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Abstract:

Recent results on electromagnetic turbulence from gyrokinetic studies in different magnetic
configurations are overviewed, detailing the physics of electromagnetic turbulence and trans-
port, and the effect of equilibrium magnetic field scale lengths. Ion temperature gradient
(ITG) turbulence is shown to produce magnetic stochasticity through nonlinear excitation
of linearly stable tearing-parity modes. The excitation, which is catalyzed by the zonal flow,
produces an electron heat flux proportional to β2 that deviates markedly from quasilinear
theory. Above a critical beta known as the non-zonal transition (NZT), the magnetic fluctu-
ations disable zonal flows by allowing electron streaming that shorts zonal potential between
flux surfaces. This leads to a regime of very high transport levels. Kinetic ballooning mode
(KBM) saturation is described. For tokamaks saturation involves twisted structures arising
from magnetic shear; for helical plasmas oppositely inclined convection cells interact by
mutual shearing. Microtearing modes are unstable in the magnetic geometry of tokamaks
and the RFP. In NSTX instability requires finite collisionality, large beta, and is favored
by increasing magnetic shear and decreasing safety factor. In the RFP, a new branch of
microtearing with finite growth rate at vanishing collisionality is shown from analytic theory
to require the electron grad-B/curvature drift resonance. However, gyrokinetic modeling
of experimental MST RFP discharges at finite beta reveals turbulence that is electrostatic,
has large zonal flows, and a large Dimits shift. Analysis shows that the shorter equilibrium
magnetic field scale lengths increase the critical gradients associated with the instability of
trapped electron modes, ITG and microtearing, while increasing beta thresholds for KBM
instability and the NZT.
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1 Introduction

Numerical solutions of comprehensive gyrokinetic models for toroidal magnetic confine-
ment configurations have provided an increasingly realistic picture of confinement-limiting
instabilities and turbulence. In particular there is a significant and well-developed body
of work devoted to understanding electrostatic turbulence and transport at zero β, where
β is the ratio of plasma pressure to magnetic pressure. However, finite-β regimes are
intrinsically of interest because they lead to increased fusion reaction rates, higher boot-
strap current fraction, and potentially other desirable properties. Our understanding of
turbulence and transport in magnetically confined plasmas at finite β from gyrokinetic
simulation is less well developed than the zero-β case. The most well known piece of
phenomenology is the way the dominant instabilities driving turbulence change character
as β is increased, with the kinetic ballooning mode (KBM) ultimately supplanting the
ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities above a
critical β [1] - [5]. Less is known about saturation, in part, because it can be difficult
or computationally taxing to achieve realistic and physically meaningful saturated states
from numerical gyrokinetic models. However, what has been done, both with gyrokinet-
ics and other models, suggests intriguing differences with zero-β cases, stemming from
changes in instability growth rates, zonal flow drive, flow residuals, and fluctuation char-
acteristics [6] - [9]. This paper offers an overview of recent gyrokinetic studies that probe
and highlight new and modified physical effects operating at finite β. These effects relate
to the origin of magnetic field stochasticity at very low β, the appearance of microtear-
ing instabilities, the behavior of flows in the presence of stochasticity, the saturation of
finite-β instabilities, and a consideration of the critical β-values for these effects, and their
dependence on magnetic geometry.

The kinds of issues that arise in microturbulence at finite β are apparent from a
consideration of past work. Most of the work has been done for tokamak plasmas. How-
ever, gyrokinetic modeling has shown that the same types of microinstabilities appear in
tokamaks, stellarators and the reversed field pinch (RFP), with the dominant stability
dependent on details of the configuration and equilibrium. It is well established that ion
temperature gradient (ITG) instability becomes weaker as β increases [10] - [12] with
complete stability in tokamaks typically at a critical β between 1% and 2% [13] and in
RFPs between 6% and 10% [14]. In the tokamak, above the critical β for ITG stabiliza-
tion, trapped electron mode (TEM) instability may continue, with a growth rate that is
quite insensitive to β, while the kinetic ballooning mode (KBM) appears at a fraction of
the ideal β limit, with a large growth rate that increases very strongly with β [11]. A
characterization of the saturation of KBM has been lacking. Linearly unstable microtear-
ing modes (MTM) [15] - [18] also arise above a critical β in simulations of discharges for
standard tokamaks [19, 20], spherical tokamaks [21] - [24], and the reversed field pinch
(RFP) [14, 25]. (For a review of microtearing modes see Ref. [26].) These observations
have been somewhat surprising, given earlier theoretical indications of stability [27], but
not altogether unanticipated [21]. In nonlinearly saturated ITG turbulence, zonal flow
strength, as measured by its shearing rate, weakens as β increases, but not as strongly as
the reduction of growth rate. The result is a saturation in which zonal flows play a larger



3

role in a relative sense as β increases [13, 28, 29]. However, there is also a phenomenon
observed in gyrokinetic simulation of ITG turbulence sometimes referred to as the high β
runaway, where above a critical β transport fluxes diverge away from an apparently tran-
sient saturated level to very high values [30, 31, 32]. For the Cyclone base case the critical
β for this phenomenon is a fraction (around 70%) of the KBM instability threshold. Even
at very low β values of order 0.1%, magnetic fluctuations that lead to a stochastic field
are observed in simulations of ITG turbulence [33]. The magnetic flutter transport from
this field is small, but it rises quadratically as β increases. The source of the stochasticity,
given the low β and predominant ballooning parity of ITG fluctuations has only been
understood recently in work described below [34, 35]. It arises from a very general aspect
of instability-driven plasma turbulence, namely, that nonlinearity excites a large array of
damped modes in the scale range of the instability [36, 37]. It is important to understand
the role of this phenomenon in turbulence saturation and transport at finite β.

