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Abstract

Brodmann’s 100–year–old summary map has been widely used for cortical localization in neuroscience. There is a pressing
need to update this map using non–invasive, high–resolution and reproducible data, in a way that captures individual
variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter
regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This
characterization of the signal variation as non–random and reproducible is the critical condition for successful cortical
parcellation using HARDI data. This paper is a first step towards an individual cortex–wide map of grey matter
microstructure, The gray/white matter and pial boundaries were identified on the high–resolution structural MRI images.
Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each
vertex point on the surface tessellation, the diffusion–weighted signal was extracted from each image in the HARDI data set
at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile
with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features
were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support–
vector machine classifier, trained on three distinct areas in repeat 1 achieved 80–82% correct classification of the same three
areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked
hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our
approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with
independent microstructural measures such as ex–vivo histology.
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Introduction

A century after the publication of Brodmann’s classic cytoar-

chitectonic maps of the cortex in humans and other species [1,2],

cortical parcellation remains a difficult unsolved problem. Workers

following Brodmann distinguished additional areas beyond the

approximately 50 areas he labeled using both cytoarchitecture [3]

and especially myeloarchitecture. Vogt and Vogt, for example,

recognized almost 200 myeloarchitectonic areas in each hemi-

sphere [4]. After an additional century of research, unsurprisingly,

some flaws were uncovered. For example, Brodmann did not

identify primate area MT/V5, an area now known to characterize

in all primates. Also, those maps did not quantify regional features

nor between–subject variability, and relationships with function

were just beginning to be made. Yet Brodmann’s first human map

is still widely used in human functional neuroimaging studies. This

is partly because the enormous amount of manual work that was

required to construct that map has only recently been surpassed.

Finally, human structural neuroimaging methods have so far not

been able to provide a rich enough feature set to distinguish most

cortical areas.

The human neocortex is 2–4 mm thick and is conventionally

divided into 6 main layers [5]. Following Meynert’s recognition in

1867 of regional (macroscopically visible) anatomical differences in

the cortex [6], it has become accepted that histological variability

defines cortical areas [7] in which the constituent layers can vary

in cell type, neurotransmitter receptor type, extent of myelination

and thickness. These specializations reflect both intrinsic connec-

tions within an area and extrinsic connections of that area with the

rest of the brain and are thought to form the anatomical basis of

functional localization [8–11]. Such anatomical specialization may

also indicate the subtle differences between the computations

performed in different cortical areas. Cortical thickness develop-

ment has a dynamic nature during childhood and early adulthood

[12,13]. Cortical thickness has also been found to correlate with

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63842



functional ability [14], disability [15], age [16] and be affected by

pre– and perinatal events [17,18].

More recently, much effort has been aimed at using magnetic

resonance imaging (MRI) to quantitatively map out the histology

of the human cortex at a uniformly fine spatial resolution, non–

invasively and at an individual level. However, the choice of

appropriate MRI contrast is not obvious [19,20].

Diffusion tensor imaging (DTI), which measures the diffusion

constant in three dimensions [21], has primarily been used to

scrutinize the microstructure of brain white matter (WM) where

the diffusivity is highly anisotropic (directionally dependent),

reflecting local axonal fiber orientation [22]. Although analysis

of voxels containing cortical gray matter (GM) results in less

pronounced anisotropy, some investigators have found it possible

to follow developmental changes of cortical GM in fetuses [23] or

to parcellate the subcortical GM nuclei of the amygdala [24]. At

7T [25] and in ex–vivo preparations [26,27], previous investiga-

tors have also identified anisotropic diffusion profiles in cortical

areas of adult humans.

