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We consider the cross-correlation search for periodic gravitational waves and its potential application to
the low-mass x-ray binary Sco X-1. This method coherently combines data not only from different
detectors at the same time, but also data taken at different times from the same or different detectors.
By adjusting the maximum allowed time offset between a pair of data segments to be coherently
combined, one can tune the method to trade off sensitivity and computing costs. In particular, the
detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in
amplitude sensitivity for a search with a maximum time offset of one hour, compared with a directed
stochastic background search with 0.25-Hz-wide bins, is about a factor of 5.4. We show that a search of
one year of data from the Advanced LIGO and Advanced Virgo detectors with a coherence time of one
hour would be able to detect gravitational waves from Sco X-1 at the level predicted by torque balance
over a range of signal frequencies from 30 to 300 Hz; if the coherence time could be increased to ten
hours, the range would be 20 to 500 Hz. In addition, we consider several technical aspects of the cross-
correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows
still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-
correlation search, in general, and as applied to a neutron star in a circular binary system. We consider the
effects of using a signal template averaged over unknown amplitude parameters: The quantity to which the
search is sensitive is a given function of the intrinsic signal amplitude and the inclination of the neutron-
star rotation axis to the line of sight, and the peak of the expected detection statistic is systematically offset
from the true signal parameters. Finally, we describe the potential loss of signal-to-noise ratio due to
unmodeled effects such as signal phase acceleration within the Fourier transform time scale and gradual
evolution of the spin frequency.
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I. INTRODUCTION

The low-mass x-ray binary (LMXB) Scorpius X-1 (Sco
X-1) [1] is one of the most promising potential sources of
gravitational waves (GWs) which may be observed by
the generation of GW detectors—such as Advanced
LIGO [2], Advanced Virgo [3] and KAGRA [4]—which
will begin operation in 2015 with the first Advanced
LIGO observing run, and Advanced Virgo and KAGRA
observations expected to follow in the coming years. Sco
X-1 is presumed to be a binary consisting of a neutron
star which is accreting matter from a low-mass
companion; its parameters are summarized in Table I.
Nonaxisymmetric deformations in the neutron star can
give rise to gravitational radiation, most of which is
emitted at twice the rotation frequency of the neutron

star [10].1 Such deformations can be maintained by the
accretion of matter onto the neutron star. It has been
conjectured [12] that the neutron star’s rotation may be in
an approximate equilibrium state, where the spin-up
torque due to accretion is balanced by the spin-down
due to gravitational waves. Scorpius X-1’s high x-ray
flux implies a high accretion rate, which makes it the
most promising potential source of observable GWs
among known LMXBs [13].
Since Sco X-1 is not seen as a pulsar, its rotation

frequency is unknown. There is also residual uncertainty
in the orbital parameters which determine the Doppler
modulation of the signal, monochromatic in the neutron
star’s rest frame, which reaches the solar-system barycenter
(SSB). This parameter uncertainty limits the effectiveness of
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1Additionally, unstable rotational modes of the neutron star, or
r modes [11], can lead to GW at 4=3 of the neutron star’s
rotational frequency.
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the usual coherent search for periodic gravitational waves
[10]. The first search for GW from Sco X-1 with the first
generation of interferometric GWdetectors, using data from
the second LIGO science run [8], was limited to six hours of
data for this reason. A subsequent search with data from the
fourth LIGO science run [14] used a variant of the cross-
correlation method developed to search for stochastic GW
backgrounds, treating Sco X-1 as a random unpolarized
monochromatic source with a known sky location [15].2

The stochastic analysis formed the inspiration for a new
method to search for periodic gravitational waves with a
model-based cross-correlation statistic which takes into
account the signal model for continuous GWemission from
a rotating neutron star [21]. (This method has also been
adapted [22] to search for young neutron stars in supernova
remnants.) The present work further develops some of the
details of this method and the specifics of applying it to

search for gravitational waves from Sco X-1 and, by
extension, other LMXBs.
The paper is organized as follows: Section II reviews the

basics of the method and the construction of the combined
cross-correlation statistic using a new, streamlined formal-
ism. Section III works out the statistical properties of the
cross-correlation statistic, including the first careful deter-
mination of the effects of signal leakage and the unknown
value of the inclination angle of the neutron star’s axis to
the line of sight. It also considers in detail how the
sensitivity of the model-based cross-correlation search
should compare to the directed unmodeled cross-
correlation search for a monochromatic stochastic back-
ground. Section IV considers two effects related to the
dependence of the statistic on phase-evolution parameters
such as frequency and binary orbital parameters: a sys-
tematic offset of the maximum in parameter space from the
true signal parameters (which depends on the unknown
inclination angle), and the quadratic falloff of the signal
away from its maximum. The latter is encoded in a
parameter space metric, which we construct in general,
as well as for the LMXB search both in its exact form and in
a limiting form relevant if the observation time is long
compared to the orbital period. In Sec. V we consider
limitations to the method from inaccuracies in the signal
model, either due to slight variations in frequency (“spin
wandering”) arising from an inexact torque-balance equi-
librium, or due to phase acceleration during a stretch of data
to be Fourier transformed. Finally, in Sec. VI we summa-
rize our results and consider the expected sensitivity of this
search to Sco X-1.

II. CROSS-CORRELATION METHOD

The cross-correlation method is derived and described in
detail in [21]. In this section, we review the fundamentals,
using a more streamlined formalism and including a more
careful treatment of signal-leakage issues and nuisance
parameters.

A. Short-time Fourier transforms

Because the signal of interest is nearly monochromatic,
with slowly varying signal parameters, it is convenient to
describe the analysis in the frequency domain by dividing the
available data into segments of length Tsft and calculating a
short-time Fourier transform (SFT) from each. Since the
sampling time δt is typically much less than the SFT duration
Tsft, we can approximate the discrete Fourier transform of the
data by a finite-time continuous Fourier transform. If we use
the index K to label both the choice of detector and the
selected time interval,which hasmidpoint tK , the SFTwill be

3

TABLE I. Parameters of the low-mass x-ray binary Scorpius
X-1. Since the sky position is determined to microarcsecond or
better accuracy, the relevant astrophysical parameters with
residual uncertainty are those describing the orbit. Those are
the projected semimajor axis ap ¼ a sin i of the neutron star’s
orbit, the orbital period Porb, and the time tasc at which the neutron
star crosses the ascending node (moving away from the observer),
measured in the solar-system barycenter. The orbital eccentricity
of Sco X-1 is believed to be small [1], and the present work
presumes the orbit to be circular for simplicity; consideration of
eccentric orbits would add two search parameters which are
determined by the eccentricity and the argument of periapse [5,6].
Note that the observational constraint in [1] is not on ap itself, but

on the radial velocity amplitude K1 ¼ 2πap
Porb

of the primary. We
could have formulated the parameter space in terms of K1 and
Porb rather than ap and Porb, but this has no significant impact on
the accuracy of the method, since the uncertainty in ap is
dominated by that associated with K1. Finally, note that the
orbital reference time tasc (which we quote as the time of
ascension of the compact object, 1=4 cycle before the time of
inferior conjunction of the companion quoted in [7]) can be
propagated to a later epoch by adding an integer number of
periods, at the cost of increasing the uncertainty due to the
uncertainty in the period itself.

Parameter Value Reference(s)

Right ascension 16h19m55.0850s [8] from [9]
Declination −15°38024.900 [8] from [9]
Distance (kpc) 2.8� 0.3 [9]
ap (sec) 1.44� 0.18 [8] from [1]
tasc (GPS sec) 897753994� 100 [7]
Porb (sec) 68023.70� 0.04 [7]

2Other methods have been developed, specialized to search for
LMXBs. These include summing over contributions from side-
bands created by Doppler modulation [16,17], searching for such
modulation patterns in doubly-Fourier-transformed data [18,19],
and fitting a polynomial expansion in the Doppler-modulated
GW phase [20].

3Note that the factor e−iπfkTsft appears in Eq. (2.25) of [21] with
the wrong sign in the exponent. However, given (2.2) for integer
k, this phase correction is simply the sign ð−1Þk so the complex
conjugate does not change it.

WHELAN et al. PHYSICAL REVIEW D 91, 102005 (2015)

102005-2



~xKk ¼
XN−1

j¼0

xKðtK − Tsft=2þ jδtÞe−i2πjδtk=Tsftδt

≈ e−iπfkTsft

Z
tKþTsft=2

tK−Tsft=2
xKðtÞe−i2πfkðt−tKÞdt

¼ ð−1Þk
Z

tKþTsft=2

tK−Tsft=2
xKðtÞe−i2πfkðt−tKÞdt; ð2:1Þ

where the frequency corresponding to the kth bin of the SFTis

fk ¼ kδf ¼ k
Tsft

: ð2:2Þ

In practice, the data are often multiplied by a window
function wj ¼ wðjδt−tKTsft

Þ before being Fourier transformed,
so that (2.1) becomes

~xwKk ¼
XN−1

j¼0

wjxKje−i2πjk=Nδt

≈ ð−1Þk
Z

tKþTsft=2

tK−Tsft=2
w

�
t − tK
Tsft

�
xKðtÞe−i2πfkðt−tKÞdt:

ð2:3Þ
In this work we assume that the windowing function is
nearly rectangular with some small transition at the
beginning and end, so that leakage of undesirable spectral
features is suppressed, but the effects of windowing on the
signal and noise can otherwise be ignored. The implications
of other window choices are considered in Appendix A.

B. Mean and variance of Fourier components

Let the data

xKðtÞ ¼ hKðtÞ þ nKðtÞ ð2:4Þ

in SFT K consist of the signal hKðtÞ plus random
instrumental noise nKðtÞ with one-sided power spectral
density (PSD) SKðjfjÞ so that its expectation value is

E½nKðtÞ� ¼ 0 ð2:5Þ

and4

E½nKðtÞnLðt0Þ� ¼ δKL

Z
∞

−∞

SKðjfjÞ
2

e−i2πfðt−t0Þdf: ð2:6Þ

If we write the noise contribution to the SFT labeled
by K as

~nKk ¼
XN−1

j¼0

nKje−i2πjk=Nδt

≈
Z

tKþTsft=2

tK−Tsft=2
nKðtÞe−i2πðt−½tK−Tsft=2�Þfkdt ð2:7Þ

then (2.5) implies E½ ~nKk� ¼ 0 and we can use (2.6) to show
that

E½ ~nKk ~n�Ll� ≈ δKLδklTsft
SKðfkÞ

2
: ð2:8Þ

(As detailed in Appendix A, this is not the case for
nontrivial windowing, where noise contributions from
different frequency bins are correlated.) If we can estimate
the noise PSD SKðfkÞ, we can “normalize” the data to
define (as in [23])

zKk ¼ ~xKk

ffiffiffiffiffiffiffiffiffiffiffiffi
2

TsftSK

s
ð2:9Þ

which has mean

E½zKk� ¼ μKk ¼ ~hKk

ffiffiffiffiffiffiffiffiffiffiffiffi
2

TsftSK

s
; ð2:10Þ

unit covariance

E½ðzKk − μKkÞðzLl − μLlÞ�� ¼ δKLδkl; ð2:11Þ

and zero “pseudocovariance”

E½ðzKk − μKkÞðzLl − μLlÞ� ¼ 0: ð2:12Þ

(This is because the real and imaginary parts of each zKk are
independent and identically distributed.)

C. Signal contribution to SFT

The signal from a rotating deformed neutron star is
determined by various parameters of the system, which can
be divided into the following categories [10].

(i) Amplitude parameters: intrinsic signal amplitude h0,
the angles ι and ψ which define the orientation of the
neutron star’s rotation axis (ι is the inclination to the
line of sight and ψ is a polarization angle from
celestial west to the projection of the rotation axis
onto the plane of the sky), and the signal phase Φ0 at
some reference time.

(ii) Phase-evolution parameters: intrinsic phase evolu-
tion (frequency and frequency derivatives) of the
signal, as well as parameters such as sky location
and binary orbital parameters which govern the
Doppler modulation of the signal.

4Strictly speaking, we should allow for data from adjacent SFT
intervals in the same detector to be correlated, but we assume that
the autocorrelation function Knðt − t0Þ ¼ R

∞
−∞

SnðjfjÞ
2

e−i2πfðt−t0Þdf
falls off quickly compared to Tsft, so that we can neglect the
correlation between noise in different time intervals.
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Those parameters determine the signal received by a
gravitational-wave detector at time t as

hðtÞ ¼ h0ðFþAþ cosΦðtÞ þ F×A× sinΦðtÞÞ ð2:13Þ

where Fþ and F× are the antenna pattern functions [10,24]
which change slowly with time as the Earth rotates. The
signal contribution to a SFT can be estimated by

hKðtÞ ≈ h0fFKþAþ cosðΦK þ 2πfK½t − tK�Þ
þ FK

×A× sinðΦK þ 2πfK½t − tK�Þg ð2:14Þ

where we have Taylor expanded the phase about the
time tK:

ΦðtðtÞÞ ≈ ΦK þ 2πfKðt − tKÞ: ð2:15Þ

The validity of this approximation will be one of the
limiting factors which determines the choice of SFT
duration Tsft, as detailed in Sec. V B.
The form of (2.14) includes the following parameters

and definitions:
(i) Aþ ¼ 1þcos2ι

2
and A× ¼ cos ι depend on the inclina-

tion ι of the rotation axis to the line of sight.
(ii) The antenna patterns FKþ and FK

× depend on the
detector in question, the sidereal time at tK , the sky
position α; δ, and the polarization angle ψ .

(iii) The relationship tðtÞ between the SSB time and the
time at the detector depends on the sky position and
time.5 Thus the phase ΦðtðtÞÞ depends on time,
detector, Φ0, f0; f1;…, sky position and—in the
case of a binary—the binary orbital parameters.

