Fig. 11. Both methods produce consistent results for a day-
long observation and illustrate deviation of the false alarm
probability from the Gaussian value for p > 2. For the
year-long observation, explicit evaluation of (B9) is impos-
sible because of underflow in the cancellations, but
numerical integration of (B10) works until the false alarm
probability goes below 1072 or so. False alarm proba-
bilities are considered in detail for a wider range of
observing scenarios in [28].
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