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ABSTRACT  

Ribonucleotide reductase connects the RNA and the DNA world via strictly controlled 

radical chemistry that reduces all four essential ribonucleotides to deoxyribonucleotides. In 

RNR Ia, the starting point is the µ-oxo diiron cofactor, where a “stable” tyrosine radical 

(Y122•) is formed from a nearby tyrosine in the β subunit. Successive studies showed that 

Y356•(β) Y731•(α) and Y730•(α) are intermediate steps of an intersubunit radical pathway, 

before a putative catalytic cysteine radical (C439•) is formed in the α subunit. 

Conformational gating hinders the direct observation of these transient radicals. A well-

characterized mutation strategy by site-specific incorporation of the unnatural 3-amino-

tyrosine (NH2Y) was successfully used to omit conformational gating. To analyze 

electrostatic effects and hydrogen (H) bond networks, all three Ys (Y356, Y731 & Y730) were 

successively mutated. Seminal studies revealed an exceptional difference between the 

tyrosine radials formed within the radical propagation and the Y122• at its beginning. The 

stepwise oxidation and reduction of these amino acid radicals is directly linked to a proton-

coupled electron transfer (PCET). Therefore, the investigation of electrostatics and 

H bonds is fundamental to understand this important process in biology. 

 Pulsed 263-GHz EPR spectroscopy as well as ENDOR spectroscopy delivered 

insight based on closely characterized mutation approaches into the electronic and H bond 

structure of the NH2Ys•. It could be shown that an electropositive surrounding of moderate 

to strong H bonds are a common feature in α and β subunits. In the α subunit, double 

mutant approaches delivered insight into the effect of the removal of an H bond donor on 

the radical transfer efficiency and supported the assignment of the ENDOR studies. 

Deuteron nuclei (2H) ENDOR spectroscopy revealed 2, 1 and 0 H bonds perpendicular to 

the ring plane of NH2Y730•, NH2Y731• and NH2Y356•, which is consistent with a “π-stacking” 

between Y731 and Y730. Three structural DFT models for NH2Y731• based on optimized 

crystal structures have been discussed in terms of H bonds and environment. A 

perpendicular strong H bond (1.6 Å) and a weak H bond (≥1.9 Å) was consistent with the 

electrostatics observed at NH2Y731•. NH2Y356• showed the lowest gx value, typical for a polar 

electrostatic environment. Due to the limited structural data, no active model of NH2Y356• 

could be obtained. The possible influences on the gx value were discussed based on small 

model DFT calculations. Experimentally, one weak to moderate H bond (1.9±0.1 Å) could 

be resolved in the forward radical transfer to a wild type-β Y356• environment using a 

different mutation strategy. DFT models consistent with the obtained g values proposed 

another weak H bond (>2.1 Å). All moderate H bonds found at residue β-356 were in-plane 

of the tyrosine π system. Overall, this illustrates that different H bond networks in the α and 

β subunit are used to promote this long proton-coupled redox chain. 
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Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in RNR Ia 

Introduction   1 

1 INTRODUCTION 

RIBONUCLEOTIDE REDUCTASES 

Decades after their discovery, Ribonucleotide Reductases (RNRs) remain at the frontier of 

science in diverse disciplines. With the first tyrosine radical ever found in an enzyme,1 RNRs 

opened up a complete new field of radical enzymes.2, 3 Regarding oxygen storage and 

transformation, the RNR cofactor structure has sparked interest in atomistic molecular 

mechanisms.4 Furthermore, orally administered compounds targeting ribonucleotide 

reductases were found useful in cancer therapy.5 Therefore, a short overview of this class of 

essential enzymes for higher life forms is given.6, 7 

1.1 Ribonucleotide Reductases: Bridging the RNA and DNA 
World 
With the evolution from RNA to DNA, the necessity to form deoxyribonucleotides from 

ribonucleotides—under the retention of configuration—fostered the need for a specialized 

radical enzyme, the ribonucleotide reductase.8 This enzyme is entirely responsible for 

providing 2’-deoxyribonucleotides (as dNPDs or dNTPs) from all four ribonucleotides (as 

NPDs or NTPs; Figure 1-1);9 thereby it plays a strictly controlled central metabolic role in 

regulation of DNA precursors.10, 11 Depending on the target organism, this essential role has 

been used successfully for anticancer, antibacterial and antiviral therapies.12-15  
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Figure 1-1: Chemical reaction catalyzed by RNRs. The 3’ hydrogen (marked red) abstraction 
leads to the irreversible loss of the 2’ hydroxyl (marked blue) in the form of water.16-18 The 
reaction is catalyzed by a bound cysteine radical (C•).19 The C• is initially formed by several 
radical precursors as shown in Figure 1-2. Proton(s) and two electrons of two neighboring thiols 
(RNR I and II) or from formate (RNR III) reduce the nucleotide. For RNR I and II the 
rereduction is performed by thioreoxin (TR) coupled to thioredoxin reductase (TRR) using 
NADPH as cofactor.2   

1.2 Diverse Classes of Ribonucleotide Reductases 
RNRs are divided into three enzyme classes. From the evolutionary view point, the different 

classes of RNRs can be linked to the change from a reducing to an oxidizing atmosphere. 

The different classes of RNRs are connected to aerobic and anaerobic life forms. In all 

classes a cysteine radical is proposed to induce a 3’ abstraction on the nucleotide side, as 

illustrated in Figure 1-1. Hence, this radical has to be generated. The three classes of RNR 

can be distinguished by their cysteine radical generation, see Figure 1-2.8 The cysteine 

radical is located on the tip of a loop within a structurally conserved ten-stranded α/β barrel 

protein, the α subunit.20-22 The structural motive belongs to the super family of glycyl radical 

enzymes.23, 24 RNR class III indeed produces a glycyl radical by an activase. This additional 

enzyme utilizes iron sulfur chemistry (Fe4S4
+/2+) in a complex with S-adenosylmethionin.3, 20, 

25-27 Glycyl radicals are oxygen sensitive; therefore RNR III works strictly under anaerobic 

conditions. Here the catalytic cycle is closed by a chemically simple formate as reductant, 

supporting the idea that class III is closely related to the ancient form of RNRs.6  
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Figure 1-2: Classification of RNRs based on their metallocofactor to activate C• at the 
nucleotide reduction site. The respective location of the cofactors is denoted by α or β. Adapted 
from reference.28 The interaction between cofactor and active site is either direct or over a 
radical transfer (RT, see Section §1.4, p.6). 

Class II RNRs can tolerate oxygen, but are also independent from oxygen. They are 

activated by a radical cofactor formed from adenosylcobalamin and have been found to 

include the only functional monomeric RNRs.21 RNR class II and III proteins are common 

in bacteria and archaea, but rare in eukaryotes.29 A comparison of the α/β barrel has found a 

higher structural similarity between RNR II and RNR I compared to RNR III. The root 

mean square deviation (RMSD) increases from 1.0 Å to 1.7-1.8 Å (based on 70 Cαs).20-22  

 Class I RNR’s are common in eukaryotes and rare in bacteria and archea.29, 30 This 

class I harbors an µ-oxo-di-metallo cofactor, which induces a tyrosine radical (Y•) in the β 

subunit.27, 31-33  

 Depending on the environmental conditions, one RNR class can be better suited 

than another, as in anaerobic conditions RNR III, iron limiting or facultative oxygen supply 

conditions RNR II and in aerobic oxygen rich environments RNR I.8 Therefore, often 

several enzymes are found in an individual organism, as in Escherichia coli (E. coli). 
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  The class I RNRs are further divided into three subclasses: (i) class Ia harbors an 

FeIII
2 site, (ii) RNR Ib has a MnIII

2 cofactor and (iii) RNR Ic has a mixed MnIV and FeIII µ-

oxo-µ-hydroxy complex. Despite the huge diversity of RNRs, some structural aspects are 

highly conserved, for instance, the nucleotide reduction mechanism, the activity and the 

specificity binding site.33-35 It is noteworthy that the location of the glycyl radical (RNR III), 

5’-deoyadenosyl radical (RNR II) and two tyrosines (RNR I) occupy the same structural 

space in all RNRs. RNR Ia and Ib form a Y• in direct vicinity to the metal cofactor,20-22 

whereas RNR Ic forms a Y• in β under a similar radical propagation mechanism.36-38 In RNR 

Ib, however, the formation is dependent on a cosubstrate (NrdI).32, 39, 40 Whereas for RNR Ia 

and Ic the active state resembles an α2:β2 complex,33, 41 RNR Ib shows a variety of active 

encounters.42 All class I enzymes must transfer the electron from the α to the β subunit. This 

radical translocation and its mechanism based on putatively conserved radical intermediates 

within RNR Ia (cf. §1.4, p. 6) is still part of ongoing research and studied within this thesis.22, 

38, 43-49 

1.3 Differences and Similarities of Escherichia Coli and Eukaryotic 
RNRs 
This thesis focuses on the prototypical RNR Ia from E.coli. However, class Ia is most 

prominently found in eukaryotic organisms.29 RNR structures of yeast, mice and humans 

have been studied.50 Therefore, structural differences and similarities should be mentioned. 

The α subunits of several RNRs can be compared based on existing crystal structures 

(Figure 1.3).  

 Although the sequence homology of approximately 27%, is quite small, the RMSD 

of E. coli RNR structure is small compared to that of eukaryotic RNR.50 For example, the 

differences in all common Cα positons between E. coli and human RNR is 1.3 Å50 and to 

yeast it is 1.7 Å.50 Moreover, conserved residues, which are intended to take part in the 

radical translocation, allocate the same structural space for all found class I α structures (cf. 

Figure 1-3). In E. coli RNR Ia numbering, they are Y730 and Y731 (dark gray in Figure 1-3). 
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Figure 1-3: Similarities between the different RNR I α subunit structures from four organisms. 
Important conserved residues (Y-Y-C) for the radical transfer are shown in dark gray. The 
occupancy of the nucleotide reduction side or the effector side is shown in white spheres. The 
crystal structures used can be found in the protein data base under PDB ID: 1PEQ, 2X0X, 3S87 
and 3HND left to right, up to down. 38, 43, 44, 50, 51 

 Comparing eukaryotic RNR β subunits to E. coli, several differences were found: 

the so-called stable Y• (Figure 1-2) has been found to be far more accessible in eukaryotes 

compared to the prokaryotic structure.52, 53 This also had implications on the electron 

paramagnetic resonance (EPR) spectra of this radical site. The Y• in eukaryotic RNRs is 

hydrogen (H) bonded, whereas that of E. coli is isolated; however, both are expected to be in 

a hydrophobic environment (cf. Figure 1-5, inset).54, 55 The structural differences to E. coli in 

the β subunit are larger. For example, based on the C-α overlay 389 atoms fit between the 

hp53R2 dimer and the E. coli (1PFR) structure with an r.m.s. deviation of 1.67 Å.53 The 

α2/β2 subunit interaction is weak with a Kd of 0.4-0.5 µM56-59 in pro- and eukaryotic RNR Ia. 

So far, no structure of the active state could be found in any RNR. 
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In the following part of the chapter, the current knowledge and the aim of this thesis is 

further defined. 

1.4 Escherichia Coli RNR Ia 

1.4.1 Structural Basis of the Radical Transfer 

1.4.1.1 The Tertionary and Quatanary Structure 

To understand the activity of RNR Ia enzymes, several features have to be considered. Two 

diferrous sites are located in the obligate dimeric β2 subunit with 87 kDa.46, 60 The β2 subunit 

forms the µ-oxo-diferric Y• cofactor using molecular oxygen.60 UV-vis spectroscopy has 

shown that this tyrosine cofactor is remarkable in terms of stability. Y122• is exceptionally 

stable with a half-life of t1/2 ≈14 d at 4 °C,61 whereas tyrosine radicals in solution are reduced 

within µs.62 The crystal structure of the oxidized form revealed that Y122 is 10 Å away from 

the surface and embedded in a closed hydrophobic region.46 EPR crystal studies showed 

only a slight tilt (≈-3° ring dihedral) of Y122• after reduction.63 On the other hand, stability of 

the radical implies that the β subunit is able to trigger catalysis in α over a long reaction time.  

 Due to its central role in DNA synthesis and repair, the enzyme has to be tightly 

regulated. Beside the regulation in transcription,64 the subunit interaction controls the 

formation of the α2/β2 active complex. This is regulated by the large α2 dimer, with 172 kDa 

(Figure 1-4). Binding of ATP and dATP in the activity site increases and reduces the 

activity, respectively. Furthermore, allosteric control insures for the four different substrates 

(S= CDP, ADP, GDP, UDP) by nucleotide binding to the effector site (E= ATP, dGTP, 

TTP and dATP) a balanced pool of dNTPs. Overall, the binding of nucleotides intensifies 

the inter subunit binding by a factor of 2-8.56, 59 Moreover, the equilibrium between the 

active α2β2 complex and the inactive α4β4 is regulated by the activity site.65  

 The active complex envisioned in silico based on shape complementary of the 

individual subunits α2
22, 66, 67 and β2

46, 63, 68 is shown in Figure 1-5. The inactive (α4β4) complex 

has been characterized by low-resolution methods such as cryo-EM69, 70 and small angle X-

ray scattering data.71 Interestingly, the distance between the substrate binding site and the 

Y122• increases from about 40 Å to 55 Å between the active to the inactive form based on 

these models.65 This regulatory process, however, tells us nothing about how this distance 

can be overcome to form the catalytic C•.  
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Figure 1-4: Crystal structure of the α2 dimer of E. coli RNR Ia. The α2 (green and blue) has three 
nucleotide binding sites. A catalytic side (GDP in white) with the nearby catalytic C439, a 
specificity site (TTP in ecru).22 An activity site harbors an ATP substitute (PDB ID 3R1R) as 
highlighted in purple.66 The obtained crystals required all the presence of a 15 amino acid C-
terminal β peptide (orange). 

1.4.1.2 The Proposal of the Radical Translocation Pathway 

In the docking model, as mentioned in the previous section, a rigid α/β barrel structure 

interacts with a buried Y122•.22, 46 Ridged-body docking models could not further reduce this 

distance between Y122• and the catalytic site.22 This in silico model implied a radical transfer 

(RT) over 38 Å. Uhlin and Eklund concluded in 1994, that a long-range radical transfer 

takes place to overcome the distance between Y122• and nucleotide reduction side.22, 72 The 

proposal of an electron transfer (ET) over more than 35 Å was unprecedented at that time.2 

Four residues were suggested to form radical intermediates as W48 and Y356 in β, whereas Y731 

and Y730 were assigned to take part in this RT in α (cf. Figure 1-5 left).  

 The participation of β-W48 in RT was suggested based on two arguments. First, it 

is a strictly conserved residue at the interface. Second, W48 was in a local environment similar 

to a W in cytochrome c oxidase, where W+• has been found as an intermediate.72 However, 

no experimental evidence has been shown for the participation of W48
+• in the ET of RNR 

up to today.73, 74  
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Figure 1-5: E. coli RNR α2β2 docking model.22 The β2 subunit (red and yellow) harbors the 
diferric Y122• cofactor (large inset). 46 The α2 dimer (green and blue) has the catalytic side (GDP 
in white) with the nearby catalytic C439• (small inset).22 The distance in this model between β-
Y122 and α-C439 is 38 Å. Strictly conserved residues along the radical translocation pathway are 
shown in black. 32 C terminal residues are not observed due to thermal lability including β2-Y356 
(marked with an ellipsoid). 

Despite the absence of structural information (Figure 1-5), residue β-Y356 was proposed to 

form a Y•75 and bridge the gap between β2 and α2 subunits. Seminal studies demonstrated 

that, although binding of the subunits is not perturbed, Y356F mutation renders the protein 

inactive.45, 56 In α2, the phenylalanine mutants of Y730 and Y731 were revealed to be inactive,47 

although the inter-subunit binding and crystal structures of the mutant were unperturbed.47 

Despite the success in assigning putative intermediates, the detection of radicals along the 

pathway remained elusive. A slow conformational step has been postulated as the main 

reason for the absence of pathway radicals in the wild type (wt) enzyme and mutants 

mentioned so far.34, 47, 76 
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1.4.2 Unnatural Amino Acids to Study the Radical Translocation 
In RNR Ia, two things have to be considered in studies of the RT: local structural or kinetic 

changes. First, RNR has an apparent half-site reactivity,77 but the active model is completely 

symmetric. Half-site reactivity is otherwise known from pseudo-symmetric molecular 

machines like the photosystem II (PS II).78, 79 In RNR both half-sites are proposed to be 

active successively.41, 76 A slow conformational arrangement occurs before the first α/β RT 

takes place and the second conformational step during or after product formation, but 

before the other half-site is triggered.80 This clearly complicates a stepwise investigation of 

the formed intermediates. The radical transfer and nucleotide reduction steps are not 

directly observable.18, 76 Therefore, unnatural amino acids (UAA) were incorporated into E. 

coli RNR. 

1.4.2.1 Evidence for the Active Role of β-Y356 

First experimental evidence for an active role of β-Y356 within RT was obtained by turnover 

studies with unnatural amino acids. Catalytic rates changed by changing the redox potential 

(compared to Y -> Y• + e- +H+) and the pKa at position 356.81-83 FnY’s and 4-NH2-

phenylalanine (Figure 1-6 B) were incorporated at this position. It could be shown that 

redox potential differences from -50 to 50 mV are tolerated without loss of activity. When 

the pH of the buffer was changed stepwise at redox potential differences above 120 mV, only 

30% of wt activity was observed. The differences in pKa values also revealed that RNR does 

not require a protonated tyrosine at 356 to be active. These studies suggested that a proton 

transport (PT) is not a prerequisite for ET from and to Y356.82, 83  

 Notably, this was the first indication that in the β subunit, due to the higher pKa of 

tyrosines, the proton travels orthogonally to the ET. Here a strongly conserved E350 in β has 

been proposed to be involved.82, 83 Mutation of β2-E350 to alanine leads to a catalytically 

inactive enzyme, despite the ability to bind α2.45  

1.4.2.2 Observation of Radical Intermediates 

Three main procedures were developed to introduce a new rate limiting step in RNR and to 

observe radical intermediates.41 First, an unnatural amino acid (Figure 1-6, 2&3) was 

incorporated to reduce the electron potential. This method can be applied to all RT pathway 

residues. Second, the potential of Y122 can be increased by introduction of an unnatural 

amino acid.28, 84 This method will be discussed in Chapter 5 in more detail. Furthermore, a 
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radical can be produced via photoexcitation, for instance with a Re(I) complex.85, 86 This 

complex is apolar and can alter the local environment at the interface.85, 86  

 Introducing more stable radical intermediates to form radical “sinks” or “traps” 

could be performed site selectively in various ways.41 The first example is the incorporation 

of (S)-2-Amino-3-(3,4-dihydroxyphenyl) propanoic acid (Dopa) as unnatural amino acid. It 

has a 260 mV lower reduction potential compared with tyrosine under similar conditions. 