The signal contribution to bin k of SFT K is

~hKk ≈ h0ð−1ÞkeiΦK
FKþAþ − iFK

×A×

2
δTsft

ðfk − fKÞ ð2:16Þ

where we have defined

δTsft
ðfk − fKÞ ¼

Z
tKþTsft=2

tK−Tsft=2
e−i2πðfk−fKÞðt−tKÞdt

¼ Tsftsincð½fk − fK�TsftÞ ð2:17Þ

in terms of the normalized sinc function sincα ¼ sin πα
πα . This

is plotted in Fig. 1.6 The signal contribution will be largest
in the ~kKth Fourier bin, defined by

~kK ≔ ⌊
fK
δf

⌉ ¼ ⌊fKTsft⌉ ð2:18Þ

whose frequency f ~kK
is closest to fK . (We have introduced

the notation that ⌊α⌉ is the closest integer to α.) It will prove
useful to define, similarly to [23],7

κKk ¼ k − fKTsft ¼
fk − fK

δf
≡ ~κK þ ðk − ~kKÞ ð2:19Þ

where

~κK ¼ f ~kK
− fK
δf

¼ ~kK − fKTsft; ð2:20Þ

so that − 1
2
≤ ~κK ≤ 1

2
. A simple search would consider, from

each SFT K, only the Fourier component ~xK ~kK
closest in

frequency to the signal frequency fK at the search param-
eters. However, as we will see, the sensitivity of the search
can be improved by including contributions from additional
adjacent bins, so we indicate by KK the set of bins to be
considered from SFT K, and we will construct a detection
statistic using ~xKk for all k ∈ KK .
We can then write

~hKk ≈ h0ð−1ÞksincðκKkÞeiΦK
FKþAþ − iFK

×A×

2
Tsft ð2:21Þ

which means that, from (2.10),

E½zKk� ¼ μKk

≈ h0ð−1ÞksincðκKkÞeiΦK
FKþAþ − iFK

×A×

2

ffiffiffiffiffiffiffiffiffi
2Tsft

SK

s
:

ð2:22Þ

D. Construction of the cross-correlation statistic

For a given choice of signal parameters, which determine
~κK for each SFT, and therefore κKk for each Fourier
component, it is useful to define8

zK ¼
P

k∈KK
ð−1ÞksincðκKkÞzKkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k0∈KK

sinc2ðκKk0 Þ
q

≡ 1

ΞK

X
k∈KK

ð−1ÞksincðκKkÞzKk: ð2:23Þ

5Specifically, if ~rdet is the position of the detector and k̂
is the unit vector pointing from the source to the SSB, tðtÞ ≈
t − ~rdet · k̂=c.6Previous sensitivity estimates [21,22] noted that δTsft

ð0Þ ¼
Tsft and therefore replaced each of the finite-time delta functions
with the SFT length Tsft, but a more careful treatment requires
that we keep track of spectral leakage caused by the signal
frequency not being centered in a SFT bin.

7Note that our definition of κKk differs by a sign from the one
used in [23].

8Note that computations can be made more efficient by use of
the identity sincðκKkÞ ¼ ð−1Þ~kK−k sinðπ ~κKÞ

πκKk
so ð−1ÞksincðκKkÞ ¼

ð−1Þ~kK sinðπ ~κKÞ 1
κKk

where only the final factor depends on the bin
index k ∈ KK .

WHELAN et al. PHYSICAL REVIEW D 91, 102005 (2015)

102005-4



This is still normalized so that

E½ðzK − μKÞðzL − μLÞ�� ¼ δKL; ð2:24aÞ

E½ðzK − μKÞðzL − μLÞ� ¼ 0 ð2:24bÞ

where now

μK ≈ h0eiΦK
FKþAþ − iFK

×A×

2
ΞK

ffiffiffiffiffiffiffiffiffi
2Tsft

SK

s
: ð2:25Þ

If we define vectors indexed by SFT number, we can write
(2.24) and (2.25) in matrix form as

E½z� ¼ μ; ð2:26aÞ

E½ðz − μÞðz − μÞ†� ¼ 1; ð2:26bÞ

E½ðz − μÞðz − μÞtr� ¼ 0 ð2:26cÞ

where 1 is the identity matrix, 0 is a matrix of zeros, ð·Þtr
indicates the matrix transpose and ð·Þ† is the matrix adjoint
(complex conjugate of the transpose).
A real cross-correlation statistic ρ can be constructed

by defining a Hermitian matrix W and constructing
ρ ¼ z†Wz ¼ TrðWzz†Þ. [Our chosen form of W will be
defined in (2.35).] Equation (2.26) tells us that

E½zz†� ¼ 1þ μμ† ð2:27Þ
where the second term is a matrix with elements

μKμ
�
L ¼ h20ΞKΞLeiΔΦKLΓKL

2Tsftffiffiffiffiffiffiffiffiffiffiffi
SKSL

p ð2:28Þ

where ΔΦKL ¼ ΦK − ΦL is the difference between the
modeled signal phases in the two SFTs and ΓKL is a

geometrical factor which depends on ι and ψ as follows
[compare Eq. (3.10) of [21]]:

ΓKL ¼
1

4
ðFKþFLþA2þþFK

×FL
×A2

×þ i½FKþFL
×−FK

×FLþ�AþA×Þ

¼ 1

4

�
A2þþA2

×

2
ðaKaLþbKbLÞ

þ iAþA×ðaKbL−bKaLÞ

þA2þ−A2
×

2
½ðaKaL−bKbLÞcos4ψ

þðaKbLþbKaLÞsin4ψ �
�

ð2:29Þ
where we have used the fact that the ψ dependence of the
antenna patterns FKþ;× can be written in terms of the
amplitude modulation (AM) coefficients aK and bK as

FKþ ¼ aK cos 2ψ þ bK sin 2ψ ; ð2:30Þ
FK
× ¼ −aK sin 2ψ þ bK cos 2ψ : ð2:31Þ

The AM coefficients [10] are determined by the relevant
sky position, detector, and sidereal time. They can be
defined [25] as aK ¼ εabþ dKab and bK ¼ εab× dKab where εabþ
and εab× are a polarization basis defined using one basis
vector pointing west along a line of constant declination
and one pointing north along a line of constant right
ascension. Note that ι and ψ are properties of the source
which do not change for different SFT pairs, while aK and
bK depend only on the SFT (detector and sidereal time) and
sky position. It is also useful to note that the combinations

FKþFLþ þ FK
×FL

× ¼ aKaL þ bKbL ≡ 10Γave
KL; ð2:32aÞ

FKþFL
× − FK

×FLþ ¼ aKbL − bKaL ≡ 10Γcirc
KL ð2:32bÞ

are independent of ψ .
Since terms in ΓKL change signs if we vary cos ι and ψ ,

which are unknown, it is convenient, as proposed in [21], to
work with the average over those quantities, which picks
out the “robust” part:

Γave
KL ¼ hΓKLicos ι;ψ ¼ 1

10
ðaKaL þ bKbLÞ: ð2:33Þ

Note that Γave
KL is real and non-negative, while ΓKL is

complex. On the other hand, ΓKL can be factored into γKγ�L,
while Γave

KL cannot. If we define (again as in [23], but with a
different overall normalization) “noise-weighted AM coef-

ficients” âK and b̂K by dividing by
ffiffiffiffiffiffiffi
SK
2Tsft

q
and construct Γ̂KL

from those, we can write

μKμ
�
L ¼ h20ΞKΞLeiΔΦKL Γ̂KL ¼ h20ĜKL ð2:34Þ

or, as a matrix equation, μμ† ¼ h20Ĝ. Note that [21] did not
consider issues of spectral leakage responsible for ΞK, and

FIG. 1. Plot of δTsft
ðf − f0Þ defined in (2.17) which determines

the signal contribution to a given frequency bin of a short Fourier
transform (SFT) of duration Tsft according to (2.16). Since the
spacing between frequency bins is δf ¼ 1=Tsft, there will be, for
a given signal frequency fK, one bin whose value of κKk ¼
ðfk − fKÞ=δf lies between each pair of vertical solid lines.
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used a different convention for the placement of complex
conjugates in the atomic cross-correlation term, so their
~GKL would be equal to G�

KL
ΞKΞL

in the present notation.

Similarly, our Ĝ�
KL

ΞKΞL
corresponds to the combination

~GKLffiffiffiffiffiffi
σ2KL

p
from [21].9

As noted in [21], an “optimal” combination of cross-
correlation terms would use a weight W proportional to Ĝ.
However, as described above, we work with Ĝave

KL ¼
ΞKΞLeiΔΦKL Γ̂ave

KL in order to avoid specifying the parameters
cos ι and ψ . For reasons of computational cost to be detailed
later, we limit the possible set of SFT pairs KL included in
the cross correlation to some set P, in particular, by
requiring that K < L and jtK − tLj < Tmax. Then we define
the Hermitian weighting matrix W by

WKL ¼

8><
>:

NĜave
KL KL ∈ P

NðĜave
KLÞ� LK ∈ P

0 otherwise

ð2:35Þ

so that the cross-correlation statistic is

ρ ¼ z†Wz ¼ TrðWzz†Þ
¼ N

X
KL∈P

ðĜave
KLz

�
KzL þ Ĝave�

KL zKz�LÞ

¼ N
X
KL∈P

Γ̂ave
KL

X
k∈KK

X
l∈KL

ð−1Þk−lsincðκKkÞsincðκLlÞ

× ðeiΔΦKLz�KkzLl þ e−iΔΦKLzKkz�LlÞ: ð2:36Þ

Since we assume that the list of pairs P includes no
autocorrelations, the matrix W contains no diagonal ele-
ments,10 which implies TrðWÞ ¼ 0. Wewill later introduce,
and use when convenient, the notation that α labels a
(nonordered) pair of SFTs KL ∈ P.

III. STATISTICS AND SENSITIVITY

In this section we consider in detail the statistical
properties of the cross-correlation statistic ρ which were
sketched in a basic form in [21]. In particular, we consider
the impact on the expected sensitivity of spectral leakage
and unknown amplitude parameters, and compare the
sensitivity of a cross-correlation search to the directed
stochastic search by analogy to which it was defined.

A. Mean and variance of cross-correlation statistic

The expectation value of the cross-correlation statistic is

E½ρ� ¼ E½TrðWzz†Þ� ¼ TrðWÞ þ h20TrðWĜÞ
¼ h20TrðWĜÞ ¼ μ†Wμ ð3:1Þ

where we have used the fact that W is traceless. The
variance is

VarðρÞ ¼ E½ρ2� − E½ρ�2 ¼ E½z†Wzz†Wz� − ðμ†WμÞ2:
ð3:2Þ

The first term can be evaluated by writing z ¼ ðz − μÞ þ μ;
after some simplification we have

VarðρÞ ¼ E½ðz − μÞ†Wðz − μÞðz − μÞ†Wðz − μÞ�
þ 2μ†W2μ: ð3:3Þ

Ordinarily we would need to know something about the
fourth moment of the noise distribution to evaluate the
expectation value, but since W contains no diagonal
elements, and the different elements of z − μ are indepen-
dent of each other, the expectation value can be evaluated
using only the variance-covariance matrix of z to give

VarðρÞ ¼ TrW2 þ 2μ†W2μ ¼ TrW2 þ 2h20TrW
2Ĝ:

ð3:4Þ

We choose the normalization constant N so that ρ has unit
variance in the limit h20 → 0, i.e.,

1 ¼ TrðW2Þ ¼
X
K

X
L

WKLWLK ¼ 2N2
X
KL∈P

jĜave
KLj2;

ð3:5Þ

i.e.,

N−2 ¼ 2
X
KL∈P

jĜave
KLj2 ¼ 2

X
KL∈P

Ξ2
KΞ

2
LðΓ̂ave

KLÞ2: ð3:6Þ

Written in terms of SFT pairs, the expectation value of
the statistic is

E½ρ� ¼ h20TrðWĜÞ
¼ Nh20

X
KL∈P

ðĜave
KLĜ

�
KL þ Ĝave�

KL ĜKLÞ

¼ Nh202
X
KL∈P

Ξ2
KΞ

2
LΓ̂

ave
KLReΓ̂KL: ð3:7Þ

Looking at (2.29) we see that the real part of ΓKL has a
piece proportional to Γave

KL and a piece that depends on ψ :

9Note that Eq. (3.10) of [21] is also missing a factor of
ð−1Þ~kK−~kL which should appear in ~h�K ~kK

~hL~kL . This omission was
pointed out in [22], but Eq. (5) of [22] included the wrong sign in
the phase correction and failed to stress that the relevant
frequency is f ~kK

rather than fK .
10Note that if we analogously constructed the matrix to include

only diagonal terms, i.e., constructed a statistic only out of
autocorrelations, the statistic would be equivalent to that used in
the PowerFlux method [26].
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ReΓKL ¼ 5

2

A2þ þA2
×

2
Γave
KL þA2þ −A2

×

2
ðFKþFLþ − FK

×FL
×Þ:

ð3:8Þ

The sum over SFT pairs KL can be broken down as a sum
over detector pairs, over time offsets tK − tL, and over the
time stamp 1

2
ðtK þ tLÞ halfway between the time stamps of

the SFTs in the pair. In an idealized long observing run, if
the detector noise is uncorrelated with sidereal time, the
sum over 1

2
ðtK þ tLÞ means we are averaging the two

expressions ðaKaL þ bKbLÞ2 and ðaKaL þ bKbLÞðFKþFLþ−
FK
×FL

×Þ (the latter of which depends on the polarization
angle ψ ) over sidereal time. Because the former is positive
definite and the latter is not, this average tends to suppress
the ψ-dependent term. This is in addition to the fact that
A2

þþA2
×

2
≥ A2

þ−A
2
×

2
, possibly substantially, depending on the

value of ι, as illustrated in Fig. 2. If we neglect the second
term in (3.8), Eq. (3.7) becomes

E½ρ� ≈ Nh20
5

2

A2þ þA2
×

2
2
X
KL∈P

Ξ2
KΞ

2
LðΓ̂ave

KLÞ2

¼ ðheff0 Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
KL∈P

Ξ2
KΞ

2
LðΓ̂ave

KLÞ2
r

ð3:9Þ

where

heff0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2

A2þ þA2
×

2

r
ð3:10Þ

is the combination of h0 and cos ι that we can estimate by
filtering with the averaged template.
Since we have normalized the statistic so that VarðρÞ ¼