High angular resolution diffusion imaging (HARDI) acquisitions

[28,29] collect diffusion–weighted images with a fixed b–value and

many more gradient directions than the minimum six required for

DTI. A HARDI acquisition ensures stability and reliability of the

diffusion tensor estimate [30] and supports complex models of

fibre orientation distribution in voxels where the diffusion tensor

model is not appropriate – e.g., at the boundaries between

different tissue types or crossing WM fiber pathways (see [31,32]

for review). One way to represent the HARDI signal is via the

spherical harmonic series and early work on HARDI data [33,34]

shows significant departures of the signal from the diffusion tensor

model in WM and especially at known fibre crossings. Since those

early demonstrations, researchers have devised a wide range of

models and algorithms to exploit the HARDI signal for estimating

increasingly subtle features of WM tissue such as fibre orientation

distribution [31,32], axon diameter and density [35], or both [36].

The HARDI signal in GM has received less attention, although

a few studies reveal that it does provide useful contrast in GM

voxels. Deoni et al. [37] used a ‘‘time–series’’–like representation

of the HARDI signals to parcellate the nuclei of the thalamus.

Rather than fitting a model to the data to describe the local

diffusion profile they used the pattern of signal amplitudes directly.

High correlation of the series of signals was taken to identify

homologous tissue types. However, their method is not rotationally

invariant and thus the HARDI signal profile would produce low

correlation even from identical tissue if its orientation was varied.

Thus the method is difficult to extend directly to the cortex, where

the dominant orientation varies widely as a result of cortical

folding. To this end Haroon et al. [38] use the histogram of peak

counts in the Q–ball ODF [39] over multiple bootstrap

experiments as a feature of local GM architecture. This feature

is independent of orientation and so is able to associate voxels with

similar microstructure but different orientation.

Here we introduce a set of features, estimated directly from the

HARDI signal, that capture the intrinsic 3D shape of the diffusion

profile and relate it to the local surface normal. We demonstrate

that these features contain sufficient information to discriminate

functionally distinct areas of the cortex in live human volunteers

scanned using a clinical MRI system. The findings show that the

diffusion signal originating from GM, although much more

spatially isotropic than that from WM, has sufficient and reliable

signal variation to characterize and discriminate the tissue. This

work is a step toward the ultimate goals of identifying cortical

boundaries based on variation in tissue microstructure, initially

recognized in post–mortem specimens by Brodmann and others

[1,3,4,11] and parcellating the entire cortical area in an

unsupervised fashion.

Methods

Ethics Statement
Ethics approval for this study was obtained from the National

Hospital for Neurology and Neurosurgery and Institute of

Neurology Joint Research Ethics Committee. The three adult

subjects (2 male) gave informed written consent to participation in

accordance with the approval of this ethics committee.

MRI Data Acquisition
HARDI data were collected on a 3T scanner (Tim Trio,

Siemens Healthcare, Erlangen, Germany) with a radio frequency

body transmit and 32–channel receive–only head coil. The

subjects’ head was carefully immobilized within the tight geometry

of the head coil. Two datasets were collected with a custom–made

sequence [40] at 2.3 mm3 isotropic resolution in order to measure

test/re–test variability. The two data sets also provided indepen-

dent training and test sets for classification experiments (see

below). Each dataset consisted of one reference image with

b = 100 s/mm2 and 61 diffusion weighted images (DWIs) with

b = 1000 s/mm2 and diffusion directions distributed evenly on the

surface of a sphere [41]. In a separate session structural images

were collected at 0.8 mm isotropic resolution with two types of

contrast weightings (proton density and T1). After correction for

transmit inhomogeneity using a measured B1
+ map [42,43] a

quantitative T1–map was calculated [44]. The T1 map was used

for the accurate identification of the GM/WM boundary and the

pial surface for the purposes of sampling the HARDI data as well

as for displaying results. Table 1 shows the detailed acquisition

parameters of all imaging protocols.

The T1 map has considerably higher resolution than the DWIs.

This is crucial for accurately identifying the GM/WM and pial

boundaries and reduces noise in the estimation of the direction of

the local vector normal to the GM/WM boundary. Both of these

aspects improve the precision of sampling the lower resolution

DWI signal from the HARDI data set (see below).