Because the study of large-scale stable modes in saturation is still in its infancy, the
physical details of saturation mechanisms are still not well understood. Historically, most
saturation mechanisms have relied on damping at small scale, ignoring large-scale sinks
from stable modes. Examples include the entropy cascade [38], the zonal flow paradigm
[39], the secondary Kelvin-Helmholtz instability in the saturation of electron temperature
gradient (ETG) instability [40], and reconnection [41, 42]. Processes like the entropy
cascade describe energy transfer to small scale, where for steady state, the fluctuation
energy must be damped. The entropy cascade provides a detailed picture of the forward
cascade process in relation to the gyroaverage, but it is worth noting that the kinetic
nonlinearity, as an advective derivative of the distribution, is fundamentally a forward
cascade nonlinearity. The zonal flow paradigm invokes energy transfer to large scale
zonal flows, but the primary saturation of the instability, given weak zonal flow damping,
relies on zonal flow shearing, which enhances transfer to small scales. Where large-scale
stable modes have been examined in relation to the above processes, their role has been
significant in every case. The entropy cascade is subject to large scale damping from stable
modes unless the collisionality is very weak [43] relative to present day fusion devices [44].
Large scale stable modes are the main energy sink in zonal-flow-regulated ITG turbulence,
with zonal flows catalyzing transfer to the stable modes [45]. The secondary Kelvin-
Helmholtz mode is a dissipative structure made up of damped roots of the primary ETG
instability dispersion relation [46]. In each of these cases, the conventional saturation
mechanisms mentioned at the beginning of this paragraph are operative, but the energy
damping landscape is strongly modified by the stable modes. Consequently this type of
physics needs to be considered in the context of saturation at finite β.

This overview focuses on physical processes that arise sequentially as β is increased
from very low values, and whose underlying physics is organized through interrelated
processes. We begin with the phenomenon that emerges at the lowest β, where we show
that the stochastic magnetic field in low β ITG turbulence arises from tearing parity stable
modes that are excited to finite amplitude by the nonlinearity [34]. We next examine how
magnetic fluctuations disable zonal flows, leading to the high β runaway. An effective
island overlap criterion predicts the threshold, which is now more appropriately referred
to as the non zonal transition (NZT) to a new saturated state of very large fluxes [31].
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The threshold criterion shows that NZT may occur at a critical β that is above or below
that of the KBM instability, depending on the magnitude of the temperature gradient.
In the former case, KBM grows and saturates in an environment where magnetic activity
makes zonal flows weaker. We describe saturation of the KBM instability in both a
standard tokamak equilibrium and for the 3D equilibrium of the Large Helical Device
(LHD) [47]. Discharges in the National Spherical Torus Experiment (NSTX) and RFX-
mod, a reversed field pinch (RFP), both operate at β values that are larger than those of
standard tokamaks. Modeling of discharges in these devices show that the MTM is the
dominant instability [23, 25]. We also show that the MTM is unstable in the Madison
Symmetric Torus RFP [14], specifically looking at standard-confinement-type discharges
where an important difference with the enhanced confinement discharges that occur with
current profile control is the lower magnetic shear. In enhanced confinement discharges,
recent modeling shows turbulence that is surprisingly electrostatic in character. The
fluctuations are density-gradient driven trapped electron modes (TEM) [48]. Despite a β
of a few percent, instabilities like the MTM and KBM appear to be stable. The presence
of a large Dimits shift and strong zonal flows indicates that the system is below the NZT
threshold. The implication is that these thresholds are higher in the RFP than in the
tokamak [48].

The fact that these discharges have a large magnetic shear, which is stabilizing for
MTM, leads us to the last important element of this paper, an analysis of how magnetic
configuration and its magnetic field scale lengths impact all of the processes described
above. Noting that the same set of instabilities (ITG, KBM, MTM, TEM) can all arise in
multiple magnetic configurations, comparisons across different configurations demonstrate
the effect of magnetic configuration in the form of safety factor q, and magnetic field scale
lengths. In configurations with smaller magnetic field scale lengths, the critical gradient
thresholds for both the linear instability and the nonlinear fluxes are raised [48]. In such
configurations the finite β thresholds both of stabilization (e.g., ITG) and destabilization
(KBM) are also raised. Moreover, the critical β values for NZT and its large transport
levels are raised. One type of device with these properties is the RFP. Simulations show
that raising these thresholds through short magnetic field scale lengths yields critical
gradients that are larger than those of tokamaks of a factor of 3. This suggests that
short magnetic field scale lengths are quite favorable for maintaining steeper equilibrium
profiles and greater stored energy in finite β discharges.

This overview is finite in scope and is not intended to cover every recent contribution
from gyrokinetic simulation relating to microturbulence at finite β. For example, inves-
tigations involving impurities [49] or fast particle species [50, 29, 51] in finite β plasmas
are not included. In particular, Refs. [29] and [51] illustrate that model agreement with
experimental discharges requires accounting for the complex workings of multiple effects,
in this case including the strengthening of zonal-flow saturation relative to instability at fi-
nite β, the stabilizing effect of fast particles, and mean sheared flows, among other things.
The generally beneficial effects ascribed to β in Refs. [29] and [51] are consistent with
past assays, which show that benefits of higher β are eventually undone by new magnetic
phenomena like the KBM. In this overview our primary focus is on greater understanding
of finite β effects without additional complicating factors.
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2 Subdominant Tearing Parity Modes

Many fundamental aspects of electromagnetic turbulence and transport have been dis-
covered by studying a finite-β version of the Cyclone base case (CBC) parameters. Scans
of β ranging from the electrostatic limit to the KBM limit demonstrate a significant de-
crease in electrostatic transport concurrent with an increasing electron electromagnetic
heat flux that scales like β2 and becomes comparable to the electrostatic channels as β
nears the KBM limit. The electromagnetic transport has been shown to be produced by
free-streaming electrons in the stochastic magnetic field produced by the turbulent mag-
netic fluctuations [13, 28, 33, 52, 53]. The onset of a chaotic magnetic field occurs at very
low β, of order 0.1%, where the electron heat flux is still very small. An understanding
of the electromagnetic transport relies on an understanding of the mechanisms that pro-
duce the turbulence-driven stochastic magnetic field. In the remainder of this section we
describe those mechanisms, and the magnetic transport that results. We do not discuss
here the electrostatic component, but it should be kept in mind that it dominates for low
β and is only surpassed by the magnetic component near the KBM threshold.

The stochastic magnetic field of CBC ITG turbulence is an aspect of saturation. For
unstable modes to saturate, they must couple through the nonlinearity to fluctuations
that are damped, with amplitudes adjusting themselves to achieve a balance between
energy input and dissipation. This process has long been viewed as occurring across
the wavenumber spectrum. With instability residing in low wavenumbers perpendicular
to the magnetic field in gyrokinetic turbulence and damping at high wave numbers due
to collisions, the necessary coupling between the low and high wavenumbers could be
provided by nonlinear energy transfer, as in the entropy cascade [38]. Under this type
of scenario a perpendicular wavenumber cascade initiated by an electrostatic instability
would be expected to involve purely electrostatic fluctuations at higher wavenumber.
However, contrary to the standard picture, mode decompositions of the fluctuations in
the CBC show that even at low wavenumbers where the instability resides, there are
fluctuation components associated with parallel and velocity-space degrees of freedom
that are distinct from the instability, quite unlike it, and in fact are damped [37, 54]. The
net fluctuation can be decomposed into a mode basis, e.g., the eigenmodes of the linear
gyrokinetic operator or a proper orthogonal decomposition. What these decompositions
show is that at saturation a fluctuation in the perpendicular wavenumber range of the
instability is comprised of the unstable linear mode and many other modes. Most of
these modes are stable. They make a large contribution to the removal of energy that
balances the instability drive, and is not accounted for in descriptions of wavenumber
cascades [45, 55] like the entropy cascade. Some of these modes are electromagnetic and
create magnetic islands [34, 35]. It should be noted that stable modes are excited by the
nonlinearity, and damp perpendicular wavenumber cascades irrespective of whether the
cascades are forward or inverse.