Hence, incorporated for Y356-β2 the protein becomes inactive, but a radical can be observed 

at Dopa356-β2 after reaction with excess substrate, effector and α2 (single turnover 

conditions).87 

 

Figure 1-6: Unnatural amino acids (UAA), which could be incorporated into RNR. A) UAA 1, 
3-7 have been incorporated by the AMBER Stop codon in vivo nonsense suppression.88 UAA 1, 
2, and 4-7 have been incorporated in position 356 of β2 by expressed protein ligation.89. B) 
Positions within the pathway were UAA have been incorporated by the AMBER stop codon (in 
color) and protein ligation (in gray). Phenylalanine (F) or alanine (A) are shown in black 
incorporated by site specific mutagenesis. As summarized in ref. 41. 

 The second example stabilizes the radical on the pathway and still allows residual 

activity of the mutant protein complex with 3–12%.44, 67 Additionally, the pKa is nearly 

identical to that of Y.44 3-Amino tyrosine (NH2Y) is 190 mV easier to oxidize to its 

corresponding radical (NH2Y•) than Y based on the peak potentials.90 Under single turnover 

conditions it competitively “traps” the radical along the pathway.91 Here crystal structures of 

α2 revealed an undisturbed environment for the NH2Y incorporation at 731 and 730, as 

displayed in Figure 1-7.67 These mutants were incorporated at all pathway tyrosine residues, 

as summarized in Figure 1-6. Kinetic studies revealed that the radical formation is kinetically 

competent compared to the overall rate of wt RNR of 2-10 s1.76 The biphasic behavior of all 
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radical formations was assigned to a conformational step. This step is prior to radical 

formation, thus between Y122 and Y356.28, 44, 67 After formation of the radicals in ~30–40% 

yield, they are stable up to several minutes.67, 92 This offered the possibility for their 

spectroscopical (§1.4.3 §1.5 and Chapter 4) and biochemical investigation. 

 

Figure 1-7: Overlay of crystal structures of NH2Y730 (yellow), NH2Y731 (blue) and wt-α2 (green). 
Three RT pathway residues are shown as sticks and oxygen nuclei of water molecules in red 
spheres.67 

1.4.3 Experiments on the α2β2 RNR Complex 
The first experimental evidence of the “active” complex was obtained from pulsed EPR 

spectroscopy of radical pairs.80 The coupling between radical pairs can be measured by 

pulsed electron double resonance (PELDOR) spectroscopy and a distance can be assigned 

(see Section §2.1.4, p.35). After observation that both β subunits carry a Y122•93 the half-site 

reactivity77 was used to measure the distance between β-Y122• and radicals in β or α, as shown 

in Figure 1-8A.80 First, in a PELDOR experiment with solely wild type enzyme only one 

distance from Y122•-Y122• could be observed.76 Then a nucleotide analog inhibitor forming a 

stable radical in α was used. A diagonal distance of 48±1 Å was obtained. 
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Figure 1-8: Diagonal distances of the active complex obtained with radical traps. A) PELDOR 
on β2 revealed two Y122• in β2. Under reaction conditions with the substrate inhibitor 2’azido-2’-
deoyuridine-5’-diphosphate only two distances are observed, 48 Å and 33 Å. B) In three 
consecutive reactions with three β2/α2 mutants diagonal distances gave the first experimental 
evidence for the proposed radical intermediates. All distances supported the docking model. 

Successive work also measured diagonal distances to Dopa356• and NH2Y• at all suggested 

RT Y positions (Figure 1-8B).28, 41, 65 All distances supported the docking model. The 

“active” α2β2 complex is meanwhile generally accepted.28, 41, 65 These PELDOR studies were 

equally important as the first experimental evidence of radical intermediates between the 

subunits bridging the interface. And therefore they demonstrated the long distance electron 

transfer. Recently, the same distance to Y356• has been determined in the millisecond time 

scale (8 ms) using another UAA (NO2Y122•) approach discussed in §1.4.5 (p.16).84 

 The “active” complex was only observed during the lifetime of a metastable 

transient radical (NH2Y730•) formed in α.69 Using this mutant, it had been demonstrated that 

in the “active” complex the subunit interaction increases by a kinetic factor of ~104.69 This 

information along the interface could identify binding principles, which might be 

intercepted by inhibitors. Finding specialized inhibitors in RNRs is still an ongoing 

process.15 For instance β-peptides mimicking the C-terminal region of β2 (see Figure 1-4) or 

nucleotide inhibitors operate at the interface.13, 15 Structural information might improve 

these inhibitors. Currently, a 32 Å resolution structure of the “active” complex is available 

from cryo-electron microscopy reconstruction.69  
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1.4.4 Proton-Coupled Electron Transfer 
All radical transfer intermediates shown so far are amino acids. During each nucleotide 

turnover, they oxidize reversibly within the turnover rate of RNR (2-10 s-1).76 Under 

physiological conditions, reversible oxidation requires release of a proton to an acceptor 

concomitant with oxidation. Otherwise, high energy intermediates are formed. More 

specifically, for tyrosines the difference between a stepwise transfer and a concerted proton 

electron transfer (CPET) is 540 mV in redox potential.94 A strong acidic (Y-OH+•) 

transition state would be formed in a stepwise transfer, as illustrated in the parallelogram in 

Figure 1-9. To avoid high energy intermediates a variety of individual proton coupled 

electron transfer (PCET) steps are linked to the nature of the RNR radical enzyme.17 

Studying individual PCET steps can be a paradigm to understand common principles, which 

control this fundamental process. Basic principles among PCET processes in biology are still 

hardly defined including but not limited to: photosynthesis, respiration and nitrogen 

fixation.95-97 

 In RNR several amino acid oxidations take place over an unprecedented length.41, 

94, 98 Here nearly every combination of possible PCETs has been discussed. The differences 

in mechanism should be briefly described in terms of forward radical transfer toward the 

active site (forward PCET). A recent proposal of the PCET mechanism in RNR is shown in 

Figure 1-10.41 

 

Figure 1-9: PCET pathways between two Y radicals. An electron transfer (ET) and a proton 
transfer lead successively to charge separated transition states (double dagger). A concerted 
proton coupled electron transfer (CPET) avoids these states. A hydrogen atom transfer (HAT) 
is a special case of CPET in which the proton and the electron are transferred to the same orbital.  
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Figure 1-10: Working model of the PCET between the subunits α and β of RNR Ia. The 
conserved residues participating in the radical translocation are shown. Coupled protons (blue) 
to this electron transfer move collinearly (purple arrow) in α or orthogonally (blue arrow) in β to 
the electron transfer (red arrow) direction. W48 and D237 are shown in gray because there is no 
evidence for their participation in PCET between the subunits.  

 Y122• and Y356• are reduced based on the current model (Figure 1-10) by a long 

range electron transfer and a short range proton transfer. The direction of ET and PT is 

different for the Y122• and Y356• redox reaction this is coined a bidirectional PCET. This step 

is strongly linked to the intrinsic quantum mechanical nature of the proton and electron 

movement. Electrons with their light mass can travel over large distances (in biology up to 

20 Å),99, 100 whereas PTs are limited to short distances (< 1Å).94, 101 Experimentally, 

exponential distance decay parameters have been estimated with βET = -1-1.4 Å-1 and βPT 

≈ -27 Å-1 100-103 for ET and PT, respectively (see §2.4.1 p.54). The different nature of these 

transfers is also the background for a recent finding. Y122• is first activated by a proton 

transfer from an iron cofactor ligand, only then does the electron transfer (most probably to 

Y356•) take place.104, 105 

 The proton acceptor for β-Y356• has been proposed to be β-E350.45 The assignment 

of E350 as proton acceptor, however, is still elusive. Experimental evidence is absent for 

participation of any of the conserved glutamates within β. It is generally accepted that the 
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electron to reduce β-Y356• comes from α-Y731.41 The proton acceptor of α-Y731, however, is 

again undefined. 

 The adiabatic CPET between α-Y730 to α-Y731• is generally postulated, represented 

by a purple arrow in Figure 1-9 and Figure 1-10.41, 94, 106, 107 Spectroscopic evidence is still 

missing. A prerequisite for this CPET is a parallel displaced “π-stacking”108 between α-Y730 

and α-Y731• (cf. Theory §2.4.2, p.57).107, 109 Open questions remain, because some crystal 

structures showing either a T-shaped “π-stacking” (see Figure 1-3) or even distant 

conformations between the reduced α-Y731 and α-Y730 amino acids (see Figure 1-12B). 

Moreover, it is still not clear if the proton travels as hydrogen atom (HAT)107 or if the 

electron interacts with the π system of the nearby aromat (CPET).106, 110 The former is often 

defined as a transfer from and to the same acceptor orbital.95 The CPET case describes the 

process in which the proton and the electron travel to two different acceptor orbitals (cf. 

§2.4.2.1).95 Common pitfalls in the assignment and term discussion are explicitly stated in a 

recent review.111 Additionally, it is unclear if a water can participate in this transfer steps,106 

or which hydrogen bond (H bond) interactions can modulate the PCET (cf. water in Figure 

1-7).107 

 The interaction between α-Y730 and α-C439 has been questioned to occur over an 

additional water species that generates a double PCET step.112 This has been postulated 

based on a QM/MM study. Results from EPR and density functional theory (DFT) a 

postulated direct transfer above, as discussed in §1.5.3. Here the authors assigned the proton 

acceptor of α-Y730 to α-Y731 and α-C439, for forward and reverse radical transfer, respectively. 

The central difficulty is to find, locate and finally to assign interactions within the PCET. 

Our approach is to use the still spectroscopically observable stabilized radical state and 

resolve the interaction of protons in the environment after each PCET step, as introduced in 

§1.5 (p.19). 

 In most discussions of mechanism, calculations have always played a central role. 

Siegbahn et al. have demonstrated that the mechanism of PCET can be investigated without 

prior knowledge of the complete surrounding.107 Therefore various studies investigated the 

transfer between Y731 and Y730 solely by modeling a dipeptide†.106, 113 However, already in 

                                                                    
 

† The models were set up with and without an intervening water molecule present between the two Ys. 
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1998 Siegbahn clearly stated that at least the H bond interaction has to be known in order to 

obtain an accurate model, which is in part the scope of this thesis.107 

 Beside the proximity, energetics play a major role in PCET reactions. For short 

electron transfers (14 Å) it has been calculated that endogenous transfer steps of 450 mV 

can be overcome.99 At 102 s-1, the rates remained within the range observed in RNR.99 In 

RNR, an endogenous step of more than 150 mV has been theoretically found for the 

forward radical transfer between Y730 and C439 in α.110 If the potential is not the rate limiting 

factor in electron transfers, how does RNR then control the remarkable specificity of its 

PCET? In RNR, a change in one residue renders the whole electron transfer inactive as 

discussed before. 

 ET rates in oxidoreductases are typically faster than observed in RNR with a 

catalytic rate of 2-10 per s.99, 100 These ETs are reported to be in the order of µs.99 Therefore 

it was interesting to investigate which fast processes are hidden under the slow 

conformational step(s). Fast rates as 105 s-1 could be found for the PCET within α by photo 

activation, using a deprotonated UAA tyrosine analog (2,3,5-F3Y) at residue β-356.86, 114  

1.4.5 Rates and Thermodynamics during PCET 
The discussion of PCET energetics is usually either based on bond dissociation energies 

(BDE)2 or redox potentials.41 The former can lay out the general picture of an endogenous 

forward PCET. BDE of PhO−H, RS−H, and HOCH2−H are ∼86, 91, and 94 kcal⋅mol-1, 

respectively.115, 116 The redox potential discussion tries to consider not only the solution 

redox potential, but also the potential in the individual protein environments. Initial studies 

could show that the pKas are within one subunit similar at Y731 and Y730.117, 118 Only Y122 has a 

>1.5 units larger pKa shift compared to the three on pathway tyrosines.118, 119 Therefore it 

was postulated that by incorporation of different tyrosine analogs the redox potential could 

be estimated over the whole pathway. Up to now, studies have reported two major 

indications. Both use mutants, which increase the oxidation potential of Y122, to omit the 

conformational gating, as shown on the left side of Figure 1-11. When 2,3,5-F3Y122 is 

incorporated, Y356• is formed first up to 50% in the ms time scale, then it reduced to 25% in 

comparison with 2,3,5-F3Y122•.28, 120 Therefore it was suggested that the 2,3,5-F3Y122 has a 

similar redox potential as Y356 for radical formation (cf. Chapter 5). Furthermore studies 

incorporating NO2Y122 could demonstrate, that Y356• is formed in equilibrium in a ratio of 
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10:1:1 with Y731• and Y730•.84 This equilibrium can be interpreted thermodynamically. The 

following redox potentials are obtained relative to Y122, as shown in Figure 1-11.41 However, 

there is evidence for a non-Nernstian behavior between Y122 and Y356 positions.28, 41 This is 

suggestive for a conformational gating step present between these Y’s.28, 41 Additionally, the 

peak potentials reported here are under revision.15, 22, Reversible redox potentials are 

reported for the 3,5-F2-Y up to now.28, 41, 121, 122 

 

Figure 1-11: Redox peak potential changes relative to Y122.41, 110 The potentials are evaluated for 
the reaction Y -> Y• + e- + H+. Local pKa considerations have been taken into account for the 
UAA in position β-122.41 

1.4.6 PCET through the Interface of the Subunits 
 Information of the interaction between α-Y731 and β-Y356 is essential to understand 

the function of this enzyme class. The information from the individual crystal structures 

should be briefly summarized. As already mentioned, the C- terminal tail is unstructured in 

the β dimer, however it becomes ordered in the active state as PELDOR data and NMR 

work has revealed.43, 123 From an electrostatic point of view, the sequence of the C-terminal β 

tail reveals the presence of three negatively charged amino acids but zero positively charged 

ones. A plot of the expected electrostatic potential of an individual α at the interface to β is 

shown in Figure 1-12A. Thus not only the nucleotide binding site, but also the larger region 

is dominated by positive electrostatic charges. 
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Figure 1-12: Electrostatic and local structural information found for α-RNR. A) Electrostatic 
surface potentials were calculated using the program APBS124 with the nonlinear Poisson–
Boltzmann equation and contoured at -4 to 5 kT/e. A dielectricity of water (ε=80) and ε=4 for 
wt protein α subunit was used.67 B) The crystal structure of NH2Y731 (blue, PDB ID 2XO5) is 
compared to the third monomer of NH2Y730 (yellow, PDB ID 2XO4). The O-O distance in Å 
and the ring dihedral is given.67 

The ET rate decays with distance. Considering this, the distance of the ET is limited to 

insure a selective transfer step across the interface (see Theory §2.4, p.54).99 The current 

proposed step of 33 Å between β2-Y122 and α2-Y731 is long, even including the β2-Y356 

intermediate.125 However, a flexibility present in one monomer of the X-ray structure shows 

Y731 changing its conformation and distance to NH2Y730 by 6 Å (Figure 1-12B). A 

conformeric change at β-Y356 cannot be excluded and could also reduce the distances for an 

individual PCET steps. Conformational changes could be too fast to be observed even using 

rapid freeze quench (>5 ms)126 techniques or other spectroscopic assays (>10 ms).127 

However, a conformeric change at a Y has been reported by infrared (IR) spectroscopy in 

β.128 They compared the non-oxidized to the oxidized state within minutes reaction time.128 

IR spectroscopy normally need well characterized ring dihedrals and backbone dihedrals in 

order to assign IR shifts precisely (cf. Figure 1-12B).129-131 Barry et al. propose based on their 

Y,T di-peptide model129-131 a conformeric change of Y122•;128 however, the apparent 

contradiction between the ring dihedral from EPR spectral simulation (43°)132 and their 

assigned ring dihedral (80°) is currently not resolved.133 Generally, information on ring 

dihedrals within the PCET of RNR is reported only at one additional position. The ring 

dihedral of NH2Y730• was assigned by EPR spectroscopy (see next section).134 Spectroscopic 
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investigation in frozen solution and in the second time scale can deliver complementary 

information to interpret results on a common foundation.  

1.5 EPR Spectroscopy for PCET Pathways 

1.5.1 Overview 
EPR spectroscopy on biomolecules is an elegant way to study selectively active sites around 

radicals and paramagnetic ions. Radicals and paramagnetic ions have an unpaired electron, 

which can be probed in a magnetic field (B0). Pulsed EPR techniques like double resonance 

techniques can meanwhile routinely be applied. One example is PELDOR (§1.4.3, p.11) 

spectroscopy, which delivers structural information based on the magnetic interaction 

between two unpaired electron spins. Another technique, Electron nuclear double 

resonance (ENDOR) spectroscopy, can be applied to retrieve structural information if an 

electron spin interacts with a nuclear spin (hyperfine interaction), i.e., protons of H bonds 

around a Y•. 

 EPR techniques brought valuable insight into PCET systems in general135-138 and 

particularly to RNR.41, 139 EPR spectroscopy applied in combination with UAA is able to 

characterize trapped radicals in the “active” RNR complex.41, 44 Radical intermediates (i.e., 

NH2Y•) were assigned in the PCET of RNR for the first time.43, 44 

 EPR spectra provide information about the radical species observed, for instance 

the resolved 14N hyperfine (HF) coupling in NH2Y•.134 In organic radicals (as Y• and 

NH2Y•) only at high-field (> 3 T) another interaction becomes resolved the g tensor. This g 

tensor is often essential for the identification of the organic radical species.140 In the principle 

axis system, the g tensor has three g values (gx, gy and gz). The orientations of the principle 

axis are directly connected to the molecular frame (cf. Figure 1-14A). g Values can be viewed 

as an electronic finger print of a radical species. At high accuracy, however, they are also a 

function of the oxygen spin density population (see §2.1.2, p.31). Therefore they are 

affected by electrostatic interactions in the surrounding of the phenoxy oxygen. In π radicals 

as tyrosines especially gx and gy values are affected by local electrostatics as charges or 

protons around the phenoxy oxygen nuclei.141-146 

 In biomolecules with several paramagnetic species as in the PS II or RNR it is 

often necessary to selectively probe one paramagnetic species. The literature shows 
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examples for the separation of EPR spectra at very high fields (> 9 mT),147 by relaxation 

filtering148 or by advanced pulsed methods.149 A general procedure cannot be given, because 

the paramagnetic species, their surrounding and their relaxation properties have to be 

considered. In RNR, Y122• is always present in samples investigating PCET radical 

intermediates (cf. §1.4.3, p.11). However, Y122• has a short spin lattice relaxation T1 due to 

the interaction to the ferric diiron site in its vicinity.55, 150, 151 Therefore the contribution of 

Y122• in the EPR spectra could be efficiently removed at elevated temperatures (70 K) in 

combination with pulsed EPR spectroscopy.55, 148, 152 

1.5.2 High-Field ENDOR and EPR in Other PCET systems 
The effect of electrostatic interaction on the g value can depend on an H bond distance to a 

Y• as reported experimentally in a recent publication by Chatterjee et al.153 Here the authors 

could demonstrate that the combination of high-field ENDOR and EPR can bring 

unprecedented spectroscopic evidence for a PT from YD• in PS II. In this study, a proton 

transfer could be demonstrated between a cold temperature state (7 K, “tensed”) and an 

elevated temperature state (70 K, “relaxed”) by ENDOR spectroscopy (the study is 

illustrated in Figure 1-13). The hyperfine (HF) interaction decreases from the “tensed” to 

the “relaxed” state according to the dipolar coupling strength of the nuclei spin and the 

electron spin (see §2.1.4, p.35). The dependence on the H bond distance is clearly visible in 

this example. By contrast, the gx value increases by 1 ppt concomitant with the increase in H 

bond length of 0.25 Å. This is in agreement with the reduction of electrostatics and has been 

predicted by DFT calculations before for Ys•.143, 154 



Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in RNR Ia 

Introduction   21 

 

Figure 1-13: The 2H Mims ENDOR spectra of two states of YD• from photosystem II in D2O 
buffer are shown. The YD•(7 K, blue, upper spectrum) low temperature state has a short H bond, 
a larger (deuterium) HF coupling, and a lower g value as the YD• (70 K, green, lower spectrum) 
at higher temperatures. Adapted from ref. 153. 

