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Optimization of sequence alignments
according to the number of sequences vs.
number of sites trade-off
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Abstract

Background: Comparative analysis of homologous sequences enables the understanding of evolutionary patterns
at the molecular level, unraveling the functional constraints that shaped the underlying genes. Bioinformatic pipelines
for comparative sequence analysis typically include procedures for (i) alignment quality assessment and (ii) control of
sequence redundancy. An additional, underassessed step is the control of the amount and distribution of missing
data in sequence alignments. While the number of sequences available for a given gene typically increases with time,
the site-specific coverage of each alignment position remains highly variable because of differences in sequencing
and annotation quality, or simply because of biological variation. For any given alignment-based analysis, the
selection of sequences thus defines a trade-off between the species representation and the quantity of sites with
sufficient coverage to be included in the subsequent analyses.

Results: We introduce an algorithm for the optimization of sequence alignments according to the number of
sequences vs. number of sites trade-off. The algorithm uses a guide tree to compute scores for each bipartition of the
alignment, allowing the recursive selection of sequence subsets with optimal combinations of sequence and site
numbers. By applying our methods to two large data sets of several thousands of gene families, we show that
significant site-specific coverage increases can be achieved while controlling for the species representation.

Conclusions: The algorithm introduced in this work allows the control of the distribution of missing data in any
sequence alignment by removing sequences to increase the number of sites with a defined minimum coverage. We
advocate that our missing data optimization procedure in an important step which should be considered in
comparative analysis pipelines, together with alignment quality assessment and control of sampled diversity. An
open source C++ implementation is available at http://bioweb.me/physamp.
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Background
By acting on the fate ofmutations, natural selection shapes
sequence variation at a given genomic locus. The analy-
sis of sequence diversity therefore provides information
on the underlying evolutionary forces, which in turn pin-
point the function of the encoded genes. For any gene
of interest, obtaining and aligning homologous sequences
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from other individuals or species shed light on the evolu-
tionary processes that generated the observed sequences.
Sequence alignments are therefore the common entry
point for many comparative methods, such as predic-
tion of structure [1, 2], functional sites [3, 4], epistatic
interactions [5, 6] and sites under positive selection [7].
The selection of homologous sequences is a criti-

cal initial step in comparative sequence analysis. For a
given gene of interest, the number of available homol-
ogous sequences depends on the taxonomic distribu-
tion of the gene, which is itself a function of the age
of the gene: ancient genes are shared by many tax-
onomic units, while recently evolved genes are more
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specific to a species or subset of species. To this nat-
ural distribution of homologues, one must add the
actual sampling of species, which typically induces a
bias toward model species and their relatives. This vari-
ability of gene representation in homologous sequence
databases is also found at the intra-genic level. For a
given family of homologous sequences, some positions
are highly represented in the collection of sequences and
present in most species. Other positions are found in
only one or a few species. In the resulting sequence
alignment, such positions would include gaps (‘-’)
or unresolved characters (e.g., ‘N’, ‘X’ or ‘?’) depending on
the cause of their absence. This variability of site-specific
sequence coverage (further simply referred to as cover-
age) is a typical missing data problem. Depending on the
downstream analyses, sites with insufficient coverage are
not analyzable, or lead to inaccurate estimates.
Many homologous sequences are typically available as

more and more organisms are sequenced. As a result, the
number of sites with sufficient coverage, rather than the
number of available sequences, is the limiting factor in
comparative analysis applications. It is therefore benefi-
cial for such applications to exclude sequences, provided
that doing so increases the number of sites with sufficient
data to be included in the analysis. While a few meth-
ods are available to filter badly aligned sequences [8] or
redundant sequences [9], dedicated methods are needed
to optimize sequence alignments for a given application
based on site-specific coverage. We propose here a new
algorithm whose specific task is to increase site coverage
by sampling sequences from the alignment, here assumed
to be correct. The algorithm uses a guide tree to com-
pute scores for all partitions of the sequence data set and
iteratively removes sequences responsible for low site-
coverage, which allows optimization of the alignment size
according to the number of sequences vs. number of sites
trade-off.