Magnetic islands are produced by modes with tearing-parity—a mode structure for
the parallel magnetic vector potential A|| that is even for displacements along the mag-
netic field measured from the outboard midplane. ITG modes (centered at kx = 0) are
characterized by ballooning parity—odd-parity in A||—and thus would not be expected
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FIG. 1: The total electromagnetic electron heat flux spectrum (plus signs), summed over
kx for β = 0.003, decomposed into contributions from tearing modes (crosses), ballooning
modes (asterisks), and all remaining fluctuations (circles) (from Ref. [34]).

to produce significant magnetic stochasticity. There are two candidates for tearing-parity
fluctuations in ITG-driven turbulence: 1) finite-kx ITG modes, which are allowed to have
a tearing-parity component, and 2) some other mode that is intrinsically characterized by
tearing parity. There are multiple manifestations of modes in the latter category. Tearing
parity ITG and ETG modes (TITG, TETG) are tearing-parity counterparts to the more
familiar ITG and ETG modes, sharing their most salient properties with the exception of
the parity of the mode structure. As such, they are not intrinsically electromagnetic and
have small components of the magnetic vector potential. Microtearing modes are intrin-
sically electromagnetic tearing parity modes (i.e. they cannot exist when β = 0), and are
characterized by a large A|| component. Understanding electromagnetic transport relies
on identifying which of these modes produces magnetic stochasticity and determining by
which mechanism the modes are excited.

To identify the source of the stochasticity, proper orthogonal decompositions (POD)
of the turbulence were constructed to isolate the important magnetic fluctuations [34].
PODs of A|| effectively capture the dominant tearing component and the dominant bal-
looning component in the first two POD modes. The POD is flexible enough to extract
modes with slightly mixed-parity, which is characteristic of kx > 0 ITG modes, and
can thus distinguish between ITG-like modes with a small tearing component and other
modes with a dominant tearing component. This procedure clearly identifies predomi-
nantly tearing-parity fluctuations as the mechanism for the magnetic stochasticity and
transport, eliminating the ITG mode as the direct producer. A reconstruction of the
electromagnetic flux using the POD decomposition demonstrates that the tearing-parity
fluctuations produce outward heat flux, while the ballooning-parity fluctuations produce
an inward flux (not stochastic) that is consistent with the quasilinear properties of the
ITG mode. The distinctive spectrum that results from the superposition of these two
mechanisms is shown in Fig. 1.

PODs of the actual gyrocenter distribution function were used to examine the detailed
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properties of the most important tearing-parity modes. A high-amplitude POD mode was
identified that has properties similar to the corresponding linear microtearing mode (which
is stable) and dissimilar from linear TITG and TETG modes (which are slightly unstable);
the ratio of electromagnetic to electrostatic heat flux, and the ratio of the normalized |A|||2
to the electrostatic potential |φ2| for both the tearing parity POD mode and the linear
MTM modes are orders of magnitude larger than the corresponding values for TITG and
TETG modes. Moreover the A|| mode structures for the tearing-parity POD mode and
the linear MTM mode are virtually identical. In short, the turbulence structures that
produce the magnetic stochasticity correspond closely to stable MTMs that are identified
in the linear eigenmode spectrum.

The POD modes were also used to project out the component of the nonlinear energy
transfer that drives the microtearing fluctuations. It was shown that coupling to zonal
ky = 0 modes was the dominant nonlinear excitation mechanism. Further evidence of
the nonlinear nature of the electromagnetic transport is found in the early-time dynamics
of the flux components; the electrostatic fluxes increase in the early linear phase at a
rate consistent with the dominant ITG mode growth rate, while the EM component
grows with approximately twice the ITG growth rate, indicating a nonlinear excitation
mechanism. Moreover, in the saturated nonlinear phase, bursts of EM flux appear with
an approximately 2R/cs delay from the ES components.

The electromagnetic transport mechanism described here is intrinsically nonlinear–
i.e., it cannot be inferred in a straightforward way from the linear properties of the ITG
modes. However, a simple empirical relationship has been identified between the electro-
static and electromagnetic components of the flux. The electromagnetic heat diffusivity
is proportional to β2/β2

KBM , where βKBM denotes the KBM limit. The proportionality
factor is of order unity in the cases examined (0.92 for the CBC case, and 0.24 for a
TEM case). Thus, simple rules may be identified that allow quasilinear estimates to be
extended to this nonlinear electromagnetic transport mechanism.

The above analysis shows that, in addition to magnetic stochasticity at very low β, ITG
turbulence deviates from standard views of plasma turbulence in other ways. Zonal flows
can no longer be viewed as purely beneficial. Through their role in mode coupling between
the instability and stable microtearing fluctuations, they open an additional transport
channel - the electron heat flux. Because this channel only arises through nonlinear energy
transfer it cannot be obtained directly from quasilinear quasilinear theory. It can only
be related to quasilinear theory, as above, by making use of knowledge of the excitation
spectrum of the stable tearing parity modes. Mode analysis that accounts for the finite
amplitude of stable modes at the scales of the instability is critical for an understanding
of saturation.

3 The Non-Zonal Transition

In CBC, when β increases above 0.9% (∼ 0.7 of the critical β for KBM instability) gyroki-
netic codes fail to saturate at reasonable levels [30, 31, 32, 56, 57]. Because this runaway
phenomenon is common to many codes, including gyrofluid codes [58] it is not a numerical
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artifact. One idea proposed as a physical basis for this phenomenon is that it represents a
subcritical KBM instability (tertiary) of the secondary zonal flow structure driven by non-
linear profile corrugations of temperature and density [30]. A careful measurement of the
corrugation amplitudes near the runaway threshold indicates that they are too small to
destabilize KBMs subcritically at this β [31]. Furthermore, a consideration of electrostatic
potential corrugations that self consistently accompany pressure corrugations, but were
ignored in Ref. [30], shows that they can negate the effect of the pressure corrugations
through their shear.

