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ABSTRACT: We investigate possible improvements in the accuracy of semiempirical
quantum chemistry (SQC) methods through the use of machine learning (ML) models for
the parameters. For a given class of compounds, ML techniques require sufficiently large
training sets to develop ML models that can be used for adapting SQC parameters to
reflect changes in molecular composition and geometry. The ML-SQC approach allows the
automatic tuning of SQC parameters for individual molecules, thereby improving the
accuracy without deteriorating transferability to molecules with molecular descriptors very
different from those in the training set. The performance of this approach is demonstrated
for the semiempirical OM2 method using a set of 6095 constitutional isomers C7H10O2, for
which accurate ab initio atomization enthalpies are available. The ML-OM2 results show
improved average accuracy and a much reduced error range compared with those of
standard OM2 results, with mean absolute errors in atomization enthalpies dropping from
6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2
reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus
holds promise for fast and reasonably accurate high-throughput screening of materials and molecules.

1. INTRODUCTION

In the field of de novo in silico materials and drug design, fast
and accurate methods are required for high-throughput
screening of a wide range of systems.1−6 Density functional
theory (DFT) methods are widely used1,3,5,7 because they are
robust, often sufficiently accurate, and universally applicable for
most of the less exotic materials that can be composed of main
group and transition metal elements. Typically, their computa-
tional cost is significantly smaller than that of high-level
correlated ab initio methods.
Semiempirical quantum chemistry (SQC) and machine

learning (ML) methods are much faster than DFT and may
thus become viable alternatives to DFT for high-throughput
screening. In fact, SQC methods have already been used for
such studies, as in the search for the selective kinase inhibitors.8

However, they may often not be accurate enough for this
purpose. Their usefulness could be improved significantly by
enhancing their average accuracy and transferability and
especially by reducing the number of severe outliers in the
calculated properties. Parameters in SQC methods are usually
fitted in a global way to reproduce available experimental
observables or highly accurate quantum chemistry (QC)
reference values for a broad range of reference molecules.9,10

While this general-purpose strategy often provides acceptable
average accuracy in a statistical sense,9,10 SQC calculations may
be quite inaccurate for particular compounds.11,12

SQC parameters are sometimes refitted specifically for some
class of compounds (e.g., fullerenes13), for certain reactions

(e.g., to study kinetic isotopic effects14) or for intermolecular
interactions (e.g., in water15). The resulting special-purpose
SQC approaches can achieve high accuracy by closely
reproducing experimental or high-level QC data for the target
systems. Of course, such special-purpose SQC methods are
accurate only for the types of compounds, reactions, and
properties for which they have been reparametrized, but
generally not for other targets.
ML methods can be used in computational chemistry to infer

properties of new molecules through interpolation in chemical
compound space.16−18 They employ simple but flexible ad hoc
models for interpolation that are trained on a sufficiently large
set of compounds and can then be used to predict the
properties of related target compounds. Evaluation of an ML
model is generally orders of magnitude faster than an SQC
calculation, but, due to the lack of rigorous physical
approximations, more and larger outliers can be expected.19,20

Obviously, the accuracy and transferability of ML methods
depends dramatically on the compound diversity present in the
training set.
Here, we explore a novel use of ML methods in SQC.

Instead of applying ML methods to directly compute certain
properties within a large class of related compounds, we use
them to determine optimum SQC parameters for individual
molecules within the class of target compounds. In both cases,
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there is an initial training step for calibrating the ML model on
a reference subset of compounds, followed by production runs
that yield predictions for the other target compounds. The
basic idea is to employ ML techniques to optimize the SQC
parameters for individual molecules (within a class of related
compounds) such that subsequent SQC calculations are as
accurate as possible for predicting the properties of interest.
Hence, we introduce a hybrid ML-SQC approach where ML is
used as an automatic parametrization technique (APT) to
determine on-the-fly optimal individual semiempirical param-
eters as a function of atomic configuration and composition.
In this article, we first explain the chosen APT approach.