1 for weak signals, the expectation value (3.9) is an
expected signal-to-noise ratio for a signal with a given
heff0 . This means that if we define a SNR threshold ρth such
that ρ > ρth corresponds to a detection, the signal will be
detectable if

heff0 ≳
ffiffiffiffiffiffi
ρth

q �
2
X

KL∈PΞ
2
KΞ

2
LðΓ̂ave

KLÞ2
�

−1=4
: ð3:11Þ

B. Impact of spectral leakage on estimated sensitivity

Finally, we consider the impact of the leakage factors of
the form Ξ2

K ¼ P
k∈KK

sinc2ðκKkÞ on the expectation value.
Expanding these expressions, we have

E½ρ� ≈ ðheff0 Þ2
�
2
X
KL∈P

ðΓ̂ave
KLÞ2

×
X
k∈KK

sinc2ðκKkÞ
X
l∈KL

sinc2ðκLlÞ
�

1=2
: ð3:12Þ

If we choose only the “best bin” kK ¼ ~kK from each SFT,
defined by (2.18), we have

Ξ2
K ¼ sinc2ð~κKÞ: ð3:13Þ

If, instead of the best bin whose frequency f ~kK
is closest to

fK , we take the m closest bins to define KK , the sum
becomes

Ξ2
K ¼

X
k∈KK

sinc2ðκKkÞ ¼
X~kKþ⌊ðm−1Þ=2⌋

k¼~kK−⌈ðm−1Þ=2⌉
sinc2ðκKkÞ

¼
X⌊ðm−1Þ=2⌋

s¼−⌈ðm−1Þ=2⌉
sinc2ð~κK þ sÞ ð3:14Þ

where ⌊α⌋ ≤ α and ⌈α⌉ ≥ α are the integers below and
above α, respectively. Note that, because of the identity11P∞

s¼−∞ sinc2ðκ þ sÞ ¼ 1, valid for any κ, the best we can
do by including more bins is Ξ2

K ≤ 1 and therefore12

E½ρ� ≤ ðheff0 Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
KL∈P

ðΓ̂ave
KLÞ2

r
: ð3:15Þ

The sensitivity associated with the inclusion of a finite
number of bins from each SFTwill depend on the value of
− 1

2
≤ ~κK ≤ 1

2
corresponding to the signal frequency fK in

each SFT. We can get an estimate of this by assuming that,

FIG. 2. Plot of A2
þþA2

×

2
and A2

þ−A
2
×

2
, the coefficients of the two

contributions to ReΓKL in (3.8). The factor A
2
þþA2

×

2
is also equal to

2
5

ðheff
0
Þ2

h2
0

where ðheff0 Þ2 is the combination of h0 and cos ι approx-

imately measured by the cross-correlation statistic, as shown in,
e.g., Eq. (3.9).

11This is most easily proved by writing sincðκ þ sÞ ¼R 1=2
−1=2 e

i2πðκþsÞtdt and using
P∞

s¼−∞ei2πsðt−t0Þ¼P∞
s¼−∞δðt−t0þsÞ.

12Previous sensitivity estimates [21,22] were missing the factor
of Ξ2

KΞ
2
L and therefore slightly overestimated the sensitivity.
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over the course of the analysis, the Doppler shift evenly
samples the range of ~κ values, and writing

E½ρ� ≈ ðheff0 Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hΞ2i2

X
KL∈P

ðΓ̂ave
KLÞ2

r

¼ ðheff0 Þ2hΞ2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
KL∈P

ðΓ̂ave
KLÞ2

r
ð3:16Þ

with

hΞ2i ¼
�X

s
sinc2ðκ þ sÞ

�
κ

ð3:17Þ

where h·iκ indicates an average over the possible offsets
within the bin. We can numerically evaluate

hΞ2i ¼
X
s

hsinc2ðκ þ sÞiκ

¼
X⌊ðm−1Þ=2⌋

s¼−⌈ðm−1Þ=2⌉
2

Z
1=2

0

sinc2ðκ þ sÞdκ

¼ 2

Z
m=2

0

sinc2κdκ ð3:18Þ

as shown in Table II.
Since most cross-correlation searches will be computa-

tionally limited, the question of how many bins to include
from each SFT is one of optimization of resources. The
value of E½ρ� for a given heff0 , and therefore the sensitivity of
the search, can be increased by including more frequency
bins from each SFT, but this will involve more computa-
tions and therefore more computational resources. If
instead those resources were put into a search with a larger
Tmax, the value of

P
KL∈PðΓ̂ave

KLÞ2 would be higher. Naively,
one might expect the computing cost to scale with the
number of terms to be combined, and therefore with the
square of the number of bins taken from each SFT. So
increasing from m ¼ 1 to m ¼ 2 could take up to 4 times
the computing cost. On the other hand, for a fixed number
of bins, we suppose that the cost will scale with the number
of SFT pairs to be included times the number of parameter
space points to be searched. Typical behavior will be for the
density of points in parameter space to scale with Td

max for
some integer value of d; as described in Sec. IV B, for a
search over frequency and two orbital parameters of an
LMXB, as long as Tmax is small compared to the binary
orbital period, d ¼ 3. Since the number of SFT pairs at
fixed observation time will also scale like Tmax, the overall
computing cost will scale like Tdþ1

max , and quadrupling the
computing time would mean multiplying the possible Tmax

and thus the number of terms in the sum (3.16) by 4
1

dþ1. This
would increase E½ρ� for a given heff0 by a factor of

4
1

2ðdþ1Þ ¼ 2
1

dþ1. For d ¼ 3, this is 21=4 ≈ 1.19, which is very

slightly more than the benefit 0.903
0.774 ≈ 1.17 from including a

second bin from each SFT. However, the assumption that
computing cost scales like m2 is likely an overestimate
(since most of the operations can be done once per SFT
rather than once per pair), so it is generally advisable to use
at least two bins from each SFT.

C. Sensitivity estimate for unknown
amplitude parameters

The cross-correlation statistic is normalized so that
VarðρÞ ≈ 1 and, according to (3.16), and now adopting
the notation that α refers to an unordered allowed pair
of SFTs,

E½ρ� ¼ ðheff0 Þ2hΞ2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
α

ðΓ̂ave
α Þ2

r
¼ ðheff0 Þ2ϱave ð3:19Þ

where heff0 is the combination of h0 and cos ι given in
(3.10), and ϱave is a property of the search which can be
determined from noise spectra, AM coefficients, and
choices of SFT pairs, without knowledge of signal param-
eters other than the approximate frequency and orbital
parameters. Even if the noise in each data stream is
Gaussian distributed, the statistic, which combines the data
quadratically, will not be. It was observed in [21] that each
individual cross correlation between SFTs is Bessel dis-
tributed; the optimal sum is considered in Appendix B
both in its exact form and a numerical approximation. For
simplicity, in what follows we assume that the central limit
theorem allows us to treat the statistic as approximately
Gaussian, with mean ðheff0 Þ2ϱave and unit variance.13

TABLE II. Contributions to hΞ2i, defined in (3.18), from
inclusion of multiple SFT bins. We see that using a single bin
from each SFT leads to only around 77.4% of the maximum
sensitivity given by (3.15), but that we can recover over 90% of
this sensitivity by using two bins and over 95% by using four bins
from each SFT. This table applies for rectangularly windowed
data; using other window options further reduces the expected
SNR, as described in Appendix A. The table also assumes that the
various Doppler modulations move the signal frequency around
to accomplish an average over the fractional offset of the signal
frequency from the center of the bin. The validity of this
approximation is explored in [27].

m 1 2 3 4 5 6

Contribution 0.774 0.129 0.028 0.019 0.009 0.007
Cumulative 0.774 0.903 0.931 0.950 0.959 0.966

13Note that this approximation is less accurate in the tails of the
distribution. Unfortunately, for a search over many independent
templates, the most interesting statistic will necessarily be in the
tails. For example, with 108 templates, even a 1% false alarm
probability for the loudest statistic value would correspond to a
single-template false alarm probability of 10−10. See [28] for
specific examples of this.
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We consider the sensitivity estimates in [21], which
implicitly assume the values of ι and ψ are known and used
to construct the expected cross correlation used in weight-
ing the terms in the statistic. [In our notation this would
mean using ĜKL rather than Ĝave

KL in the definition (2.35) of
W.] Here we perform the analogous calculation, assuming
we are using Ĝave

α in the construction of the statistic. Thus
the probability of exceeding a threshold ρth will be

Pðρ > ρthjh0; ι;ψÞ ¼
Z

∞

ρth
fðρjh0; ι;ψÞdρ

≈
1ffiffiffiffiffiffi
2π

p
Z

∞

ρth
exp

�
−
1

2
½ρ − ðheff0 Þ2ϱave�2

�
dρ

¼ 1

2
erfc

�
ρth − ðheff0 Þ2ϱaveffiffiffi

2
p

�
¼ 1

2
erfc

�
ρth − h20ϱðιÞffiffiffi

2
p

�

ð3:20Þ
where

ϱðιÞ ≈ 5

2

A2þ þA2
×

2
ϱave ¼ 5

16
ð1þ 6cos2ιþ cos4ιÞϱave:

ð3:21Þ
The threshold associated with a false alarm probability α is

ρth ¼
ffiffiffi
2

p
erfc−1ð2αÞ ð3:22Þ

but the sensitivity hsens0 associated with a false dismissal
probability β will now be defined, following a procedure
analogous to the one in [29], by marginalizing over the
unknown inclination ι (since we have neglected the ψ
dependence in E½ρ�)14

1 − β ¼ Pðρ > ρthjh0 ¼ hsens0 Þ
¼ hPðρ > ρthjh0 ¼ hsens0 ; ι;ψÞicos ι;ψ
¼ 1

2

�
erfc

�
ρth − ðhsens0 Þ2ϱðιÞffiffiffi

2
p

��
cos ι

: ð3:23Þ

So to get a sensitivity estimate, we need to find the hsens0

which solves (3.23), i.e.,

2ð1−βÞ

≈
�
erfc

�
ρthffiffiffi
2

p −
ðhsens0 Þ2ϱaveffiffiffi

2
p 5

16
ð1þ6cos2ιþ cos4ιÞ

��
cos ι

¼
Z

1

0

erfc

�
erfc−1ð2αÞ−Seff 5

16
½1þ6χ2þχ4�

�
dχ

ð3:24Þ

so that the approximate sensitivity is

hsens0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Seff

ffiffiffi
2

p

ϱave

s
¼

�
ðSeffÞ−2hΞ2i2

X
α

ðΓ̂ave
α Þ2

�
−1=4

:

ð3:25Þ

Equation (3.24) defines Seff as a specific function of α and
β, so the approximate sensitivity correction due to mar-
ginalizing over cos ι can be worked out independently of
the details of the search. We show some sample values
Table III for α and β values between 1% and 10%, and also
for single-template α values corresponding to overall false
alarm probabilities in the same range, assuming a trials
factor of 108. We see that the h0 sensitivity is modified by
between 39% and 67% in these cases.

D. Scaling and comparison to directed stochastic search

We consider here the behavior of (3.25) [or equivalently
(3.19)] with parameters such as the observing time Tobs and
allowed lag time Tmax, which is effectively a coherence
time. As noted in [21], the detectable (3.25) scales like one
over the fourth root of the number of SFT pairs included in
the sum

P
α
15:

hsens0 ¼ððSeffÞ−2hΞ2i2NpairshðΓ̂ave
α Þ2iÞ−1=4

¼
�
NpairsT2

sftðSeffÞ−2hΞ2i2
�
4ðΓave

KLÞ2
SKSL

��−1=4
: ð3:26Þ

The approximate number of pairs for a search of data from
Ndet detectors, each with observing time Tobs (so that the
total observation time is NdetTobs), with maximum lag time
Tmax > Tsft is

Npairs ≈ N2
det

Tobs

Tsft

Tmax

Tsft
ð3:27Þ

so the sensitivity scaling is

hsens0 ∼
�
N2

detTobsTmaxðSeffÞ−2hΞ2i2
�
4ðΓave

KLÞ2
SKSL

��−1=4
:

ð3:28Þ

Wewish to compare this sensitivity to that of the directed
stochastic search (also known as the “radiometer” method)
defined in [15] and used to set limits on gravitational
radiation from Sco X-1 [14,30]. The directed stochastic
search is also an optimally weighted cross-correlation
search, but only includes contributions from data taken
by different detectors at the same time. We first consider the
sensitivity of a cross-correlation search using our method

14Note that if we had kept the ψ-dependent term in (3.8), the
resulting E½ρ�=h20 would depend not only on both ι and ψ , but also
on the detector geometry and pairs of SFTs, and a numerical
solution to the equivalent of (3.23) would have to be performed
anew for basically each sensitivity estimate.

15Note that the averages here are not the weighted averages
introduced in Sec. IV.
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with this restriction, and then relate this to the sensitivity of
the actual directed stochastic search. If we only allow
simultaneous pairs of SFTs, the number of pairs included in
the sum (3.25) becomes

Nsimul
pairs ≈ NdetðNdet − 1ÞTobs

Tsft
ð3:29Þ

which makes the signal strength to which the search is
sensitive

ðhsens0 Þsimul

∼
�
NdetðNdet− 1ÞTobsTsftðSeffÞ−2hΞ2i2

�
4ðΓave

KLÞ2
SKSL

��−1=4

∼hsens0

�	
1−

1

Ndet



Tsft

Tmax

�
−1=4

: ð3:30Þ

The directed stochastic search is not quite the same as this
hypothetical cross-correlation search with simultaneous
SFTs, however. Most of these differences are irrelevant
or produce effectively identical calculations. For instance,
since the Δtα appearing in (4.17) is zero for simultaneous
SFTs, the phase difference ΔΦα ¼ 2πf0Δdα just encodes
the difference in arrival times at the two detectors.
Likewise, while the stochastic search assumes a random
unpolarized signal rather than the periodic signal from a
neutron star with unknown parameters, this has the same
effect as our choice to use Γave

KL as the geometrical weighting
factor. In fact (as noted in [21]) eiΔΦKL Γ̂ave

KL is, up to a
normalization, the overlap reduction function for the
directed stochastic search. The one significant difference
is that, since the stochastic search does not model the
orbital Doppler modulation, it does not have access to the
signal frequency fK corresponding to SFT K, and therefore
cannot localize the expected signal frequency to a bin of
width δf ¼ 1

Tsft
. Thus, instead of the optimal combination

described by (2.23) or (2.36), it must sum, with equal

weights, the contributions zKkz�Lk across a coarse frequency
bin of width Δf ≳ 2πap

Porb
f0 (see Sec. IV B 2 for the defi-

nitions of the binary orbital parameters relevant to Doppler
modulation).16 The effect is to increase the variance of the
cross correlation due to noise by Δf

δf ¼ ΔfTsft (since there
are ΔfTsft bins being combined, only one of which
contains a significant signal contribution) so that

ðhsens0 Þstoch

∼
�
NdetðNdet − 1ÞTobs

Δf
ðSeffÞ−2

�
4ðΓave

KLÞ2
SKSL

��−1=4

∼ hsens0

�
hΞ2i−2

	
1 −

1

Ndet



1

ΔfTmax

�
−1=4

: ð3:31Þ

The appearance of the factor containing hΞ2i in the
comparison is because the directed stochastic search, by
combining a larger range of frequency bins, as well as
techniques such as overlapping windowed segments,
avoids some of the usual leakage issues. On the other
hand, ifΔf is chosen to maximize the sensitivity for a given
frequency, there will be similar issues, with part of the
signal falling outside the coarse bin at the extremes of
Doppler modulation.
To insert concrete numbers, Eq. (3.31) tells us that for a

search with data of equivalent sensitivity from three

TABLE III. Approximate modification of search sensitivity, as a function of desired false alarm probability α (corresponding to a
statistic threshold of ρth) and false dismissal probability β, resulting from filtering with a template averaged over the signal parameters
cos ι and ψ . (The second set of α values is chosen to correspond to interesting single-template false alarm probabilities with a trials factor
of 108.) The detectable signal amplitude hsens0 (3.25) is proportional to

ffiffiffiffiffiffiffiffi
Seff

p
. The table shows, for a variety of choices of α and β, how

the corrected factor
ffiffiffiffiffiffiffiffi
Seff

p
calculated according to (3.24) compares to the standard expression S ¼ erfc−1ð2αÞ þ erfc−1ð2βÞ which

would apply from filtering with known values of the parameters cos ι and ψ . Note that using the worst-case value cos ι ¼ 0 shows that
1 < Seff=S < 3.2.