Preparation of DWIs for Cortical Signal Intensity
Extraction

The GM/WM and pial surfaces were identified in FreeSurfer

[45,46]. The test/re–test DWIs were first aligned to each other on

a per diffusion encoding direction basis in AFNI (http://afni.nimh.

nih.gov/afni) (using 3dvolreg, heptic interpolation) to correct for

discrepancies between the datasets. Pooled across the subjects, the

maximum ranges of the amount of movement correction between

the two datasets were well under a degree for rotation and under a

millimeter for translation, except along the phase–encoding

direction where apparent motion, due to Bo drift, was observed.

Since, the professional volunteers were highly compliant, as

demonstrated by the minimal amount of correction required

across data sets, the only additional within–data–set correction

applied was the monotonic image translation to cancel the B0 drift

along the phase encoding direction. Specifically, the measured

translation, T, between successive reference (b = 100 s/mm2)

image volumes at the beginning of the test and retest datasets

was used move the above aligned test–retest DWIs incrementally

(i.e. 1*T/68 for the first image volume, 2*T/68 for the second

image volume, etc).

The first reference DWI image was then aligned with

quantitative T1 map images using manual blink comparison

(contrast–inverting in–house version of FreeSurfer tkregister). The

Discriminating Cortical Regions with DWIs

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e63842



resulting 464, affine, transformation matrix was used to align the

61 directions of Bo drift–corrected HARDI data with the higher

resolution GM/WM surface reconstruction (approximately

150,000 vertices per hemisphere). From each vertex point on the

GM/WM boundary surface, the direction of the local normal

vector was followed to half way between the GM/WM boundary

and the pial surface. At that point a single sample of signal

intensity was taken from each, aligned DWI. The diffusion data for

each direction was smoothly interpolated (within–direction) onto

the higher resolution surface mesh using iterative nearest neighbor

estimation [47]. The estimated FWHM was a 1.8 mm surface

kernel, which was smaller than the resolution of the DWI images.

This process resulted in 61 data points per acquisition (represent-

ing the 61 DWIs) at each GM/WM surface vertex point, which

were written out to separate files that could be used to visually

check the diffusion data on the folded and unfolded surface and for

export to Matlab 7.10 (MathWorks, Natick, USA) for further

processing. At each surface vertex, we saved the unique vertex ID,

the x, y, z coordinates of the vertex, the x, y, z components of the

local normal vector (n), a unique voxel ID (i.e. because the

anatomical images had a higher spatial resolution than the DWIs

multiple surface vertices may sample a single, coarser DWI voxel),

and finally, the 61 image intensity values extracted from the DWIs.

Spherical Harmonics
A spherical harmonic model was fit to the log HARDI data to

obtain the apparent diffusion coefficient profile f as in [33]. This

model includes spherical harmonic terms up to the 6th order from

which seven types of orientationally invariant features of the

HARDI profile were computed. Features 1, 2 and 7 are

independent of the local normal and fully orientationally invariant

features, 3–6 are relative to the local normal, n. Specifically,

1) The mean of the ADC profile

�ff ~ 4pð Þ{1

ð
f xð Þdx ð1Þ

2) The kth moment of f for k = 2.10

Mk~

ð

S

f xð Þ½ �kdx ð2Þ

where S is the unit sphere.

3) The value of f along n to the local cortical surface

f nð Þ ð3Þ

4) The mean of f perpendicular to the local n, (i.e. the mean

ADC in the plane of the cortex)

�ff\~ 2pð Þ{1

ð

C nð Þ

f xð Þdx ð4Þ

where C(n) is the unit circle perpendicular to n.

5) The kth moment of f perpendicular to n, for k = 2…10

Mk,\~

ð

C nð Þ

f xð Þ½ �kdx ð5Þ

6) The two eigenvalues of the Hessian matrix of f evaluated at n.