1.5.3 High-Field ENDOR and EPR in RNR 
In the last sections, it could be shown that incorporated NH2Y’s are useful to observe the 

radical in the “active” complex. Section §1.4.4 (p. 13) highlighted the need for a well-defined 

H bond network in order to calculate energetic landscapes via for instance DFT. Hyperfine 

(HF) interactions from intermolecular protons or deuterons can be probed precisely by 

modern high-field ENDOR spectroscopy. Thus information about H bonds can be derived. 

Additionally, the electrostatic interaction can be investigated by high-field EPR 

spectroscopy. The investigation on NH2Y• intermediates at residues β-356, α-730 and 731 

was started by T. Argirević in our research group.92, 110, 134 

 At NH2Y730• it was demonstrated that at higher field/frequencies the principal 

g values can be partially resolved at 94 GHz and fully resolved beyond ≈180 GHz, as shown 

in Figure 1-14A.92 Below the spectrum, the individual principal axis orientation of the 

NH2Y• g tensor toward the magnetic field are shown. Orientations can be selectively 

probed, if the excitation bandwidth of the pulse is much smaller than the spectral width of 

the EPR line.‡ Orientation selection in combination with high-field ENDOR was employed. 

In this case, T. Argirević could assign three intermolecular HF couplings as highlighted in 

Figure 1-14B (yellow, red and blue) in a 2H Mims ENDOR spectrum. With the aid of a DFT 

                                                                    
 

‡ And hyperfine couplings can be neglected in size. (cf. §2.1.3). 
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structures HF couplings obtained from NH2Y730• were assigned to three protons in the 

surrounding. The assignment is illustrated by red, blue and yellow dotted lines between the 

oxygen (O-Y731•) and the individual H bond donor nuclei in Figure 1-14C.  

 The tensor shape found in NH2Y730• for the nearly perpendicular H bonds (red 

and blue, Figure 1-14 B&C)110 has not been described before by orientations selective 

ENDOR on Ys•. Several other orientation selective HF spectroscopy studies were 

performed (a selection is summarized in Table 1-1). One has investigated the yeast RNR 

Y122 analog.55 Where Y122• is not H bonded, its yeast counterpart (Y127•) has an H bond with 

a distance of 1.8 Å and the O-H vector is nearly collinear to gx.55 The H bond of YD• is also 

within the ring and its direction is displayed in Figure 1-13.155 It is noteworthy that for these 

H bonds nearly within the ring plane the HF coupling were described by a dipolar tensor 

shape (§2.2.5, p.45). Interestingly, this seems to be independent of the estimated distance.153 

 By contrast, the study of NH2Y730• showed a tensor, in which the so-called Fermi 

contact interaction plays a role. This can be seen in Figure 1-14B, by an increase of isotropic 

coupling (aiso). Such couplings cannot be explained by simple point dipolar interaction 

approximations. Therefore quantum chemical calculations have shown to be useful.  

A joint EPR and DFT structural representation of the active state could be obtained. It 

linked the information of the inactive crystal structure to the active state observed via these 

mutants.110 

 In a multi-frequency EPR investigation in H2O and D2O buffer Argirević assigned 

g values and HF couplings for all three NH2Ys• (Table 1-2, p.25 and Table A. 1, p.191). 

Results showed at least one stronger perpendicular 2H-HF coupling to NH2Y731• as to 

NH2Y730•.92 Controversially, the g values were identical between NH2Y730• and NH2Y731• 

(Table 1-2, bottom), although different ENDOR spectra indicated a change in the 

environment. In order to resolve this, 263 GHz spectra were recorded in all three NH2Ys• in 

this thesis. 

Furthermore Argirević reported the highest electrostatic interaction at β-NH2Y356•, but did 

not investigate the local structure of this mutant (cf. §1.4.1.1). Notably, ENDOR at 

NH2Y356• is more challenging, because Y122• content per β2 in all studied mutants is reduced 

by a factor of 2. Moreover, the NH2Y356• radical yield is reported to be ≈38%, which is lower 

than reported for NH2Y730• or NH2Y731• with ≈50%.67 
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Figure 1-14: High-field EPR and ENDOR spectra combined with DFT calculations derive a 
structural model of the active structure of NH2Y730• in the PCET of RNR.A) Multi-frequency 
EPR characterization of NH2Y730•. The g values are not resolved at 9 GHz (orange), but have a 
contribution to the line shape at 94 GHz and are resolved at 180 GHz (red). Adapted from ref. 
92. Each g value (gx, gy gz) corresponds to an orientation of the molecule in the magnetic field. B) 
If the spectral width of the absorption signal is larger than the excite width of a microwave pulse 
(MW), then a single orientation can be excited. Three excitation bandwidths along a 94 GHz 
spectrum are shown in blue, red and green. By applying a Mims ENDOR sequence 2H couplings 
can be probed for each molecular orientation. In NH2Y730• three contributions beside the amino 
deuterons were found. A weak H bond in the ring plane (yellow), a weak to moderate 
perpendicular H bond (blue) and a moderate perpendicular H bond (red) C) These couplings 
were interpreted with an DFT structure and an “active” state model (gray) has been formulated 
with 0.2 to 0.6 Å shorter H bond distances than found in the crystal structure (golden sticks, 
green cartoon). D) By exchanging successively the Y residues by NH2Ys each position could be 
probed. The additional double mutants prepared for the present investigation of this thesis are 
highlighted in yellow. 
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1.5.3.1 Electrostatic Effect of H Bonds on the g Value 

In order to understand the effect of electrostatic interaction from H bonds on g values of 

NH2Y•s (Table 1-2 left) several DFT models were set up.110 The effect from an isolated 

NH2Y over one H bond to two H bonds was successively studied by models. In the DFT 

models the gx value decreases by about 0.5 ppt per weak to moderate H bond (2.0 to 1.8 Å). 

The gx value increases taking the second sphere into account in this case by 0.3 ppt (entry 4 

and 5). Interestingly, if the electrostatics of the second sphere are considered the removal of 

the weak H bond (2.0 Å) changes the g value only by 0.2 ppt. The effect of the second shell 

is likely a consequence of the polarization of the surrounding and steric effects. Notably, the 

calculations did not treat any continuum polarization or gauge origin correction. Hence, the 

uncertainty was estimated with 0.5 ppt for these models. However, most DFT uncertainties 

are systematic shifts. Therefore, it is reasonable to compare relative changes within the 

models.110 

Table 1-1: HF couplings of tyrosine to exchangeable intermolecular deuterons (D) for two 
examples. The results of YD•153, 155 and the Y122• analog of yeast RNR (Y127)55 are shown. The 
corresponding proton couplings are shown in parenthesis. 

 

Ax [MHz]
 

Ay [MHz] Az [MHz] Euler angles 
α,β,γ [°] 

Qx [MHz] Qy [MHz] Qz [MHz] 

YD•--D 
1.49 Å 

-0.68 
(-4.41) 

-0.91 
(-5.93) 

1.59 
(10.34) 

0, 90, 108 
0, 90, 126 -0.074 -0.066 0.14 

YD•--D 
1.75 Å 

-0.48 
(-3.10) 

-0.58 
(-3.79) 

1.06 
(6.88) 

0, 90, 120 
0, 90, 142 -0.07 -0.04 0.11 

Y127•--D 
1.8 Å 

-0.6 
(-4) 

-0.6 
(-4) 

1.2 
(7.8) 

0, 110, 155 
0, 110, 155 -0.02 -0.06 0.08 

YD•--D155 
1.84 Å 

-0.51 
 

1.10 
 

-0.59 
 

-26, 16, -9 
-48,30,29 -0.09 -0.15 -0.06 

a) The Euler angles are defined in respect to the principal axis frame of the g tensor (A -> g). A positive 
rotation is anti-clockwise. Az and Qz are defined as largest values. 

 For Y• several high-field EPR studies are reported with various H bond 

environments (Table 1-2 right). Here the change from zero to one and to two moderate 

H bonds decreases the gx value by ≈1.4 ppt and 1.0 ppt, respectively. A strong H bond, 

defined here with a length between 1.5-1.6 Å, leads to a decrease of about ≈2.4 ppt. Three 

H bonds around a tyrosine have only been reported by DFT calculations for functional 

essential YZ• in PS II.156 This theoretical value is in agreement with the change of more than 

1 ppt per moderate H bond.  
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Table 1-2: The g values as a function of the environment are tabulated for NH2Ys• and Ys•.  The 
g values decrease with an increase of H bond interactions in number and/or strength. Left: For 
NH2Ys it has been demonstrated by DFT model calculations.110 Right: For tyrosines several 
H bond situations have been found experimentally so far. Three H bonds to a Y• have only been 
reported by DFT calculations. 

NH2Y• DFT models gx gy gz No. 
Experimental 
Ys•  

gx gy gz 

Free NH2Y•a 2.0061 2.0045 2.0022 1 
Isolated 
Y122•d 2.00912 2.00457 2.00225 

Y731
a+NH2Y730• 

(1 H bond: 1.77 Å) 
2.0055 2.0044 2.0020 

2 
1 H bond 
(>1.9 Å) YD• 

2.0075e 

2.00774f 
2.0044e 

2.00447f 
2.0022e 

2.00232f 

2’ Y122• in 
eukaryotesg 

2.0076-
2.0077 

2.0043-
2.0044 

2.0022-
2.0023 

Y731+NH2Y730• +C439 
(2 H bonds: 
1.77/2.03 Å) 

2.0050 2.0040 2.0018 3 
1 H bond 
(≈1.5-1.6 Å) 

2.00673h 

2.0066i 
2.00453h 

2.0041i 
2.00232h 

2.0021i 

Y731+NH2Y730•  
+ C439+Wat1 
(3 H bonds: 
1.80/2.04/1.78 Å) 

2.0046 2.0039 2.0017 4 2 H bonds 
(1x 1. 6 Å) 

2.00661j 

2.00621k 
2.00418j 

2.00418k 
2.00244j 

2.00212k 

Model including 
second sphereb 2.0049 2.0041 2.0018 5 

3 H bonds Yz• 
(1. 6 Å, 2x 
1.8 Å) 

2.0055l 2.0043l 2.0023l 

Model including 
second sphere 
(without WAT1)c 

2.0051 2.0041 2.0019 6 

From simulations of 
the experiment  

 

α2-NH2Y730•m 

α2-NH2Y731•m 

β2-NH2Y356•m 

2.0052 
2.0052 
2.0050 

2.0042 
2.0042 
2.0041 

2.0022 
2.0022 
2.0021 

7 
8 
9 

a) 2-amino-4-methyl-phenol radical (2-AMPR) model; b,c) All residues within 5 Å in the surrounding of 
NH2Y730• have been modeled with (b, model 4) and without (c, model 6) WAT 1.110 d) Taken from ref. 
157. e) Median value of several YD• organisms reviewed in 136. f, h) Taken for the relaxed and tensed state 
from ref. 153. g) Values reported for yeast,55 mouse158 and HSV1159 Y122• RNR corresponding amino acid. 
i) H bonded Y radical in prostaglandin H-Synthethase from ref. 160 j,k) γ-iridiated L-Y-HCl crystal with 
two H bonds from ref. 161 l) DFT study of Yz• in the S2 state of photosystem II, ref. 156 m) The values 
are taken from ref. 134 and 92. 
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1.5.3.2 Investigation of the PCET in α with H Bond and Electrostatic Information 
from NH2Y730• 

Detailed DFT models could be set up that considered the proposed H bond interactions, as 

illustrated in Figure 1-14C. Taking into account all H bond interactions and a large model 

size, a more reliable energetic representation of the PCET in α could be calculated. The 

necessary electrostatic information and minim model size from the successive models for 

NH2Y730• were also considered (Table 1-2). The model was expanded to the radical 

positioned at residue 731, to calculate the PCET transition state between the Y731• and Y730•. 

However, the H bond environment at Y731• was not considered here.110 

The assignment of H bonds at NH2Y731• in agreement with the observed polarity at this site 

is a core focus of my thesis. It has still to be understood if two H bonds also cause the 

observed polarity at this site. Two double mutants (α-NH2Y730/C439A and α-NH2Y731/Y730F) 

have been characterized to test the assignments made in Figure 1-14D (see §4.3, p. 87). 

1.6 Motivation of the Work 
Before unnatural amino acids (UAA) could be incorporated, it was possible to study any of 

the detailed chemistry of the PCET in RNR. The incorporation of UAA is an expanding 

field and many more expansions of the genetic code162-164 but also organisms165 adapted to 

the UAA incorporation have been or will be developed. The development of these methods 

as well as the identification of its advantages and shortcomings is important.84, 120, 134, 166 Here, 

I have the chance to explore the utility for EPR of a NH2Y as a competitive radical trap for an 

interesting and still not understood PCET.41 It requires three tyrosine stepping stones over a 

distance of more than 35 Å. This is an ideal test case to compare these three NH2Y• with 

each other and relate the findings to their function in the forward PCET.  
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CHAPTER 4: 

The assignment and the active state model, as shown in Figure 1-14C, should be 

spectroscopically tested. 

 Is the difference in H bonding geometries between NH2Y730• and NH2Y731• 

resolvable by pulsed 263 GHz EPR spectroscopy?92 

 Can double mutations be used to test these interactions? 

 Can flexibility of α-Y731, postulated based on different conformers in X-ray 

structures, be observed by high-resolution 263 GHz spectra of NH2Y731? 

 Are interactions from β-Y356 to α-NH2Y731• and from α-Y731 to β-NH2Y356• 

observable? 

CHAPTER 5: 

In the second part of the thesis, another approach was used to circumvent conformational 

gating by the incorporation of β-2,3,5-F3Y122 forming β-2,3,5-F3Y122•.28, 120 

This recently developed radical species has to be characterized by high-field EPR to clarify: 

 Is conformeric state and the g value of β-2,3,5-F3Y122• unperturbed compared to 

β(wt)-Y122• ? 

 

This β-2,3,5-F3Y122• combined with a PCET blockade mutant (α-Y731F) can be used to study 

a forward PCET. β-Y356• could be formed.28, 84 

 The number, distance and orientation of H bonds to β-Y356• can give evidence for 

the type of PCET mechanism present at this position. 
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2 THEORETICAL BACKGROUND 

Tyrosines and UAA neutral radicals are studied in this thesis. From the EPR point of view, 

they resemble organic radicals with light first and second row elements of the periodic table. 

This theory chapter will therefore be restricted paramagnetic systems with an electron spin 

S = ½. Pulse EPR offers a variety of techniques to probe different interactions of the electron 

spin with its environment. Long-range interactions as the dipole-dipole coupling between 

two electron spins are studied routinely with PELDOR. Local interactions can be probed by 

ENDOR or other suitable HF detecting methods (§2.2). Changes in the CO bond charge 

distribution and influence on the spin density population can be studied as shown in the 

introduction. 

The different sizes of these magnetic interactions can be effectively evaluated in the 

framework of the spin Hamiltonian (§2.1). EPR DFT calculations (§2.3) and EPR 

simulations use these effective Hamiltonians. 167-169 

2.1 Spin Hamiltonian and Magnetic Interactions 
The energies within the EPR treatment are generally small compared to the other terms of 

the electronic Hamiltonian. Therefore they can be often separated in the static spin 

Hamiltonian (2-1). This form of Hamiltonian describes magnetic resonance behavior 

without going into physical details.170, 171 They were constructed to describe the interaction 
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influencing magnetic resonance spectra. Therefore specific properties of the system have 

often to be related to these observables by quantum mechanical calculations (cf. §2.3.4. p. 

52).167 The introduction to the spin Hamiltonian is described in several textbooks.170-172 

For an organic radical the typical contributions for this effective Hamiltonian are:  

 = + + += = = = =o EZ NZ HF NQ
ˆ ˆ ˆ ˆ ˆ

  
(2-1) 

 

The contributing terms are: 

The electron Zeeman interaction EZ
ˆ , 

the nuclear Zeeman interaction NZ
ˆ , 

the hyperfine couplings between the electron spin and the nuclear spins HF
ˆ  and 

the nuclear quadrupole interaction NQ
ˆ  for spins with a nuclear spin quantum number 

I > ½. 

 Several contributions of the spin Hamiltonian have been neglected here, either 

because the typical line broadening in EPR is larger than their contribution or due to the 

restriction to organic radicals with S=1/2 systems. 

 For all these contributions a separate treatment can be performed, if the 

contributions are clearly separated in energy from each other. To visualize this, Figure 2-1 

shows the relative sizes of these contributions at low- and high-field. 
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Figure 2-1: Typical energies in Hz of electron and nuclear spin interactions from microwave 
(MW) frequencies between X band (blue) and W band (green). The temperature scale is in 
Boltzman energy (kT). Adapted from ref. 172. 

2.1.1 The Zeeman Contribution 
The Zeeman interaction is the sole directly field dependent contribution for the nuclei and 

the electron. The energy of this quantity can be expressed in terms of the spin Hamiltonian 

for a free electron as: 

 = ⋅
 

= 0
ˆ g SZ e B B  . (2-2) 

Where ge is the g-factor of the free electron (2.002319.) and µB is the Bohr magneton. If the 

magnetic field is large and defined along the z-direction, the Hamiltonian simplifies to: 

 ==EZ e B z 0
ˆ g S B . (2-3) 

For an S = ½ system the two states are separated by the energy given by: 

 ∆ = e B 0E g B . (2-4) 

The energy difference E∆ between two nuclear spin states can be written in an analog 

equation as:  

 ∆ = n n 0E g B .  (2-5) 
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Where gn is the nuclear g-factor and µn the nuclear magnetic moment. The combination of 

both energy splittings (Equations 2-3 & 2-4) with the field is illustrated in Figure 2-5 (p.38). 

The difference in E∆ between nuclear Zeeman and electron Zeeman term, originates from 

the difference in mass of the two particles. For example, the proton and electron magnetic 

moments are compared in following equation:  

 
p e

p e

       
2 2

e e
versus

m m
 = = 

. (2-6) 

2.1.2 Anisotropic g Tensors in Organic Radicals: The Spin-Orbit 
Contribution 
Approaching a real system, a resonance is seldom defined exactly at the value of the free 

electron. To explain the deviation several effects have to be taken into account. Some are 

small like the relativistic mass correction; a particularly large one is the spin-orbit coupling. 