S Seff ffiffiffiffiffiffiffiffiffiffiffiffiffi
Seff=S

p
β β β

α ρth 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

0.10 1.3 1.81 2.07 2.55 3.49 4.45 6.27 1.39 1.47 1.57
0.05 1.6 2.07 2.33 2.81 4.15 5.16 7.03 1.42 1.49 1.58
0.01 2.3 2.55 2.81 3.29 5.42 6.52 8.47 1.46 1.52 1.60
10−9 6.0 5.15 5.40 5.89 12.73 14.16 16.40 1.57 1.62 1.67
5 × 10−10 6.1 5.23 5.48 5.96 12.96 14.40 16.64 1.57 1.62 1.67
10−10 6.4 5.40 5.66 6.14 13.48 14.93 17.20 1.58 1.62 1.67

16This was not the original motivation for the coarse frequency
bins in the stochastic cross-correlation pipeline; see for example
[31], but it has this effect when using the method to search for
monochromatic signals from neutron stars in binary systems.
Note also that it is sufficient to perform a single sum

P
kzKkz�Lk

across the coarse bin rather than a double sum such asP
k

P
l zKkz�Ll because, while the frequency bin containing

the signal is not known, it will be the same bin for both detectors
because the unknown phase shift due to the orbit is the same for
simultaneous SFTs.

WHELAN et al. PHYSICAL REVIEW D 91, 102005 (2015)

102005-10



detectors, a cross-correlation search with Tmax ¼ 3600 s
and hΞ2i ¼ 0.9 would provide an improvement in h0
sensitivity over a directed stochastic search with Δf ¼
0.25 Hz of a factor of about 5.4.17 This is consistent with
the performance of the two searches in the Sco X-1 Mock
Data Challenge [32], in which the cross-correlation method
was able to detect signals with h0 almost an order of
magnitude lower than those detected by the directed
stochastic method.
Note that, unlike the model-based cross-correlation

search, the stochastic search is not computationally lim-
ited, with year-long wide-band analyses being achievable
on a single CPU [32]. Additionally, since it does not
assume a signal model (beyond sky localization and
approximate monochromaticity), it is robust against unex-
pected features such as orbital parameters outside the
nominally expected range. However, its sensitivity is fun-
damentally limited by its ignorance of orbital Doppler
modulation, with a maximum effective coherence time
of 1

Δf ≲ Porb
2πapf0

≈ ð100 Hz
f0

Þ75 sec.

IV. PARAMETER SPACE BEHAVIOR

So far we have implicitly assumed that the parameters
used to construct the signal model (2.16), other than the
amplitude parameters h0, cos ι, and ψ , were known when
constructing the weighted statistic. In order to determine
the phase evolution of the signal, and therefore ΦK and fK ,
we need various phase-evolution parameters fλig. (For
example, for a neutron star at a known sky location with a
constant intrinsic signal frequency f0 in a binary orbit,
these are f0 and any unknown binary orbital parameters.) A
slight error in these would lead to theΦK appearing in μ and
that used to construct W being slightly different. In this
case we need to go back to (3.7) and distinguish between
the true ΔΦKL and the one assumed in the construction of
the filter.18 If we write these parameters as fλig, let the

parameters assumed in constructing ρ be λi and the true
parameters of the signal be λsi . Let ΔΦs

KL and ΔΦKL be the
phase difference ΦK − ΦL constructed with the true signal
parameters and the parameters assumed inW, respectively.
The effect will be to reduce the expected SNR E½ρ� from the
value given in (3.19) which it would attain with λi ¼ λsi .
The modified value is

E½ρ� ≈ h20NhΞ2i ×
X
α

ðΓ̂αeiðΔΦ
s
α−ΔΦαÞ

þ Γ̂�
αe−iðΔΦ

s
α−ΔΦαÞÞΓ̂ave

α : ð4:1Þ

Now, for λi close to λsi ,

Γ̂αeiðΔΦ
s
α−ΔΦαÞ þ Γ̂�

αe−iðΔΦ
s
α−ΔΦαÞ

¼ 2ReΓ̂α cosðΔΦs
α −ΔΦαÞ− 2ImΓ̂α sinðΔΦs

α−ΔΦαÞ

≈ 2ReΓ̂α

�
1−

1

2
ðΔΦα −ΔΦs

αÞ2
�
þ 2ImΓ̂αðΔΦα −ΔΦs

αÞ;

ð4:2Þ

if we write the phase difference as

ΔΦα − ΔΦs
α ≈

X
i

ΔΦα;iðλi − λsi Þ

þ 1

2

X
i;j

ΔΦα;ijðλi − λsi Þðλj − λsjÞ ð4:3Þ

where ΔΦα;i ¼ ∂Φα∂λi , we obtain, to second order in the
parameter difference,

E½ρ� ≈ ðh0Þ2NhΞ2i
�
2
X
α

Γ̂ave
α ReΓ̂α

�

×

	
1 −

X
i

ϵsi ðλi − λsi Þ −
X
i;j

gijðλi − λsi Þðλj − λsjÞ



ð4:4Þ

where

ϵsi ¼ −
2
P

αΓ̂
ave
α ImΓ̂αΔΦα;i

2
P

αΓ̂
ave
α ReΓ̂α

ð4:5Þ

and the parameter space metric is

gij ¼
1

2

2
P

αΓ̂
ave
α ðReΓ̂αΔΦα;iΔΦα;j þ ImΓ̂αΔΦα;ijÞ

2
P

αΓ̂
ave
α ReΓ̂α

:

ð4:6Þ

If we once again neglect the ψ-dependent piece of ReΓ̂α as
well as the second derivative term in the metric, we have

17This does not include the fact that the directed stochastic
method includes a relatively coarse search over frequency, while
the model-based cross-correlation method must search over many
more points in frequency and orbital parameter space, as
described in Sec. IV B. This seemingly significant increase in
trials factor turns out to be swamped by the gain in sensitivity. In
the comparison above, the same signal will generate a factor of
almost 30 larger rho value in the cross-correlation search. On the
other hand, the ρ threshold to achieve a 5σ false alarm probability
would need to be increased only from 5 to 7.8 to overcome a
trials factor of 108. Additionally, the search over signal param-
eters in the cross-correlation method allows estimates of those
parameters.

18It is also possible for Γ̂KL and/or ΞKΞL to differ from their
assumed values, e.g., if the search parameters include sky
position which can change the amplitude modulation coefficients,
or a change in Doppler modulation affects the location of the
signal frequency within the bin. We follow the usual procedure of
focusing on the dominant effect, which is the change in the
expected signal phase, and thereby obtain a “phase metric” for the
cross-correlation search.
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gij ≈
1

2

P
KL∈PðâKâL þ b̂Kb̂LÞ2ΔΦα;iΔΦα;jP

KL∈PðâKâL þ b̂Kb̂LÞ2

¼ 1

2

P
αΓ̂

ave
α ΔΦα;iΔΦα;jP
KL∈PΓ̂

ave
α

¼ 1

2
hΔΦα;iΔΦα;jiα ð4:7Þ

where h·iα indicates a weighted average with weighting
factor ðΓ̂ave

α Þ2 [recall Γ̂ave
KL ∝ ðaKaLþbKbL

SKSL
Þ2] and

ϵsi ≈
2AþA×

A2þ þA2
×

×

P
KL∈PðâKâL þ b̂Kb̂LÞðâKb̂L − b̂KâLÞΔΦKL;iP

KL∈PðâKâL þ b̂Kb̂LÞ2

¼ 2AþA×

A2þ þA2
×

P
αΓ̂

ave
α Γ̂circ

α ΔΦα;iP
αðΓ̂ave

α Þ2 : ð4:8Þ

A. Systematic parameter offset

The result (4.4) not only tells us how the expected SNR
falls off when the parameters fλig used in constructing the
statistic differ from the true signal parameters fλsig, it also
shows that the maximum of E½ρ� is not actually at the signal
point λi ¼ λsi , but at the point λi ¼ λmi defined by

0 ¼ ϵsi þ
X
j

2gijðλmj − λsjÞ; ð4:9Þ

i.e., at

λmi ¼ λsi −
X
j

1

2
g−1ij ϵ

s
j ð4:10Þ

where fg−1ij g is the matrix inverse of the metric fgijg.
If the metric is approximately diagonal, so that g−1ii ≈ 1

gii
,

then the offset of the true signal parameters from the
maximum value of E½ρ� is

λsi − λmi ¼ 1

2

ϵsi
gii

≈
2AþA×

A2þ þA2
×

P
αΓ̂

ave
α Γ̂circ

α ΔΦα;iP
αðΓ̂ave

α Þ2ΔΦα;iΔΦα;i
:

ð4:11Þ

This offset depends on the (generally unknown) value of
the inclination angle ι via Aþ ¼ 1þcos2ι

2
and A× ¼ cos ι. In

particular, it has the opposite sign for ι ∈ ð0; π=2Þ and
ι ∈ ðπ=2; πÞ. For a signal detection with unknown ι, this
will have the effect of a systematic error in the measure-
ment of the phase-evolution parameters fλig. (Of course,
one could perform a subsequent analysis which would
produce an estimate of ι, such as a coherent followup of the
signal candidate, or a cross-correlation search using iΓcirc

KL in
place of Γave

KL in the construction of W.)

B. Parameter space metric

We return now to the consideration of the metric defined
by (4.7),

gij ¼ −
1

2

E½ρ�;ij
E½ρ�

����
λ¼λs

≈
1

2
hΔΦα;iΔΦα;jiα: ð4:12Þ

1. Comparison to standard expression for metric

We can relate this to the usual notation for the phase
metric. [See, e.g., Eq. (5.13) of [33], which was also used in
[22].]

gij ¼ hΦ;iΦ;ji − hΦ;iihΦ;ji: ð4:13Þ

Note, first of all, that while the standard definition of the
parameter space metric defines the mismatch as the frac-
tional loss in signal-to-noise squared, our cross-correlation
statistic ρ is actually the equivalent of what is usually called
ρ2. This is because it is quadratic in the signal (as is the F
statistic, and its expectation value is proportional to h20).
The connection between (4.12) and (4.13) is made by

noting that the averages in (4.13) are over data segments,
while the expression in (4.12) is a weighted average over
SFT pairs, where the weighting factor is ðΓ̂ave

α Þ2. We can
relate the two in the special case where the set of pairs P
contains every combination of SFTs (e.g., by choosing
Tmax to be the observing time), and by neglecting the
influence of the weighting factor in the cross-correlation
metric. In that case, the average can be written as a double
average over SFTs K and L:

gij ¼
1

2
hðΦK;i − ΦL;iÞðΦK;j − ΦL;jÞiKL∈P

¼ 1

2
hΦK;iΦK;j þ ΦL;iΦL;j − ΦK;iΦL;j − ΦL;iΦK;jiKL∈P

¼ 1

2
ðhΦK;iΦK;jiK þ hΦL;iΦL;jiL

− hΦK;iiKhΦL;jiL − hΦL;iiLhΦK;jiKÞ
¼ hΦK;iΦK;jiK − hΦK;iiKhΦL;jiL ð4:14Þ

which is just (4.13). Note that this identification can only be
made in the case where the cross correlation includes all
pairs of SFTs (or all pairs within some time stretch). With a
restriction such as jtK − tLj ≤ Tmax, one must consider the
weighted average over pairs, not separate averages
over SFTs.

2. Metric for the LMXB search

We now consider the explicit form of the parameter
space metric for a neutron star in a circular binary system,
assuming a constant intrinsic frequency f0. Although the
actual values of phase ΦK ¼ ΦðtðtKÞÞ and frequency
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1
2π fK ¼ dΦðtðtÞÞ

dt jt¼tK
used via (2.15) to construct the

expected cross correlation ĜKL include relativistic correc-
tions, it is sufficient for the purposes of constructing the
parameter space metric to limit attention to the Roemer
delay, which gives us

ΦK ¼ Φ0 þ 2πf0

�
tK −

~rdet · k̂
c

þ ~rorb · k̂
c

�

¼ Φ0 þ 2πf0

�
tK − dK − ap sin

	
2π

Porb
ðtK − tascÞ





ð4:15Þ

where we have defined the following:
(i) dK ¼ ~rdet·k̂

c , the projected distance, in seconds, from
the solar-system barycenter to the detector, along the
propagation direction from the source. (Note that
this depends on the detector, but also on the time tK.)