The Hessian matrix is the second derivative of the ADC

profile, which expresses its curvature and is sensitive to the

dispersion of fibre orientations within the tissue [31].

7) Simple rotationally invariant combinations of the spherical

harmonic parameters for k = 0, 2, 4, 6

Ik~
Xk

i~{k

Daki D2 ð6Þ

where aki is the coefficient of the spherical harmonic order k

and index i in the series.

Table 1. MRI data acquisition parameters.

Sequence Resolution (mm3) TE (ms) TR (ms) Matrix # of Slices/Partitions Flip Angle

HARDI 2.362.362.3 90 7300 96696 52 90u

B1 Map 46464 39, 73 500 64648 48 *

FLASH 0.860.860.8 2.2, 4.7, 7.3, 9.8 23.7 3206270 240 6u or 28u

*B1 Map uses two echoes, one spin echo and one stimulated echo. The flip angles were varied between 270u–130u in steps of 10u for the spin echo and between 135u–
65u in steps of 5u for the stimulated echo [43].
doi:10.1371/journal.pone.0063842.t001
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In total this provides a feature vector of 27 values for every

vertex point, which were used to differentiate distinct cortical

areas. A principal component analysis suggested that the data

actually contained around 9 or 10 significant degrees of freedom.

However, to test the discriminative potential of the features, the

full feature vectors were used as input to an off–the–shelf support–

vector machine (SVM) classifier (http://www.csie.ntu.edu.tw/

,cjlin/libsvm/).

In Experiment 1, data from the first acquisition were used to

train the three–way SVM classifier on the full set of feature vectors

from every vertex point within three regions. In Subject 1 (male)

these three regions were MT+ (Extended middle temporal area

based on retinotopy and quantitative T1 data [48]), Ang (a nearby

region of the angular gyrus within the so–called ‘‘default mode

network’’ that is known to be lightly myelinated [49]) and STS

ROI (a visually responsive part of the superior temporal sulcus), as

displayed in Figure 1. An additional region, just anterior to MT+,

was not included in training the classifier on data from the 1st

acquisition but data from that region from the 2nd repetition was

subsequently classified to investigate whether the classifier would

find borders of regions automatically. In Subjects 2 and 3 (1 male/

1 female) three regions were defined solely on quantitative T1 data

[48]. The regions used for the 3–way classification were Ang (as

above for Subject 1), the region anterior to MT+ and M–I

(primary motor cortex).

The classification rate of the classifier on the second, unseen,

acquisition provides an indication of discriminability of different

cortical areas based on the HARDI signal. The classification

results were also painted on the cortical surface using FreeSurfer

for visual representation.

In order to test the method on a larger number of distinct

regions, in Experiment 2 data were extracted from additional

areas. For Subject 1, nine areas were chosen as in [48] using a

combination of independent anatomical and functional criteria:

quantitative T1 for primary sensory/motor areas and retinotopic

functional imaging data for the remaining areas. Namely, A–

I,R = primary auditory cortex and rostral area; FST = fundus of

the superior temporal sulcus area; IPS1 = Lateral intraparietal

sulcus area 1; IPS2,3 = lateral intraparietal sulcus areas 2 & 3; S–

I = primary somatosensory cortex (areas 3b,1,2); V1 = primary

visual cortex; V3A = V3 Accessory; V6 = visual area 6 and

VIP = ventral intraparietal area. For subjects 2 and 3, seven

regions were defined in addition to the Ang, region anterior to

MT+ and M–I solely on quantitative T1 data. These were MT+,

A–I,R, S–I, V1, V3A, V6 and VIP. The MT+ and the region

anterior to it were included to specifically test the discriminability

of adjacent regions. The ability of the SVM to distinguish the

regions was tested pair–wise on data from these twelve regions in

Subject 1 or ten regions for Subjects 2,3. For each pair of regions

the SVM was trained on data from repetition 1 and then data

from the same two regions in repetition 2 were classified. Each

pair–wise classification produces two results: the fraction of

correctly classified voxels in each of the two regions. We average

these two classification rates to get an overall classification rate for

each pair. This avoids misleading high scores from unbalanced

pairs of regions with very different sizes.