Here we describe a set of recent discoveries that point to the cause of the runaway
phenomenon as arising instead from the depletion of zonal flows by radial motion of
electrons streaming along strongly perturbed field lines. Zonal flows consequently lose
their ability to saturate the linear instability, causing severely increased heat and particle
flux levels. The phenomenon is labeled the non-zonal transition [31, 57]. Simulation of
nonlinear dynamics above the NZT shows a saturated state with strongly reduced zonal
flows. This is shown in the right panel of Fig. 2 and compared in the left panel with a
case below the threshold.

FIG. 2: Potential contours in the nonlinear state of ITG turbulence. The left panel is for
β = 0.7% (below the NZT threshold) and right is for β = 0.9% (just above).

That the reduction of zonal flows is caused by charge loss from rational surfaces as-
sociated with streaming along perturbed fields is demonstrated by two calculations. In
one, the radial excursion of a perturbed field is increased until it exceeds the field-line
correlation length, allowing for irreversible charge loss. The β associated with this con-
dition matches the critical β for the NZT. In the second an external radial magnetic
field perturbation is applied to a Rosenbluth-Hinton residual flow [59]. Prompt electron
losses cause the potential response to swing through zero. The rate and its scalings are
calculated from a closure theory for the mode coupling of the external field, and agree
well with measurements from a numerical calculation of the potential response [60]. We
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FIG. 3: Illustration of field line decorrelation. Shown in the R-Z plane are the unperturbed
flux surface in black, and two field lines subject to some nonresonant perturbation. The
red field line remains correlated, whereas the blue one decorrelates and fails to return to
its original radial position.

focus below on the critical β for the NZT. The derivation of the threshold from field-line
decorrelation allows us to infer key scalings. From variation with driving gradient we
determine that the NZT does not occur at a set fraction of the KBM threshold. It can
be higher than the KBM threshold or lower than the 0.9% value of βcrit for NZT in the
CBC. From the dependencies on magnetic field scales we determine how this threshold
changes in the RFP relative to the tokamak.

The critical β for transition occurs when a field line decorrelation criterion analogous to
an island overlap condition is met [57]. An illustration of field line decorrelation is given in
Fig. 3. Here, field line positions are obtained by integration (along the coordinate parallel
to the guide field) of the perturbed magnetic field. Note that this picture requires no
resonant perturbations, which have even parity in the magnetic potential; instead, purely
quasilinear, odd-parity radial fluctuations Bx are sufficient to bring about this process.
Starting from the inboard side (at the left of Fig. 3), field lines depart from their original
radial position, marked by the unperturbed circular flux surface in black. For a correlated
field line (red), the maximum radial displacement ∆r is reached at the outboard side (on
the right), and the second half turn brings the field line back to its original position, due
to the aforementioned odd parity. Given a sufficiently large Bx (e.g., due to a sizable
β), it is possible for the outboard displacement ∆r1/2 to exceed the radial correlation
length of Bx—which is the case for the blue field line, as illustrated in the magnified
region on the right. Decorrelation, however, means that the onward trajectory of the field
line is statistically independent of the previous path. While for the red line, the second
half turn causes a displacement ∆r2/2 = −∆r1/2 that cancels the first half, returning
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FIG. 4: Variation with β of the half turn radial field line displacement ∆r1/2 and the
radial correlation length λBxx At the point where they cross an odd parity magnetic vector
potential fluctuation is unable to return to the surface, defining the critical β for the NZT
(from Ref. [31]).

charge to the surface, this is no longer the case for the blue line. Instead, the field line’s
displacement from the surface is irreversible, creating a radial charge path, radial currents,
and irretrievable charge loss from flux surfaces. The process by which such radial currents
are able to short out zonal flows is described in detail by the residual flow calculation of
Ref. [60].

The displacement ∆r1/2 increases with the perturbation strength Bx. The radial
correlation length λBxx decreases moderately with β. The point where these two lengths
become equal allows irretrievable charge loss and hence yields the observed critical β for
NZT, as shown in Fig. 4. From Fig. 4 it is straightforward to predict what happens when
the temperature gradient is increased. This gradient drives the turbulence; consequently
an increase yields a larger value of Bx and ∆r1/2 for a given β. This increases the slope
of ∆r1/2 in Fig. 4, thereby decreasing the critical β for NZT. Numerical measurements
verify that a change in the crossing point of ∆r1/2 and λBxx produces a like change in the
critical β. In the CBC, the critical β for NZT is below the KBM threshold. However,
for a weaker temperature gradient, the NZT threshold can occur at a higher β than the
KBM threshold. For the General Atomics standard case [30] the gradients are steeper
than CBC and the NZT threshold would occur below 50% of the KBM threshold.

Based on the above picture, it is possible to estimate the critical β for the NZT
transition as a function of the temperature gradient. Relative to βKBMcrit , the instability
threshold for the KBM,

βNZTcrit

βKBMcrit

∝ 1

(ωT − ωT,crit)ξ/2
, (1)
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where ωT = −(∂T/∂r)R0/T , ωT,crit is the critical gradient for ITG instability, and
1/2 < ξ < 1 [61]. From this expression it is clear that near the ITG temperature gradient
threshold, the NZT critical β is above the KMB critical β. Conversely, for a sufficiently
large temperature gradient, any system whose saturation is dependent on zonal flow ac-
tivity may undergo an NZT. Since the non-zonal transition may, in principle, lead to very
stiff limits, it is important to study its potential role in experimental scenarios. Ongoing
research is focused on the transition between linear and saturated Ohmic confinement
regimes, as well as in high-gradient regions such as the pedestal.

The analysis of the NZT transition in terms of a threshold for field line decorrela-
tion and the quantitative agreement between numerical and analytical analyses of finite-β
residual flow indicate a charge loss process from electrons streaming along perturbed
field lines. This process is phenomenologically and conceptually distinct from the non-
linear processes that charge surfaces through turbulent Reynolds and Maxwell stresses.
Therefore, one cannot be considered the negative of the other. The Maxwell stress has
been hypothesized to partially cancel the Reynolds stress in driving zonal flows at finite β,
thereby weakening zonal flows [39]. This is consistent with observations of a general weak-
ening of zonal flow strength with increasing β [13, 28, 29] and works in a parallel sense with
the NZT. However, the strength of the turbulent stresses varies smoothly with nonlinear
amplitude, whereas the charge loss process associated with the NZT undergoes a criti-
cal transition. Moreover, in the residual flow calculation the charge loss associated with
NZT is treated as a response to an impulsive force, whereas the Reynolds and Maxwell
stresses are the force. A way of thinking about the distinctness of these two processes is
provided by statistical closure theory, such as the direct interaction approximation, where
there is a turbulent response that is quite distinct from the turbulent source, even though
both derive from the same nonlinearity [62]. Of course, the turbulent stress and residual
flow calculations have not been carried out jointly in a mutually consistent way, so there
may be other connections. This question is presently under consideration in gyrokinetic
analyses of electromagnetic nonlinear energy transfer at finite β [63].