For the later contribution, an effective g value has been introduced that satisfies the 

resonance condition = e B 0g Bh  . This value is orientation dependent and forms a 3x3 

matrix, which is diagonalizable; it is commonly called g tensor. The Hamiltonian as a 

function of orbital angular momentum L is§ 

 ( ) ( )LS e B 0 e zEZ L
ˆ ˆ ˆg g S λ+ = + +B L LS = = .  (2-7) 

Whereas LS̂  is the spin-orbital interaction with the spin-orbit coupling constant 𝜆𝜆. For 

organic radicals with nuclei with small atomic number Z, the second order perturbation 

treatment is a good approximation, obtaining171, 173 

 = +eg 2g 1 Λ , (2-8) 

where 𝚲𝚲 is a symmetric tensor, with elements defined by Eq. (2-9). 

 
0 n 0 n

0 0

| | | |i j
ij

n n

L L   

 ≠

Λ =
−∑   (2-9) 

The electronic wave function of the single occupied ground state is 0 ; it has the energy 0 . 

Any other state n has the wave function n  and the energy n . 

 With this angular momentum contribution, the g values differ depending on the 

spin-orbit coupling of the individual nuclei bearing a part of the free electron ( )2 0 ≠ . A 

                                                                    
 

§ Bold letters numbers are indicate a matrix or a tensor and 0B is the transposed form of 0B  
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relation taking into account the relative spin density population O
πρ  of the individual 

nucleus can be formulated for instance for oxygen. In Ys• the oxygen atom is the sole 

nucleus with a high spin-orbit coupling and orbitals contributing strongly to the single 

occupied orbital. It has in this organic radical not only the highest spin-orbit coupling nuclein

with Oλ =151 cm-1 ( Nλ =76 cm-1, Cλ = 28 cm-1). Notably, 19F also has a high spin-orbit 

coupling with Fλ 270 cm-1 (§5.2). However, the spin density population of oxygen is larger 

compared to all other individual atoms in tyrosines and their analogs. Thus Eq. (2-10) has a 

substantial influence on the small spin-orbit-couplings resolved here. Due to the geometry of 

the individual orbitals (cf. Figure 2-2A) not all orbitals can mix. The in-plane contribution of 

closest lying non-bonding py orbital in is denoted by 2
nbyc . The mixing is governed by the 

orbital angular momentum as shown in Figure 2-2B. Electrostatic effects are by far not as 

strong as in ligand field complexes. Small charge dependent differences, however, can be 

realized. The effect on the frontier orbitals is illustrated in Figure 2-2C-D.140 
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,
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( )

O
O nby

SO x
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g O =

−
πn ρ

g g  
(2-10) 

 For interactions along the pz orbital as perpendicular H bonds, partial covalent 

bond character of the interaction can be assumed based on the increasing Fermi contact 

interaction.110 In protonated organic radicals, it could be shown that protonation leads to a 

lower participation of the high lying non-bonding orbital.174 Therefore, lower lying HOMOs 

contribute to the spin-orbit coupling. The energy difference between the excited state and 

lower lying HOMOs increases, which reduces the spin-orbit coupling along gx and gy. The 

gx,y value decreases to a slightly larger extent than for H bonds along the non-bonding 

orbital.154, 174, 175  

 For the organic radicals investigated in this thesis, the differences are small. 

Differences can still be resolved, however, by considering the proportionality of the g-factor 

with magnetic field B0. Taking the resonance condition into account, the difference in the 

field spectrum is 

 

 
∆ = − 

 B 1 2

1 1
B

h
g g


  . (2-11) 

Thus the separation of the signals scales with the used microwave frequency. 
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Figure 2-2: Illustration of the spin-orbit coupling and effects on the g value. In a tyrosyl radical 
observed along the C-O bond (A) the effect of the orbital angular momentum L is shown (B). 
The mixture of the non-bonding orbital and the antibonding SOMO increase the gx value. C and 
D) For the non-bonding orbital, the electrostatic effects can be considered. A positive charge will 
stabilize the orbital and a negative charge will lead to an energy increase. E) Interactions along 
the SOMO cannot be treated electrostatically anymore. Adapted in part from ref. 140. 

2.1.3 Hyperfine Interaction 
To understand the factors that govern the hyperfine (HF) interaction, it is typically 

separated into two contributions 

 HF FC DD,HF iso Dip
ˆ ˆ ˆ a= + = +SI ST I = = = . 

(2-12) 

For the Fermi contact interaction FC̂ the probability density function ( )0
0

r  of the 

electron density at the nucleus (r = 0) is considered. Thus, this is a spherical isotropic value 

and therefore the aiso is defined as isotropic part of the hyperfine interaction.172 

 ( )0= −


00
iso e e n n

0
0

3
a g g


  

  
(2-13) 

Strictly defined, only s orbitals have electron density at the nucleus; however a polarization 

mechanism is defined explaining how higher angular momentum orbitals (p, d and f) can 

contribute to the spin density at r=0.167 

A coupling of protons in plane of the aromatic systems has been described by McConnel.176 

Assuming that a partially singly occupied molecular orbital (SOMO) of nucleus C is 

hybridized with the bonding orbitals as shown in Figure 2-3, the energetic degeneracy forces 

parallel spins in near environment of these spins based on the Hund’s rules. In the bonding 
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orbital the states are occupied following the Pauli principle. Therefore the spin far away from 

nucleus C is oriented antiparallel to the SOMO spin. This is a polarization mechanism of the 

electron spin at the nucleus. For protons this spin has s orbital character; thus the spin 

density is negative at the nucleus H.171, 176-178 For in-plane H bonds the polarization 

mechanism is weakly contributing to the HF interaction, whereas for perpendicular H bonds 

a similar polarization mechanism applies as for covalently bond protons (Figure 2-3 C&D). 

 

Figure 2-3: Spin polarization mechanism in an aromatic CH-fragment. The proton orbital 
cannot directly interact with the electron spin in the pz orbital. Correlation energy description 
point out that the energy of case A is lower than case B in a magnetic field along the z axis. For an 
H bond within the ring plane a polarization is weak C, along the oxygen pz orbital polarization is 
a non-neglectable contribution.110 

After the consideration of spin density at the nucleus and polarization, the second 

contribution to the HF interaction is the dipole-dipole interaction between the electron and 

the nucleus in distance r. It is given by172 

 
0

DD,HF 3 5

r rˆ
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(2-14) 

The integration over the spatial electron distribution result in the following anisotropic 

dipolar Hamiltionian (2-15). 

 DD,HF Dip
ˆ = ST I=  

(2-15) 

TDip is a traceless symmetric 3x3 matrix of the ground state wave function with the elements: 
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(2-16) 
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In which, ij is the Kronecker symbol ( ij =0 for i≠j and ij =1 for i=j). The diagonal 

elements of the matrix in a principle axis system (PAS) are often defined as -T⊥,-T⊥ and T∥. 
The equation can be simplified, considering a 1H in hydrogen bond distance r to an oxygen, 

i.e., of a tyrosine within a range of 2.5 Å. For the proton the predominantly dipolar 

contribution scales with spin density population of the oxygen ρO and thus the single 

electron contribution on the oxygen. In the point dipole approximation the Eq. (2-16) can 

be then approximated with Eq.(2-17).  
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(2-17) 

2.1.4 Dipolar Interaction 
As in the nuclear to electron spin case the dipolar interaction between an electron spin and a 

second electron spin leads to a detectable dipolar frequency. Within this thesis the exchange 

contribution (J coupling) as scalar contribution is neglectable, because long-range distances 

are probed, thus Eq. (2-18) is obtained for θ=90°. The angle θ is defined between the 

magnetic field and the interspin vector with the length rAB as shown in Figure 2-4. Solving for 

the distance and assuming a g value of organic radicals near the value of the free electron it 

can be further simplified (2-19). 
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(2-19) 

 

 

 

 

Figure 2-4: Dipolar coupling between two 
spins A and B in the magnetic field B0. The 
coupling is dependent on the distance r(A-B) 

and the angle θ between the magnetic field 
and the inter spin vector. 
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2.1.5 Quadrupole Interaction 
Nuclear spins with I ≥  1 are distinguished by a non-spherical charge distribution described 

by an electrical quadrupole moment Q,172, 173 with the Hamilton operator NQ
ˆ   

 
k

NQ k k k
1k ;I 2

ˆ
>

= ∑ I Q I=
 

(2-20) 

The matrix of Q is a traceless 3x3 matrix in its PAS, and can therefore, be written as: 

 ( )
( )( ) ( )22 2 2 2 2 2

NQ x x y y z z z x y
eqˆ 3 1

4 2 1
Q I Q I Q I I I I I I

I I
 = + + = − + + − −

Q


=
. (2-21) 

with the asymmetry parameter ( )η = − −x y zQ Q Q  for ≤ ≤x y zQ Q Q  and η≤ ≤0 1 . The 

elementary charge is e and q is the electric field gradient. Consequently, the quadrupole 

interaction NQ̂  can be solved in the molecular frame through knowledge of 

= − 2 −(2 (2 1) )zQ e qQ I I  and   as well as the three Euler angles in respect to the g tensor in 

the PAS. 

2.1.6 Analytical Treatment of the Spin Hamiltonian 
To demonstrate the analytical solutions for the hyperfine interactions a model system with 

S = 1/2 and a nucleus with a spin of I = 1/2 will be discussed. Additionally, an isotropic 

g tensor and an anisotropic hyperfine interaction are presumed. Thus, the static 

Hamiltonian in the PAS can then be written as179: 

 

0
ˆ

S z I zS I = + + SAI=  

S z I z z z x z x y z yS I AS I B S I B S I ≈ + + + +
. (2-22) 

The resonance frequency of precession in angular frequency units is the Larmor frequency 

with S  and I for electron spin and the nuclear spin, respectively. Here the approximated 

Hamiltonian includes the high-field approximation (ωS≫ A ). In this case, terms with Sx 

and Sy, called non-secular terms, can be neglected. The non-secular terms of the HF 

interaction are still treated with A = Azz, Bx = Azx and By = Azy described as pseudo-secular 

hyperfine couplings of the A matrix in the PAS of the g tensor. The coordinate system for 

the nucleus spin can be transformed from the x-axis to the xz-plane, to simplify the non-

secular terms to B = (Bx
2+By

2)1/2 only dependent on Sz.179 
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To set it all in the rotating frame the electron Zeeman frequency is substituted by the 

resonance offset ( Ω = −S S mw  ), where mw is the microwave frequency. The combined 

transformation and substitution displays 0̂  as follows 

 
0

ˆ
S z I z z z x z xS I AS I B S Iˆ Ω + + +  

(2-23) 

with given spin matrices the diagonalized form of the Hamiltonian results to179 
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The corresponding eigenvalues of the Hamiltonian in nuclear frequencies can be obtained 

with: 

 
→ →
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= = ± + 
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   
. (2-25) 

The frequencies /   are given for the NMR transitions 1 2→  and 3 4→ for the two spin 

manifolds α and β, as shown in Figure 2-5A. Within the high-field approximation the B term 

is neglectable, as long as I ≪ S . This has been fulfilled throughout this thesis at frequencies 

of 2S  ≥94 GHz, except for the 19F HF couplings of 2,3,5-F3Y• (§5.3, p.135). 

 

To consider the interaction of the electron spin with I = 1 nuclei like 2H (I = 1), the 

resonance conditions change. Within the high-field limit the resonances sq  (see Figure 

2-5B) of the allowed transitions are given by179: 

 
3

2 2
i

sq i i

A
Q = ± ±

. (2-26) 

With these approximations one finally arrives at the energy level diagram shown in Figure 

2-5 for two cases typical cases within this thesis. 
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Figure 2-5: Energy levels in two spin systems at a certain orientation in the weak coupling 
(A<<ωI) case. A) Spin system with S=1/2 and I=1/2 with isotropic hyperfine interaction. B) 
With a spin S=1/2 and I=1 this is typical for an energy diagram of a deuteron in a weak coupling 
case as for example deuterons in an H bond to a phenoxy oxygen. The quadrupole coupling and 
electron Zeeman interaction are not to scale for illustration purposes. 

2.2 High-Field Spectroscopy for Small Hyperfine Couplings 

2.2.1 Detection of Hyperfine Interaction 
The HF interactions were introduced in §2.1.3 are as closely related to the electronic 

structure of the individual radical. The local structure information is connected to the HF 

interactions of individual nuclei surrounding an electron spin. The typical interaction range 

is given with 0-10 Å, for high γ nuclei (2-14). Due to the transient nature of the radicals 

studied here the measurements are performed in frozen solution. This connected to the 

g anisotropy, which helps to retrieve the direction of the dipolar part of the coupling. This 

can always be used if the spectral width due to g anisotropy is larger than the excitation 
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bandwidth of the spectrum. For organic radicals this is only fulfilled by operating at high-

fields. 

2.2.2 Nuclei Accessible in Hyperfine Spectroscopy 
A typical system investigated within this thesis should be introduced from the magnetic 

interaction point of view, as shown in Figure 2-6. The 3-amino tyrosine has many internal 

couplings as presented in Figure 2-6 A, without isotope labeling 13C is seldom detected. For 

nitrogen 14N couplings are observed. In a non-isotopically labeled buffer the 1H nuclei will 

be observed, by buffer exchange to D2O external deuterons can be distinguished from 1H as 
2H nuclei (cf. Figure 2-6 B). However, the amino protons will also be exchanged. Thus, even 

in a deuterated protein these contributions cannot be separated. 

 

Figure 2-6: Nuclear spins coupled to a NH2Y•. The electron spin (e-, red) is here the 3-amino 
tyrosine radical. A) Several magnetic nuclei isotopes are in the interaction sphere for the tyrosine 
analog, displayed are 1H, 17O, 14N. B) Buffer exchange can introduce 2H at exchangeable sites. C) 
By separating the different nuclei due to different sizes of nuclear Zeeman couplings, one can 
select 2H HF couplings. 

In the introduction, it was shown how resolution can be improved according to the electron 

Zeeman term for electron spin part. The same applies for the nuclear Zeeeman contribution. 

Taking additionally common hyperfine interactions into account, the separation between 

low frequencies as X-band and high frequencies like W-band are depicted in Figure 2-7. 

Thus, several magnetic coupling nuclei can be specifically detected, i.e., exchangeable 

protons by their 2H resonance (Figure 2-6 C). 
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Figure 2-7: Gain in ENDOR resolution for organic radicals (S=1/2) with increasing Zeeman 
field B0 and microwave frequency ν (MW). Spectral line widths of typical nuclei in tyrosine spin 
probes (neutral organic radicals) are shown. In color intermolecular interaction ranges and in 
gray intramolecular coupling sizes are estimated from DFT calculations and ref. 135, 153. The 
spectral overlap at X-band ENDOR is evident, but the HF coupling becomes separated at W-
band (94 GHz/3.4 T) for nulcei coupled over a non-covalent bond to the electron spin. 

The typical interaction strength marked in Figure 2-6 demonstrates that external 

interactions are weaker than internal ones. Therefore external couplings as 2H will generally 

not be resolved in the splitting patterns of an EPR line shape. Here specialized techniques 

are employed. Especially at high frequency for small HFC Mims ENDOR has been used to 

study H bonds around organic radicals.55, 152, 153, 155 

2.2.3 Mims-ENDOR Spectroscopy 
Electron-nuclear double resonance (ENDOR) in general is a double resonance technique 

resolving small couplings due to the selective pumping of nuclear transitions (ΔmI = 1 & 

ΔmS = 0) or NMR transitions. The name NMR transition might be misleading. Typically, 

transitions detected in an ENDOR spectroscopy experiment have sensitivities higher than 

those of conventional nuclear magnetic resonance (NMR) detection180 and higher 

selectivity because of detection through the electron spin. The higher Boltzmann 
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polarization of the electron spin is advantageous here. On the contrary due to this 

interaction broad lines are observed. 

 ENDOR was first introduced to the scientific community by Feher,181 shortly after 

two techniques were developed and named after their inventor Davis182 and Mims 

ENDOR183. Already in the 1970s it could be shown that Davis ENDOR suffers from broad 

blind spots near the Larmor frequency of each nuclear spin.184 Thus Mims ENDOR was 

used throughout this thesis for small couplings up to aiso≈2 MHz. The Mims pulse sequence 

consists of a stimulated echo sequence on the electron transitions and an inversion pulse 

swept over nuclear frequencies. The stimulating echo sequence has three microwave pulses 

generating an echo after third pulse and the delay τ, as shown in Figure 2-8.183 

 

Figure 2-8: Mims ENDOR sequence for the detection of small HF couplings. The microwave 
frequency of the pulses stays constant detecting a stimulated echo. By varying the radio 
frequency of a πRF pulse different NMR transitions (black, red and blue) are probed. If a nuclear 
resonance is met, the echo amplitude will be reduced (red and blue echo).183 

 Ideally the detection with the last π/2 only reads out the Mz magnetization. 

Therefore the mixing is acting on the Mz magnetization. For small couplings microwave 

irradiation is in most cases not selective enough. Furthermore the echo width increases 

beyond the detection limit with an increase in pulse length or selectivity. In the classical 

picture for an non-selective mw pulse Mims ENDOR is described as phase offset dependent 

on the nuclear frequency (Δ≈AHF), as illustrated in Figure 2-9B. The part unaffected by 

nuclei offset will interfere destructively with the magnetization pattern with the additional 

phase shift, which then decreases the echo size. Overall an increase of sensitivity for small 

offset Δ is achieved. Therefore, the Mims ENDOR is superior if a selective excitation of the 
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nuclei spins is prohibited due to the small coupling sizes by Davis ENDOR. Davis ENDOR 

has a different magnetization pattern as indicated by the original line shape in Figure 2-9A.  

 

Figure 2-9: Illustrative picture of the pattern created in the preparation sequence (π/2-τ- π/2). 
The inset shows the pulse sequence acting on a broad line. Enlarged (A) shows an artificial 
pattern imposed on the line. B) Displacement by a resonant nuclei with an interaction energy of 

∆ . Adapted from references 172 & 183. 

 The population P and its population difference Pi between the energy levels i (=1, 

2, 3 & 4), assigned in Figure 2-5A (p.38), is given by Eq. (2-27).183  
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A drawback of Mims ENDOR lies in the constructive interference of the patterns generated. 

In the spectrum this leads to regions were the echo cannot be diminished, Mims holes are 

generated. These Mims holes depend on the following hole function (Figure 2-10A)172, 183 

 ( )∝ − HFI 1 cos 2πMims Endor A . (2-28) 
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 To avoid holes within the spectrum an upper limit can be set for each investigated 

coupling with the largest hyperfine coupling Amax Eq. (2-29) can be used. Measurements to 

average out blind spot effects are often prohibited by the long measurement time for low 

concentrated biological samples (<< 50 µM).172 

 ( )τ=max 1/ 2A  
(2-29) 

 The efficiency of Mims ENDOR FMims ENDOR (2-30) increases tremendously for 

small couplings with the interpulse delay τ.180 One could think about increasing the Mims 

holes to a frequency in the order of the Nyquist frequency, but this is prohibited by fast T2 

relaxation in the xy magnetization plane (Figure 2-10A). 