(ii) ap ¼ a sin i
c is the projected semimajor axis of the

binary orbit, in units of time.
(iii) Porb is the orbital period of the binary.
(iv) tasc is a reference time for the orbit, defined as the

time, measured at the solar-system barycenter, when
the neutron star is crossing the line of nodes moving
away from the solar system.

If we use the identity

sinA − sinB ¼ 2 cos

�
Aþ B

2

�
sin

�
A − B
2

�
ð4:16Þ

we have

ΔΦα ¼ 2πf0

�
Δtα − Δdα

− 2ap sin
πΔtα
Porb

cos

	
2π

Porb
ðt̄α − tascÞ




ð4:17Þ

where we have defined ΔdKL ¼ dK − dL, ΔtKL ¼ tK − tL,
and t̄KL ¼ tKþtL

2
.

Note that ΔdKL will be much less than ΔtKL unless the
SFTs K and L are simultaneous. (This is because the
duration of a SFT will be long compared to the light travel
time between detectors on the Earth, and the Earth’s motion
is nonrelativistic.)
We can now calculate the derivatives appearing in (4.12):

∂ΔΦα

∂f0 ¼ 2π

�
Δtα − Δdα

− 2ap sin
πΔtα
Porb

cos

	
2π

Porb
ðt̄α − tascÞ




; ð4:18aÞ

∂ΔΦα

∂ap ¼ −4πf0 sin πΔtαPorb
cos

	
2π

Porb
ðt̄α − tascÞ



; ð4:18bÞ

∂ΔΦα

∂tasc ¼ − 8π2f0ap
Porb

sin
πΔtα
Porb

sin

	
2π

Porb
ðt̄α − tascÞ



; ð4:18cÞ

∂ΔΦα

∂Porb
¼ − 4πf0ap

Porb

�
2π

Porb
ðt̄α − tascÞ

× sin
πΔtα
Porb

sin
	
2π

Porb
ðt̄α − tascÞ




−
πΔtα
Porb

cos
πΔtα
Porb

cos

	
2π

Porb
ðt̄α − tascÞ




:

ð4:18dÞ

3. Approximation for long observation times

It is relatively simple and straightforward to construct the
phase metric for a given observation; calculate the deriv-
atives (4.18) for each SFT pair and then insert them into the
weighted average (4.12). However, we can gain insight into
the behavior of the metric if we consider an approximate
form which should be valid if the observing time (e.g., one
year) is long compared to the orbital period of the LMXB
(e.g., 6.8 × 104 s ≈ 19 hr for Sco X-1 [1,7]). Since the
orbital period is not commensurate with any of the relevant
periods of variation such as the sidereal or solar day [the
former being relevant for ðΓave

α Þ2 and the latter for the noise
spectra], it is reasonable to assume that 2π

Porb
ðt̄α − tascÞ

samples all phases roughly equally, and therefore

�
Fα cos

	
2π

Porb
ðt̄α − tascÞ


�
α

¼
�
Fα sin

	
2π

Porb
ðt̄α − tascÞ


�
α

¼ 0; ð4:19aÞ

�
Fα cos

	
2π

Porb
ðt̄α − tascÞ



sin

	
2π

Porb
ðt̄α − tascÞ


�
α

¼ 0;

ð4:19bÞ
�
Fαcos2

	
2π

Porb
ðt̄α − tascÞ


�
α

¼
�
Fαsin2

	
2π

Porb
ðt̄α − tascÞ


�
α

¼ 1

2
hFαiα ð4:19cÞ

where Fα is any expression not involving t̄α.
We then have metric components, from (4.12), of

gf0f0 ¼ 2π2hðΔtα − ΔdαÞ2iα þ 4π2a2p

�
sin2

πΔtα
Porb

�
α

;

ð4:20aÞ

gf0ap ¼ 4π2f0ap

�
sin2

πΔtα
Porb

�
α

; ð4:20bÞ
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gf0Porb
¼ −4

π3f0a2p
P2
orb

�
Δtα sin

πΔtα
Porb

cos
πΔtα
Porb

�
α

; ð4:20cÞ

gapap ¼ 4π2f20

�
sin2

πΔtα
Porb

�
α

; ð4:20dÞ

gf0tasc ¼ gaptasc ¼ 0; ð4:20eÞ

gapPorb
¼ −

4π3f20ap
P2
orb

�
Δtα sin

πΔtα
Porb

cos
πΔtα
Porb

�
α

; ð4:20fÞ

gtasctasc ¼
16π4f20a

2
p

P2
orb

�
sin2

πΔtα
Porb

�
α

; ð4:20gÞ

gtascPorb
¼ −

16π4f20a
2
p

P2
orb

�ht̄αiα − tasc
Porb

��
sin2

πΔtα
Porb

�
α

;

ð4:20hÞ

gPorbPorb
¼ 16π4f20a

2
p

P4
orb

hðt̄α − tascÞ2iα
�
sin2

πΔtα
Porb

�
α

þ 4π4f20a
2
p

P4
orb

�
Δt2αcos2

πΔtα
Porb

�
α

: ð4:20iÞ

The metric is not diagonal, but we can neglect the off-
diagonal elements if

ðgijÞ2 ≪ giigjj: ð4:21Þ
One can show that ðgf0apÞ2 ≪ gf0f0gapap and ðgf0Porb

Þ2 ≪
gf0f0gPorbPorb

as long as

hðΔtα − ΔdαÞ2iα ≫ a2p ð4:22Þ
which should be the case; for Sco X-1, ap ¼ 1.44 s [1,8].
Note also that, as long as we include cross correlations
between nonsimultaneous SFTs, hðΔtα − ΔdαÞ2iα ≈
hðΔtαÞ2iα because the detectors are moving much slower
than the speed of light.
We will also have ðgapPorb

Þ2 ≪ gapapgPorbPorb
as long as

the square of the typical time lag Δtα is much less than
hðt̄α − tascÞ2iα, which will be the case if the maximum
allowed time lag is much less than the length of the run. We
can see this by considering the hðt̄α − tascÞ2iα; if we define

μT ¼ ht̄αiα ð4:23Þ

then

σ2T ¼ hðt̄α − μTÞ2iα ð4:24Þ

should be on the order of the square of the duration of the
run. In particular, for a run of duration Tobs during which
the sensitivity of the search remains roughly constant,

σ2T ≈
1

Tobs

Z
Tobs=2

−Tobs=2
t2dt ¼ T2

obs

12
: ð4:25Þ

But

hðt̄α − tascÞ2iα ¼ σ2T þ ðμT − tascÞ2 ≥ σ2T: ð4:26Þ

This leaves only the ratio

ðgtascPorb
Þ2

gtasctascgPorbPorb

≈
ðht̄αiα − tascÞ2
hðt̄α − tascÞ2iα

¼ ðμT − tascÞ2
σ2T þ ðμT − tascÞ2

:

ð4:27Þ
Whether or not this can be neglected seems to come down,
then, to whether the reference time tasc falls during the run.
If it falls outside the run, ðμT − tascÞ2 ≳ σ2T and the off-
diagonal metric element gtascPorb

cannot be ignored.
However, it is always possible to replace one reference
time tasc with another t0asc ¼ tasc þ nPorb separated by an
integer number n of cycles, and thus it is always possible to
arrange for ðμT − t0ascÞ2 ≤ P2

orb ≪ σ2T and thus obtain an
approximately diagonal metric. This comes at a cost,
though, since there will be a contribution to the uncertainty
in the new reference time due to the uncertainty in the
orbital period. If the uncertainties in the orbital period and
the original reference time are independent, the uncertainty
in the new reference time will be given by

ðΔt0ascÞ2 ¼ ðΔtascÞ2 þ n2ðΔPorbÞ2

¼ ðΔtascÞ2 þ
ðt0asc − tascÞ2

P2
orb

ðΔPorbÞ2: ð4:28Þ

This will become the dominant error if

jt0asc − tascj >
Δtasc
ΔPorb

Porb: ð4:29Þ

For Sco X-1, using the parameter uncertainties from [7]
(see Sec. VI), this is about

100

0.04
× 68023.70 s ≈ 5 yr: ð4:30Þ

Since the tasc quoted in [7] (chosen to minimize their Δtasc)
corresponds to June 2008, this will be the case for any GW
observations using Advanced LIGO and/or Advanced
Virgo data, unless additional Sco X-1 ephemeris updates
are made.
Subject to the aforementioned approximations, the

metric can be treated as diagonal with non-negligible
elements,

gf0f0 ≈ 2π2hΔt2αiα; ð4:31aÞ

gapap ¼ 4π2f20

�
sin2

πΔtα
Porb

�
α

; ð4:31bÞ
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gtasctasc ¼
16π4f20a

2
p

P2
orb

�
sin2

πΔtα
Porb

�
α

; ð4:31cÞ

gPorbPorb
≈
16π4f20a

2
p

P4
orb

σ2T

�
sin2

πΔtα
Porb

�
α

: ð4:31dÞ

The quantities hΔt2αiα and hsin2 πΔtα
Porb

i
α
which appear in the

parameter space metric are constructed by a weighted
average over SFT pairs. If we consider a search which
includes all pairs up to a maximum time lag of Tmax, the
parameter space resolution, and therefore the required
number of templates, will depend on Tmax. We can get a
rough estimate on this dependence by assuming that we
can write

hfðΔtαÞiα ∼
1

2Tmax

Z
Tmax

−Tmax

fðtÞdt ð4:32Þ

which assumes Tobs ≫ Tmax ≫ Tsft so that we can replace
the sum over specific lags with an integral, and it neglects
the variation of ðΓ̂ave

α Þ2 from pair to pair. Subject to this
approximation, we have

hΔt2αiα ∼
1

2Tmax

Z
Tmax

−Tmax

t2dt ¼ T2
max

3
ð4:33Þ

and19

�
sin2

πΔtα
Porb

�
α

∼
1

2Tmax

Z
Tmax

−Tmax

sin2
πt
Porb

dt

¼ 1

2

�
1 − sinc

2Tmax

Porb

�
ð4:34Þ

where once again sincx ¼ sin πx
πx . Note that this is only a

rough approximation, since increasing the time offset Δtα
between a pair of SFTs from the same instrument (or from
well-aligned instruments like the LIGO detectors in
Hanford and Livingston) will tend to decrease the expected
cross correlation as the detectors are rotated out of align-
ment with each other. We confirm this by comparing the
approximate expressions to more accurate values calculated
using the geometry of the LIGO and Virgo detectors and
the sky position of Scorpius X-1, in Fig. 3.

Note that some care needs to be taken when comparing
our metric expressions to those in [6]. For example,

combining (4.13a) with (4.33) gives us gf0f0 ≈ 2π2 T2
max
3
,

which seems at odds with the analogous expression in, e.g.,
Eq. (61) of [6], where the corresponding metric element is

π2 ðΔTÞ2
3

. The difference is that the semicoherent search in
[6] is defined by combining distinct coherent segments of
length ΔT, which makes the mean squared difference

1

ðΔTÞ2
Z

ΔT

0

Z
ΔT

0

ðt − t0Þ2dtdt0

¼ 1

ðΔTÞ2
Z

ΔT

−ΔT

Z
ΔT−jΔtj=2

jΔtj=2
ðΔtÞ2dt̄dΔt

¼ 1

ðΔTÞ2
Z

ΔT

−ΔT
ðΔtÞ2ðΔT − jΔtjÞdΔt

¼
�
2

3
−
2

4

�
ðΔTÞ2 ¼ 1

6
ðΔTÞ2; ð4:35Þ

whereas our maximum lag rule jt − t0j < Tmax gives a mean
square time difference

R Tobs
0

Rminðt0þTmax;TobsÞ
maxðt0−Tmax;0Þ ðt − t0Þ2dtdt0R Tobs

0

Rminðt0þTmax;TobsÞ
maxðt0−Tmax;0Þ dtdt0

¼
RΔT
−ΔT

R Tobs−jΔtj=2
jΔtj=2 ðΔtÞ2dt̄dΔtR

ΔT
−ΔT

R Tobs−jΔtj=2
jΔtj=2 dt̄dΔt

¼ ð2=3ÞTobsT3
max − ð2=4ÞT4

max

2TobsTmax − T2
max

≈
1

3
T2
max ð4:36Þ

where the assumption Tmax ≪ Tobs gives us the
result (4.33).

V. IMPLICATIONS OF DEVIATION FROM
SIGNAL MODEL

So far, we have assumed that the underlying signal
model contained in (2.21), along with the phase evolution
(4.15), is correct, although some of the parameters may be
unknown. We consider two effects which violate this
assumption and their potential impacts on the expected
SNR (3.19). These are (1) spin wandering, in which the
frequency is not a constant f0 but varies slowly and
unpredictably with time and (2) the impact of higher terms
in the Taylor expansion of ΦðtðtÞÞ about t ¼ tK , which are
neglected in the linear phase model (2.15). The former
effect will place a potential limit on the coherence time
Tmax by providing an intrinsic limit to the frequency
resolution, whereas the latter will constrain our choice of
SFT length Tsft in order that neglected phase acceleration
effects do not cause too much loss of SNR.