Results

Test/Re–test Analysis
The test/re–test reproducibility was high for all 3 subjects.

Figure 2 displays data from Subject 1, demonstrating that the

signal variability in DWIs with varying diffusion–encoding

directions is reproducible. The top 6 sub–plots display the mean

Figure 1. Depiction of selected ROIs on the convoluted cortical
surface. Due to the convoluted nature of the cortical sheet even small,
functionally and histologically homogeneous regions will have varied
spatial orientation. Three of the areas investigated in this study are
depicted. The background color indicated local cortical curvature (not
gyrification). The mesh edges connect surface vertices.
doi:10.1371/journal.pone.0063842.g001
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adjusted raw DWI signal intensity from the posterior aspect of the

right hemisphere. Data are shown for three different diffusion–

encoding directions for both acquisitions. Because proximity to the

coil affects pixel brightness the mean intensity of the 61 DWIs (see

bottom right of figure) was subtracted from each of these six

individual images. The color bar nominally represents the

arbitrary MR image pixel intensity, increasing from yellow to

orange. Note that while the signal intensity of a given spatial

location changes as the diffusion–encoding direction is varied

(from left to right in Figure 2), there is high correspondence on

test/re–test (top and middle rows respectively in Figure 2). The

white outlines indicate the three ROIs indicated in Figure 1 from

where data was sampled before mean correction. The per–

direction mean of the data for all vertices in each ROI are

displayed in the inset at the centre of the figure demonstrating how

the DWI signal varies as a function of 61 diffusion–encoding

directions (Rep 1 = thick grey line, Rep 2 = thin black line). These

‘time courses’ are unique for each region and indicate reproduc-

ibility on test/re–test. The three plots were vertically displaced

from each other only for clarity but scaled identically. Proper

treatment of such data must take tissue orientation into account.

Note also that even within these small regions the signal intensity

can vary greatly, which is a combined effect of microstructure and

spatial orientation of the tissue. For comparison, gyrification of the

cortex is indicated on the bottom left (red = sulci, green = gyri).

Classification
After being trained on data from the 1st of two acquisitions, the

SVM classifier attained 80–82% correct classification of the data

from the three different cortical areas in the 2nd acquisition for the

3 subjects. Figure 3 (top) displays the results from Subject 1, where

the colors represent the class assigned to each voxel by the SVM:

red, green and blue indicating that a feature vector was most like

the STS ROI, the Ang or the MT+ respectively.

The results of testing the SVM on pair–wise data from the ten

or twelve regions produced similar results across the 3 subjects. In

general V1 was hard to distinguish. On the other hand the Ang

and A–I,R were highly discriminable from the other regions in all

three subjects. When looking at pairs of regions specifically, we

found that V6 vs V3A, MT+ vs S–I and MT+ vs VIP were easily

distinguishable in all three subjects and S–I vs V3A also achieved

70% mean classification. All of these regions are heavily

myelinated. In addition, in Subjects 2 and 3, where M–1 was

included as one of the regions, it was easily distinguishable from

V1 and S1. In Subject 1 functionally related IPS1, IPS2,3 and VIP

were hard to tell apart, which may reflect similar structure in these

functionally related areas. Figure 3 (middle) displays the 12612

results of the Subject 1.

In Subjects 2 and 3 where MT+ and the area just anterior to it

were included in the pair–wise analysis, these two areas were

discriminable (above 75% mean classification rate). In Subject 1

we used the MT+, Ang and STS ROI to train the classifier on data

from repeat 1 and then in repeat 2 we exposed the classifier for the

first time to the region anterior to MT+ to test whether a border

could be found between these two regions. The inset in the top of

Figure 3 shows the results, which indicate that the classifier indeed

could approximately detect the edge of MT+ (although it is

important to note that this result hinges on the data used from the

other two ROIs). The algorithm’s ability to distinguish adjacent

regions is important, because it suggests that the classifier is not

sensitive only to some low frequency artifact of the imaging process

allowing it to distinguish distant regions, but to differences in

intrinsic tissue properties.