 ( )( )1
1 cos

4Mims ENDOR HFF A= − τ
 

(2-30) 

 Practically the distortions are often too severe in powder spectra. Therefore, the 

largest τ in agreement with Eq. (2-29) is chosen. The center line for AHF approaching zero is 

only theoretically completely suppressed. For protons it is often the most intense line due a 

large number of distant protons.185 The matrix line is observed due to the finite bandwidth of 

the RF pulse.185 

 
Figure 2-10: Mims hole functions in dependence of the interpulse delay τ (A). B) ENDOR 
efficiency according to multiplication of Eq. (2-29) with the hole function and the T2 relaxation 
function (green) for two different small HF couplings 2 MHz (red) and 0.8 MHz (green). 

2.2.4 Comparison to Other Hyperfine Detection Methods 
HF detecting techniques characterize couplings too complex or too small to be resolved in 

conventional EPR spectra. There are several other techniques that allow for the detection of 

HF couplings. One of them is called ESEEM, which is most efficient at low fields and will 
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not be further discussed here.172 Another technique, called Davies ENDOR, has already 

been partially introduced. An emerging technique is called electron double resonance 

(ELDOR) detected NMR186, here instead of another RF pulse a highly selective microwave 

pulse is used to drive transitions. Because both techniques are polarization transfer 

techniques these two can readily be compared. The efficiency of both techniques can be 

described by their polarization transfer capabilities as shown in Figure 2-11. Here the 

character of each technique becomes evident; the excitation bandwidth in a typical RF pulse 

is much narrower than available in any MW ELDOR pulse. Thus, Davies can be much more 

selective in terms of orientation selection and omitting line broadening of HF patterns, but 

ELDOR detected NMR is able to excite more spins and has therefore advantages in the 

sensitivity. A 30-times higher sensitivity has been reported on organic, ubiquitously used 

nitroxide labels.187 Even more could be achieved by newly developed detection schemes.188 

A drawback is that the lines can be broader compared to a standard ENDOR setup. 

 The relaxation behavior is also different. The high turning angle ELDOR pulse 

acts directly on the initial Mz magnetization. Especially for small couplings, Davies ENDOR 

requires long preparation pulses turning the magnetization into the xy-plane; here faster T2 

relaxations can diminish the signal for fast relaxing paramagnetic centers. ELDOR detected 

EPR was meanwhile successfully applied to several high spin systems, so it seems to be 

robust in terms of T1 relaxation.189, 190 Here especially low γ nuclei such as oxygen 17O have 

been detected.189-191 One example even shows a narrow central line of a second shell water 

molecule. Although a forbidden transition is used, it seems it can detect even small HF 

couplings.191 Notably, this has not been investigated thoroughly up to now.135 

 A big disadvantage of ELDOR detected NMR is the large blind spot around the 

detecting microwave frequency, which is influenced by the ELDOR pulse length.187 Here the 

detectable magnetization is reduced to 0. However, this blind spot does not depend on the 

coupling size as in ENDOR techniques therefore these techniques can be complimentary.184, 

186 Selective Mims ENDOR employs an analogous polarization scheme as Davies ENDOR 

in Figure 2-11A.183 
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Figure 2-11: Comparison of Davies ENDOR (A) and pulsed ELDOR-detected NMR (B). 
Below the pulse sequences the concomitant spin population development is shown in a 
phenomenological description of an S=1/2 and I =1/2 system. Polarizations transfer in the 
Davies-type pulse ENDOR experiment involves allowed electron nuclear spin transitions. The 
preparation pulse πa is normally a selective soft pulse and the radio frequency pulse πRF is strong 
and short. Polarization transfer occurs in the ELDOR detected NMR experiment with a high 
turning angle pulse πHTA including allowed and forbidden transitions of the hyperfine coupled 
electron and nuclear spins. Adapted from ref. 135. 

2.2.5  Hyperfine Tensors and Origin 
Based on the energy level diagram (Figure 2-5, p. 38) and the hyperfine coupling 

mechanism (§2.1.3) the appearance of these interactions should be illustrated. Typical 

hyperfine spectroscopy pake patterns found in tyrosine systems should be introduced. 

Quadrupole splittings and rhombicity of the HF tensor are neglected for simplicity.  

 The simplest case is a distant coupling, which is only governed by the dipolar 

interaction. The full pake pattern is seen in Figure 2-12A. A good example of this would be 

distant protons as found in yeast RNR or even nearby protons non-interacting with the pz 

orbital.152, 153  
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 The second case occurs if the orbital directly interacts with a spin bearing nucleus. 

Good examples are protons on electron negative nuclei like the amino protons in the 3-

amino tyrosine. Here the tensor shape is strongly governed by the opposite signs between 

aiso and T||, as illustrated in Figure 2-12 C.110, 134 

 The H bond axial to the ring plane as described by Argirević et al. is an 

intermediate case as illustrated in Figure 2-12B.110 In this case the pz orbital interferes 

directly with the s orbital of the nuclei. Negative spin density at the nuclei is produced slight 

(bonding) overlap of the wave functions of the nuclei (cf. HF interaction §2.1.3).110 The pz 

orbital has no spherical symmetry. Therefore the interaction aiso is a function of distance and 

angle.  

The last case is a nearly isotropic coupling with an aiso>0. This case can be observed for β-

methylene couplings (Figure 2-12D). 

            
Figure 2-12: Hyperfine powder patterns for different ratios of aiso to T. A) aiso=0; B) aiso=-1/4∙T∥; 
C) aiso=-1/3∙T∥;D) aiso=5∙T∥. On the left side examples are shown were these types of couplings 
had been found. The proton couplings HX corresponds to case X=A, C, B or D. 
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2.3 Density Functional Theory: Limitations and Advantages 
The idea behind the determination of HFC and g values as presented in the previous 

sections is one part of the information and the understanding of structural restraints, the 

visualization of the geometry is another. DFT has been found to be valuable tool for 

correlating spectral parameters with structure and compare different spectroscopic methods. 

To understand the advantages of this comparison and its limitations the following section 

will introduce some basics of DFT theory. EPR and NMR parameters can be treated in DFT 

by taking the effective Hamiltonians on the bases of the “occupied orbitals only” ground 

state. The focus will lie on certain DFT methods used in this thesis. The interested reader is 

referred to a didactically written perspective of the origin of DFT and the development of 

their density functional approximations.192  

 The core idea was formed by Hohenberg, Kohn and Sham in 1964-65.193, 194 The 

nuclear potential ( )ext ir  defines the Hamiltonian ̂  (2-31) at the wave function 0Ψ  and 

the wave function defines the electron density ρ. This has been shown to be reversible,193 

thus from the electron density everything of the ground state system will be known for the 

given coordinates [Eq. (2-32)]. 
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For simplicity atomic units are used here, where  , me, e, and 4πε0 are set to be 1. 

 

ext 0υ → Ψ →  
( )F ρ

ext 0υ→ → Ψ   
(2-32) 

The function F(ρ) connecting the spin density to ( )ext ir  is unknown. However, it could be 

shown by the variation principle that only the correct spin density will lead to the energy 

minimum. Thus, searching for the correct spin density is a minimization problem.193 Non-

representative variational densities will collapse, thus it was necessary to separate the known 

total kinetic energy T0(ρ) and classical Coulomb Vee(ρ) self-exchange from the unknown 

smaller exchange correlation EEX(ρ). Although the exchange correlation is a small 

contribution to the total energy, it is the essence for covalent bonds and attractive non- 

electrostatic interactions. Otherwise, the theory to this point is complete. Electrons in 

atoms, molecules, and solids can be viewed as independent particles moving in effective 

potential νKS.192 
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2.3.1 Explaining Tendency within the Functionals 
The theory laid out how everything depends on exchange correlation EXC, but how is it 

calculated? Here density functional approximations have been formulated. 

In the main, three ways to calculate the Kohn Sham exchange term EXC have been 

developed: 

i. The local density approximation (LDA) has been applied. It assumes that the 

exchange-correlation energy has the local volume ρ(r) of the spin density. This is a 

bold assumption for molecules originating from the idea of an ideal (uniform) 

electron gas (similar as found in metals). Based on the adiabatic (constant density) 

approximation the coupling strength can be integrated over the individual 

couplings. Localized pairs of non-exchanging spin densities can be separated as 

correlation only cases. These are called exchange “holes.” Generally this 

approximation leads to overbinding, thus shorter internuclear distances. 

ii. Generalized gradient approximations (GGA) should reduce this overbinding effect. 

Here not only the local density is considered, but also the gradient at the local 

position. Subtracting from the local density exchange Ex
LDA this gradient to a certain 

order is the basic idea, albeit fitting the ratio and exponent of the local gradient to 

the uniform electron gas or benchmark sets; the functional is still LDA with a 

correction. A weak overbinding tendency was thus retained due to the localization 

of delocalized exchange “holes.” 

iii. The so-called hybrid functionals mix Hartree Fock exchange correlation with LDA 

and GGA exchange correlations in order to fit atomic absorption data. For the first 

time, delocalized “holes” are taken into account due to the Hartree Fock exchange. 

The exact Hartree Fock exchange is underbinding due to the unconsidered electron 

correlation. 

Known pitfalls of these GGA and hybrid functionals are the following: an overestimation of 

molecular radicals, poor treatment of charge transfer processes and the inability to account 

for dispersion interactions (methods are introduced in the next section). 

These interatomic effects cannot be treated by the density functionals made to descripe a 

tightly packed uniform electron gas. For an unpaired electron the localized approximations 

fail to localize this highly delocalized exchange minimum or “hole.” This over stabilizes the 

radical state. The delocalization increases also for lighter atoms. 
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 Local DFT approximations had been shown therefore to have a barrier too low for 

hydrogen-atom transfers, especially in H2 +H -> H + H2.195, 196 Visually the problem can be 

shown for the dissociation curve of H2
+ in Figure 2-13.192  

DFT functionals with N4 scaling will have a certain underestimation of barrier heights. PBE0 

as functional is within this set the best choice by a comparison shown by Becke with a mean 

error of -3.6 kcal/mol.192 It is notable that this has been chosen by C. Riplinger from Neese 

group to calculate the PCET between radical intermediates in α-RNR Ia.110 

 
Figure 2-13: Dissociation curve of H2

+. A typical local approximation error falls increasingly 
below the exact curve. Here BLYP and B3LYP display an artificial maximum and an erroneous 
asymptote almost as low as the bond minimum. Cited from ref. 192. 

2.3.2 Dispersion Correction 
Dispersion interaction is especially important for intramolecular interactions. In this thesis, 

several complexes will contain dispersive interactions. For instance, the interaction between 

two tyrosines in close proximity is governed by electrostatics and London dispersion 

interactions.197, 198 After the development of local DFT approximations, non-local effects 

should also be treated. Therefore dispersion correction was applied to functionals and basis 

sets. This can become quite complex. A straightforward implementation is the addition of 

the empirical London forces scaling with r-6 and r-8.199 The empirical potential has influence 

in the local field, for instance, below 3 Å for an argon gas interaction as shown in Figure 

2-14.200 The method is reported to be robust and has not shown any basis set or functional 

dependent errors.201 
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Figure 2-14: Dispersion correction for two argon atoms. The dispersion correction (--) takes 
sixth- and eighth-order terms into account, in contrast an un-damped C6R-6 term (⋅⋅⋅) and zero 
(—) Becke and Johnson damping is shown. Obtained from ref. 200. 

 The absence of considered dispersion interaction has been shown to have an 

impact on geometry optimization of two phenols. In this study the stacked orientation of the 

phenol rings could only obtained with wave function theory or by dispersion corrected 

DFT. The energetics of the barrier heights for proton transfers were not significantly 

improved upon dispersion correction.113 For these barrier calculations the PBE0 functional 

has shown better capability in obtaining values comparable to the QM gold standards.192, 202 

 In this thesis we use the robust correction method203 shown in Figure 2-14 in 

combination with the well-known and often tested B3LYP functional. Also we used effective 

triple zeta diffuse basis sets (see 2.3.3, p. 51) operating near the basis set limit. Recently, this 

combination has been tested for its performance and offered the best performance to cost 

result.204 
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Figure 2-15: Two geometry-optimized phenoxy/phenol structures. The stacked conformation 
(A) could only be found in dispersion corrected B3LYP-DFT, whereas all possible structures 
could be obtained by CASSCF. Picture modified from ref. 113. 

2.3.3 Basis Sets 
In current DFT applications, Gaussian type orbitals are nearly always employed. These 

approximated orbitals are faster to compute than more realistic Slater type orbitals. 

Compared with each other, they have different exponential behaviors with − re   and − 2re   for 

Slater type orbitals and Gaussian type orbitals respectively. Additionally, Gaussian type 

orbitals (GTO) have typical for Gaussian functions a broad area around r=0, whereas Slater 

type orbitals (STO) are cusp, as seen in Figure 2-16.205 

The fit of three Gaussian type orbitals to one Slater type orbital for a single atomic orbital is 

the minimal basis set, as would be applicable to H and He. For an oxygen there would be five 

basis functions 1s, 2s and 2px,y,z. The difference in the r → 0 dependence effect especially 

EPR parameter as HF couplings. An effect caused by the HF couplings dependency on the 

core shell. However, an early recognized beneficial compensation of errors is reported to 

overcome this effect in DFT geometries.167 

In the triple zeta case, three basis sets are used for each atomic orbital. The first approach 

was to segment these additional contracted orbitals into valance shell and core shell, as in 

well-known 6-311G basis sets. Meanwhile they are coefficient optimized for loose and tight 

discrepancy of valence and core shell orbitals, respectively. This is also called correlation 

consistent. These basis sets offer the same quality, but a better calculation performance. 
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Figure 2-16: Comparison between Slater type ( )1
STO
s r  orbital (STO) and Gaussian type 

orbitals contracted to fit the STO. Three Gaussian functions red, green and blue up are 
combined (cyan) to fit one STO (black). The fit does not increase by the addition of more 
GTOs, this basis set is called STO-3G. The def2-TZVPP used here also employs 

polarization functions (PP) and diffuse basis sets (def2). Polarization is included by a 

method, in which higher orbital functions (i.e., f and g) are also considered for in the 

electron density. For instance, an H atom includes an additional p orbital contribution to 

take a polarization into account. This basis set is close to the basis set limit in DFT 

calculations.206-208 Diffuse basis sets consider effects, which have long reaching interactions, 

as typically occurring in anions for instance. These effects cannot be considered with these 

with − 2re  decaying basis sets. Therefore diffuse basis sets are very broad over the whole radial 

distance.206, 208 

2.3.4 Effective Hamiltonian and Perturbation Theory for DFT 
The effective Hamiltonian as the spin Hamiltonian (§2.1, p. 28) can be incorporated into 

DFT. Based on the Breit-Pauli approximations209 the spin-orbit coupling contribution is 

treated as a second order perturbation in a one-component relativistic treatment.210-212  

 In the one-component treatment, all-electron contributions have a single origin 

(gauge origin), and no other relativistic effects beyond the spin-orbit coupling are treated, as 

current dependence in the exchange functional or admixture of the exact exchange. The sum 

over all occupied orbital and virtual orbital states of the spin-orbit coupling contribution on 
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the wave function is formed. The mean field approximation used for the sum over states 

contribution to the g tensor is similar to the high-field approximation used in analytical 

treatments of EPR interactions (cf. §2.1.6, p.37).  

 Further relativistic effects are small and have been neglected in the default 

ORCA214 (§ 3.6, p.73) EPR property calculation. Due to this one-component treatment the 

g tensor is not gauche invariant. Methods were reported to compensate this gauche 

dependence.167 Methods such as the gauche invariant atomic orbitals correction213 have not 

been implemented up to now in ORCA.214 However, scalar relativistic effects were 

introduced via certain basis sets (ZORA215) recently.156 Especially for the small spin-orbit 

couplings treated here, these errors are often well encompassed by the uncertainty of the 

structure determination.167 For the determination of g values the combination of UB3LYP 

and EPRII has proven to be effective and has been applied on various π radicals.110, 216, 217 

 The solutions for the HF couplings in DFT connect the wave function of the 

before mentioned spin Hamiltonian to the obtained spin densities (§2.1, p. 28). The HF 

calculation at least on the same geometry is only minor affected on the DFT functional set 

used.167 Due to the mismatch in core potential with Gaussian functions often very flexible 

core basis sets are used (see last section). Here flexible double ζ functionals for first and 

second row elements as EPR-II are often advantageous.167, 218-220 For certain nuclei IGLO III 

offers a flexible core in combination with a triple ζ basis set.167, 218-220 The combination of 

UB3LYP and TZVPP has been shown to be efficient for precise g tensor calculations.221 
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2.4 Proton Coupled Electron Transfer 
To understand the different regions and dynamics of proton coupled electron transfer first a 

pure electron transfer will be considered. In principle one can show that if the rate limiting 

step is a long distance electron transfer the PCET kinetic is determined by kET=kET
1+KPTkPT

1. 

The index denotes proton transfer PT and electron transfer ET, respectively. The forward 

reaction kinetic constant is k1 and the equilibrium constant is K. Here the electron transfer 

term can dominate, thus an electron transfer could be the rate limiting step in a PCET.97 In 

the β subunit such a long-range electron transfer could be envisioned based on the current 

models (>16 Å).22
 

2.4.1 Electron Transfer  
The electron transfer is generally described by the Marcus theory222 as a transfer in the limits 

of the Born Oppenheimer (BO) approximation. At the transition state the Landau Zener 

semi-classical integration of the dynamical problem can be taken into account.223, 224 A time-

dependent solution of the Hamiltonian is then analytical possible with a time-dependent 

perturbation as a linear function of time. A coupling between the diabatic states is fixed and 

the energy difference is also linearly time dependent. Two main contributions are most 

frequently discussed the reorganization energy   and the free Gibbs energy ΔG of the 

reaction.222 The general form is222: 
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Where νn is an effective nuclear frequency for the motion along the reaction coordinate that 

allows the transition state to be reached and  el  s the electronic transmission coefficient, 

given by: 
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For the non-adiabatic limit the prefactor of the exponential term reduces to vel , whereas for 

the adiabatic case nv  is the prefactor (Figure 2-17b). A special case is the Marcus-inverted 

region, where a decrease of ΔGR° the rate ETk slows down. This is caused because the 

dependence of ETk  on ΔGR° is an inverse parabolic function with an optimum for λ = -ΔGR°. 