19Note that for Tmax ≪ Porb (coherent integration times small
compared to the binary orbital period), the factor hsin2 πΔtα

Porb
i
α

tends to π2T2
max

3P2
orb

(so the number of templates in each direction grows

like the coherent integration time), while for Tmax ≫ Porb
(coherent integration times long compared to the binary orbital
period), it tends to a constant 1

2
, so the growth in number of

templates in the ap and tasc directions saturates. This is analogous
to an effect described in [34].
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A. Spin wandering

We have assumed so far that the LMXB is in approxi-
mate equilibrium, where the spin-up torque due to accretion
is balanced by the spin-down due to gravitational waves.
Even if this is true on average, the balance will not be
perfect, and the spin frequency will “wander.” This means
that rather than a constant frequency f0 appearing in (4.15),

there will be a time-varying frequency fðtÞ, where t ¼
t − ~rdet·k̂

c þ ~rorb·k̂
c is the time measured in the neutron star’s rest

frame. Thus the phase difference between SFTs K and L
will be, rather than just ΔΦKL ¼ 2πf0½tK − tL�,

ΔΦtrue
KL ¼ ΦK − ΦL ¼ 2π

Z
tL

tK

fðtÞdt: ð5:1Þ

We can consider the loss of SNR due to the existence of
spin wandering, compared to what we would expect if the
frequency truly were constant. Qualitatively, there are two
reasons for loss of SNR: first, on short time scales, the
change in frequency could disrupt the coherence between
the two SFTs in a pair being cross correlated; second, on
longer time scales, the spin could wander enough that the
SNR is distributed over different frequency templates.
To quantify the loss of SNR we follow a calculation

analogous to that in Sec. IV, e.g., in (4.1) and (4.2), to
obtain

E½ρ�ideal − E½ρ�
E½ρ�ideal ≈

1

2
hðΔΦtrue

α − ΔΦαÞÞ2iα ð5:2Þ

where h·iα is a weighted average over SFT pairs
with weighting factor ðΓ̂ave

α Þ2 as before. To estimate
hðΔΦtrue

α − ΔΦαÞÞ2iα we assume that the wandering is slow

enough that we can expand fðtÞ in a Taylor series about
t̄KL ¼ ðtK þ tLÞ=2:

fðtÞ ≈ fðt̄KLÞ þ _fðt̄KLÞðt − t̄KLÞminðtK; tLÞ ≤ t

≤ maxðtK; tLÞ: ð5:3Þ

Then

ΔΦtrue
KL − ΔΦKL ¼ 2π

Z
tL

tK

½fðtÞ − f0�dt

≈ 2π

�
½fðt̄KLÞ − f0�ΔtKL þ _fðt̄KLÞ

ðΔtKLÞ2
2

�
; ð5:4Þ

where ΔtKL ¼ tK − tL. Subject to reasonable assumptions
about the randomness of the spin wandering, Eq. (5.2) can
be written in the form

E½ρ�ideal − E½ρ�
E½ρ�ideal ≈ 2π2h½fðt̄αÞ − f0�2iαhðΔtαÞ2iα

þ π2

2
h½ _fðt̄αÞ�2iαhðΔtαÞ4iα

≈ 2π2h½fðt̄αÞ − f0�2iαhðΔtαÞ2iα
þ π2

2
h½ _fðt̄αÞ�2iαhðΔtαÞ4iα ð5:5Þ

where in the last expression we have used the fact that since
ap and Δdα are small, jtK − tKj ≪ Tmax. The two terms in
(5.5) quantify the effects we predicted at the beginning of
the section. The second term describes a loss of SNR due to
the neutron star spin not being constant during the time
spanned by a SFT pair, while the first term indicates a loss
due to the mismatch between contributing frequencies and

FIG. 3 (color online). Plot of weighted averages hΔt2αiα and hsin2 πΔtα
Porb

i
α
appearing in the metric components (4.31) as a function of

maximum allowed lag time Tmax. The dotted lines show the approximate values (4.33) and (4.34) neglecting the variation of the
weighting factor. The solid line (labeled HLV) shows the value for a search using detectors at the LIGO Hanford, LIGO Livingston, and
Virgo sites, assuming a source at the sky position of Sco X-1, and that all detectors have the same sensitivity at the relevant frequency,
and all sidereal times are evenly sampled. The dashed line (HL) shows the same thing for a search using only the LIGO detectors at
Hanford and Livingston. The actual weighted averages (and therefore the number of templates needed to cover the parameter space) are
less than the approximate ones, because the geometrical factor ðΓave

α Þ2 weights smaller lag times more.
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the frequency of a single template. [In fact, the first term is
just gf0f0h½fðt̄αÞ − f0�2iα.] Note that we are
free to choose the f0 which maximizes the SNR for a
given instantiation of spin wandering, which will be
f0 ¼ hfðt̄αÞiα, so

h½fðt̄αÞ − f0�2iα ¼ h½fðt̄αÞ − hfðt̄αÞiα�2iα ð5:6Þ
is the weighted variance of fðtÞ over the observing time.
To get a quantitative estimate of the effects of spin

wandering, consider a model where the neutron star spins
up or down linearly with typical amplitude j _fjdrift, changing
on a time scale Tdrift where Tmax ≪ Tdrift ≪ Tobs. For
simplicity, also neglect the impact of the weighting factor

ðΓ̂ave
α Þ2, so that hΔt2αi ≈ T2

max
3

and hΔt4αi ≈ T4
max
5
. Then

h½ _fðt̄αÞ�2iα ≲ j _fj2drift ð5:7Þ
and

h½fðt̄αÞ − hfðt̄αÞiα�2iα ≲
����� t̄α − Tmid

Tdrift

����ðTdriftj _fjdriftÞ2
�

α

≈
TobsTdrift

4
j _fj2drift: ð5:8Þ

Combining these results, we have

E½ρ�ideal − E½ρ�
E½ρ�ideal ≲ π2

6
TobsTdriftj _fj2driftT2

max þ
π2

10
j _fj2driftT4

max:

ð5:9Þ
So, in order to avoid a fractional loss in SNR of more than
μ, one would need to limit the lag time to

Tmax ≤ min

� ffiffiffiffiffi
6μ

p
π

ðj _fjdrift
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TobsTdrift

p
Þ−1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10μ

p
π

r
j _fj−1=2drift

�
:

ð5:10Þ
For example, if j _fjdrift ¼ 10−12 Hz=s, Tdrift ¼ 106 s,
Tobs ¼ 1 Yr, and μ ¼ 0.1, the first limit is about
44 000 s and the second is 320 000 s. So in that case, spin
wandering would become an issue if Tmax ≳ 12 hr.

Note that this is somewhat less than the estimate ΔT ≲ 3
day given in [6]. The source of this apparent discrepancy is
a combination of the distinction between the coherent
segment length ΔT and the maximum lag time Tmax,
described in Sec. IV B 3, and the rough nature of some
estimates used in [6]. That work compares the change in
frequency j _fjdrift

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TobsTdrift=2

p
to the frequency resolution,

which they give as ∼1=ΔT. This is effectively an order
of magnitude estimate, since it effectively assumes μ ¼ 1,
and also leaves out the numerical factor in 1= ffiffiffiffiffiffiffiffiffiffigf0f0

p ¼ffiffiffi
3

p
=ðπΔTÞ. On the other hand, their frequency drift is the

expected drift from the middle of the run to the end;
averaging the drift over the run gives an effective change of
ðj _fjdrift

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TobsTdrift

p Þ=2. Including these three effects to do a
calculation analogous to the one here would give a factor of
π

ffiffiffiffiffiffiffiffi
5=3

p
≈ 4 reduction on the estimated tolerable segment

length to ΔT≲2
ffiffiffiffiffi
3μ

p
=πðj _fjdrift

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TobsTdrift

p Þ−1≈62;000 s≈
17 hr. Of course, the assumptions of j _fjdrift and Tdrift given
above are uncertain and somewhat arbitrary, so our 12-hour
number should also not be viewed as an exact constraint on
the method.

B. SFT length

Most searches for continuous gravitational waves have
used short Fourier transforms with a duration Tsft of
30 min ¼ 1800 s. The limiting factor which sets a maxi-
mum on the reasonable Tsft is the accuracy of the linear
phase approximation (2.15).
If we consider higher order terms in the phase expansion,

we have

ΦðtðtÞÞ ≈ ΦK þ 2πfKðt − tKÞ þ
1

2
Φ̈ðtKÞðt − tKÞ2

þ 1

3!
⃛ΦðtKÞðt − tKÞ3 þ

1

4!
⃜ΦðtKÞðt − tKÞ4 þ � � � :

ð5:11Þ

The effect of these corrections is to modify (2.21) to

~hKk ≈ h0ð−1ÞkeiΦK
FKþAþ − iFK

×A×

2

×
Z

tKþTsft=2

tK−Tsft=2
e−i2πðfk−fKÞðt−tKÞ exp

�
i

	
Φ̈ðtKÞ
2

ðt − tKÞ2 þ
⃛ΦðtKÞ
3!

ðt − tKÞ3 þ
⃜ΦðtKÞ
4!

ðt − tKÞ4

�

dt

≈ h0ð−1ÞkeiΦK
FKþAþ − iFK

×A×

2
Tsft

	
I0ðκKkÞ þ i

Φ̈ðtKÞ
2

I2ðκKkÞT2
sft þ i

⃛ΦðtKÞ
3!

I3ðκKkÞT3
sft

þ
�
i
⃜ΦðtKÞ
4!

−
½Φ̈ðtKÞ�2

8

�
I4ðκKkÞT4

sft



ð5:12Þ
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where

InðκÞ≡
Z

1=2

−1=2
xne−i2πκxdx ¼

�
i
2π

�
n dn

dκn
sincðκÞ: ð5:13Þ

Note that for even n, InðκÞ is real and even, while for odd n,
it is imaginary and odd.
We can then construct, as a replacement for (2.25),

μK ¼ 1

ΞK

X
k∈KK

ð−1ÞkI0ðκKkÞ ~hKk

≈ h0eiΦK
FKþAþ − iFK

×A×

2

QK

ΞK

ffiffiffiffiffiffiffiffiffi
2Tsft

SK

s
ð5:14Þ

where

QK ¼ Ξ2
K þ i

Φ̈ðtKÞ
2

ΣK02T2
sft þ i

⃛ΦðtKÞ
3!

ΣK03T3
sft

þ
�
i
⃜ΦðtKÞ
4!

−
½Φ̈ðtKÞ�2

8

�
ΣK04T4

sft ð5:15Þ

and

ΣK0n ¼
X
k∈KK

I0ðκKkÞInðκKkÞ: ð5:16Þ

The expectation value (3.7) of the statistic thus becomes,
including the correction for higher phase derivatives and
finite SFT length,

E½ρ� ≈ Nh202
X
KL∈P

Γ̂ave
KLReðQKQ�

LΓ̂KLÞ: ð5:17Þ

As in Sec. III B we assume that the sum over pairs evenly
and independently samples the fractional frequency offset
~κK from each SFT, which means we can replace QK and
QL with

hQKiκ ¼ hΞ2i þ i
Φ̈ðtKÞ
2

hΣ02iT2
sft

þ
�
i
⃜ΦðtKÞ
4!

−
½Φ̈ðtKÞ�2

8

�
hΣ04iT4

sft ð5:18Þ

where the fact that I3ðκÞ is odd in κ means that the average
hΣ03i vanishes.
Now,

ReðQKQ�
LΓ̂KLÞ ¼ ReðQKQ�

LÞReΓ̂KL − ImðQKQ�
LÞImΓ̂KL

≈ ReðQKQ�
LÞ

5

2

A2þ þA2
×

2
Γ̂ave
KL

− ImðQKQ�
LÞ

5AþA×

2
Γcirc
KL: ð5:19Þ

We assume that the impact of the second piece is small20

and focus only on ReðQKQ�
LÞ, which leads to a fractional

loss of SNR of

1−
E½ρ�

E½ρ�ideal
¼ hΞ2i2 − hReðQKQ�

LÞi
hΞ2i2

¼
�hΦ̈2

Ki þ hΦ̈2
Li

8

hΣ04i
hΞ2i −

hΦ̈KΦ̈Li
4

hΣ02i2
hΞ2i2

�
T4
sft:

ð5:20Þ

Differentiating (4.15) gives

Φ̈K ¼ 2πf0d̈K −
ð2πÞ3
P2
orb

f0ap sin

	
2π

Porb
ðtK − tascÞ



: ð5:21Þ

We can neglect the first term, since the acceleration due to
the Earth’s orbit isOð10−11 s−1Þ and that due to the Earth’s
rotation is Oð10−10 s−1Þ. In comparison, for Sco X-1,

ap

�
2π

Porb

�
2

¼ 1.23 × 10−8 s−1: ð5:22Þ

If we assume, as in the metric calculation, that the average
over pairs evenly samples the orbital phase, then

hΦ̈2
Ki þ hΦ̈2

Li ¼
ð2πÞ6f20a2p

P4
orb

: ð5:23Þ

Using the identity

sinA sinB ¼ 1

2
½cosðA − BÞ − cosðAþ BÞ� ð5:24Þ

we can calculate

�
sin

	
2π

Porb
ðtK − tascÞ



sin

	
2π

Porb
ðtL − tascÞ


�

¼ 1

2

��
cos

2πΔtα
Porb

�
α

−
�
cos

4πðt̄α − tascÞ
Porb

�
α

�
ð5:25Þ

so the fractional loss in SNR is

1 −
E½ρ�

E½ρ�ideal
≈
8π6f20a

2
p

P4
orb

�hΣ04i
hΞ2i −

hΣ02i2
hΞ2i2

�
cos

2πΔtα
Porb

�
α

�
T4
sft:

ð5:26Þ

20In particular, it is suppressed by averaging non-positive-
definite antenna patterns, although the same combination is the
source of systematic errors in parameter estimation.
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The factors hΣ04i and hΣ02i can be calculated by using
(5.16) along with

I2ðκÞ ¼
sin πκ
4πκ

þ cos πκ
2ðπκÞ2 −

sin πκ
2ðπκÞ3 ð5:27Þ

and

I4ðκÞ ¼
sin πκ
16πκ

þ cos πκ
4ðπκÞ2 −

3 sin πκ
4ðπκÞ3 −

3 cos πκ
2ðπκÞ4 þ 3 sin πκ

2ðπκÞ5
ð5:28Þ

and averaging numerically over κ given the number of
frequency bins included. In Table IV, we show the two
coefficients appearing in (5.26), for various choices of the
number m of included frequency bins (see also Table II).
Note that for the cross-correlation search, choosing

shorter SFTs does not directly impact the sensitivity. For
the same allowed lag time, searches with different SFT
lengths should have approximately the same sensitivity. We
can see this by considering the SNR for a given signal
amplitude h0, for example, from (3.16). Since

Γ̂ave
KL ¼ ΓKL

2Tsftffiffiffiffiffiffiffiffiffiffiffi
SKSL

p ð5:29Þ

the quantity ðΓ̂ave
KLÞ2 inside the sum is proportional to ðTsftÞ2.