4 Saturation of Kinetic Ballooning Mode Turbulence

In finite β toroidal plasmas, the growth of the ITG mode decreases with increasing β
because of magnetic field line bending. Finite β ITG turbulence leads to a very high level
of transport above a critical β (NZT). On the other hand, the KBM is destabilized at
high β above another critical value, which is larger than the critical β of NZT for the
CBC tokamak, and KBM turbulence does not become saturated in many computational
scenarios.

However, there exist cases where high β turbulence with weak zonal flows is free from
the saturation problem. When the electron temperature gradient is small, saturation of
KBM turbulence is obtained with a physically relevant level of transport for tokamak
and helical plasmas [47, 64, 65, 66], even when zonal flow production is weak. The weak
zonal flow is shown by the electrostatic potential spectrum in a statistically steady state
for a model of the standard configuration of the Large Helical Device in Fig. 5. The
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FIG. 5: Spectrum of electrostatic potential 〈|φk|2〉 of the KBM turbulence in a helical
plasma (from Ref. [64]).

amplitude of the zonal component (ky = 0) is comparable with the dominant mode for
ITG turbulence at low β. On the other hand, the KBM turbulence has a sharp peak,
and the zonal component (ky = 0) is much smaller than the sharp peak of the KBM.
Consequently, KBM turbulence saturation has two elements in common with saturation
above NZT: β is high, implying magnetic effects, and zonal flows are weak.

FIG. 6: Color contours of electrostatic potential φ at the steady state of KBM turbulence
in the CBC (left) and the standard LHD (right) with ηe = 0 (from Refs. [47] and [64]).

In both the tokamak and helical plasma cases, the mode structure along the magnetic
field line plays a central role in the saturation of the KBM turbulence. In the CBC
tokamak plasma, the dominant KBM has an elongated mode structure along the magnetic
field line because of fast streaming motion of electrons along the field line. The elongated
structures acquire a twisting feature because of the magnetic shear, and the interaction
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between the KBM and the twisted structure leads to the saturation of the KBM. The
twisted structure appears in the electrostatic potential profile in the (x, y)-plane with
a high radial wavenumber in Fig. 6, while the KBM is represented by the horizontal
stripes. The absence of noticeable vertical structure indicates that zonal flows are not
a significant factor in saturation. In a helical plasma (the standard LHD plasma), the
dominant KBM has a finite ballooning angle, i.e., it has a finite radial wavenumber, which
is evident in the electrostatic potential profile in the right panel of Fig. 6. Since the three-
dimensional magnetic field of the helical plasma has up-down symmetry, two oppositely
inclined modes grow with the same growth rate. When their amplitudes become large,
they interact with each other through nonlinear mode coupling, and the convection cells
of the oppositely inclined modes shear each other, leading to saturation. Hence, the
mutual shearing between the inclined modes, which have opposite ballooning angles, is
the saturation mechanism of KBM turbulence in high β helical plasmas. The saturation
process is qualitatively studied by evaluating the nonlinear entropy transfer function of
interactions within triads of Fourier modes through nonlinear terms including electrostatic
and magnetic perturbations.

For comparable growth rates, KBM turbulence is less efficient at transport than ITG
turbulence, provided the turbulence undergoes a self interaction associated with elongated
structure along the magnetic field [66, 67]. (The self interaction can be turned off, and
the transport efficiency raised, by extending the simulation box along the field line.)
When the self interaction limits transport, weaker zonal flows offset the effect: the ion
heat flux for KBM is given by QKBM

i = 3n0Tiνtiρ
2
i /L

2
n, while for ITG it is given by

QITG
i = 5n0Tiνtiρ

2
i /L

2
n. The fluxes are comparable, with a slightly higher numerical

coefficient for ITG.

5 Microtearing Instability in Tokamaks and RFPs

The microtearing mode (MTM), which is linearly stable for the CBC, has been predicted
to be unstable for experimental core and edge conditions in the tokamak, the spherical
tokamak, and the RFP. In conventional tokamaks MTM is typically weaker than ITG
or TEM instabilities (e.g. [19]). However, for spherical tokamaks like NSTX and MAST,
numerical solutions of gyrokinetic models using GYRO often predict the instability to
be dominant in the core of high β H-mode plasmas [68], and to share some similarity
to slab-theory predictions regarding β, electron temperature gradient, and collisionality
[69]. Solutions of gyrokinetic models have identified two branches of the MTM instability,
one which requires collisions and whose growth rate decreases with collisionality [71], and
a collisionless branch [19, 21, 25, 48, 70]. For NSTX parameters the linear growth rate
has a temperature-gradient threshold of a/LTe ∼ 1.3 − 1.5. The transport fluxes grow
sharply above a/LTe = 2, indicating a modest shift of the nonlinear threshold relative
to the linear threshold. Because the mode is electromagnetic with a tearing parity mode
structure there is also a critical threshold in β near a value of 4.5 %. Finite collisionality
is required for instability (with Zeffνei/ω not too large or small). Consequently MTM
instability in NSTX is on the collisional branch. For this branch the time-dependent
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thermal force is important for instability, making the growth rate vanish in the limit of
zero collisionality [71].

Fluxes from nonlinear simulations follow the same trends as the linear stability cal-
culations, provided the saturated amplitudes (δB/B) are sufficiently large to ensure the
onset of stochastic field lines. The electron heat flux, like that of the subdominant mi-
crotearing mode in CBC ITG turbulence, is well represented by magnetic flutter, with
χEMe ∼ v||,eδBr. This follows the Rechester-Rosenbluth prediction [52] provided islands
overlap, i.e., island widths exceed the spacing between rational surfaces. It is not clear
what sets overall saturation and the scaling of δBr in the gyrokinetic models, although
there is a prediction from fluid theory that damped modes are excited to a sufficient level
to provide a significant sink for saturation [72]. The dependence of instability on colli-
sionality yields an electron heat flux that scales with the electron collision frequency νe to
the first power. This is consistent with global confinement trends in NSTX that indicate
an inverse scaling of confinement time with ν∗.