Thereafter we present an illustrative application of the ML-
SQC method for a set of 6095 constitutional isomers C7H10O2,
for which accurate thermochemical reference data from
G4MP221 calculations are available.22 These molecules were
drawn from the chemical universe database GDB-17 that covers
many drug-like molecules and contains 166.4 billion molecules
with up to 17 non-hydrogen atoms.23 For the SQC method, we
use the semiempirical OM2 (orthogonalization model 2)
approach.24,25 In this proof-of-concept study, we evaluate the
accuracy that can be achieved by the ML-OM2 method for the
chosen target set, and we compare the ML-OM2 results with
those obtained using the standard OM2 parameters as well as
special-purpose OM2 parameters from reparametrizations for
the same target compounds.

2. AUTOMATIC PARAMETRIZATION TECHNIQUE

2.1. Overview. As outlined above, the idea behind APT
relies on the use of ML to locally improve upon the global SQC
parameter values. To this end, we have implemented the
following procedure:

(1) Find optimal corrections to parameter values for each
individual molecule in the training set;

(2) Train ML model on the parameter corrections from the
previous step;

(3) Use ML model to predict corrections to parameters for
target molecules;

(4) Carry out SQC calculations with corrected parameter
values for target molecules.

In this procedure, one may, in principle, apply any combination
of appropriate parameter optimization and machine learning
techniques. In the following, we present the chosen hybrid ML-
SQC approach in detail.
2.2. Technical Details. Step 1. Here, we vary only one of

the many OM2 parameters at a time. More specifically, we tune
a given parameter to minimize the error in the atomization
enthalpy for each molecule in the training set using the
Levenberg−Marquardt optimization algorithm.26,27 Generally,
convergence to complete error depletion was reached after few
iterations such that an OM2 calculation with the resulting
parameter gives an error-free atomization enthalpy for each
molecule (in its standard OM2 geometry) of the training set.
Systematic application of this procedure yields a set of changes
(ΔPopt) to the standard OM2 parameter values for each
molecule in the training set. Failures of this procedure were
encountered in a vanishingly small number of cases, which were
ignored since they do not affect the overall performance. These
minimizations were carried out successively for all OM2
parameters, which are listed in Table 1 in standard
notation.24,25

Step 2. The corrections {ΔPopt} of the parameter values for
each molecule in the training set (obtained at its standard OM2
geometry) are used to train the ML model. We apply an ML
approach introduced in 2012,16 which has been described in
detail in the literature.16−18 Therefore, we give only a brief
outline of the procedure and refer to the original publications
for further information.
We employ kernel ridge regression with a Laplacian kernel.

In this approach, the default parameter correction ΔP for
molecule M is estimated by summing over all Ntrain molecules
{Mi} in the training set.
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where αi is the regression coefficient for molecule Mi, σ is the
length-scale hyperparameter (same value for any pair of
molecules M and Mi), and ∥M − Mi∥1 is the 1-norm calculated
from the vectorized molecular descriptor X of size Nx by
summing the absolute differences between the elements of
X(M) and X(Mi)
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As molecular representation, we choose the Coulomb matrix
C.16−18 It is an atom-by-atom matrix with the elements
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where internuclear distances |RI − RI| are measured between
the atomic coordinates R (in Bohr) and all nuclear charges ZI
are in e. When one molecule is larger than the other, we extend
the Coulomb matrix of the smaller molecule by zeros. The
Coulomb matrix is a unique yet nonstereospecific representa-
tion of a molecule, and it can thus distinguish diastereomers but
not enantiomers. It is translationally and rotationally invariant.
In order to also achieve atom-index invariance, we sort all atom
indices by the norm of their Coulomb matrix row. Sorted
Coulomb matrices are used to calculate the norm ∥M − Mi∥1
according to eq 2, where Xa is an element CIJ of the
corresponding Coulomb matrix and the sum runs over all
Coulomb matrix elements, with Nx being the square of the
number of atoms of the largest molecule.
Training the ML model outlined above requires solving the

minimization problem
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The analytical solution involves the following matrix trans-
formations16−18

α λ= + Δ−K I P( ) 1 opt
(5)

where I is identity matrix, ΔPopt is the vector with corrections
to the standard parameter value, and λ is a so-called
regularization parameter that ensures the transferability of the
model to new compounds.16,17 The elements Kij of the kernel
matrix K are defined by