In Figure 2-17 the relevant parameters are shown by an ET between the initial state I and the 

final state F. The crossing of potential surfaces is assumed here for small VIF (<< kBT) in the 

non-adiabatic regime. The case of an adiabatic regime is shown in Figure 2-17b.96
 

This equation has been substantiated tremendously in the meantime. And some general 

aspects are known about electron transfers in biology. In oxidoreductases most electron 

transfers take place between metal centers, shuttling one or two electrons. The most often 

found distance limit of pure electron transfer is 14 Å.99 Due to the short distances even 

endogenous steps of up to 450 mV can be tolerated.99 This was shown under the conditions 

of an ideal Marcus ET (   = -ΔGR°).99 

 
Figure 2-17: Cross section of the free energy surface along a nuclear reaction coordinate Q for 
ET. B) Motion on the effective potential surface is assumed to be a simple function of the 
potential energy (frictionless motion). The initial (I) and the final (F) electronic states are 
represented by diabatic (localized) parabolas. The equilibrium state of nuclear coordinates is 
denoted by Q I and Q F, for initial and final state, respectively. At the lowest energy crossing of 
the nuclear coordinate the transition state Q t is marked. The minimum splitting between the 
adiabatic states approximately equals 2VIF. The free reaction energy ΔGR° and the reorganization 
energy   are marked. The values of VIF and   are a function of coupling of the two electronic 
states. B) Adiabatic level crossing is shown for the case of VIF >> kBT. Here the system evolution 
proceeds on adiabatic ground states. The figure is from ref. 96. 
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2.4.1.1 Distance Dependence of ET and Development of ET Theory 

An electron transfer is distance dependent. This has been studied by artificial photochemical 

electron transfer reactions.100 In Figure 2-18 the result is presented. It could be shown that 

the distance dependence is influenced by the intervening medium. The dielectric packing 

between donor and effector for instance varies between proteins and water. A distance 

dependence was proposed on the modeled β parameter. A general Arrhenius type law has 

been applied with ( )( )F Iexpk Q Q∝ − − .100, 225 For proteins, the distance decay parameter 

β has been found to be between 1.1-1.4 Å-1, depending on the secondary structure of the 

protein.100 

   
Figure 2-18: Distance dependence between acceptor and donor of an activationless electron 
tunneling τe. Several intermediate media and oxidoreductases have been measured. A decay 
parameter β for proteins is in the range of 1.0 Å-1 to 1.4 Å-1. The solid lines illustrate the 
tunneling-pathway predictions for coupling along β-strands (β = 1.0 Å-1) and α-helices (β = 
1.3 Å-1); the dashed line illustrates a 1.1-Å-1 β. Distance decay for electron tunneling through 
glassy water is shown as a cyan wedge. Estimated distance dependence for tunneling through 
vacuum is shown as the black wedge. Data from ref. 100. 

Further development in the theory is ongoing, and meanwhile it has been pointed out that 

even structured water226 and small “gaps”227 along the electron transfer can be tolerated 
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without a significant loss in catalytic rate. Another recent investigation, considers fast 

movements and local quantum molecular effects.228 In this study it could be shown that the 

energy matching of the bridge to donor and acceptor can be improved by the molecular 

movement.228 A transfer path can be sustained unperturbed for electron transfer, if the time 

of ET is faster than the rearrangement frequency.228 Here several states are super positioned 

and can demonstrate a longer range flickering resonance transfer.229 

2.4.2 Expansion to an Electron Coupled Proton Transfer 
To consider the coupling of the electron transfer to a proton transfer the larger masses in 

these quantum transfer processes have to be considered, as done early by Marcus et al.230 

The two-dimensional ET coordinate becomes one cross section in the PCET energy 

landscape. The second proton transfer coordinate X is the third dimension as illustrated in 

Figure 2-19 A (p.59). Two coordinates can be seen in the square scheme introduced above 

(Figure 1-9, p.13). In this case, the proton transfer occurs along coordinate Xp, whereas the 

two possible electron transfer steps are along coordinate Qe. 

 For the PCET in α especially the Soudackov-Hammes-Schiffer (SHS) theory is of 

interest. SHS has been applied to discriminate between HAT and a CPET.109, 231 These two 

similar cases are proposed for di-tyrosine peptides by theorists.106, 107, 232 They especially 

discussed in the α subunit the PCET step between Y731 and Y730. Therefore, this section will 

focus on the SHS theory. However, many diverse theories will give rise to a statistically 

Arrhenius dependence either multiplied of summed with a dynamic prefactor.97 

Nevertheless, they differ in the actual realization as reviewed in recent reviews.95-97, 233 

 The SHS theory is based on a VB description of the four possible steps in the 

consecutive processes of ET/PT and PT/ET. It uses for the environment a multistate 

continuum model instead of atomistic models for considering solvent effects. The proton 

donor-acceptor motion has been incorporated. For this motion linear response theory in 

combination with Fermi’s golden rule formulation were used here. In most of the modern 

models the vibronic coupling is taken into account by summation of the Boltzmann 

populations Pk of the initial state. Sμν is the overlap of the vibrational wave functions for the μ 

and the ν state. This is fully analog to the description of absorbance and fluorescence 

probabilities by the Frank Condon theory.234-236 A rate constant for an equilibrated system at 

each X value can be obtained from these approximations (Eq. 2-36).237 
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In the high temperature and or low frequency regime, the Eq. (2-36) for the X mode it is 

further simplified. Taken an equilibrium position at ΔX = 0, the simplest form can be 

derived as Eq. (2-37).238, 239 
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(2-37) 

Here the exponential decay is dependent indirectly on X. Mp and ωp are the X-mode effective 

mass and frequency, respectively. αμν is the decay parameter of the vibrational overlap. pS  is 

here the vibronic overlap in the equilibrium state (ΔX = 0).  

The model of Dogonadze, Kuznetsov and Levich has not only separated the electron from 

the proton movement (BO approximation), but also considered a second case where the 

proton movement is adiabatic to the solvent (frequency = 0
S ). To illustrate possible 

relative effects the following magnitudes were given: 0
S ≈ 1011 Hz≪ ≈n 1014 Hz≪ ≈e

1015 Hz. Here n  describes the frequency of the bound reactive proton (I and F state) and 

e the electron frequency bound to the proton acceptor in an ionic PT step. 

Both hydrogen atom transfer (HAT) and concerted proton coupled electron transfer 

(CPET) are usually vibronically non-adiabatic due to the small proton wave function 

overlap that produces vibronic couplings ≪kBT.109 Many biological PCETs are electronically 

non-adiabatic. For CPET reactions within these non-adiabatic reactions, the Eq. (2-37) is 

valid.240 
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Figure 2-19: Extension from ET to a PCET A) The extension to a second coordinate X renders 
the ET to a two dimensional diabatic electron proton free energy surface connecting the vibronic 
states µ and v as functions of two collective solvent coordinates. One coordinate is strictly related 
to ET (Qe) and the other associated with PT (Xp). The equilibrium coordinates, the reaction 
free energy ΔGR° and reorganization energy λμν are indicated similarly to Figure 2-17. Adapted 
from ref 241. B) Free energy along the reaction coordinate represented by the dashed line in the 
nuclear coordinate plane of panel A. Qualitative potential energy surfaces (PESs) and pertinent 
ground state proton vibrational functions are shown in correspondence to the reactant 
minimum, transition state and product minimum. ref. 242 C) Vibrational mode overlap in the 
diabatic PESs for the initial and final ET states and vibrational function: initial ψD

(I) (blue) and 
final state ψD

(II) (red). Small 𝑉𝑉𝐼𝐼𝐼𝐼el case is depicted. D) Large electronic coupling 𝑉𝑉𝐼𝐼𝐼𝐼el in an adiabatic 
ground PES. For an adiabatic system the vibronic coupling is half of the splitting between the 
energies of the symmetric (cyan) and antisymmetric (magenta) vibrational states of the proton. 
The excited vibrational state of the antisymmetric state is shifted up by 0.8 kcal/mol for a better 
visualization. Adapted from ref. 109. 

2.4.2.1 CPET versus HAT 

The comparison between HAT and CPET is difficult. Already the definitions are essential, 

whereas the HAT and the CPET is known to account for a single site and a multisite 

acceptor, respectively. This definition is fragile. Quantum effects hamper the knowledge of 

an exact position at a given time, thus superposition of different acceptors has to be 

treated.242, 243 Thus, especially in the transition between a tyrosine radical stacked to a 

tyrosine, the electron acceptor orbital is not exactly defined.106, 107  



Proton Coupled Electron Transfer 

60 Theoretical Background 

 A more vigorous definition follows from the nature of the transferred particle. For 

an HAT an electron neutral particle is transferred, leading to minimal reorganization 

energies. Thus, the electron is moving stringent to the adiabatic Born Oppenheimer 

approximation concomitant with the proton. In the CPET case a non-adiabatic transfer is 

present. By the comparison of a benzyl/toluene and a phenyl/phenoxy system it was 

revealed that the first case is an HAT and the later a CPET.244 A strong difference between 

the proton transfer p  and the electron transfer speed e  could be shown in the two cases. 

The ratio between p  and e is the adiabaticty degree parameter p. Thus p≪1 are PCET 

reactions and p≫1 are HAT reactions. The transfer in the phenoxy/phenol couple occurred 

over a π-complex (proton donor-acceptor distance: 2.4 Å) with electrons 80 times faster 

than the proton movement.  

 In the benzyl/phenol case a σ complex (proton donor-acceptor distance: 2.72 Å) 

was formed here the proton movement was calculated to be 3.5 times faster than the 

electron, thus the electron can respond instantaneously to the proton motion. Further 

analysis revealed that the electronic coupling V el
IF  is significantly different with 700 cm-1 to 

14300 cm-1 (CASSCF calculations) between cases Figure 2-20 A and B, respectively. Figure 

2-20 demonstrates the effect and clearly illustrates the differences between both cases. In 

general, the adiabaticity of a PCET reaction can be taken as a good indicator to discriminate 

PCET and HAT.109 
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Figure 2-20: Adiabatic potential along the transferring hydrogen coordinate. Two cases the 
phenoxy/phenol (A) and the benzyl/toluene (B) system are shown. The ground state is 
depicted in blue dots and the excited state in red dots. The black dashed lines represent the 
initial I and the final state II. The mixing of these states with the electronic coupling 𝑉𝑉𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒  leads to 
the adiabatic ground and excited states as shown by the calculation (red and blue dots). In case 
A, the adiabatic and diadiabatic states are virtually identical due to the small electronic coupling. 
Picture modified from ref. 109. 

2.4.2.2 CPET between a di-Tyrosine Model 

The interaction between two backbone connected Y groups has been also studied in the 

biological context for Y730 and Y731 in α by Kalia and Hummer.106 They could show that in 

the “π-stacked” arrangement in contrast to the linear geometry of Figure 2-20A, the ground 

state potential decreases and the electronic coupling increases. Nevertheless, they came to 

the conclusion that a PCET takes place between this geometry. Water participation is 

possible but the energy barrier increases for water molecule mediated PCET from 8.5 to 

14.1 kcal/mol. Notably, their model revealed that by exchanging the Y with a NO2Y (cf. 

Figure 1-6, p.10) with a higher redox potential, this bias favors water mediated PCET. In this 

thesis, we will also apply bias on the natural di-tyrosine, by the introduction of a 3-amino 

tyrosine. The change from vacuum to water in a conductor like screening model increased 

the barrier by up to ≈4 kcal/mol. 

Over all, this also demonstrates the necessity for high level calculations. In general, it 

highlights that QM and MM calculations are important to understand the basics and 

common principles of PCET reactions. 



Proton Coupled Electron Transfer 

62 Theoretical Background 

2.4.3 Water Participation in ET and PCET 
From initial studies of electron transfers in water it was estimated, that water is a slow ET 

media (cf. Figure 2-18). This in general has been shown to be an incomplete statement.226 

Several studies working with a structural water environment have shown that here the ET 

kinetic rates are comparable up to 2 intervening water molecules to protein media.245-248 And 

for distances up to 12 Å, the kinetic effect of structured water was still detectable, compared 

to the rates of unstructured water shown in Figure 2-18 (p.56). It seems that electrostatic 

and van der Waals effects can reduce pathways, which interfere destructively with the donor 

accepter electron transfer.226 This triggered further investigations on how transfers are 

possible in fast changing mobile media. The delocalization of protons can be also 

advantageous for PCET transfers.249 However, as shown by studies on flickering resonance 

(up to 15 Å), the limit is the kinetic rate.228 As long as the kinetic rate is faster than the 

reorganization of ET pathways the transfer stays feasible. This does in part set an upper limit 

on distance and on the barrier height. The investigations for water participation in PCET 

have just started, by for instance pH dependent proof of principle investigations.250-252 
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3 MATERIALS AND METHODS 

3.1 Materials 
D2O (99.8% isotopically enriched) and 25MgO (95.75% isotopically enriched) was 

purchased from Euriso-Top. Glycerol-D3, di-sodium ethylenediaminetetraacetic acid 

(EDTA), tris(hydroxymethyl)aminomethane (TRIS) was purchased from Cambridge 

Isotope Laboratories, Fluka, and J.T.Baker, respectively. 4-(2-Hydroxyethyl)-1-

piperazineethanesulfonic acid (Hepes), adenosine-5’-triphosphate (ATP), 

cytidine-5’-diphosphate (CDP), Sephadex® G-25, 2-methylbutan, hydrochloric acid solution 

(molecular biology grade, 36.5-38%) and sodium hydroxide were purchased from Sigma-

Aldrich. Amicon® Ultra concentration device (30 kDa filter) was bought from Merck KGaA, 

whereas Glycerol and Magnesiumsulfate was used from Roth. Polyacrylamid Gels (PAGE, 

7.5%, Tris-HCl) were bought from Biorad. 

The following buffers were used: 

i. Α buffer consists of TRIS (50 mM), EDTA (1 mM) and glycerol (5% v/v) adjusted 

to pH 7.6 

ii. Assay buffer consists of HEPES, MgSO4 (15 mM), EDTA (1 mM) adjusted to pH 

8.0 

iii. Desalt buffer consists of TRIS (30 mM) and glycerol (5% v/v) adjusted to pH 7.6 
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The following EPR tubes were used:  

i. 263 GHz: Vitrocom CV2033S/Q (Ø 0.33 mm) 

ii. W band: Bruker E600-213/ST9O (Ø 0.9/0.5 mm)and Wilmad glass quartz tubes 

(Ø 0.9/0.5 mm); Bruker  

iii. Q Band: Bruker quartz tubes ER221TUB-Q-10 (Ø 1.6/1.1 mm). 

3.2 Sample Preparation 
α-NH2Y730, α-NH2Y731 and β-NH2Y356 were prepared and purified as previously described,44, 

67 beside the absence of DTT in the final Sephadex column.253 These preparations were 

performed by T. Argirević form our group and for β-NH2Y356 by E. Minnihan from the 

Stubbe lab at the MIT. For α-NH2Y731 the truncated form was removed by an additional an 

anion exchange column (MonoQ, equilibrated in α-buffer) against a NaCl gradient (2.5-

400 mM) over 50 mL. This step was performed with the help of Florian Brodhun in the 

Feussner lab (Georg August University, Göttingen). All NH2Y mutated subunits were mixed 

in equimolar ratios with their corresponding wt (prereduced α/β) and spin concentrated to 

100-200 µM (α2β2) in D2O (>99 %) and H2O assay buffer.134 The concentration was 

checked by UV-vis spectroscopy on tyrosine and tryptophan absorption bands 

ε280 nm ≅ 320 mM-1cm-1 (α2
44≅189 mM-1 cm-1 + β2

69≅131 mM-1 cm-1). The samples were 

stored in 0.5 mL Eppendorf tubes per 10 μL aliquots in liquid N2. The double mutant 

samples were directly obtained as a 1:1 complex by Wankyu Lee from the Stubbe lab at 

MIT.254 

 β-2,3,5-F3Y122• mixed with α-wt or α-Y731F was prepared by Kanchana 

Ravichandran from the Stubbe lab at the MIT, as described previously.120 The samples in 

D2O (>99 %) and H2O assay buffer were stored in 100 µL aliquots at 80K. pBAD-nrdB122TAG 

and pBAD-FnYRS-E3 were co-transformed into E. coli TOP10 chemically competent cells 

and grown at 37°C on LB-agar plates containing 100 µg/mL ampicillin (Amp) and 35 

µg/mL chloramphenicol (Cm). A starter culture (2 mL) supplemented with the antibiotics 

was inoculated with a single colony and grown until saturation (37°C, 12 h). This starter 

culture was diluted 100-fold into fresh 2X YT media containing Amp and Cm. After 16 h, 

the cultures were diluted 100-fold into 4 x 2 L of 2X YT with antibiotics and 0.7 mM 2,3,5-

F3Y (500 mM stock solution in water, NH4OH solubilized). At an OD600 of 0.5, 100 µM o-

phenanthroline (100 mM stock solution in 0.1 M HCl) was added to chelate iron. 30 min 
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later, 0.05% (w/v) L-arabinose (10% w/v stock solution in water) was added to induce the 

FnYRS and NrdB. Growth was continued for an additional 5 h and the cells were harvested 

by centrifugation (3500 x g, 15 min).  

Apo β2-Y122(2,3,5-)F3Y was purified using anion-exchange chromatography as previously 

described.255 Typical yields of 10-15 mg pure protein/g cell paste were obtained.  

Reconstitution of Apo β2-Y122(2,3,5-)F3Y. Apo β2-Y122(2,3,5-)F3Y was deoxygenated and taken 

into an anaerobic chamber maintained at 4°C. 5 equiv. of FeII(NH4)2(SO4)2 was incubated 

with the protein for 15 min. The sample was brought out of the chamber sealed, and O2 in 

the form of O2-saturated 50 mM hepes pH 7.6, 5% glycerol was added to reconstitute the 

cluster. 250 µL of β2-Y122(2,3,5-)F3Y was frozen in an EPR tube immediately after 

reconstitution to quantitate radical content. Typical yields of 0.6-1.0 2,3,5-F3Y122•/β2 were 

obtained for the reconstituted protein. 
 25Mg2+-samples were prepared by first washing the protein in 5 concentration (to 

20% v/v) dilution steps with desalt buffer and buffer exchanged the sample with a 25MgCl2 

(15 mM) assay buffer with additional 5 steps. The 25MgCl2 was obtained quantitatively by 

dissolving 25MgO (12.3 mg, 30 mM) in concentrated hydrochloric acid solution (98.4 µL, 

120 mM) in test tube overnight, similarly as described previously.256 Milli-Q® water was 

added and the HCl was allowed to evaporate in a desiccator and afterwards the product was 

dried under high vacuum. ESI-MS of the product dissolved in Methanol showed mass shift 

of 1 m/z compared to MgCl2 in natural abundance. 4% of 24Mg(II) could be observed. 

 EPR samples were prepared by thawing each aliquot at 4°C and followed 

equilibration at 25°C for 10 min. The reaction was initiated by adding CDP and ATP in 

H2O/D2O assay buffer with final concentration 2 and 6 mM, into the reaction mixture (1 µL 

263 GHz, 2.5 µL W band and 6 µL Q band) with final complex concentrations of 90-

100 µM. Each reaction was allowed to proceed for 10-20 s and manually freeze quenched 

inside an EPR tube with liquid N2. For Q-band PELDOR samples glycerol-D3 (20 % v/v) 

was added after 10-20 s, and then the reaction was frozen in ice cold 2-propanol (≈185 K). 

The quench times were varied based on the individual kinetic rates of the different samples 

as measured by UV-vis stopped flow44, 67, 254 or Rapid Freeze Quench.28 This should ensure a 

maximum radical yield. 
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3.3 X/Q-Band Spectroscopy 
Q-Band spectra were obtained by a Bruker Elexsys E 580 spectrometer with a nominal 

output power of 3 W. The ESE traces and PELDOR traces were recorded in a Bruker 

(EN5107D2) cavity. The cooling of the cavity was achieved within a liquid Helium 

continuous flow cryostat (CF95550, Oxford Instruments). PELDOR257 (πMW1/2−τ1−πMW1− 

[τ1+x]−πMW2−[τ2-x]−πMW1−τ1−echo) spectroscopy is a constant time 4 pulse experiment. 