The MTM is also important in the RFX-mod RFP, where linear GS2 simulations per-
formed for the experimental geometry show that MTMs are typically the fastest growing
instabilities across the transport barriers occurring during the single helicity state [75].
For a selected set of RFX discharges the quasi-linear estimate of the electron conductiv-
ity, χe ∼ (ρe/LTe)vth,eLc, turns out to be in good agreement with the experimental values
[76], making MTM turbulence a major player for electron heat transport in the helical
regimes. For the typical values of β in RFX-mod, MTM destabilization is obtained above
a/LTe ∼ 2.5 − 3 in the plasma core, an easily accessible value during the helical states.
Work is in progress to extend the previous conclusions to a fully helical description, by
means of the code Gene coupled to the helical VMEC equilibria of RFX.

Investigation of MTM stability covering a large parameter space has revealed that the
collisionless branch of MTM is predicted to occur for certain experimental conditions of-
ten encountered in the RFP configuration, even neglecting the trapped electron dynamics.
This branch does not require the time-dependent thermal force, and is therefore distinct
from the branch of the MTM that appears in NSTX models. The decisive role of the
curvature and grad-B drifts in destabilizing the mode is evident especially in the colli-
sionless limit, as described in [25] and [48]. Retaining electrostatic potential fluctuations
is always found to be destabilizing. An instability calculation for this new MTM branch
has been undertaken, using a high frequency expansion for the propagator of the gyroki-
netic equation in the collisionless regime. Temperature gradient free energy is accessed
through the electron grad-B/curvature drift. Typically this drift has been neglected in
analytic instability calculations of MTM growth, but in the RFP and spherical tokamak
it is larger than its standard tokamak counterpart. In the RFP, the drift is larger by a
factor of the aspect ratio. Instability requires a finite electrostatic potential. The mode
represents the collisionless limit of a semicollisional tearing instability described previ-
ously [77]. However, besides the drifts, there is another destabilizing mechanism, which
arises due to the mutual balance between magnetic shear, density gradient and electron
temperature: a positive growth rate is accessible in the collisionless limit even without
curvature and grad-B drifts in ωd, provided the density profile is flat; again electrostatic
potential fluctuations are destabilizing. Such results have been recovered with a more
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FIG. 7: Growth rates for MTM as a function of collisionality for the toroidal Bessel
function equilibrium. Three radial values are shown, with corresponding values of the
magnetic shear (adapted from Ref. [14]).

practical drift kinetic model [25], showing a qualitative agreement both on the role of
the magnetic drifts and of density/safety factor profile. Collisionless MTM has also been
found near the pedestal of spherical tokamaks [73, 74]. In particular, Ref. [73] also invokes
magnetic drifts as a possible explanation, although with particle trapping.

An important aspect of microtearing instability in the RFP is its dependence on
magnetic shear. The magnetic shear of the RFP is large and negative, and tends to
increase with minor radius and the RFP pinch parameter Θ = 〈Bθ〉wall/〈Bφ〉vol. The
growth rate decreases as the magnitude of the magnetic shear becomes larger. This is
seen in Fig. 7, which shows linear GYRO runs for an RFP equilibrium model known
as the toroidal Bessel function model [78]. The growth rate is shown as a function of
collisionality for three values of the radius, with corresponding shear values ŝ indicated.
Here ŝ = (r/q)(dq/dr)−1, where q is the safety factor. It is readily apparent that as the
radius increases the magnetic shear becomes more negative and the growth rate decreases.
It should be noted that while the expression for ŝ is not accurate near the reversal surface
where q vanishes, ŝ is accurate to within 35% for the radial values of Fig. 7.

These plots also show the collisional and collisionless branches of the MTM, and sug-
gest that the collisionless branch is more strongly stabilized by shear than the collisional
branch. In Fig. 7 the two branches are most distinct at r/a = 0.5 (ŝ = −0.7), where
different shapes are seen in the growth rate on either side of ν = 0.1. This structure
results because only the growth rate of the fastest growing mode is plotted, and one mode
dominates the other on either side of the break. (A break also appears in the frequency
at the same value of ν, as seen in Fig. 8 of Ref. [14].) The collisional branch corresponds
to the peaked feature near ν = 2. The growth rate of this branch decreases for smaller
values of ν and becomes subdominant between ν = 0.2 and ν = 0.5. For ν < 0.2 the
dominant instability is the collisionless branch, which is relatively independent of ν down
to the lowest colisionalities shown. The growth rates of both branches decrease as the
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shear becomes more negative, but the decrease is more marked on the collisionless branch.
At ŝ = −1.3 the growth rate of the collisionless branch has become less than 0.1 and is
not seen in Fig. 7, whereas at ŝ = −0.4, it becomes as large as the growth rate of the
collisionless branch at its peak.

6 Microturbulence in MST

Prior analysis of microtearing instability has addressed specific discharges for RFX-mod,
but not for the Madison Symmetric Torus (MST). While MST values for β and electron
temperature gradient LTe can lie above thresholds, those thresholds have only been cal-
culated for generic equilibria such as the toroidal Bessel function model [78]. We consider
here specific MST experimental discharges with reduced tearing mode activity, achieved by
flattening the current profile with pulsed poloidal current drive (PPCD). These discharges
are selected because, unless tearing modes are reduced, their dominance of microturbulent
fluctuations make the latter unobservable experimentally. Indeed, recent observations in
PPCD plasmas using the laser interferometry diagnostic, show for the first time a dis-
tinct feature in the fluctuation spectrum that is independent of global tearing modes and
the cascade to smaller scale that they drive [80]. PPCD discharges have a high value of
Θ, for which the toroidal Bessel function model breaks down. To accommodate PPCD
equilibria the circular equilibrium model of Gene has been modified with a form that
accounts for the comparable values of the toroidal and poloidal field components and the
radial variation of toroidal field [48]. The higher values of Θ in PPCD result in higher
magnetic shear [78], with a pronounced effect on instabilities and turbulence.