= σ−∥ − ∥K eij
M M /i j 1

(6)
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We determined optimal values of hyperparameters by 5-fold
cross-validation within the training sets following a previously
reported procedure.18 The training set was sorted according to
the values of the parameter correction. It was then divided into
buckets with only five items each. Thereafter, five splits were
created by successively taking out a single item from each
bucket. Four of these stratified samples were used to train the
ML model, and the fifth out-of-sample split was used to
estimate the error of the ML model. All five possible such folds
were generated. The error in the out-of-sample split was
minimized by varying the hyperparameters σ and λ. Optimal σ
and λ values were found for each fold by a simple logarithmic
grid search. These hyperparameter values were averaged over
five folds to train our final ML model on the entire training set.
Step 3. The ML model trained in the previous step was

employed to predict corrections to the OM2 parameters for
other molecules (outside the training set) according to eq 1,
using geometries optimized with default OM2 parameters.
Step 4. The corrections to the OM2 parameters predicted in

the previous step were added to their OM2 default values, and
the resulting parameters were used in a subsequent OM2
calculation of the atomization enthalpy.

3. COMPUTATIONAL DETAILS

All OM2 calculations with default and modified parameters
were carried out with our locally modified MNDO200528

program. The SCF energy convergence criterion was set to
10−8 eV. In addition, the diagonal elements of the density
matrix were converged to less than 10−8. Geometry
optimizations were considered converged when the Cartesian
gradient norm dropped below 0.1 kcal/(mol·Å). No cutoffs
were applied for the three-center orthogonalization corrections
in the OM2 calculations.

4. RESULTS AND DISCUSSION

The G4MP2 atomization enthalpies at T = 298 K of the 6095
constitutional isomers C7H10O2

22 that can be extracted from
GDB-1723 (see above) served as reference data.

4.1. Application of APT. In an initial screening of all OM2
parameters, we estimated the potential improvements in
accuracy that one might expect from a hybrid ML-SQC
approach. ML-OM2 calculations were performed at OM2
geometries (denoted ML-OM2//OM2). In the screening of
the 61 OM2 parameters for hydrogen, carbon, and oxygen, we

Table 1. Mean Absolute Deviations (MAD) of Parameter Values Optimized in APT Step 1 from the Standard OM2 Values and
Mean Absolute Errors (MAEs) in Atomization Enthalpies from ML-OM2//OM2 Calculations at OM2 Geometries for 1000
C7H10O2 Molecules (Drawn at Random) In the Training Set and 5095 C7H10O2 Molecules in the Test Set (Remainder)a

hydrogen carbon oxygen

MAE, kcal/mol MAE, kcal/mol MAE, kcal/mol

parameter MAD, % training test MAD, % training test MAD, % training test

One-Center One-Electron Terms
Uss 1.20 0.00 2.89 0.10 0.00 2.83 4.10 0.51 3.50
Upp 0.10 0.00 2.84 0.30 0.00 2.84
Orbital Exponent
ζ 1.10 0.00 2.85 0.40 0.00 2.82 1.20 0.00 2.88
Resonance Integrals
βs 1.20 0.00 2.82 1.50 0.00 2.87 13.40 0.00 3.09
βp 0.90 0.00 2.84 2.50 0.00 3.04
βπ 3.90 0.00 3.77 9.80 0.00 3.78
βs(X−H) 2.30 0.00 2.86 117.80 0.44 6.27
βp(X−H) 1.40 0.00 2.84 35.60 0.08 6.69
αs 2.50 0.00 2.82 1.30 0.00 2.84 9.40 0.00 2.99
αp 0.90 0.00 2.84 2.90 0.00 3.27
απ 2.50 0.00 3.49 6.60 0.00 3.33
αs(X−H) 4.40 0.00 2.88 203.20 1.37 6.01
αp(X−H) 4.70 0.00 2.99 47.40 0.24 6.28
Orthogonalization Factors
F1 4.20 0.00 2.82 0.70 0.00 2.82 1.60 0.00 2.84
F2 5.40 0.00 2.86 8.60 0.00 2.84 4.70 0.00 2.86
G1 40.10 0.64 3.57 17.00 0.00 3.04 215.50 0.18 5.52
G2 26.30 0.00 2.80 11.90 0.00 2.84 223.30 0.11 4.22
Effective Core Potentials
ζα 0.40 0.00 2.88 4.80 0.00 3.12
Fαα 1.60 0.00 2.88 13.90 0.00 2.86
βα 6.50 0.00 2.86 116.00 0.00 3.08
αα 4.10 0.00 2.87 250.50 1.40 25.40
One-Center Two-Electron Integrals
gss 7.40 0.46 3.49 0.30 0.00 2.83 4.50 0.00 2.85
gpp 0.70 0.00 2.83 1.60 0.00 2.84
gsp 1.50 0.10 3.18 1.30 0.00 2.89
gp2 0.20 0.00 2.83 0.60 0.00 2.84
hsp 11.80 0.02 3.13 11.40 0.02 3.06