Methods
The method aims to increase the number of sites avail-
able for the subsequent analyses by sequentially removing
the most costly sequences in terms of gaps or unresolved
characters. It takes as an input a sequence alignment and
a corresponding sequence clustering tree. The alignment
optimization procedure is iterative, removing at each step
theminimal group of sequences that adds the largest num-
ber of sites. The key component of the method is the
computation of the putative gains of sites for all partitions
(as defined by the input tree) as well as the correspond-
ing costs in terms of sequences to be removed. Here we
demonstrate that these computations can be efficiently
achieved using dynamic programming and a two-traversal
recursion on the tree.

Computation of gains in sites for each group of sequences
Given a sequence clustering tree arbitrarily rooted at an
inner node, we define directions for tree traversals. For
any node N, the neighbor node defining the subtree con-
taining the root node is referred to as the ‘father’ node F,
and all other neighbors (typically 2) are referred to as ‘son’
nodes Nk (typically N1 and N2, see Fig. 1). For any node
N, the branch connecting N to its father F partitions the
sequences into two sets. We arbitrarily designate the up
set of sequences as the one whose corresponding subtree
contains the root of the tree and all others as the down
set of sequences. For each node N, we store two score
arrays U(N) and D(N), one for each set up and down,
respectively. Each position in the array corresponds to
one column in the alignment and specifies whether the
column contains at least one gap in the corresponding
sequence set. We proceed recursively to fill first the D(N)

arrays, using Algorithm 1. For leaf nodes, the D(N)[ i]
array takes 0 if the underlying sequence has a gap in the
alignment at column i; it takes 1 otherwise. The D(N)

array of an inner node takes 1 if all son nodes have 1 at
the corresponding position. All D(N) arrays at all nodes
in the tree can then be computed recursively using a
post-order tree traversal (Fig. 2a).

Algorithm 1 First tree traversal: computing down arrays.
The δ(sitei) operator takes 1 if the corresponding
sequence has no gap (or unresolved character) at position
i, 0 otherwise
1: procedure FILLDOWNVECTORS(N) � N is the root

node of a subtree
2: if N is a leaf then
3: for all sites i do
4: D(N)[ i]← δ(sitei)
5: end for
6: else � N is an inner node
7: for all sites i do
8: D(N)[ i]← 1
9: end for

10: for all son nodes Nk of N do
11: FILLDOWNVECTORS(Nk) � Recursive call
12: for all sites i do
13: D(N)[ i]← D(N)[ i]∧D(Nk)[ i]
14: end for
15: end for
16: end if
17: end procedure

Once all down arrays have been filled, up arrays can
be computed using another tree traversal. This second
traversal computes scores for subtrees containing the root
of the tree (Algorithm 2). For every node N with a father
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Fig. 1 Notations. The tree is arbitrarily rooted and oriented. Any focal node N defines two partitions, noted down and up (the one containing the
root of the tree). Neighbors of N are referred to as ’father’ node (F) and son nodes (Nk)

node F, the U(N) array is defined as the conjunction of
the U(F) array and the D(N) arrays of all ‘brother nodes’,
that is, all son nodes of F except nodeN. AsU(F) needs to
be computed before U(N), this second pass is a pre-order
tree traversal (Fig. 2b).

Algorithm 2 Second tree traversal: computing ’up’ arrays
1: procedure FILLUPVECTORS(N) � N is the root node

of a subtree
2: if N has a father node then
3: F ← father node of N
4: U(N) ← U(F)

5: for all son nodes Fk of F do
6: if Fk �= N then
7: for all sites i do
8: U(N)[ i]← U(N)[ i]∧D(Fk)[ i]
9: end for

10: end if
11: end for
12: for all son nodes Nk of N do
13: FILLUPVECTORS(Nk) � Recursive call
14: end for
15: else � N is the root of the tree
16: for all sites i do
17: U(N)[ i]← 1
18: end for
19: end if
20: end procedure

After all D(N) and U(N) arrays have been computed,
it is straightforward to compute for each node the num-
ber of sites for each corresponding partition, by summing
all ‘1’ entries in each up and down array. The numbers of
sequences for each partition can also easily be computed
by recursion.