Linear and nonlinear gyrokinetic simulations of two MST PPCD discharges, with 200
kA and 500 kA, draw equilibrium fields from MSTFit, electron temperature profiles from
Thomson scattering and soft-X-ray tomography, and density profiles from far-infrared
interferometry. Ion temperature profiles are not measured, so the Gene simulations
assume that the ion temperature profile has the same shape as the electron profile with
a peak value equal to 0.4 of the peak electron temperature. Despite β values ranging
from 0.1% to 6.5%, unstable fluctuations, which are present in the edge (r/a > 0.6),
are electrostatic in character: while producing a finite magnetic vector potential, its
parity along the field line is odd. Moreover the growth rate of these fluctuations has
little or no dependence on β over the range 0.1% < β < 6%. Despite operating at
a β that is considered high in the context of tokamaks, there is no MTM, KBM, or
NZT. We comment specifically on the latter below, where we describe the presence of
strong zonal flows in the nonlinear phase. The ratio of normalized density gradient to
temperature gradient can vary strongly in PPCD discharges of different current, although
not in a systematic way. The 200 kA discharge had a steeper temperature gradient than
density gradient. On the basis of frequency, growth rate scalings with gradients, and
mode structure, the fluctuations in the 200 kA discharge are identified as ITG at most
radial locations. The 500 kA discharge has a steeper density gradient than temperature
gradient, and its fluctuations are identified as TEM. Nonlinear simulations of the 500 kA
discharge have large a level of zonal flows and a strong Dimits shift. Figure 8 shows an
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FIG. 8: Growth rate, heat fluxes, and particle flux of TEM turbulence as a function of
density gradient for an MST discharge of 500 kA. Straight-line fits have been applied to
the fluxes, and a cubic fit to the TEM portion of the linear growth rate curve. The onset
of the nonlinear fluxes occurs at R0/Ln ≈ 37, roughly a factor of 3 greater than the linear
threshold of R0/Ln ≈ 13 (from Ref. [48]).

electron density gradient scan of the linear growth rate and nonlinear fluxes for electron
heat, ion heat, and particles. The transport fluxes have a critical density gradient that
is 3 times as large as the threshold for linear instability. This is considerably larger than
the tokamak upshift of 1.5 at a similar β. The experimental density gradient is near the
nonlinear critical gradient, suggesting that TEM may be setting the profile in the region
where it is active.

The heat and particle fluxes of Fig. 8 are an order of magnitude lower than inferred
fluxes in the 500 kA MST discharge. This discrepancy must be assessed in concert with
other key features of the simulations - the large zonal flows observed in electrostatic
potential contours, the large impact on transport as quantified by the Dimits shift, and the
quiescent state of resonant magnetic fluctuations. In the context of Sec. 3 this combination
of features typifies plasmas well below the NZT. Why, then, are the experimental fluxes
so high? The answer to that question is found in the fact that PPCD does not completely
remove tearing mode activity. Magnetic fluctuations measurements in PPCD show that
magnetic activity persists across the toroidal mode number spectrum, albeit at reduced
level [79]. This residual level of resonant fluctuations and magnetic stochasticity arises
from tearing modes and is not present in the Gene microturbulence simulations. Given
the sensitivities documented in Sec. 3 of fluxes on zonal flows, and zonal flows on magnetic
fluctuations, a meaningful comparison of experimental and numerical fluxes requires that
the stochasticity of the residual tearing modes be modeled in the simulations.

To address this issue an artificial Gaussian perturbation of A|| was introduced in the
simulations. The perturbation had kx = 0 and ky = 0.2, making it resonant in Bx. The
amplitude was tuned so that its resultant magnetic diffusivity matched experiment with a
value of Dm ∼ 10−8. This is representative of the experimental diffusivity, although values
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are known only to within fairly large error bars. The magnetic perturbation introduced
a small electromagnetic heat flux of order 3 m2s−1. More importantly, it significantly
reduced the zonal flows, and raised the electrostatic heat flux an order of magnitude to
25 m2s−1. This exercise illustrates the importance of accurately modeling the residual
stochasticity from tearing modes, while at the same time providing confirmation of the
conclusions of Sec. 3 about the effect of magnetic turbulence on zonal flows.

7 Effects of Magnetic Geometry

The conspicuous absence of microscale magnetic turbulence and a zonal-flow disabling
NZT in gyrokinetic modeling of MST PPCD discharges leads us to examine the role of
magnetic geometry on critical gradients and critical β values, and to contrast RFP and
tokamak scalings. In toroidal geometry the poloidal and toroidal fields vary on the minor
and major radius scales respectively. For tokamaks Bφ � Bθ, and for standard aspect
ratio the scale lengths of the magnetic field variation and connection length are of order
the major radius. In the RFP the poloidal and toroidal fields are the same order. Scale
lengths and the connection length are of order the minor radius. The safety factor is
smaller than ∼ 0.2 and vanishes near the edge where the toroidal field reverses direction.
These differences tend to affect stability and saturation in a way that uniformly pushes
electromagnetic turbulence to much higher β for the RFP relative to the tokamak.

Consider first the gradient thresholds for both low and high β instabilities in the RFP.
Gradient scans for ITG, MTM, and TEM show that the critical gradients for the RFP,
measured in r/Lcrit, fall in the same narrow range of 3-4 as those of the tokamak, with
the latter measured in R/Lcrit. Here r is the minor radius of the flux surface of interest.
Consequently critical gradients for these instabilities are higher in the RFP than in the
tokamak by a factor ∼ R/r, i.e.,

1

LcritRFP

=
(R
r

) 1

LcritTok

, (2)

where Lcrit is a density or temperature gradient scale length. This is consistent with
differences of magnetic field scale lengths through thresholds for toroidal drift wave insta-
bilities.

We consider next critical beta values for the thresholds of a variety of magnetic fluctua-
tion effects. We recall that for the tokamak CBC the critical β for KBM instability and the
ideal MHD β limit, usually called the high-n β limit, are very close (βKBMcrit ∼ 0.9βMHD)
and track each other. For this reason both limits are used in the literature to mark the
onset of electromagnetic modes. For CBC βNZTcrit = 0.7βKBMcrit , but as we have shown,
changing gradients raises or lowers βNZTcrit relative to βKBMcrit . In the RFP we anticipate
that all critical β values will shift upward, in part because of magnetic shear. Familiar
formulas for magnetic shear give the shear scale length as LS = qR/ŝ, where the shear
parameter ŝ is given by ŝ = (r/q)dq/dr. These expressions are derived for tokamak ge-
ometry because they assume that Bφ � Bθ. Except very near the magnetic axis they not
appropriate for the RFP. In the outer part of the plasma where the gradients are strongest
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and instability growth rates are largest these expressions overestimate the strength of the
shear. This is most evident at the reversal radius where q = 0, yielding ŝ → ∞ and
LS = 0. In reality the shear remains well behaved and finite across the reversal radius
and LS does not become zero. Appropriate magnetic shear parameters for the outer part
of an RFP plasma are derived by expanding k|| about a rational surface, just as is done
to derive the tokamak parameters. For the RFP,

ik|| =
i

|B|

[
Bφn

R
− Bθm

r

]
=

Bθ

r|B|

[
Bφ(r)n

RBθ

−m

]
. (3)