PELDOR uses pulses at a pump (MW2) and detect microwave (MW1) frequency and was 

carried out by measuring the dipolar evolution over the time x in steps of 8 ns. Experimental 

details are given in the figure captions. 

 X-Band measurements were performed on a Bruker Elexsys E500 spectrometer, 

with a HighQ CW-resonator (4122SHQE, Bruker) in an ESR900 (Oxford Instruments) 

cryostat.  

3.4 W-Band Spectroscopy 
The EPR and ENDOR spectra were recorded on an Elexsys® E680 with 400 mW output 

power and typical π/2 pulse length of 16 ns at 70 K. The cooling was performed under 

continuous Helium flow in Oxford Instruments cryostat. A pulsed ENDOR probehead 

(1021H, Bruker) was used as a resonator. 

Mims-ENDOR183 (π/2−τ−π/2−RF−π/2− τ−echo) spectroscopy was carried out with a 

40 µs RF pulse amplified by a 250 W RF amplifier (250A250A, Amplifier Research). All 

obtained ENDOR spectra were normalized to compare with simulations. 

3.5 263 GHz Spectroscopy and Calibration 
The spectra were recorded on a prototypical Elexysys® E780 from Bruker Biospin. The 

263 GHz spectrometer works with a quasi optical front end. The front end produces a 

Gaussian beam that is focused to a corrugated waveguide. The typical output power of the 

bridge was 15 mW. The corrugated waveguide is coupled to a single mode (TE011) 

cylindrical cavity (E9501610) with a typical quality factor (Q) of 500-1000. The electron 

spin echo (π/2-τ-π-τ-echo, ESE) was recorded with a typical microwave field strength B1 of 

10-17 MHz. The ESE spectra were recorded by 70 K, if not stated otherwise. The individual 

B1 is measured via the pulse length necessary for inversion of the magnetization (πtp) by a 

nutation recorded by an inversion recovery experiment (πtp-T-π/2-τ-π-τ-echo) scanning 
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over the pulse length of πtp. A standard coal sample is used. The microwave field strength can 

be obtained by the turning angle ϑ  of each pulse length tp by Eq. (3-1). 

 
1( 1) ( 1) e

S S p

g B
S S m m t


 = + − +

  
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 Freeze quench samples in 0.33 mm EPR tubes were inserted under liquid nitrogen 

into the resonator surrounded by liquid nitrogen and then transferred into the precooled 

(80 K) EPR cryostat (Oxford Instruments). 

 To assess the accuracy of the g values several error contributions have to be 

considered. As reported for other high frequency spectrometer258 the frequency change over 

a measurement is not a significant source of error. The spectrometer has a sweep coil with 

250 mT range and the main magnet operating until 12 T. If the main magnetic field is 

changed a systematic change of all g values has to be considered. Therefore, a reliable 

calibration of the field is necessary. Field calibration was originally performed based on a 

multiline Mn(II) standard sample, by Bruker. Normally, the Mn(II) (0.02% in MgO) has 

been used with a g value of 2.001015(5) and the HF coupling A = -243.9 (1) MHz.259, 260 

The Mn(II) in marble used by Bruker and Jeol has different values with g =2.0011 and A= -

241.6 MHz.261, 262 With this standard sample a single field point can be calibrated and the 

linearity of the sweep coil sweep is evaluated by the 6 lines of the 55Mn hyperfine interaction 

within the Kramers doublet. The non-linearity originates mainly from the self-inductance of 

the sweep coil, and the mutual inductance of the sweep and main magnet coil.258 To 

compensate this non-linear behavior of the ratio between gauss to amp, Bruker 

implemented a linearization protocol for magnetic field sweeps in CW-EPR spectra. In this 

protocol the typically small measurement range for organic radicals (20-50 mT) is always 

measured by a full sweep range of the sweep coil. Here the curve difference to a linear 

behavior can be approximated by a second order fit (cf. Figure 3-2). Hence, the sweep coil 

has to be driven through the full (250 mT) sweep range. This extends the measurement time 

by a factor of 5 to13 depending on the sweep range. To be able to omit this large drawback, 

the impact on the spectral accuracy of this linearization option was evaluated. For this 

reason, the CW-EPR spectra of the manganese standard sample in increasing field direction 

were measured with and without the linearization procedure. After aligning the first line 

(Figure 3-1 inset left) the shift was measured on each line position. Thus, the scan over the 

six lines performed with the linearization procedure is about 4.4 G narrower than one 

without linearization. This gives an estimate of the systematic error introduced by removing 
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the linearization procedure and reducing the measurement time. The additional error for a 

typical field sweep of 30 mT is 0.36 mT based on a fit of the data (Figure 3-2). Compared to 

the typical field of 9350 mT, this error is 3.9∙10-5 mT. Due to the g factor of approximately 

two (for organic radicals in this thesis), a systematic error of 8∙10-5 is obtained. The overall 

systematic shift in the ampere to gauss ratio has to be re-adjusted from time to time, to align 

with the standard values with the setting. However, the standard sample used here could be 

only observed by CW-EPR with a sharp line width of ≈0.12 mT. Therefore, another sample 

was necessary in order to test the pulsed set up. 

 
Figure 3-1: Comparison of CW 263-GHz EPR spectra of Mn2+ (in CaO, 0.02%) at room 
temperature with and without linearization. Exp. details: Field sweep range = 100 mT; 
modulation amplitude = 0.5 G; conversion time=100 ms; single scan. 
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Figure 3-2: Linearization improvement compared in CW 263 GHz EPR measurements. The 
difference in magnetic field between the linearized and the non-linearized field sweep as ΔB0 is 
plotted against the width of the Mn2+ resonance lines. The points can be fitted with a second 
order polynomial(red line) with: y=0.148(1)∙x - 9.2(4) ∙10-6∙x2 and R2=0.99994.  

To test the field accuracy in the pulsed mode the β2-Y122• E. coli RNR sample was used, 

which is well characterized at high-field EPR. An advantage of taking the Y122• as a standard 

is that it can be used as an internal standard for the RNR samples studied. This internal 

standard is detectable at 10 K and is hidden at elevated temperatures (70 K).55, 148, 152 The 

derivative has to be formed to assign the principle axis values of gx, gy and gz in the g tensor 

broadened line. The spectrum of Y122• has been recorded at 10 K. The spectrum was then 

compared to high-field powder157 and crystal data63 of Y122•. Högbom et al. have used as a 

calibration standard a narrow single line Li:F g-standard (Li in LiF, 

g = 2.002293±0.000002263) measured at two different frequencies.63 Gerfen et al. used 

multiline Mn(II) (0.02% in MgO)264 with a g value of 2.001015(5) and the HF coupling A = 

-244.1 (1) MHz.157, 259, 260 The Y122• spectrum measured at our instrument was compared to a 

simulation based on these two literature values, as shown in Figure 3-3. The simulation 

parameters reported by Gerfen (gray) et al. show an agreement with the spectrum in terms 

of g values and deviate from those reported by Högbom et al. (green) at gz and gy by 2∙10-5 

and 6∙10-5, respectively. In both experiments an error of 4∙10-5 or 5∙10-5 was estimated.63, 84 
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Figure 3-3: Pulsed-EPR spectrum of the β2-Y122• as calibration standard. The experimental trace 
is shown in blue and the simulation gray and green with values from 157 and 63, respectively. 
Exp. details: ESE, 262.0109 GHz, T=10 K, π(π/2)= 52(90) ns, τ=319 ns, shots per point 
(SPP)=50, shot repetition time (SRT)=15 ms, scans = 43. The derivative was built by a 
Savitzky-Golay filter (second order, 3 points). 

Another calibration with a N@C60 sample265 (from A. Schneggs lab at the Helmholtz 

Zentrum, Berlin) was performed recently by I. Tkach in our group. He found a standard 

deviation within 8 resonance frequencies averaged over three line measurements to be in g 

3.3∙10-6. By reducing the sweep range from 60 mT by a factor of 10 a systematic shift 

of -1.5∙10-5 could be observed, based on 3 observing frequencies and 12 measured 

resonances. The change of other parameters by a factor of ten, like a tenfold increase in 

sweep time gave no significant shifts. All of these errors are far below the errors reported 

within this thesis and are therefore neglected in the future discussion. Based on the 

measurements, the systematic error with or without linearization procedure in CW and 

pulsed EPR spectroscopy can be estimated. The error estimated by the differences observed 

here is below 5∙10-5 in g scale. For experiments where field linearization has not been used a 
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systematic error of 9∙10-5 is estimated. However, due to low signal to noise ratios (S/N) and 

broad line widths, the g value uncertainty can vary in an individual spectrum. 

3.6 Density Functional Theory Calculations 

3.6.1 Set-up of the Models 
DFT calculations have been performed with the ORCA 3.0.0 program package214. DFT 

calculations were originally performed by Christoph Riplinger (ORCA 2.9.0) from the 

Neese group and had been performed as previously reported.110 The geometry-optimized 

large models are based on the crystal structure (wt-α, PDB ID 4R1R) and had shown by 

energy-optimized relaxed surface scans, along the reaction coordinate, energy barriers in 

agreement or lower than previously reported values with smaller models by DFT 

theorists.106, 107, 266 To compare these models to experimental findings, Simone Kossmann 

from the Neese group incorporated the amino group at Y731• and re-optimized the geometry. 

The EPR parameters were calculated by Simone Kossmann. The adaptation into magnetic 

resonance convention and the interpretation of the output was done by me. Small model 

calculations have been performed to test different environment dependencies of the 

structurally ill-defined region. 

3.6.2 Geometry Optimizations 

3.6.2.1 Large Models 1, 2 and 3 

Initially, the coordinates of the large models 7 and 8 used in ref110 augmented by the amino 

group in the 3 position of Y731 and a water molecule between Y731 and Y730 for Model 3. 

These coordinates were first geometry optimized without further restraints. During the 

optimization the distance between C439 and Y730 increased constantly. It was supposed this 

results from the missing contact to the β subunit in the model, thus the coordinates were 

restrained for all Cα and for all Cβ. For Y730, NH2Y731 and C439 only the Cα were restrained. 

Additionally the Cartesian coordinates of the hydrogen atoms in the truncated GPD model 

replacing the bonds between C4 and C5 of the ribose as well as the bond between C1 of the 

ribose and the base were kept fixed. 

The model structures were geometry optimized using a generalized gradient density 

functional the unrestricted BP86267, 268 in combination with Ahlrich’s diffuse TZVP basis set 
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of triple-ζ quality207, 269. Grimme’s dispersion correction200, 270 has been now added on top of 

the SCF calculation. The Resolution of the Identity (RI) approximation with the 

corresponding auxiliary basis sets (def2-TZVP(P)/JK150) has been employed throughout. 

3.6.2.2 Small Models 

In the small models the geometry optimization was performed on the B3LYP268, 271, 272 hybrid 

density functional in combination with the TZVPP basis set and def2-TZVPP/JK auxiliary 

basis set. In the models adapted from the large models only the dihedral angle of the peptide 

bond of Y730 and Y731 was fixed and the Cartesian restraints for all surrounding Cα’s were 

kept. In order to compensate the electrostatics from the environment here a solvation model 

(COSMO273) with polarity of ethanol (ε=24) was used. Otherwise Grimme’s dispersion 

correction199-201 and RIJCOSX274 approximations has been employed. The energy has been 

converged to 10-9 Eh, if not stated otherwise. 

3.6.3 EPR Calculations 
The EPR calculations were carried out with the B3LYP268, 271, 272 hybrid density functional in 

combination with the RIJCOSX274 approximation. In the small models COSMO was 

retained for the single point calculations. Here Barone’s EPR-II (IGLO-II for sulfur) basis 

set of double-ζ quality has been used in combination with the def2-TZVPP/JK auxiliary 

basis set for all atoms.219, 220, 275 The g values were calculated210 using the tyrosine (analog) C4 

as gauge origin. In single amino acid models the def2-TZVPP basis set was held consistent 

with the geometry optimization step.207 The dihedral scans were performed with a geometry 

optimization for each restrained dihedral. The energy has been converged to 10-9 Eh. 
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4 3-AMINO TYROSINE RADICAL 

INTERMEDIATES 

To compare Ys in terms of electronic and molecular structure in enzymatic reactions like the 

radical propagation of E.coli RNR small differences in electronic and molecular structure 

have to be resolved. The multi-frequency characterization of radicals is commonly used to 

disentangle magnetic field dependent (for instance g values) and independent parameters 

(for instance HFC’s).276 The spectral width of the EPR spectrum influenced by the g tensor 

and the coupling strength of the nuclei in the surrounding are the factors governing the 

choice of a suitable frequency (cf. §2.2). Compared to Ys (gx-gz: 4.3-6.9 ppt) our amino 

tyrosine have generally a smaller spectral width (gx-gz: 3 ppt) and were until now 

characterized by 9 to 180 GHz spectroscopy.92 Nevertheless, not all values were determined 

to a high precision (<0.2 ppt) and the question of possible underlying radicals remained 

open.  

In order to extend the applicability of this radical probe and to answer open questions in the 

radical process of RNR, 263 GHz EPR spectroscopy was employed. The results will be first 

presented beginning with the last step of the forward radical process. Here previous EPR 

data had shown that NH2Y730• hosts a well-defined H bond network (cf. §1.5.3, p.21).92, 110, 

134 A part of this chapter has already been published.254 
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4.1 Electrostatic Environment of 3-Amino Tyrosines in the α 
Subunit 

4.1.1 263 GHz Spectra of NH2Y730• 

The higher g value resolution for NH2Y730• should determine accurately resolved g values. 

Transient radicals were generated by adding to wild type β2 and α2-NH2Y730 an excess of 

substrate (CDP) and the corresponding effector (ATP). The reaction proceeded 30 s, until 

the reaction was quenched in liquid N2. To suppress line broadening from weak 

intermolecular 1H-couplings the protein samples were buffer exchanged with D2O before 

the reaction. A 2H from a D2O buffer has the advantage to provide a 6.5 (ν-1H/ν-2H) times 

weaker hyperfine (HF) interaction, scaling linearly with its gyromagnetic value (cf. §2.1.3, 

p.33). The half-site reactivity of this homodimer corresponds to the optimal yield, as 

reported to be around 50% based on all observed radical. The remaining contribution is the 

stable Y122•. The relaxation times of Y122• are rather short because of the proximal diiron 

cofactor (4.6 Å, Y-O:Fe1).55 Full suppression of the signal of Y122• is accomplished even by 

recording the spectra at 70 K with short interpulse delays (200 ns).55, 148, 152 In this delay time 

the phase memory time (1/Tm) influences the decay of the signal by three contributions: (i) 

spin-spin relaxation (1/T2’), (ii) lifetime broadening (1/(2T1)) and (iii) spin-lattice 

relaxation of spins in the vicinity (1/T1
(B)), i.e., iron spin states.172, p. 214 This relaxation filter 

will be applied in all ≥70 K experiments throughout this thesis to separate pathway radical 

contributions (i. e. α-NH2Y730•, α-NH2Y731 and β-NH2Y356) from the Y122• signal (Figure 

3-3). An absorptive electron spin echo (ESE) spectrum of pathway radicals is shown in 

Figure 4-1. The absorptive line (green) displays a rhombic g tensor. A better resolution of 

the different orientations of the molecules along the magnetic field (B0‖gx, gy, gz) is observed 

when the derivative (black) is formed. 
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Figure 4-1: 263-GHz echo detected spectrum of Y730NH2•, quenched after 30s reaction time. 
Green shows the absorption spectrum and black the enlarged derivative (obtained by a 5 points 
second order Savitzky-Golay filter). Exp. details: ESE, π(π/2)=60(120) ns, τ= 300 ns, shot 
repetition time (SRT)= 3 ms, shots per point (SPP)=50, 140 scans. Not linearized field sweep, 
difference to linearize in this case 0.00001 at gy (cf. Figure 4-3, Methods §3.5, p.66). 

The spectral features contributing to the rhombic spectrum are clearly depicted in the first 

derivative (blue, Figure 4-1). The spectrum displays the three canonical orientations gx, gy 

and gz ∥B0, marked as black dashed lines. The line shape around for B0∥gx shows a broaden 

doublet peak, the gy displays also a doublet and gz a quartet (doublet of triplet, 1:2:2:1). The 

g values directly observed from this line shape are 2.0054 2.0042 and 2.0022. The difference 

to the multi-frequency EPR study reported before for gx is subtle (0.2 ppt) but significant, 

compared to the error of 50 ppm (Methods §3.5). The major nearly isotropic splitting 

(29.8 MHz), consistent with the previous reports, is due to a β-methylene 1H HF coupling 

from hyperconjugated methyl protons (see Figure 4-2).110 The quartet arises from the 

overlay of this doublet and the triplet of the anisotropic 14N hyperfine interaction. An 

additional observation is the tiny doublet splitting observed on top of the quartet. It is a 

contribution not resolved along other canonical orientations and is 9-10 MHz in size at gz 

(Figure 4-3, inset). Generally HF tensors from protons bound to an aromatic ring have a 

slightly rhombic tensor shape, with (A1<<A2≤A3) the smallest value is along the bond 

direction and the largest along the π orbitals of the aromatic ring (see §2.2.5).277 Due to spin 
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polarization, the HF coupling from C6-H would be strongest in the gz and gx plane, and 

smallest along gy . The second β-methylene coupling is reported to be mostly isotropic (cf. 

Figure 2-12 p.46).277 In Q-band (34 GHz) ENDOR spectroscopy it was shown that an 

upper limit for a 1H hyperfine coupling is 8 MHz at gy and sharp lines were reported.92 

Hence, this coupling is consistent with an isotropic β-methylene 1H coupling from Hβ2, as 

shown in Figure 4-2.134 

 
Figure 4-2: Ring dihedral θCβ comparison of the DFT/EPR model and the NH2Y730 crystal 
structure (XRD, PDB ID: 2XO4). 67, 110, 134 

Simulation of the spectra takes these HF couplings and g values into account. The 

simulation (Figure 4-3) shows that previously reported parameters from a multi-frequency 

investigation are in a good agreement with the new spectra (red, Figure 4-3, Table 4-1). 

Two adjustments were made: the gx value had to be shifted and the small 9 MHz coupling 

had to be taken into account with a size comparable to the line width of the measurement. 

The small coupling at gz is enlarged in the inset in Figure 4-3. 
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Figure 4-3: 263-GHz echo detected spectrum of Y730ND2•, quenched after 38 s reaction time, 
and simulation. Black shows the derivative and gray line the simulation. The inset shows the 
coupling pattern at gz enlarged. A quartet coupling pattern (~30 MHz) of 1:2:2:1 ratio and on 
top a doublet (9 MHz) are visible. The simulation was performed with the parameters of Table 
4-1 and a line broadening of 1 G was used. Exp. details: ESE, π(π/2)=130(64) ns, τ= 277 ns, 
SRT= 6 ms, SPP=500, 8 scans. The derivative was obtained by a 5 points second order Savitzky-
Golay filter. 