Discussion

We have shown that the HARDI signal in cortical GM is

dependent on the diffusion–encoding direction in a highly

reproducible manner. This dependence may be taken to be a

fingerprint of the underlying tissue, which is sensitive to the

microstructural differences that exist between different cortical

regions. Non–invasive MR–based parcellation of the cortical

mantle has recently attracted considerable interest

[19,25,38,48,50,51]. The diffusion–based method introduced here

combines off–the–shelf tools and surface–based analysis to

demonstrate that gray matter diffusion patterns can be used to

distinguish cortical areas. Additional opportunities for future

development are outlined below.

The DWI signal in a given GM voxel is not isotropic but

changes subtly for different diffusion–encoding directions. Our

results indicate that this variability is reproducible on test/re–test.

Although we must be careful to exclude systematic error, we think

this variation arises from the interaction of the underlying tissue

microstructure with the diffusion–encoding direction. There is

previous evidence that GM microstructure is not simply isotropic.

For example, histological stains show myelinated axons within the

cortex in both radial as well as tangential directions [26,27]. Some

areas are known to be anisotropic in a tangential direction (e.g. V2

cytochrome oxidase stripes) [52]. If different cortical areas had

varying proportions of myelinated fibres in these two populations,

it would likely result in corresponding changes in the direction

spectrum of the DWI signal intensity. Moderately high diffusion

anisotropy in cortical areas has been reported at 7T [25] and a few

other recent reports used DWIs to distinguish areas in the gray

matter [38,51]. In each case the underlying tissue is discriminated

based on the DWI signal. Our approach offers the advantage that

it uses a non–parametric model of the signal via spherical

harmonics, which provides a much richer set of features for

fingerprinting the underlying tissue. By contrast, McNab et al.

[51] concentrated on the principal orientation of the diffusion

tensor relative to the local cortex normal vector – a two

dimensional feature, drawn from a very rich data set acquired

with 256 diffusion encoding gradient directions. Haroon et al. [38]

use more dimensions in their method, by measuring the number of

peaks in the Q–ball ODF after bootstrap iterations – but this

method still typically only uses a feature vector with four

dimensions. The feature vector we use here has 27 elements.

Although there is significant redundancy between those elements

(PCA suggests the vectors have intrinsic dimension of 9 or 10), it

provides a much richer feature set allowing more reliable and finer

discriminability. Many of our features are directly referenced to

the local orientation of the cortex. The feature vector also extends

naturally to include more elements should they prove useful with

the data acquired or for the question investigated. For example

features 2 and 5 could include even higher order moments and

feature 7 could include additional elements if the spherical

harmonic series was truncated at a higher order. Here we

intentionally included more orders than we believe useful to make

sure we had as complete a description of the data as possible.

The set of features also includes rotationally invariant features of

the diffusion signal profile. The problem of identifying a minimal

set of independent features that includes all rotationally invariant

aspects of the profile is a topic of on–going research for which the

current literature contains no solution. We choose a large

Discriminating Cortical Regions with DWIs
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redundant set to capture as much information as possible. A more

compact set may be identified, to improve the computational

efficiency without compromising classification/segmentation per-

formance. We note recent work on complete sets of orientationally

invariant features of spherical functions (e.g. [53]), which may be

able to compact the same information into smaller sets of features.

SVM Classification
We emphasize that the classifier used no regional spatial

information (aside from the feature reliance on the local surface

normal), but only voxel–wise feature vectors. This suggests the

data contain information on which to base a cortical parcellation.