However, for a fixed maximum time lag Tmax, the number
of terms in the sum will be proportional to ðTsftÞ−2 and the
resulting expected SNR will be approximately independent
of Tsft. (For example, halving the SFT length will mean
each SFT pair contributed one-fourth as much to the
sensitivity, but will double the number of SFTs and thus
quadruple the number of SFT pairs.)
On the other hand, by increasing the number of SFT

pairs, using a shorter SFT length will mean increasing the
computing cost at the same Tmax. If the computing budget is
fixed, the sensitivity gained by reducing the mismatch
(5.26) will be offset by the loss of sensitivity, in the form of
a lower E½ρ�ideal, resulting from a smaller Tmax. Following
the reasoning in Sec. III B, if the computing cost scales like
the number of templates (which scales like Td

max) times the

number of SFT pairs (which scales like TmaxTobsT−2
sft ), then

the overall sensitivity for a fixed observing time Tobs scales
like Tdþ1

maxT−2
sft , and therefore the restriction at constant

computing cost will be Tmax ∝ T
2

dþ1

sft . Since the sensitivity
scales with the square root of the number of SFT pairs, we

have E½ρ�ideal ∝ T
1

dþ1

sft and

E½ρ� ∝ T
1

dþ1

sft ð1 − Af20T
4
sftÞ ð5:30Þ

where

A ≈
8π6a2p
P4
orb

�hΣ04i
hΞ2i −

hΣ02i2
hΞ2i2

�
cos

2πΔtα
Porb

�
α

�
ð5:31Þ

is the mismatch scaling appearing in (5.26).21 The sensi-
tivity at fixed computing cost is thus maximized when

TABLE IV. The coefficients hΣ04i=hΞ2i and hΣ02i2=hΞ2i2
appearing in (5.26), for various choices of the number
m of included frequency bins, where hΣ0ni is the mean value

of Σ0nðκÞ ¼
P⌊ðm−1Þ=2⌋

s¼−⌈ðm−1Þ=2⌉ I0ðκ þ sÞInðκ þ sÞ, averaged over

− 1
2
≤ κ ≤ 1

2
, and InðκÞ is defined in (5.13) with I0ðκÞ ¼ sincκ ¼

sin πκ
πκ , and I2ðκÞ and I4ðκÞ are given by (5.27) and (5.28). Note that
the value of hΞ2i≡ hI00i is tabulated in Table II.

m 1 2 3 4 5 6

hΣ04i=hΞ2i 0.0107 0.0086 0.0099 0.0100 0.0106 0.0108
hΣ02i2=hΞ2i2 0.0056 0.0042 0.0052 0.0055 0.0059 0.0060

FIG. 4. The optimal SFT length Tsft, defined in (5.34) and
(5.31), as a function of frequency, for a signal with the most likely
orbital parameters for Sco X-1, as given in Table I, assuming that
d ¼ 3, i.e., the density of points in parameter space grows as the
third power of the coherence time Tmax. This is appropriate for a
search over, e.g., frequency f0, projected semimajor axis ap, and
time of ascension tasc (when the uncertainty in the period Porb is
small enough that a single value may be assumed), in the case
where Tmax is small compared with Porb. The solid line represents
a more optimistic scenario where the average cosine appearing in
the second term of (5.31) is approximately unity, which should
also be the case if Tmax ≪ Porb. The dashed line represents a
worst-case scenario where the average is approximately zero. The
optimal SFT length maximizes the expected SNR in (5.30) and
represents a balance between two competing effects: if Tsft is too
large, phase acceleration will lead to a loss in SNR compared to
the ideal formula (3.19); if Tsft is too small, the large number of
SFT pairs in the computation will lead to a restriction on the
possible Tmax achievable at fixed computing cost, and reduce the
ideal SNR itself.

21Of course A still depends on Tmax through hcos 2πΔtαPorb
i, but if

Tmax is small compared to Porb, which we are assuming in the
scaling of number of templates with Tmax, this average is
approximately unity.
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1 − ð4dþ 5ÞAf20T4
sft ¼ 0; ð5:32Þ

i.e., when the mismatch due to SFT length is

μ ¼ Af20T
4
sft ¼ μopt ¼ 1

4dþ 5
: ð5:33Þ

The corresponding optimal SFT length is

Tsft ¼ ð½4dþ 5�AÞ−1=4f−1=20 : ð5:34Þ

For example, if d ¼ 3, μopt ¼ 1
17
≈ 0.059. In Fig. 4, we

show this optimal SFT length for d ¼ 3, using ap ¼ 1.44 s
and Porb ¼ 68023.70 s (the most likely values for
Sco X-1). The solid line shows the most optimistic
scenario, in which hcos 2πΔtαPorb

i
α
≈ 1 (which will be the case

for Tmax ≪ Porb), and the dashed line shows the most
pessimistic scenario, in which the average goes to zero.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have explored details of the model-
based cross-correlation search for periodic gravitational
waves, focusing on its application to signals from neutron
stars in binary systems (LMXBs) and Scorpius X-1, in
particular. We have carefully considered the impact of
spectral leakage (in Sec. III B) and the implications of
unknown amplitude parameters (in Sec. III C) on the
sensitivity of the method. We have also produced expres-
sions for the parameter space metric of the search (in
Sec. IV B), at varying levels of approximation, and a
systematic offset in the parameters of a detected signal
related to the unmeasured inclination angle of the neutron
star to the line of sight (in Sec. IVA). In Sec. VA we
estimated the effects of “spin wandering” caused by
deviations from equilibrium in the torque balance configu-
ration, and in V Bwe consider the appropriate SFT duration
needed to avoid significant loss of SNR due to unmodeled
phase acceleration.
We have shown (in Sec. III D) that the method produces

an improvement in strain sensitivity over the directed
stochastic search method which inspired it; this is roughly
proportional to the fourth root of the product of the
coherence time of the model-based search and the fre-
quency bin size for the stochastic search. A mock data
challenge [32] has been carried out by comparing the
performance of the available search methods, including the
model-based cross-correlation search, on simulated signals
injected into Gaussian noise. As reported elsewhere
[28,32], the cross-correlation search is the most sensitive
one currently implemented.
To give an estimate of expected sensitivity for data from

detectors such as Advanced LIGO and Advanced Virgo, it
is necessary to make some suppositions about the param-
eters of the search, especially the time Tmax over which

SFTs are coherently cross correlated. Since this drives both
the sensitivity and computing cost, the choice of Tmax will
depend on available computing resources, and will likely
vary with frequency in order to optimize the distribution of
computing resources where they can be most effective. In
[28], we performed searches with 9 min ≤ Tmax ≤ 90 min
for a range of frequency bands covering a total of 500 Hz
distributed in f0 ∈ ½50; 1455� Hz, using moderate compu-
tational resources. On the other hand, in Sec. VA, we
considered spin wandering effects which might lead to a
significant loss of SNR for a search with Tmax ≳ 12 hr for a
one-year observation.
In Fig. 5, we show the projected sensitivity (3.25) of a

search using one year of data, either from the two advanced
LIGO detectors in Hanford, WA and Livingston, LA, or
from the two advanced LIGO detectors plus the Virgo
detector in Cascina, Italy, all operating at their projected
design sensitivity. We show the sensitivity of three
hypothetical searches, with Tmax ¼ 6 min, 60 min or
600 min ¼ 10 hr, and compare the observable h0 (at a
5% false dismissal probability, assuming a single-template
false alarm probability of 5 × 10−10, corresponding to an
overall 5% false alarm probability and a trails factor of 108,
as described in Sec. III C and Table III). For comparison,
we show a representative signal strength predicted by the
torque balance argument [12,13]. By assuming that the
spin-down torque due to gravitational waves is balanced by
the spin-up torque due to accretion, estimated using the
observed x-ray flux, it is possible to estimate the strength of
the gravitational-wave signal as a function of the neutron
star spin frequency νs [13]:

FIG. 5 (color online). Expected sensitivity (3.25) for a search of
one year of coincident data from either the two LIGO detectors
(labeled HL) or the three LIGOþ Virgo detectors (labeled HLV),
at design sensitivity. The value plotted is the observable h0 at 5%
false dismissal probability, assuming an overall false alarm
probability of 5% and a trials factor of 108 for a single-template
false alarm probability of 5 × 10−10 (i.e., see Sec. III C and
Table III). The three curves in each set are, from top to bottom, for
Tmax ¼ 6 min, 60 min and 10 hr. They are compared to the signal
strength (6.2) predicted by the torque balance argument [12].
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h0 ≈ 3 × 10−27
�

FX

10−8 erg cm−2 s−1

�
1=2

�
νs

300 Hz

�
−1=2

×

�
R

10 km

�
3=4

�
M

1.4M⊙

�
−1=4

: ð6:1Þ

The spin frequency of Sco X-1 is unknown, but νs values
inferred for other LMXBs from pulsations or burst
oscillations range from 50 Hz to 600 Hz, so we consider
the sensitivity over a wide range of GW frequencies.
For Sco X-1, using the observed x-ray flux FX ¼ 3.9 ×
10−7 erg cm−2 s−1 from [13], and assuming that the GW
frequency f0 is twice the spin frequency νs (as would be the
case for GWs generated by anisotropies in the neutron star),
the torque balance value is

h0 ≈ 3.4 × 10−26
�

νs
300 Hz

�
−1=2

; ð6:2Þ

which is the reference curve plotted in Fig. 5. We see that
for a three-detector, one-year analysis, a signal at the torque
balance limit should be detectable for 30 Hz≲ f0 ≲
300 Hz with Tmax ¼ 60 min (which is already computa-
tionally manageable at most frequencies), and if one could
increase to Tmax ¼ 600 min through algorithmic improve-
ments, programming optimization, and/or application of
additional resources, that range could be broadened to
20 Hz≲ f0 ≲ 500 Hz. The best-case h0 sensitivity of 5 ×
10−26 for the 60 min search is consistent with the results of
the Sco X-1 MDC [28,32], where a cross-correlation search
with 9 min ≤ Tmax ≤ 90 min was able to detect signals
with h0 ≳ 5 × 10−26.
The choice of Tmax will in part be constrained by

computing cost; in Fig. 6 we show the approximate relative
computing cost scaling for the six searches considered (one
year of data from either the two LIGO detectors or the two
LIGO detectors and Virgo, with a maximum allowed lag
time of Tmax ¼ 6 min, 60 min or 600 min ¼ 10 hr). The
computing cost is assumed to be proportional to the number
of SFT pairs times the number of parameter space points to
be searched, and we plot the relative cost per logarithmic
frequency interval. We also assume that at each frequency
the SFT length is chosen to be the optimal SFT length given
by (5.34) and (5.31). Roughly speaking, the number of SFT
pairs will scale as f0Tmax (since the optimal SFT length
scales as T−1=2

max ), and the density of templates in parameter
space will scale as f20T

3
max. The density of points per

logarithmic frequency interval introduces another factor of
f0, so the quantity plotted, cost per unit frequency interval,
scales approximately as f40T

4
max. This means that, for

example, a Tmax ¼ 60 min search from 100 to 200 Hz
would consume the same resources as a Tmax ¼ 6 min
search from 1000 to 2000 Hz or a Tmax ¼ 600 min search
from 10 to 20 Hz.

Finally, we consider one possible avenue for enhance-
ment of the cross-correlation method. As explained in
Sec. III A, the fact that we filter with Gave

KL means that the
method provides an estimate of heff0 , a function of h0 and
cos ι defined in (3.10), rather than h0. If we had a method of
independently estimating cos ι, or in fact any other combi-
nation of h0 and cos ι besides heff0 , we could obtain a better
measurement of h0. In [21], a method was proposed to
obtain estimates of h0Aþ and h0A×, but a more effective
procedure would seem to be adding a second statistic which
uses iΓcirc

KL [see (2.32)] in place of Γave
KL and therefore

observes the quantity h20AþA×; between this and the
original heff0 estimate, we would be able to disentangle
h0 and cos ι. This prospect bears further investigation.
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APPENDIX A: EFFECTS OF NONTRIVIAL
WINDOWING

1. General formulation

As noted in Sec. II A, the construction of Fourier trans-
formed data is often donewith awindow functionwðθÞ, as in
(2.3), as opposed to the unwindowed (or nearly-rectangu-
larly-windowed) data considered in the main body of the
text. This appendix considers the impact on the search
method and its sensitivity of using a nontrivial window
function, which is investigated in greater detail in [27].
The use of windowing for Fourier transforms affects the

expected signal and noise contributions to the data. For the
signal contribution, Eq. (2.16) becomes

~hKk ≈ h0ð−1ÞkeiΦK
FKþAþ − iFK

×A×

2
δwTsft

ðfk − fKÞ ðA1Þ

where δwTsft
ðfk − fKÞ is the generalization of the finite time

delta function defined in (2.17):

δwTsft
ðfk − fKÞ ¼

Z
tKþTsft=2

tK−Tsft=2
w

�
t − tK
Tsft

�
e−i2πðfk−fKÞðt−tKÞdt

¼ Tsft

Z
1=2

1=2
wðθÞe−i2πκKkθdθ≡ Tsftξ

wðκKkÞ

ðA2Þ

with κKk ¼ ðfk − fKÞTsft as before. The noise contribution
is modified by replacing (2.8) with

E½ ~nwKk ~nw�Ll� ≈ δKLγ
w
klTsft

SK
2

ðA3Þ

where

γwkl ¼ ð−1Þk−l
Tsft

Z
∞

−∞
δwTsft

ðfk − fÞδw�Tsft
ðfl − fÞdf

¼ ð−1Þk−l
Z

1=2

−1=2
ei2πðk−lÞθ½wðθÞ�2dθ: ðA4Þ

Note that the diagonal elements of this matrix are equal to
the mean square of the window function:

γwkk ¼
Z

1=2

−1=2
½wðθÞ�2dθ≡ w2: ðA5Þ

If we define

zwKk ¼ ~xwKk

ffiffiffiffiffiffiffiffiffiffiffiffi
2

TsftSK

s
ðA6Þ

as in (2.9), we have

E½zwKk� ¼ μwKk

≈ h0ð−1ÞkξwðκKkÞeiΦK
FKþAþ − iFK

×A×

2

ffiffiffiffiffiffiffiffiffi
2Tsft

SK

s

ðA7Þ

and

E½ðzwKk − μwKkÞðzwLl − μwLlÞ�� ¼ δKLγ
w
kl: ðA8Þ

We then modify (2.23) to

zwK ≡ 1

Ξw
K

X
k∈KK

X
k0∈KK

ð−1Þkξw�ðκKkÞðγwÞ−1kk0zwKk0 ðA9Þ

where fðγwÞ−1klg are the elements of the matrix inverse of
fγwklg, and

Ξw
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k∈KK

X
k0∈KK

ð−1Þk−k0ξw�ðκKkÞðγwÞ−1kk0ξwðκKk0 Þ
s

ðA10Þ

ensures that the normalization (2.24) holds as before. Then
the derivation proceeds as before, with Ξw

K replacing ΞK ,
and, in particular, the expected SNR (3.16) becomes

E½ρ� ≈ ðheff0 Þ2hðΞwÞ2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
KL∈P

ðΓ̂ave
KLÞ2

r
: ðA11Þ

2. Results for specific windows

We now consider the consequences of the modification
(A11) by investigating the form of ξwðκÞ ¼ T−1

sft δ
w
Tsft

ðκ=TsftÞ
defined in (A2) and γwkl defined in (A4) for specific
nonrectangular window choices. We consider the general
family of Tukey windows, defined using an adjustable
parameter 0 ≤ β ≤ 1 by

wβðθÞ ¼

8>><
>>:

1
2
ð1 − cos πβ ð2θ þ 1ÞÞ − 1

2
≤ θ ≤ −ð1−β

2
Þ

1 −ð1−β
2
Þ ≤ θ ≤ ð1−β

2
Þ

1
2
ð1 − cos πβ ð2θ − 1ÞÞ −1ð1−β

2
Þ ≤ θ ≤ 1

2
:

ðA12Þ

The general form of the Tukey window is illustrated in
Fig. 7. This family includes at its extremes the rectangular
window (β ¼ 0) and the Hann window (β ¼ 1). In practical
applications it is also common to use a Tukey window with
a small finite parameter β ≪ 1 rather than a pure
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rectangular window. These two specific cases are shown in
Fig. 8, along with a Tukey window with β ¼ 1

2
.