aMADs are given in percent; MAEs are given in kcal/mol. Standard OM2 yields a MAE of 6.30 kcal/mol for these molecules.
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used 1000 randomly taken molecules for training and the
remaining 5095 molecules for testing (APT Step 1). The
resulting mean absolute errors (MAEs) in the atomization
enthalpies for the training and test sets are given in Table 1. In
addition, mean absolute deviations (MADs) of the individually
optimized parameters (ATP Step 1) from the standard OM2
parameters are also listed.
The MAEs in the atomization enthalpies calculated with ML-

OM2//OM2 for the test set typically improve from 6.30 kcal/
mol (standard OM2 for these molecules) down to 2.80−3.00
kcal/mol in 38 out of 61 cases when a single OM2 parameter is
adjusted individually through ML. Thus, in principle, any of
these 38 parameters could be used for APT. Here, we have
chosen to develop ML models for corrections to the ζ
parameter (orbital exponent) of carbon. This choice is
motivated by the fact that tuning ζ apparently leads to minimal
changes in parameter value combined with maximal changes in
the computed property (Table 1). More specifically, optimizing
the ζ parameter of carbon for the individual molecules in the
training set leads to a mean absolute change of only 0.4% in the
parameter value, while the MAE for the atomization enthalpy is
reduced from 6.30 to 2.82 kcal/mol in the test set. Such small
changes of parameters can be considered to be fine-tuning
rather than drastic reparametrization to populate significantly
different regions of parameter space. In addition, it seems
natural to use an OM2 parameter of carbon for fine-tuning
since our present application deals exclusively with organic
molecules. The OM2 parameters for the effective core potential
might offer a promising alternative for fine-tuning because they
yield MAEs of less than 3 kcal/mol for parameter changes in
the single-digit percentage range.
Next, we studied the effect of the size of the chosen training

set on the ML-OM2 results (using, again, the ζ parameter of
carbon for ML). We considered Ntrain = 10, 100, 1000, 2000,
3000, 4000, and 5000, with molecules being drawn at random
from the full set of 6095 C7H10O2 isomers. After applying the
ML model to the training set, the remaining fitting errors were
vanishingly small in all cases (i.e., for all Ntrain values). Not
surprisingly, the accuracy for the out-of-sample test set
improved systematically with increasing Ntrain. The results are
summarized in Table 2 and shown in Figure 1. The 5k ML-
OM2//OM2 model (Ntrain = 5000, MAE = 1.72 kcal/mol) has
a substantially improved accuracy when compared to that of
standard OM2 (MAE = 6.30 kcal/mol) and even approaches

the highly coveted target of chemical accuracy (1 kcal/mol) at
an overall computational cost of about 6 CPU hours. We also
note that a 2 kcal/mol accuracy for atomization enthalpies is on
par with (if not better than) many of the more advanced DFT
methods.29

4.2. Special-Purpose Reparametrization of OM2. For
the sake of comparison, we performed a conventional
reparametrization of all OM2 parameters for the same set of
6095 C7H10O2 isomers using the same reference atomization
enthalpies. The first 2n (n = 1−7) molecules from the randomly
ordered set served as training sets for the reparametrization. All
OM2 parameters were reoptimized using a modified
implementation of the Subplex method30 based on the
NLopt library,31 without imposing any limits or constraints.
The standard OM2 parameters were taken as starting values.
The accuracy of the resulting series of reparametrized OM2
(rOM2) methods was evaluated on the corresponding test sets
consisting of the remaining 6095 − 2n molecules. For a fair
comparison with the APT approach, the rOM2 calculations on
the test molecules were done at geometries optimized at the
standard OM2 level (designated rOM2//OM2).
For small training sets (Ntrain = 2−8), the reparameterization

results in overfitting, as indicated by MAEs for the test set that
are larger than the MAE of standard OM2 (Table 3). For larger
training sets, the MAE for the training set grows monotonically,
whereas the MAE for test set decreases monotonically. With
increasing size of the training set size, the MAEs for both setsTable 2. Mean Absolute Errors (MAEs) in the Predicted