Extension 1: This method can be generalized to accom-
modate for sites with a given number of gaps or unre-
solved characters, defining a minimum coverage. In this
extension, both up and down arrays contain a number
of non-gap (or resolved) characters. During recursion
(Algorithms 1 and 2), arrays are combined with a sum
instead of the logical conjunction operator. The numbers
of sites in each set of sequences is then computed by com-
paring for each site the proportion of gaps to the given
threshold t ∈[ 0, 1]:

∑
i

[
D(N)[ i]
nseq(N)

≥ t
]

(1)

where
∑

i is the sum over all columns in the alignment,
[ ] are the Iverson brackets taking 1 if the enclosed condi-
tion is true and 0 otherwise, and nseq(N) is the number of
sequences in the down subtree. Similar calculations apply
for the up partitions. Such an extended algorithm requires
more memory as counts typically require more space than
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Fig. 2 Tree traversals. Recursion orders for initializing down and up arrays. Notations are as introduced in Fig. 1. i and i + 1 show operations
performed during two subsequent iterations. a first, post-order tree traversal, initializing all down arrays from the leaves to the root. b second,
pre-order tree traversal, initializing the up arrays from the root to the leaves

boolean values. (In C++, the vector<bool> type uses
less memory than the vector<int> type).

Extension 2: For some applications, one or several
sequences in the input alignment are of particular interest,
for instance because of availability of extra data (anno-
tation, protein structure, etc.). It is therefore important
(i) not to remove these sequences during the optimiza-
tion process and (ii) to optimize the site coverage of these
particular sequences. To accommodate for a set of ref-
erence sequences, the previous recursion can be applied
on a guide tree where the reference sequences have been
removed, with the extended equation 1:

∑
i

[
D(N)[ i]+R[ i]

nseq(N) + nseq(R)
≥ t

]
(2)

where R[ i] is the number of characters at column i in the
subalignment of reference sequences and nseq(R) is the
number of reference sequences.

Sorting partitions
The next step consists of ordering all partitions by rele-
vance for the user. We implemented the following sorting
scheme:

1. discard all sets of sequences where the number of
sites is lower or equal to the current data set;

2. sort remaining sets of sequences by increasing
number of sequences removed;

3. in case of a tie, sort the sets of sequences according
to decreasing number of sites added;

4. in case of a tie, sort the sets of sequences according
to decreasing total number of characters in the data
matrix.

The decision regarding which set of sequences to keep
(the current one or one of the proposed ones) is made
either by the user or by a predefined criterion. In case a
new partition of the data is selected, scores need to be
recomputed.

Update of partition scores
After one partition of the data set has been selected
and the corresponding sequences removed, scores on the
remaining tree have to be re-evaluated. Two cases have to
be distinguished. In the first case, a down set of sequences
is chosen and the tree is then restricted to the correspond-
ing subtree matching the selected partition. All down
scores are unchanged, but all up scores have to be recom-
puted using Algorithm 2. In the second case, an up set of
sequences is favored and the subtree matching the com-
plementary down set of sequences has to be removed
from the current tree. All remaining subtrees need to have
their up arrays updated using Algorithm 2. In addition,
the down arrays for all nodes between the node defining
the selected partition and the root have to be recom-
puted. The corresponding procedure is summarized as
Algorithm 3.

Termination
Several partitions can be selected sequentially to gradu-
ally increase the number of sites available by removing
more sequences. The decision regarding when to stop the
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Algorithm 3 Arrays update after clade removing
1: procedure UPSTREAMUPDATE(N , [P]) � P is the

previously analyzed node, if any
2: if N is not a leaf then
3: for all sites i do
4: D(N)[ i]← 1
5: end for
6: for all son nodes Nk of N do
7: for all sites i do
8: D(N)[ i]← D(N)[ i]∧D(Nk)[ i]
9: end for

10: if Nk �= P then
11: FILLUPVECTORS(N) � Need to update

the up arrays of this subtree
12: end if
13: end for
14: end if
15: if N has a father then
16: F ← father node of N
17: UPSTREAMUPDATE(F ,N) � Move upward to

the next node
18: end if
19: end procedure

reduction loop can be left to the user (using an interactive
implementation) or can be automated. A convenient auto-
matic criterion is the maximum number of sequences to
be removed.When a minimum final number of sequences
is provided, the algorithm then finds the best combination
of sequences to be removed that maximizes the number
of sites. The program outputs the corresponding sampled
alignment and tree.