Figure 2. Test/re–test DWI signal intensity. The top two rows display the raw diffusion weighted image (DWI) signal intensity after the mean
signal of all the 61 DWIs (see bottom right) has been subtracted from each. Three diffusion–encoding directions of both repetitions (top = Rep1,
middle = Rep2) are shown. The white outlines indicate the ROIs from Figure 1. The bottom right displays the mean of the 61 DWIs. The color bar
represents MRI image pixel intensity from yellow = low to orange = high. Note the different ranges between the individual images and the mean. On
the bottom left gyrification of the cortex is indicated (red = sulci, green = gyri). The inset signal time–courses in the centre of the figure depict how the
pixel intensity varies over the entire experiment of 61 diffusion–encoding directions within the 3 ROIs (Rep 1 = thick grey line, Rep 2 = thin black line).
The scale for all images is 1 cm.
doi:10.1371/journal.pone.0063842.g002

Discriminating Cortical Regions with DWIs
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When the classifier was trained with data from 3 distinct clusters of

the 1st acquisition the classification of the 2nd dataset resulted in

largely connected sets, which correctly identified the actual cortical

area (Figure 3 Top), even though the algorithm did not require this

contiguity. In this Subject the classification results were erroneous

only near the edges of each of the ROIs. This however, may not be

a failure of the method. It could indicate that the ROI selected

actually included tissue that was truly histologically different or

reflect partial volume effects due to the lower (2.3 mm) DWI

resolution. The inset at the top of Figure 3 shows that the area

anterior to the MT+ region seems to be distinct as identified by the

natural border beyond which the classification results drop.

When the classifier was used in a similar fashion on pairwise

comparisons of the data from the 10 or 12 distinct cortical regions

not every area could be distinguished from every other one

(Figure 3 middle). The ability of the classifier to tell the two regions

apart could be taken as a measure of similarity (i.e. discrimina-

bility) of the underlying tissue. For example for Subject 1 the data

from IPS1, VIP and IPS 2,3 in the 2nd acquisition are difficult to

tell apart after data from the same regions in the 1st acquisition was

used to train the classifier. This result supports the idea that

cortical tissue is similar in these functionally related areas, which

are often co–activated in neuroimaging studies [54]. Another

example is MT+, which the classifier easily distinguishes from most

other regions in all three subjects. Based on the fact that,

histologically, MT+ is distinct in having particularly dense

myelination as well as very high levels of cytochrome oxidase it

may be expected that it is easily identifiable. Note that the current

implementation takes a single measure of the GM signal in the

DWIs midway through the cortex, which is unlikely to capture a

full histological specialization of the local GM (see below). The

classifier may perform better on higher resolution DWI data: at

higher resolution several samples could be taken from different

depths to increase the size of the feature vector or a single cortical

layer could be more specifically targeted.

Our principal aim with this work was to demonstrate and

establish that the voxel–wise HARDI signal is reliably reproduc-

ible and is discriminative of distinct GM areas. In a practical

situation, rather than a test/re–test scenario, the aim would be to

directly parcellate the cortex in an unsupervised manner, based on

a single acquisition or to classify an individual’s data using

supervised training on a larger cohort. As an example of

unsupervised classification, simple k–means clustering produces

reproducible results on a single data set without the need for a

training data set (Figure 4). It seems likely that including some

spatial information in the feature vector to allow spatially

separated regions with similar HARDI signal to form separate

clusters would further improve the performance. A maximally

effective parcellation technique based on MRI would probably

Figure 3. Classification results of the test/re–test data. (Top)
Classification results displayed on the map of cortical curvature. After
being trained on data from ROIs of the 1st acquisition data from the
same ROIs of the 2nd acquisition are classified as MT+ (blue), Ang
(green) and STS ROI (red). The reliability of the classification process is
supported by the fact that data from each cortical area is classified
correctly in a large connected set of vertices and only the edges are
classified erroneously as one of the other tissue types. (Inset) When the
area just anterior to MT+, which was unseen while training the classifier