Atomization Enthalpies of the Constitutional Isomers of
C7H10O2 from OM2 (Ntrain = 0) and ML-OM2//OM2
Calculations at OM2 Geometriesa

Ntrain training set test set

0 6.30
10 0.00 6.31
100 0.00 5.46
1000 0.00 2.88
2000 0.00 2.29
3000 0.00 1.96
4000 0.00 1.81
5000 0.00 1.72

aSee the text for details. MAEs are given in kcal/mol for Ntrain
molecules in the training sets and for 6095 − Ntrain molecules in the
test sets.

Figure 1. Mean absolute errors (MAEs) in the predicted atomization
enthalpies for the out-of-sample test set of molecules with C7H10O2
stoichiometry for ML-OM2//OM2 and rOM2 (see text). MAEs for
the training set are shown only for rOM2 (vanishingly small for ML-
OM2//OM2). The MAEs are plotted as a function of the training set
size (Ntrain, logarithmic scale). The horizontal line at 1.0 kcal/mol
indicates the onset of chemical accuracy.

Table 3. Mean Absolute Errors (MAEs) in Atomization
Enthalpies from OM2 (Ntrain = 0) and rOM2//OM2
Calculations at OM2 Geometries for Ntrain Molecules in the
Training Sets and 6095 − Ntrain in the Test Setsa

Ntrain training set test set

0 6.30
2 0.00 19.57
4 0.00 8.47
8 0.00 8.62
16 0.00 5.75
32 0.49 4.32
64 1.44 2.94
128 2.06 2.52

aMAEs are given in kcal/mol.
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converge to the same range, reaching values of 2.06−2.52 kcal/
mol for Ntrain = 128 (Figure 1).
Obviously, the MAE for the test set is generally higher than

that for the training set. Since the MAE for the training set
continually increases with the size of the set, it is safe to assume
that the MAEs for both sets will be slightly larger than 2.06
kcal/mol for larger Ntrain values.
4.3. Comparison of ML-OM2 and rOM2 Results. We

now analyze the distribution of errors for both reparametriza-
tion approaches. For a set of 1095 randomly drawn
constitutional isomers of C7H10O2, Figure 2 displays the error

distributions of their atomization enthalpies obtained from the
5k ML-OM2//OM2 model as well as rOM2 (Ntrain = 128) and
standard OM2 calculations. In the error distribution of standard
OM2, there is a systematic shift (i.e., an underestimation of
atomization enthalpies) and a substantial skew. The rOM2
reparametrization overcomes both these problems, yielding a
more normal distribution centered at zero. However, in the
case of 5k ML-OM2//OM2, the error distribution is more
narrow, suggesting a higher degree of fidelity and a lower
number of outliers. The 5k ML-OM2 model has the lowest
MAE (1.72 kcal/mol). The worst outlier has an error of more
than 26 kcal/mol in OM2, which is reduced to 9.8 and 8.2 kcal/
mol in rOM2 and ML-OM2//OM2, respectively.
We have already noted that the conventional reparametriza-

tion of OM2 appears to have a lower bound for MAEs for the
test set, in our case 2.06 kcal/mol (see above), presumably due
to the fixed functional form dictated by the use of OM2. The
ML-based APT approach, on the other hand, is highly flexible
because of the use of an expansion in nonlinear terms, which
can be systematically improved by adding more examples to the
training set. However, conventional reparametrization schemes
do have the advantage of providing rapid improvements even
for small training sets, whereas APT typically requires
thousands of reference data points. Therefore, APT is
particularly suited to problems involving big data sets. Another
advantage of APT over conventional reparametrizations is due
to the fact that its kernel inversion is convenient and
computationally less demanding, whereas in the case of
conventional reparametrizations, complex multidimensional
optimization problems must be solved.
Yet another important issue arises when it comes to