Sequence clustering tree
Any a priori hierarchical clustering of sequences, repre-
sented as a tree, can be used as an input to the method.
The phylogeny of the underlying sequences, if known or
inferable, is a natural choice. Yet for the purpose of opti-
mizing the number of alignment columns without gaps,
it is efficient to cluster the sequences according to their
overlap in the alignment. For that purpose, we define the
overlap distance between two sequences S1 and S2 from a
multiple alignment with n columns as

doverlap
(
S1, S2

) = n−
n∑

i=1

[(
S1i �= ′NA′) ∧ (

S2i �= ′NA′)] .
(3)

The sum represents the number of positions in the
pairwise alignment for which both sequences do not
have missing data (gap or generic character). All pair-
wise distances from the sequence alignment are computed
using the overlap distance. The resulting pairwise distance

matrix is then used as an input to standard hierarchi-
cal clustering procedures. Briefly, the clustering algorithm
starts by defining as many clusters as there are sequences
in the alignment, with one sequence each. It then proceeds
iteratively, by grouping at each step the two clusters with
the shortest distance in the matrix. The distance matrix
is then reduced by one row and one column, and dis-
tances between the newly formed cluster and all other
clusters in the matrix are recomputed. The method for
updating distances between clusters of potentially more
than one sequence defines the linkage type of the clus-
tering procedure. In this work, we tested the following
linkage type: complete, single, average, median, centroid
and Ward [10]. Such clustering techniques, however, are
not applicable for very large alignments as their complex-
ity is typically O(n3), where n is the number of sequences.
For such large data sets (typically with more than 10,000
sequences), methods such as fasttree [11] are required to
generate a guide tree.

Example data sets
ORTHOMAMdatabase
We used the ORTHOMAM database [12] version 8 [13],
which gathers mammalian orthologous coding sequences
based on ENSEMBL annotations. Nucleotide sequences
for aligned orthologous gene coding sequences were
retrieved with no filtering. Only alignments having at least
30 mammalian species out of the 40 available were kept,
resulting in a total of 11,305 gene families. The phylogeny
of the 40 species was downloaded from theORTHOMAM
website, and the corresponding phylogeny for each family
was extracted by removing missing species. In addition,
approximate maximum likelihood trees were inferred for
each family using the Fasttree program [11]. For com-
parison, we applied our method on a random guide tree
generated for each gene family using the rtree com-
mand from the R package ape [14]. Each species was
searched in Pubmed to retrieve the number of publica-
tions with a title including its name (Additional file 1).
This number of publications reflects the extent to which
the species is studied and is typically high for model
species such as Homo sapiens and Mus musculus. Cor-
relation of the number of species with the frequency of
sequence removal was performed using a Kendall corre-
lation test as implemented in the R software. To correct
for ties, input values were randomized 10 times using the
jitter function. We report the minimum correlation
value as well as the maximum p-value obtained over these
10 randomizations.

PFAMdatabase
We retrieved all PFAM families with a number of
sequences between 1,000 and 5,000 [15]. This selection
comprises 2,785 protein families and includes species
from bacteria, archaea and eukaryotes. The original
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PFAM alignments were used in all subsequent analyses.
An approximate maximum likelihood phylogenetic tree
was reconstructed for each family using the Fasttree
program [11] as well as a random tree using the rtree
command from the R package ape [14]. As opposed to the
ORTHOMAM benchmark data set, families in the PFAM
benchmark might contain paralogous sequences.

Software availability
The algorithm and its extensions described in this work
were implemented in C++ using the Bio++ libraries ver-
sion 2.2.0 [16]. The resulting program called bppalnoptim
is available under the General Public License version 3.0
(GPL3) at http://bioweb.me/physamp.

Results
We applied the new optimization algorithm to two con-
trasting data sets to cover a wide range of potential
applications. First, we analyzed 11,305 mammalian gene
families from the ORTHOMAM database [13]. Each fam-
ily contained one orthologous sequence for at least 30
species of mammals. Second, we studied 2,785 protein
families, each having between 1,000 and 5,000 sequences,
from the PFAM database. In both cases, we aimed to
maximize the number of sites with a given minimum cov-
erage: we allowed a maximum of 5% and 30% sequence
gaps and unresolved characters for ORTHOMAM and
PFAM, respectively. The two data sets have contrasting

dimensions: the ORTHOMAM data set contains a large
number of sites but few sequences, while the PFAM fami-
lies contain a large number of sequences but typically very
few sites.