We assume that Bθ, which is near a maximum, is slowly varying relative to Bφ, which
is monotonically decreasing. We therefore treat Bθ as constant and expand Bφ(r) in a
Taylor series about the rational surface that is resonant with m and n. The lowest order
term Bφ(rs)n/RBθ cancels with m on account of the resonance, and the next order term
yields

ik|| = (r − rs)
in

r

dq

dr
= ikφ

(r − rs)
LSRFP

, (4)

where
LSRFP

=
r

ŝRFP

, (5)

and

ŝRFP = R
dq

dr
. (6)

We note that ŝRFP is finite and well behaved at the reversal surface and that LSRFP
is

nonzero. However, it remains true that magnetic shear in the RFP is stronger.
We quantify the change with the ratio of shear scale lengths, which from the above

formulas is
LSTok

LSRFP

= qTok

(R
r

)2dqRFP/dr

dqTok/dr
∼ q0RFP

(R
r

)2
, (7)

where q0RFP
is the axial safety factor. The large contribution of the square of the aspect

ratio is partially offset by the safety factor, which is less than unity. However for typical
values the shear scale length ratio has a magnitude comparable to the aspect ratio.

A critical β value governs the stabilization of ITG, which is adversely affected by
magnetic fluctuations. This critical β is raised in the RFP geometry. A calculation of
the stabilizing effect of self-consistent perpendicular magnetic field fluctuations at finite
β leads to a critical β estimate given by

β ≥ εnε
2
t τ

2[1 + (εt/q0)
2]−1q−20 [(τ + 2εn)(τ + 1) + τ 2ηe]

−1, (8)

where εn is the ratio of the density to magnetic field scale length, εt = r0/R0, τ = Te/Ti,
and ηe = d lnTe/d lnn0. This expression has complicated dependencies, but yields a
threshold for ITG stabilization that is higher in the RFP by a factor that is at least
comparable to the aspect ratio. This is consistent with ITG stability analysis from gy-
rokinetics [14].
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The critical β for NZT in the tokamak is 0.9% for the Cyclone base case. The RFP
gyrokinetic modeling exercises described in the previous section showed no NZT up to a β
of 6.5%. The critical β for NZT has been estimated for the tokamak and can be modified
for the RFP as follows. In the edge where microinstability is active, the RFP connection
length has a factor r/q0R0 relative to the tokamak connection length; ωT has a factor
r/R0. Assuming that the radial magnetic correlation length does not change significantly
from RFP to tokamak, the critical β for the NZT in the RFP relative to the tokamak
goes as

βNZTcrit |RFP
βNZTcrit |Tok

∝
(R0

r

)1+ξ/2
q0|Tok. (9)

Because the onset of many electromagnetic effects tracks the onset of KBM instability,
we examine how it scales with RFP parameters. For tokamaks the critical β for KBM
instability falls in the range 0.6% to 2%. We argue that the critical β increases markedly
in the RFP due to high magnetic shear and low safety factor. We assume that the critical
β for KBM occurs at a significant fraction of the critical β for ideal ballooning, as it does
in the tokamak. We use the plasma ballooning parameter

αMHD = βq2[R0/Ln +R0/LTe + (R0/Ln +R0/LTi)Ti/Te], (10)

and take the tokamak threshold for the critical MHD ballooning limit, αcritMHD = 0.6ŝ, as a
proxy, however using the expression ŝRFP = Rdq/dr that is appropriate for the magnetic
shear of the RFP in the outer part of the plasma. The critical β from this rough estimate
is

βKBM
critRFP

∼ 0.6
R/r

q[R0/Ln +R0/LTe + (R0/Ln +R0/LTi)Ti/Te]
, (11)

which falls between 25% and 250%, depending on the parameter values of αMHD.
We see that a variety of scalings affects the ratios of critical gradients and critical β

values, but that generally the RFP values are larger than tokamak values by a factor that
often is comparable to the aspect ratio. This increase, which allows steeper gradients,
better confinement, and higher β in the RFP, applies to microinstability, and can be
expected to affect microscale modes whether or not the plasma is subjected to PPCD.
However, absent PPCD, global tearing modes, which are not subject to the above effects,
dominate transport and set profiles, and the existence of favorable conditions for having
reduced microturbulence is irrelevant. Only when global tearing mode activity can be
suppressed, do the advantages of RFP geometry for microinstability become important.

8 Conclusions

Operating magnetic confinement devices at high β modifies the landscape of confinement-
limiting instabilities, saturation mechanisms, and transport. New instabilities in the form
of KBM and MTM arise, and key linear and nonlinear properties have been described,
particularly for the spherical tokamak, the RFP, and helical devices. We show that KBM
turbulence is able to saturate without significant zonal flows through the development
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of nonlinear structures with different forms in the tokamak and helical cases. At low β,
ITG turbulence, which saturates by nonlinearly exciting damped modes, excites stable
tearing parity modes. These break magnetic surfaces and produce magnetic fluctuation
driven electron heat transport. Because the transport has no linear relationship with the
instability driving the turbulence, its flux is intrinsically nonlinear. The presence of such
magnetic fluctuations in ITG turbulence interferes with zonal flows above a critical β,
leading to the non-zonal transition and a state with very large fluctuation levels. These
finite β effects are generally adverse to good confinement. However, we also show that in
configurations with high magnetic shear and low q like the RFP, the onset of these effects
occurs only at higher critical gradients and higher β.

These studies show that saturation at finite β has nuanced behavior and complex feed-
back loops. As shown by the saturation structures of KBM and the nonlinear excitation
of stable tearing parity modes in ITG turbulence, saturation must involve modification of
the linear state, which can cause transport that is more a product of the saturation mech-
anism than the linear instability. The complexities of saturation lead to a situation where
nonlinear structures understood to benefit confinement (specifically zonal flows), are only
beneficial for one transport channel (ions), but simultaneously bad for another transport
channel (electrons). Moreover, structures such as zonal flows can succumb to secondary
effects they help create - in this case stable tearing parity modes that are catalyzed by
zonal flows, but, at a critical β, enable charge loss from rational surfaces, thereby disabling
the zonal flows. When this happens saturation must resort to more inefficient channels,
raising fluctuation levels and transport rates.

This work was partially supported by US DOE Grant No. DE-FG02-89ER53291.
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