transferability. More specifically, one might wonder what
happens when we attempt to compute properties of molecules
that differ substantially from those present in the training set.
Such molecules will normally not be well represented by the
modified parameters, for obvious reasons, and one may thus
expect huge errors. In the case of APT, by contrast, the ML
model will predict vanishing corrections to the individual

parameters for molecules that are very different, and,
consequently, the results will be close to those obtained with
the standard parameters. In this sense, the APT-ML model is
well-tempered and transferable. It can only improve (and will
never deteriorate) performance, regardless whether we consider
molecules structurally similar to or different from the species in
the training set.
For a more quantitative study of this aspect, we performed a

comparative error analysis of the OM2, 5k ML-OM2//OM2,
and rOM2//OM2 results on a validation set of 100 molecules
drawn at random from the big database of ca. 134 000
molecules,22 which covers all organic molecules with up to nine
heavy atoms (not counting hydrogens). We compared the three
computed sets of atomization enthalpies to the reference
G4MP2 values.22 Many molecules in the validation set have N
or F atoms, not present in C7H10O2 isomers, which poses a
severe challenge. In the case of rOM2, we combined the
modified parameters for H, C, and O (see above) with the
standard OM2 parameters for N and F, whereas the trained 5k
ML-OM2 model employed only one modified parameter (ζ for
C) together with the standard values of all other OM2
parameters in a given molecule. Consequently, it is not too
surprising that rOM2//OM2 yields dramatic errors that may
exceed 400 kcal/mol (Table 4). In the case of ML-OM2//

OM2, the MAE is drastically reduced to ∼20 kcal/mol, with a
maximum outlier of ∼50 kcal/mol. As expected, these ML-
OM2//OM2 results are not too far off from the corresponding
standard OM2 results (MAE ∼10 kcal/mol, maximum error
∼40 kcal/mol). This confirms that the ML-OM2//OM2
approach is fairly robust even in difficult cases.

5. CONCLUSIONS
We have introduced an automatic parametrization technique
that augments semiempirical parameters for any new molecule.
It is based on machine learning models of parameters as a
function of molecular structure (requiring as input only the
identities of the constituent atoms and their coordinates). After
training the model on sufficiently large training sets (yielding
precalculated corrections to parameters), it can be applied to
other new molecules for predicting molecule-specific correc-
tions to the parameters that allow semiempirical quantum
chemical calculations with improved accuracy.
For numerical demonstration, we chose the OM2 method,

which has a mean absolute error of 6.3 kcal/mol in atomization
enthalpy for the 6095 constitutional isomers of C7H10O2
stoichiometry, in calculations with standard OM2 parameters.
After individually adjusting the parameters in the ML-OM2
approach for the largest training set of 5000 isomers, the mean
absolute error for the remaining 1095 isomers in the test set

Figure 2. Error histogram for OM2, 5k ML-OM2//OM2, and
rOM2//OM2 for a test set of 1095 molecules (see text).

Table 4. Mean Absolute Errors (MAEs) of Atomization
Enthalpies of 100 Molecules Drawn at Random from GDB-
1723a

method MAE, kcal/mol range of errors, kcal/mol

OM2 10.94 −39.57 to 9.6
ML-OM2//OM2 21.58 −52.02 to 0.87
rOM2//OM2 145.39 −414.15 to 484.33

aResults are given for OM2 with default parameters, rOM2//OM2
was reparametrized using 128 C7H10O2 isomers, and the ML-OM2//
OM2 model was trained on 5k C7H10O2 isomers. MAEs are given in
kcal/mol.
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can be reduced from 6.3 kcal/mol (standard OM2, same value
as for the full set) to 1.7 kcal/mol, and the largest error can be
lowered from 26.3 to 8.2 kcal/mol, respectively. Furthermore,
ML-OM2 has a narrower error distribution than OM2, or than
that of a conventionally reparametrized variant of OM2
(rOM2), and it is found to be quite robust even when
screening structures that differ substantially from those present
in the training set.
To summarize, we have presented numerical evidence that

the ML-APT approach can significantly improve the predictive
accuracy of well-established semiempirical quantum-chemical
methods for large sets of molecules, without increasing the
computational burden beyond the need of having a reference
database at disposal. We emphasize that, due to its general
nature, the APT idea may be useful for any method of fixed
functional form that depends on parameters, e.g., in DFT or in
the learning-on-the-fly approach to ab initio molecular
dynamics.32
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