Visualizing the number of sequences vs. number of sites
trade-off
We applied our algorithm on each family independently
and compared different methods to generate the guide
tree. To assess the efficiency of each method, we visual-
ized the optimization trade-off by plotting for each family
the number of sites gained (as a proportion of the max-
imum number of sites) as a function of the number of
sequences removed (as a proportion of the initial number
of sequences). Figure 3 shows the optimization trade-off
curves for the ORTHOMAM data set, with the curve and
corresponding shaded area showing the median, first and
third quartile of the results for the 11,305 families. The
curves revealed the existence of a maximum number of
sites reached by all methods when approximately 30%
of the sequences were removed. The average maximum
gain in the number of sites was above 75%, which corre-
sponds to a tripling of the number of sites available for the
analysis. While we noticed a slightly better performance
when the guide tree was constructed using the overlap dis-
tance, a random tree achieved similar results on average
for this data set. Furthermore, we did not find any dif-
ference between clustering methods based on the overlap
distance (Additional file 2: Figure S1).

Fig. 3 ORTHOMAM trade-off curves. Proportion of site gains (final number of sites - initial number of sites, divided by the final number of sites) as a
function of the proportion of sequences removed. Points show the median over the 11,305 gene families, and shaded areas show the first (25%)
and third (75%) quartiles. Three methods are superimposed: hierarchical clustering of sequences using the overlap distance and median linkage,
the fasttree maximum likelihood tree reconstruction, and a fixed tree representing the known phylogeny of species

http://bioweb.me/physamp
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We further investigated which sequences were removed
for each family, using Fasttree to generate guide trees.
The stopping condition for the algorithm was to keep a
minimum of 80% of the original sequences. We showed
that all species were excluded in at least one family
(Fig. 4). The frequency of removal reflects the quality of
genome annotation: there is a significant negative cor-
relation between the frequency of removal of species
and the number of articles in Pubmed containing the
species name in their title (Kendall’s tau = -0.264, p-value
= 0.0185). Model organisms that are studied more and
therefore benefit from manual annotation of genes were
less frequently removed than species for which gene pre-
diction relies mostly on de novo and homology-based
predictions.
The trade-off curves obtained from the PFAM data set

exhibited a different shape, with the site gain linearly
increasing as more sequences were removed (Fig. 5). As
for the ORTHOMAM benchmark, the overlap distance
clustering led to a slightly better performance than the
fasttreemethod, while no difference was observed on
average between clustering methods (Additional file 3:

Figure S2). As opposed to the ORTHOMAM benchmark,
the PFAM data set demonstrated the effect of the choice
of a relevant guide tree for data sets with greater sequence
divergences: the performance of the algorithm dropped to
nearly zero site gain when a random tree was used as a
guide (Fig. 5).
As the PFAM alignments were much larger and had

a higher underlying sequence diversity, we assessed the
effect of the minimum coverage set for defining a site
as included in the analysis. We used the output of
fasttree to generate a guide tree. The correspond-
ing trade-off curves showed that the relative site gain
increased with the minimum coverage, but this effect was
largely due to the number of sites initially fitting the given
criterion being very low (Fig. 6 and Additional file 4:
Figure S3). As much as 85% (2,360 out of 2,785) of the
families had no complete site (defined as having a coverage
of 1.0, that is, with no gap and no unresolved charac-
ter). Globally, our method was successful in increasing
the number of sites available for data analysis in PFAM
families while controlling for the number of sequences
filtered.

Homo
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Pongo
Nomascus
Macaca
Callithrix
Tarsius
Microcebus
Otolemur
Tupaia
Mus
Rattus
Dipodomys
Cavia
Ictidomys
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Fig. 4 Frequencies of species removal. Phylogeny of the 40 species in the ORTHOMAM data set, with their corresponding frequency of removal. Bars
and numbers indicate the number of families where the given species was present in the original alignment but removed after optimization
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Fig. 5 PFAM trade-off curves. Same representation as used in Fig. 3 for the 2,785 families of the PFAM data set

Discussion
Applications of the optimization algorithm
For many gene families, the number of sequences avail-
able for comparative analysis pipelines (e.g. evolutionary
rate estimation [17], positive selection detection [7] and

coevolution analysis [6]) is typically large. While extra-
neous sequences will only marginally contribute to the
extracted signal, they will significantly impair most meth-
ods by increasing the execution time andmemory usage. It
is therefore common practice to discard some sequences