We can insert the general form of wβðθÞ from (A12)
into (A2) to obtain

ξwβ ðκÞ ¼
1

2
sincκ þ 1

2
ð1 − βÞsincðκ½1 − β�Þ

þ β

4
sin

�
πκ

	
1 −

β

2


�	
sinc

�
1 − βκ

2

�

− sinc

�
1þ βκ

2

�

; ðA13Þ

the “interesting” values of β also have somewhat simpler
explicit forms. For the rectangular window (β ¼ 0), which
was considered in the main body of the paper, we have

ξw0 ðκÞ ¼ ξrectðκÞ ¼ sincκ; ðA14Þ

for the Hann window (β ¼ 1), we have

ξw1 ðκÞ ¼ ξHannðκÞ ¼ 1

2
sincκ þ 1

4
sincð1 − κÞ

þ 1

4
sincð1þ κÞ; ðA15Þ

and for the canonical (β ¼ 1
2
) Tukey window, we have

ξw1=2ðκÞ ¼ ξTukeyðκÞ

¼ 1

2
sincκ −

1

4
sincð2þ κÞ − 1

4
sincð2 − κÞ

þ 1

4
sinc

κ

2
þ 1

8
sinc

�
1þ κ

2

�
þ 1

8
sinc

�
1 −

κ

2

�
:

ðA16Þ

We plot these three functions in Fig. 9.

To evaluate the factor of hðΞwÞ2i appearing in (A11), we
need to construct the matrix fγwklg via (A4). Substituting
(A12) into (A4), we can find

ðγwβ Þkl ¼ ð−1Þk−lð1− βÞsinc½ðk− lÞð1− βÞ�

þ 3

8
βsinc½ðk− lÞβ�

−
1

4
βsinc½ðk− lÞβ− 1�− 1

4
βsinc½ðk− lÞβþ 1�

þ 1

16
βsinc½ðk− lÞβ− 2� þ 1

16
βsinc½ðk− lÞβþ 2�:

ðA17Þ

We can see that, for the rectangular case β ¼ 0, we get
ðγw0 Þkl ¼ δkl as before, while for the Hann case β ¼ 1, we
have

FIG. 7. The general Tukey window wβðθÞ as defined in (A12)
for a generic value of the parameter β ∈ ½0; 1�, where β is the
fraction of the window length taken up by the transitions from 0
to 1 and back.

FIG. 8 (color online). Specific versions of the general Tukey
window wβðθÞ as defined in (A12): the rectangular window
wrectðθÞ ¼ w0ðθÞ, a canonical (β ¼ 1

2
) Tukey window w1=2ðθÞ, and

the Hann window wHannðθÞ ¼ w1ðθÞ.

FIG. 9 (color online). The window leakage function ξwðκÞ ¼
T−1
sft δ

w
Tsft

ðκ=TsftÞ defined in (A2) for the windows shown in Fig. 8.
The explicit formulas are given in (A14) for the rectangular
window, (A16) for the canonical (β ¼ 1

2
) Tukey window, and

(A15) for the Hann window. Note that the version for rectangular-
windowed data is just ξrectðκÞ ¼ T−1

sft δTsft
ðκ=TsftÞ ¼ sincðκÞ ¼

sin πκ
πκ , which is the finite-time delta function plotted in Fig. 1.
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γHannkl ¼ 3

8
δk;l −

1

4
δk;l−1 −

1

4
δk;lþ1 þ

1

16
δk;l−2 þ

1

16
δk;lþ2:

ðA18Þ

The diagonal elements for general β are

ðγwβ Þkk ¼ 1 −
5

8
β ¼ w2

β ðA19Þ

as in (A5). This means that, in the special case where the set
of bins KK from each SFT is just the “best bin” ~kK defined
in (2.18), the matrix fγwklg just has a single element
γw~kK ~kK

¼ 1 − 5
8
β, and

ðΞw
KÞ2 ¼

jξwβ ð~κKÞj2
1 − 5

8
β

ðA20Þ

where ξwβ ðκÞ is defined in (A13). In general, though, we
need to invert the matrix (A17) and then average ðΞw

KÞ2
defined in (A10) over possible values of ~κK . We plot the
results in Fig. 10 as a function of β, for cases where we take
the “best” m bins from each SFT. We see that, for any
number of bins, hðΞwÞ2i is a maximum for β ¼ 0, i.e.,
rectangular windowing. The β ¼ 0 values are just the
“cumulative” entries from Table II for the corresponding
number of bins. Specifically, for the single-bin case, when
β ¼ 0, we have hΞ2i ¼ 0.774 (as seen in them ¼ 1 entry of
Table II), when β ¼ 1

2
, we have hðΞTukeyÞ2i ¼ 0.699, and

when β ¼ 1, we have hðΞHannÞ2i ¼ 0.601. These values

also appear in [27], which explains in more detail the
relevant phenomenon. While the dropoff from the maxi-
mum value of ðΞw

KÞ2 to its average value is greatest for
rectangular windowing, the maximum value and the
average value are also greatest for the rectangular window.
A common approach to handle the loss of signal

associated with Hann-windowed data is to divide the data
into overlapping Hann-windowed data segments, as in [18].
For the present search, however, it is easier just to include
more bins from the rectangularly windowed Fourier trans-
form, if desired, to increase the sensitivity of the search.
The only drawback to that is a slight increase in computa-
tional time, but this increase is much smaller than what
would arise from almost doubling the number of SFTs by
the use of overlapping windows.

APPENDIX B: PROBABILITY DISTRIBUTION
FOR CROSS-CORRELATION STATISTIC

IN GAUSSIAN NOISE

In this appendix, we consider the detailed statistical
properties of the cross-correlation statistic (2.36) in the
presence of Gaussian noise. If the noise contribution
to ~xKk is Gaussian, the definitions (2.9) and (2.23) imply
that z − μ is a circularly symmetric Gaussian random
vector [35] with zero mean, unit covariance and zero
pseudocovariance, as described in (2.26). If fωKg and
fvKg are the eigenvalues and eigenvectors, respectively,
of the Hermitian weighting matrix W defined in (2.35),
so that

W ¼
X
K

vKωKv
†
K; ðB1Þ

then the statistic is

ρ ¼
X
K

z†vKωKv
†
Kz ¼

X
K

ωKjv†Kzj2: ðB2Þ

The conditions TrðWÞ ¼ 0 and TrðW2Þ ¼ 1 imply thatP
KωK ¼ 0 and

P
Kω

2
K ¼ 1. To give an example of the

typical form of the eigenvalues, we present in Fig. 11 two
typical sets of eigenvalues, one assuming a day-long
observation with three detectors, assuming Tsft ¼ 900 s
and Tmax ¼ 3600 s, the other combining 365 such obser-
vations with randomly staggered starting times to simulate
a year-long observation, assuming LIGO Livingston,
Hanford and Virgo detectors with identical and stationary
noise spectra.22

FIG. 10 (color online). The leakage factor hðΞwÞ2i appearing in
(A11) for a search using between one and six bins from each SFT,
assuming a general Tukey window from the family (A12). We see
that, for any number of bins, the most sensitive search is when
β ¼ 0, i.e., for rectangular windows. In particular, when a single
bin is used from each SFT, we have hΞ2i ¼ 0.774 for rectangular
windowing (β ¼ 0), hðΞw

β Þ2i ¼ 0.699 for a canonical (β ¼ 1
2
)

Tukey window, and hðΞHannÞ2i ¼ 0.601 for Hann windowing
(β ¼ 1). Note that the β ¼ 0 value on each curve is just the
corresponding “cumulative” number from Table II.

22Note that since Ĝave
KL ¼ eiΦK Γ̂ave

KLe
−iΦL , a matrix made of the

fΓ̂ave
KLg has the same eigenvalues as one made of the fĜave

KLg. If the
noise PSDs are (approximately) the same for all SFTs, it is also
equivalent to using the eigenvalues of a metric made of the
fΓave

KLg.
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Each v†Kz is an independent circularly symmetric
Gaussian random variable with zero mean and unit vari-
ance, which means its real and imaginary parts are
independent Gaussian random variables with mean zero
and variance 1

2
. Thus jv†Kzj2 is 1

2
times a χ2ð2Þ random

variable; i.e., it is an exponential random variable with unit
rate parameter. The characteristic function is thus

φKðtÞ ¼ E½eitjv†Kzj2 � ¼ 1

1 − it
ðB3Þ

which means that the characteristic function of the cross-
correlation statistic is

φðtÞ ¼ E

	
exp

�
it
X
K

ωKjv†Kzj2
�


¼
Y
K

φKðωKtÞ ¼
1Q

Kð1 − iωKtÞ
: ðB4Þ

This allows a straightforward computation of the exact
probability density function for the statistic ρ as

fðρjh0 ¼ 0Þ ¼

8>><
>>:

P
K;ωK>0

ω−1
K e−ρ=ωKQ

L≠K
ð1−ωL=ωKÞ

ρ > 0

P
K;ωK<0

−ω−1
K eρ=ωKQ

L≠K
ð1−ωL=ωKÞ

ρ < 0
ðB5Þ

which is a mixture of exponential distributions. To get the
false alarm probability α at a threshold ρth > 0, we
calculate

α≡ Pðρ > ρthjh0 ¼ 0Þ ¼
Z

∞

ρth
fðρjh0 ¼ 0Þdρ

¼
X

K;ωK>0

e−ρ
th=ωKQ

L≠Kð1 − ωL=ωKÞ
: ðB6Þ

The problem with this expression is that the denominator
can get very small, and the signs of the terms alternate.
To see this, assume that we have ordered the eigenvalues
so that

ωN > ωN−1 > � � � > ωK0
> 0 > ωK0−1 > � � � > ω1:

ðB7Þ

Then

FIG. 11. Eigenvalues fωKg of the weights matrix W defined in (2.35) for two scenarios. On the left, we show one day of observation
with the LLO, LHO and Virgo detectors, assuming equal sensitivity, with Tsft ¼ 900 s and Tmax ¼ 3600 s. On the right, we show one
year of observation under the same conditions, constructed as the union of 365 such days, spread throughout the year. In both cases, the
start and end of each day include data gaps of 900–1800 s, randomly and independently generated for each detector.

FIG. 12 (color online). False alarm probabilities for the cross-
correlation statistic in the day-long and year-long scenarios
considered in Fig. 11, using the explicit formula (B9) as well
as numerical integration of (B10), along with the probabilities we
would get if we assumed the statistic to be Gaussian. For a
day-long observation (with three detectors, Tsft ¼ 900 s and
Tmax ¼ 3600 s), both methods give comparable results, but the
Gaussian approximation is invalid for single-template false alarm
probabilities below about 10−2. Note that for large signal values, a
single exponential term dominates. For a year-long observation,
practical calculation with (B9) is impossible due to underflow
issues. The numerical integration of (B10) becomes unstable for
false alarm probabilities below 10−12, but not before quantifying
deviations from the Gaussian approximation even for a year-long
observation.
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Y
L≠K

�
1 −

ωL

ωK

�
¼

	YK−1
L¼1

�
1 −

ωL

ωK

�
	 YN
L¼Kþ1

�
1 −

ωL

ωK

�


¼ ð−1ÞN−K
	YK−1
L¼1

�
1 −

ωL

ωK

�


×

	 YN
L¼Kþ1

�
ωL

ωK
− 1

�

ðB8Þ

and the false alarm probability is

α ¼
XN
K¼K0

ð−1ÞN−Ke−ρ
th=ωK

×

	YK−1
L¼1

�
1 −

ωL

ωK

�
−1	 YN
L¼Kþ1

�
ωL

ωK
− 1

�
−1
: ðB9Þ

The last two factors can be very large, and are larger when
the eigenvalues are closer together. (Recall that N is the
number of SFTs, which is approximately Tobs=Tsft, so there
are many factors appearing in the product.)

Given the numerical problems with the exact false alarm
probability (B9) when the number of SFTs is large, it is
sometimes necessary to use an alternate approach. We can
perform a calculation analogous to that in [18], based on the
method of [36,37]. This uses the Gil-Pelaez expression [38]
to construct a cumulative distribution directly from the
characteristic function (B4) according to

α ¼ 1

2
þ 1

π

Z
∞

0

ImðφðtÞe−itρthÞ dt
t
: ðB10Þ

We can then find the false alarm probability by numerical
integration of (B10). Results of both of these methods are
shown in Fig. 12, for the two scenarios considered in
Fig. 11. Both methods produce consistent results for a day-
long observation and illustrate deviation of the false alarm
probability from the Gaussian value for ρth ≳ 2. For the
year-long observation, explicit evaluation of (B9) is impos-
sible because of underflow in the cancellations, but
numerical integration of (B10) works until the false alarm
probability goes below 10−12 or so. False alarm proba-
bilities are considered in detail for a wider range of
observing scenarios in [28].
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