is, is included in the classification an approximate border can be
identified where success of the classifier drops sharply. (Middle) The
ability of the support vector machine (SVM) to distinguish pairwise data
from 12 distinct cortical regions. The color code indicates percent of
correct classification of data in repeat 2 after the SVM was trained on
data from repeat 1. Most regions are classifiable above chance though
the SVM struggles with classifying V1 (primary visual cortex) correctly.
Another internal check shows that the IPS1 and IPS2,3 (IPS = lateral
intraparietal sulcus), which are neighboring, functionally related parietal
visual areas, are hard to distinguish. For the definitions of the
abbreviations please see Methods. (Bottom) Depiction of all regions
where data were extracted from one or all three of the subjects. The
short descriptive names are defined in the text. M-I was used only for
Subjects 2 and 3, hence it is designated (not used) to indicate that it is
not included in the 12612 matrix of Subject 1 (middle).
doi:10.1371/journal.pone.0063842.g003

Discriminating Cortical Regions with DWIs

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63842



need to include complementary information in the form of

(population–based) architectonic maps as well as data with

different MRI contrast(s) from the same individual.

Significant further improvements could come from a richer

acquisition protocol including multiple HARDI shells with

different b–values, as in, for example in [55] or [35], as the

different shells generate sensitivity to different features of tissue

microstructure. With our b–value of 1000 s/mm2, the dominant

tissue feature likely to contribute to signal variation is the

orientation distribution of neurites [56,57]. Including additional

shells at higher b–values and varying diffusion times could provide

sensitivity to other features, such as fibre size and density [36].

Limitations and Future Directions
One critical issue is precisely and accurately detecting the GM/

WM and pial surface boundaries in image–based methods. This is

not a limitation of the software used. Rather, the reduction of

myelin is gradual as the WM fibers enter the deeper layers of the

cortex and hence the GM/WM boundary is difficult to define.

The pial surface can also be difficult to locate where it approaches

itself closely. We attempted to minimize the effect of GM/WM

boundary detection by sampling the DWI signal halfway between

these two surfaces along the local normal. A related limitation is

that the layers vary in thickness among the cortical areas.

Therefore, even if the GM/WM boundary detection was perfect,

a fixed fraction along the local normal may sample different

cortical layers at different vertex points. The resolution (2.3 mm)

and b–value (1000 s/mm2) used here were chosen to ensure high

signal level and to minimize eddy current and susceptibility

induced distortions. Improving the resolution and diffusion–

encoding strength is recommended but it is important to maintain

good image quality. For example, due to susceptibility–induced

distortions of the EPI images, parts of the frontal and temporal

lobes are distorted in single–shot EPI. As a result the exact co–

registration of the T1–weighted anatomical and HARDI data was

difficult even at 2.3 mm resolution. More advanced acquisition

and correction methods [58–61] could help reduce these

distortions. Also, at the 2.3 mm isotropic resolution it is likely

that partial volume effects can occur between the grey and white

matter leading to classification that is not solely dependent on the

grey matter signal. While this, in principle, is not a limitation, the

interpretation is different because the cortical areas are not

discriminated on signal from the grey matter alone. We mention

here that a different and larger set of regions were used in the

SVM classification for Subject 1 simply because more fMRI data

was available for that subject to define ROIs. However, we do not

consider this a limitation because the method presented here is

expected to work irrespective of the cortical area from which the

data was extracted.

We demonstrated that the minimal condition of reproducibility

is satisfied. This is a necessary but not sufficient condition for

reliable cortical parcellation. Future extensions of this study are

required for full validation. Consistency across subjects was

demonstrated here but need to be established on larger cohorts.

Next, cross–validation of parcellation results with other imaging

and histological modalities will help establishing its construct

validity. The relevance of the DWI based parcellation can also be

further evaluated by correlation with behavioral and other

individual measures such as ageing.
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