Fig. 6 Trade-off curve and minimum coverage. Trade-off curves using the fasttree guide tree as in Fig. 5, plotted for different minimum coverage
values required for sites to be included in the analysis. A minimum coverage of 1.0 implies that only complete columns with no gap and no
unresolved characters are included. Bars on the right show the number of sites with the required minimum coverage for each family (Initial), as well
as the maximum number of such sites reachable by optimization (Maximal). Bars show the median numbers over all families, intervals represent the
first (25%) and third (75%) quartiles
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at early preprocessing stages, and it is relevant to do so
in a way that will minimize the proportion of missing
data. Our method is therefore useful when (i) the size of
the data set must be reduced for computational efficiency
and/or (ii) missing data are expected to introduce noise or
bias in downstream analyses.
Missing data are present in sequence alignments as

unresolved characters (‘N’, ‘X’ or ‘?’), and it is also com-
mon practice for some applications to recode gaps (‘-’) as
missing data. The units of alignment-based analysis are
sites (i.e. alignment columns), and sites with insufficient
coverage (that is, with too much missing data) are usu-
ally discarded in downstream analyses as they may lead
to unreliable estimates or introduce noise. As the desired
minimum site-specific coverage depends on the particu-
lar downstream analysis, it is an input parameter of our
method. We have proposed an algorithm that increases
the number of sites matching the required threshold by
selectively removing sequences with missing data. For
example, coevolution detection methods typically work
better with no missing data because two sites with an
unresolved character or a gap in the same species will
show an artificially high correlation. For such methods,
the desired input threshold is therefore typically con-
servative, allowing little or no missing data at analyzed
positions. Conversely, rate estimation methods are more
robust in the presence of unresolved characters, and a
more permissive threshold can be used.
It is noteworthy that another criterion for removing

sequences from an alignment while maintaining most of

its biological signal is to remove identical or highly sim-
ilar sequences, for instance using the CD-HIT software
[9]. Such similarity-based approaches are complemen-
tary to the missing data reduction method described here
because they exploit distinct properties of the data set.
Because sequence similarity measures are affected by the
occurrence of missing data and because our algorithm is
independent of the similarity of input sequences, we rec-
ommend using our method prior to similarity reduction
filters such as CD-HIT. Because similar sequences tend to
have missing data at similar positions (gaps in particular),
the sequential removal of sequences tend to remove more
distantly related sequences and reduce the global diversity
of the input alignment. To illustrate this aspect, we com-
puted the Shannon entropy for each site and computed
the average over all sites as an estimate of the sequence
diversity in an alignment. Using the PFAM data set as an
example, we plotted this measure of diversity along the
trade-off curve (Fig. 7). We report a decrease of diversity
as more sequences are removed, and this decrease is faster
for large sequence removal (more than 60% sequences
removed). Conversely, the random removal of sequences
keeps diversity constant but does not improve coverage.
The relative amount of sequence diversity in the opti-
mized data set can be used as a stopping condition for the
optimization algorithm.

Importance of guide tree
We have shown that for relatively similar sequences, the
order in which sequences are compared, as specified by

Fig. 7 Trade-off curve and average site entropy. Trade-off curves using the fasttree guide tree together with a random tree as in Fig. 5, plotted along
with the corresponding mean site entropy
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the guiding tree, has virtually no impact on the resulting
selection. For more dissimilar sequences, however, better
results are achieved when sequences are clustered accord-
ing to their respective overlap, as measured by the overlap
distance introduced in this work. As such, a clustering
procedure can be computationally expensive; an optimal
approach consists of using a fast phylogenetic tree recon-
struction method such as Fasttree to generate a guide
tree without compromising the quality of the results.

Termination criterion
The algorithm introduced in this work proposes a crite-
rion to recursively remove sequences that are costly in
terms of site coverage. Distinct cases should be distin-
guished when establishing the criterion for preventing
the removal of additional sequences. A straightforward
case is when no more improvement can be achieved,
either because all sites match the requested minimal cov-
erage or because the removal of any additional (group of)
sequence(s) will not lead to any improvement. Such a sit-
uation arises when missing data are uniformly distributed
among sites: removing a sequence might gain new sites
but will also lead to the loss of others so that the net
site gain is null. In some other cases, as illustrated by our
ORTHOMAM example data set, the site gain reaches a
plateau, meaning that an increasing number of sequences
have to be removed to gain additional sites (Fig. 3). Such
curves resemble rarefaction curves [18]. In such cases, it
is possible to define a cost parameter as a maximum num-
ber of sequences to be removed per additional site gained.
The optimization of the data set will then proceed until
the cost of obtaining additional sites exceeds the given
threshold. Other data sets, however, display a linear trade-
off curve (PFAM example data set, Fig. 5). For such data
sets, a fixed cost parameter will lead to the removal of all
or no sequences, if the slope of the curve is lower or higher,
respectively, than the given parameter. In such a case,
the stopping condition of the algorithm is based on the
desired number of sites or sequences in the filtered data
set. Our implementation of the algorithm allows these two
stopping conditions, which can be combined. We have
also implemented a diagnostic mode, which allows draw-
ing the trade-off curve of the data, as in Figs. 3 and 5.
Plotting the trade-off curve is helpful to visualize the dis-
tribution of missing data in a given data set, to decide
which criteria to use for its subsequent optimization.

Alignment optimization vs. alignment quality assessment
Errors in sequence alignment reconstruction have been
the subject of several studies [19–22]. Such errors
propagate at downstream stages of the analysis, inflat-
ing the false discovery rate. Several approaches have
therefore been proposed to specifically address this issue
[8, 23, 24]. These methods compute a quality score for

each alignment position and discard the positions that
are considered too uncertain. While site-filtering pro-
cedures are necessary to increase prediction accuracy,
they come at the cost of a loss of statistical power
due to the shrinkage of sites available for further anal-
ysis. This removal of ambiguously aligned sites further
reduces the number of sites available for downstream
analyses. The most advanced alignment filtering proce-
dures such as TrimAl [8] and Guidance [24] also permit
filtering the alignment sequence-wise, which increases
the global quality of the alignment by removing dubi-
ously aligned sequences, therefore increasing site-specific
quality scores. Such methods are designed for increasing
alignment quality and should therefore be used to comple-
ment the optimization algorithm described in this work.
An interesting application is the recursive use of our opti-
mization algorithm and alignment methods. By removing
sequences that are costly in terms of missing data, the
alignment of the remaining sequences could potentially be
improved.

Conclusions
Typical bioinformatics pipelines include upstream pro-
cessing steps to filter alignment errors and control for
sequence redundancy. We have proposed here an addi-
tional step to optimize data sets based on their missing
data content and have introduced an efficient algorithm
for that purpose. Such optimization is achieved by remov-
ing costly sequences from the alignment to increase the
number of alignment columns with minimal sequence
coverage. The proposed algorithm uses a guide tree, which
can be constructed from the input alignment using clus-
tering techniques or provided by the user, for instance,
as a phylogenetic tree. Using two complementary bench-
mark data sets of several thousands alignments each,
we have demonstrated the potential broad usage of this
new algorithm. We posit that as families of homologous
sequences further increase in size, optimal sampling of
sequence alignments will become a necessary comple-
ment to alignment quality check procedures to maximize
the power and accuracy of comparative analysis-based
predictions.

Additional files

Additional file 1: Raw data for number of citations per ORTHOMAM
species. A coma-separated value (CSV) text file containing the frequency
of removal of each ORTHOMAM species, together with the number of
publications containing the species name in their title. The #-commented
lines at the start of the CSV file contain R code to reproduce the Kendall’s
correlation test reported in this work.

Additional file 2: Figure S1. Trade-off curves for the ORTHOMAM
benchmark data set. Each panel represents a distinct procedure for
generating the guide tree. The solid line shows the median over all 11,305
families; the shaded area represents the first (25%) and third (75%)
quartiles.
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Additional file 3: Figure S2. Trade-off curves for the PFAM benchmark
data set. Each panel represents a distinct procedure for generating the
guide tree. The solid line shows the median over all 2,785 families; the
shaded area represents the first (25%) and third (75%) quartiles.

Additional file 4: Figure S3. Trade-off curves for the PFAM benchmark
data set, using the output of Fasttree as a guide tree. Each panel represents
a distinct minimum coverage for a site to be included in the analysis. The
solid line shows the median over all 2,785 families; the shaded area
represents the first (25%) and third (75%) quartiles.
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