4.1.2 263 GHz Spectra of NH2Y731• 
The large resolution of the g tensor for organic radicals offers also the possibility to search 

for conformers and different hydrogen bond environments.55, 110, 144, 278 Particularly at 

NH2Y731• two conformations were found in X-ray crystal diffraction structures (XRD, cf. 

Figure 1-12B67), and preliminary work of T. Argirević showed time-dependent changes in 

the EPR spectra.92 However, measured PELDOR spectra only showed a narrow Gaussian 

distance distribution, which was found to be consistent with a defined conformation in a 

direct π stacking geometry.43, 67 Initially, different time points were measured within the 

second to minutes time scale at W-band (Appendix Figure A - 2, p.193). The results were 

inconclusive, due to contributions supposed to arise from an insufficient separation of 

residual Y122•, Mn2+ lines and glass signals. 

At 263 GHz unprecedented resolution could be obtained in Figure 4-4. The spectrum of 

NH2Y731• is displayed in blue. The reaction conditions were kept unchanged and the 
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reaction mixture was frozen at 18 s in liquid N2. The spectrum shows clearly separated 

maxima of gx=2.00511(5), the second zero-crossing at gy= 2.00399(5) and the last local 

minimum at gz=2.0022. The first minimum resembles a triplet from two overlapping HF 

contributions in a 2:1 ratio. This and the doublet at gy as well as the quartet at gz were 

expected from previous 94 GHz spectra.92 The β-methylene HF coupling is here the 

isotropic contribution with (aiso=22 MHz). The anisotropic coupling with a larger value at gx 

and gz has a typical tensor form of a ring proton coupling, with small HF coupling 

contributions along gy. It is tentatively assigned to a ring proton at C6 position (see §4.4). 

Notably, the spectral feature marked with an asterisk (*) at gz was overlapping with the gz 

line shape at W-band. At 263 GHz this contribution is resolved from the canonical 

orientation of B0∥gz (Eq. (2-11), Theory §2.1.2). Due to the smaller Cβ-H with aiso=22 MHz 

smaller couplings can contribute to the line shape, which were not considered in the 

simulation. For instance a ring proton coupling becomes visible compared to NH2Y730• 

(Table 4-1). The structural consequences of the assignment will be discussed in more detail 

together with the DFT models (§4.4 p.98). The g values shifted by 0.1-0.2 ppt with respect 

to g values previously reported. Notably, also the gy value shifted by 0.1 ppt, though this is 

within error of the 94 GHz data (0.1 ppt). All other values remained unchanged within the 

error of previous studies.92  

 The spectra in protonated and deuterated buffer gave comparable g values (Figure 

4-5). It is worth noting that a difference in quench time of 1:52 min between both samples 

also does not affect the g values, which is in agreement with the 94 GHz data (see Appendix 

Figure A - 2, p.193). In order to simulate the spectral line shape in protonated NH2Y731• only 

the line broadening caused by the amino deuterons had to be taken into account. The 

simulation parameters for the 1H amino protons were taken from orientation selective 2H 

ENDOR spectra and scaled by their gyromagnetic ratio (cf. Table 4-6 p.104).92 
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Figure 4-4: 263-GHz ESE spectrum ND2Y731• recorded for a sample quenched after 18 s 
reaction time. The red line shows the experimental derivative of the absorption spectrum 
(obtained by 8 points second order Savitzky-Golay smooth) and the gray line the simulation. 
For simulation the parameters in Table 4-1 were used and an isotopic line broadening of 2.8 G. 
Exp. details: ESE, π/2=70 ns, τ= 270 ns, SRT= 6 ms, SPP=100, 74 scans.  

 
Figure 4-5: 263-GHz ESE spectrum obtained from ND2Y731• and NH2Y731• with a reaction time 
of 18 s and 2 min, respectively. The red line shows the derivative of the absorption spectrum 
(obtained by 7 points second order Savitzky-Golay smooth) and gray line the simulation. For 
simulation the parameters in Table 4-1 were used and an isotopic line broadening of 2.8 G. Exp. 
details: ESE, π/2(π) =48(94) ns, τ= 180 ns, SRT= 2 ms, SPP=500, 200 scans. Parameter for 
ND2Y731• see Figure 4-4.  
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Table 4-1: Parameters of the simulation for 263-GHz and 94-GHz EPR spectra for NH2Y731• and 
NH2Y730•.a 

g gx gy gz A [MHz] Ax 
Ay Az 

NH2 Y730• 2.0054 
2.0052** 

2.0042 2.0022 A(Cβ-H1) 
A(Cβ-H2) 

30.8 
10 

29 
5 

28.0 
9 

NH2 Y731• 2.0051 2.0040 2.0022 A(Cβ-H1) 
A(C6-H) 

23 
13 

22 
5 

22 
10 

a) The 14N hyperfine tensor of the NH2Y• was not varied in the simulations and kept Ax = 2.4 MHz, Ay = 
1.6-5 MHz, Az = 30.7 MHz.134 Uncertainty in g values is about 0.05 ppt. 

4.1.3 Comparing Simulation Parameters from 263 GHz EPR and 94 GHz 
EPR Spectra 
In order to find a unique parameter set the parameters from the 263 GHz simulation and the 

94 GHz spectra have to fit to the same parameter set. Therefore, the spectra reported earlier 

by T. Argirević were simulated again with the new parameters (Table 4-1).92 The spectra 

and the simulation are still in agreement with each other as shown in Figure 4-6. The 

spectrum in Figure 4-6 of NH2Y730• shows an agreement of the simulation based on the 

modified g values from the 263 GHz measurements. For the transient radical formed at the α 

interface, NH2Y371•, two regions indicate differences to the simulation as marked with an 

asterisk (*). The low field asterisk marks a deviation due to the sharp gy feature (cf. Figure 

3-3) of residual Y122• and the lower field asterisk shows the resonance frequency of glass 

peaks observed due to quartz defects in the sample tubes. The impurity of Y122• was 

estimated based on the gx feature height to be around 5%. 

 The consistent set of g values for NH2Y730• and NH2Y731• at 94 and 263 GHz is 

particularly interesting in its gx value. The observed gx value shift of 1 ppt is substantial 

compared to the value of a free NH2Y•.110 The narrow line broadening and the high 

reproducibility up to the minute time scale of the spectra is indicative of a well-defined 

microenvironment and electrostatic environment. The increase in line broadening from 1 G 

to 2.5 G at ND2Y731• can arise from a distribution of g values due to flexibilities at this 

position. Since H bonds are expected as predominant effects on gx values, a possible 

correlation of the relative intensity and strength of HF couplings was examined.144 

                                                                    
 

** Value obtained by Argirević (PhD Thesis, Georg-August University Göttingen, 2012) based on 94 GHz 

simulations. 
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Additionally, also 180 GHz data has been discussed by T. Argirević.92 A new alignment of 

the data could show consistency (data not shown) with the obtained g values at 263 GHz. 

180 GHz were recorded in protonated buffer. This prevents a highly accurate g value 

determination, which has been observed before in other HF EPR studies in protonated 

buffer.84, 160 

 
Figure 4-6: 94-GHz EPR spectra (-) and their simulations (-∙∙) of ND2Ys intermediates in α. 
Simulation parameters are in Table 4-1. A line width of 1 G and 2.5 G was used for NH2 Y730• 
and ND2Y731•, respectively. Exp. details (NH2Y730•/ NH2Y731•): ESE, T=70 K, π/2 = 32/16 ns, τ 
= 260 ns, SRT = 6/3 ms, SPP= 50, 700 / 50 scans.  

4.2 ENDOR Spectroscopy of NH₂Y₇₃₁• Compared to NH₂Y₇₃₀• 
in the α Subunit 

4.2.1 ENDOR on NH2Y731• 

After the EPR spectrum has identified NH2Y731• as a single species within the available 

resolution, it is important to understand the H bond network present at this position. As just 

shown in the last part, the gx value is 0.3 ppt lower as compared to NH2Y730 indicating a 

higher polarity. In proteins, this polarity is nearly exclusively associated with H bonding.143, 

144 Exchangeable protons are observed as deuteron (D) nuclei (2H) in Mims ENDOR 

spectra. To disentangle the contributions of different hyperfine couplings the spectrum was 

measured in a deuterated buffer. In D2O the spectral contributions in 2H ENDOR are 

reduced to the large amino deuteron couplings (up to ± 2.3 MHz), the very weak couplings 
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from the central line (matrix line region up to ±0.3MHz) and H bond range in between 

absolute values of 0.4-0.8 MHz (cf. §2.2.2 p.39). The ND2Y731• ENDOR spectrum was 

recorded at B0∥gy in Figure 4-7B, and has a similar shape as already observed for ND2Y730•.110 

By comparing the 2H ENDOR spectra in Figure 4-7 it becomes evident that the sharp 

feature has a larger resonance position increasing from ±0.62 MHz for NH2Y730• to 

±0.78 MHz for NH2Y731•. The splitting of the lines of this resonance position arises from an 

additional small coupling, i.e., the quadrupolar coupling, which is larger for ND2Y731• than 

observed for ND2Y730•. Previously, two weak H bonds (≈1.8 Å) to ND2Y731• had been 

simulated to account for the line shape, as in the ND2Y730• ENDOR case.92 The necessity of 

both contributions for the sharp feature was spectroscopically not mandatory. Hence, 

another simulation approach was performed using a single stronger H bond with a larger 

quadrupole coupling instead of a second H bond. It is worth noting that the simulation is in 

agreement with the orientation selective data in Figure 4-8 and with the field dependent 

spectra simulated before (see Figure 4-4). The simulation parameters are collected in Table 

4-6 (p. 104). The simulation has a reasonable fit, pointing out that NH2Y731• has a larger HF 

coupling contribution with a scalar (aiso) contribution (see Figure 2-12 p. 46). This large aiso 

(i.e., 2⋅aiso=T⊥) originates from interaction with the pz SOMO (Theory §2.1.3). However, 

this does not lead to an assignment. For the assignment more precise angle dependence and 

control studies will be performed in the following sections. 



Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in RNR Ia 

3-Amino Tyrosine Radical Intermediates   83 

 
Figure 4-7: 94-GHz 2H Mims ENDOR spectra at B0∥gy of trapped NH2Ys• intermediates in α. A) 
Spectrum of ND2Y730• at 10 K taken from Argirević et al.92, 110 The H bond pake patterns assigned 
to an H bond from Y730 (red gradient) and C439 (blue gradient) are highlighted below.254 B) 
ND2Y731• ENDOR spectrum obtained at 70 K. The red gradient highlights the H bond 
resonance contribution (assignment on the right side). Exp. details: Mims ENDOR, π/2 = 20 ns, 
τ = 200 ns, πRF= 40 µs, SRT = 10 ms, random RF acquisition279 at 1 SPP, acquisition time = 24 h. 
Excitation in the EPR line was at B0∥gy. ENDOR spectrum is centered at the Larmor frequency ν0 
of 2H, i.e., 21.9 MHz at a field of 3.3 T. C) Simulation of the ND2Y731• ENDOR spectrum. 
Individual contributions are shown in dashed/dotted lines below for the individual assignments 
of ND1 (blue), ND2 (green) and DO-Y730 (red). The simulation is done based on the 
experimental parameters and parameters in Table 4-2 (p.86) with a line width of 55 kHz 
including a Mims hole function (Methods §3.4 p.66).172 

4.2.2 Direction of the H bond Observed at NH2Y731• 
Evidence for an H bond interaction along the pz SOMO can be found by the orientation 

dependence of the 2H ENDOR resonances through the EPR line. Orientation selective 

measurements were performed at the canonical orientations of B0∥gx,y,z, as shown in Figure 

4-8A. Powder patterns are observed at each orientation, because the ratio between 

excitation bandwidth (FWHM ≈1.8 mT) and spectral width of (≈8 mT) is large. Still, each 

orientation shows clear differences in line shape. For NH2Y730• an HF tensor for a 

perpendicular H bond in the form of |Az| ≥ |Ay| > |Ax| (using the definition |Ax|<|Ay|<|Az|) 

has been reported previously.110 This nearly axial tensor shape is also observed here. If the 

magnetic field is aligned along gx or gy, the large roughly perpendicular A⊥ component at 
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≈± 0.7 MHz is present. The parallel HF component A∥ is mainly along gz with roughly ±0.6 

MHz. This already implies, that the isotropic HF has half the size but opposite sign with 

respect to the parallel component (-2|aiso| ≈ |T⊥|; cf. Figure 2-12, p.46). The spectra have 

different resonances of the H bond HF tensor in the upper and the middle spectrum of 

Figure 4-8A with ±0.7 and ±0.8 MHz, thus the HF tensor is slightly rhombic. It has been 

reported before that an H bond††, perpendicular to the tyrosine π plane has its smallest 

resonance along the H bond direction.110 Thus the H bond lies roughly along the gz 

molecular direction, consistent with the previous assignment based on the tensor shape. 

Simulations including the simulation of the EPR spectrum and excitation bandwidth were 

performed, as illustrated in Figure 4-8B. The simulation demonstrated that the HF tensor 

must nearly align with the g tensor in order to reassemble three different resonances at 

B0‖gx,gy,gz. Therefore, the angle between HF tensor and the g tensor were not allowed to 

increase to more than ≈20°. Otherwise the contributions of the HF tensor were mixed at 

B0‖gx,gy,gz and the resonances were identical at each observed orientation. A preliminary fit 

was obtained with H bond dihedral angle (cf. Figure 4-8C) of 90° from the phenol plane. 

This would be in agreement with the C3-C4-OY731-OY730 dihedral of 90° found in the wt 

structure (2X0X).67 The early simulations were therefore simulating the H bond 

contributions with collinear principal axes of the HF and g tensor. The structural restraints, 

however, do not fit to such a 90° perpendicular angle nor could they explain the rhombicity 

of the HF tensor. The interplay between a possible π stacking interaction and the H bond 

with orbital overlap introduce structural restraints. π Stacking in a di-tyrosine peptide would 

have an optimized H bond dihedral angle 50-60°, as has been reported by Siegbahn et al. 

without considering a protein environment.107 Here an H bond HF tensor with an angle 

∡(Ax, gy) equals 70° in Figure 4-8C reproduced the experimental spectrum. This is 

consistent with an H bond dihedral with the same 70° angle. 

The small splitting on top of the resonances at ±0.6-0.8 MHz is assigned to the quadrupole 

interaction. As a function of the electric field gradient the largest value (defined Qz) of the 

quadrupole interaction is along the H-X (X= O, N) bond of the H bond donor function. 

The splitting has its largest contribution (250 kHz) along B0∥gz indicating a nearly collinear 

quadrupole and HF tensor (i.e., Az∥Qz). For this type of interaction the direct orbital overlap 

                                                                    
 

†† TheH bond at NH2Y731• has the assigned H bond donor Y730O-H. 
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with the pz orbital does not lead to strong quadrupole contributions. This is in agreement 

with other H bonds observed in previous work110 and the DFT work shown in §4.4. An out-

of-plane H bond has been mentioned before as a prerequisite of an effective HAT step in π 

radical as tyrosines.107 Therefore and due to the proximity of Y731 and Y730 in most crystal 

structures22, 120 this interaction is assigned to the proton of Y730. The analog assignment in 

NH2Y730• has been made for the moderate perpendicular H bond previously (§1.5.3, p.21). 

Additional spectroscopic evidence should be obtained by double mutant ENDOR 

measurements in §4.3.5 p. 95. At first these mutants have to be characterized (§4.3). 

 
Figure 4-8: Orientation selective 2H Mims ENDOR spectrum of ND2Y731• in the ±1.5 MHz 
region from T. Argirević92. A) Simulations of the spectra (red -) take into account ND2 and H 
bond HF coupling, discussed so far (see Table 4-2). Contributions from the H bond are shown 
separately as red peaks. Field positions and excitation bandwidth (green, blue and red) for the 
individual measurements are illustrated in B (cf. Figure 4-6). C) The orientation of the H bond 
tensor is illustrated in the molecular frame. A line broadening of 50 kHz was used in the 
simulation. Exp. details: T=10 K, π/2= 20 ns, τ = 320 ns, πRF = 40 µs, SRT = 150 ms, random RF 
acquisition279, acquisition time = 50 h/spectrum. 
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Table 4-2: Simulation parameters for the 2H ENDOR spectra of ND2Y731•.
NH2Y731•  Ax 

[MHz]
 

Ay 
[MHz] 

Az 
[MHz] 

α    
[°] 

β 
[°] 

γ    
[°] 

Qx 

[MHz] 
Qy 

[MHz] 

Qz 
[MHz] 

Simulation Y730-OD 
 

1.3 -1.43 -1.63 -160 
120 

110 
40 

80 
85 

 
-0.03 

 
-0.09 

 
0.12 

 ND2 D(1) -0.6 -2.9 -3.8 -86 
-92 

98 
93 

90 
-3 

 
-0.04 

 
-0.06 

 
0.11 

 ND2 D(2) 0.06 -3.1 -4.2 -96 
-93 

93 
84 

-31 
-121 

 
-0.06 

 
-0.08 

 
0.14 

 

The central matrix line has not yet been discussed. Here weak coupled deuterium nuclei are 

present. In the 10 K spectrum in Figure 4-8 also the HF couplings of Y122• contributes to this 

matrix line. Y122• has been shown to be only weakly coupled (± 0.25 MHz) to one proton.152 

To separate the effects a measurement was repeated at 70 K as shown in the Appendix 

Figure A - 4 (p.195). Compared to the previous work from T. Argirević92, still no HF 

coupling pattern was resolved, indicating at least one additional contribution in the line 

shape which is not present in the resolved central line at ND2Y730•. However, one can 

mention that the largest resonance of the matrix line is present at B0∥gx and gy with ±0.2 

MHz and at B0∥gz it is ±0.15 MHz. At B0∥gz another feature is visible at about ±0.1 MHz. 

Under the assumption of a purely dipolar HF tensor this would be consistent with a dipolar 

tensor with diagonal elements of -0.1, -0.1 and 0.2MHz.92 However, contrary to the previous 

interpretation for a moderate perpendicular H bond, in a purely dipolar tensor the parallel 

tensor component T∥ is the largest value and along the H bond direction(cf. Figure 2-12).92 

Thus, an H bond in the gxgy plane would be indicated by the spectra observed. An analogous 

conclusion applies if the 0.1 MHz splitting resembles a quadrupolar splitting of the 

perpendicular HF tensor component. Then the H bond donor proton bond is within the 

ring plane ±40° (H bond dihedral, cf. Figure 4-8C). With a point-dipole approximation (Eq. 

(2-17), Theory §2.1.3, p. 33) the two cases resemble a distance from the phenoxy oxygen 

nuclei of 2.9 Å or 2.5 Å, for an observed HF or quadrupole splitting, respectively. An oxygen 

spin density population of 0.21 was used in Eq. (2-17).110 
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4.3 Removal of one H Bond Partner by Double Mutants 

4.3.1 The Concept of the Double Mutant Study 

In an effort to assign the H bonds donor to α2-NH2Y730• and α2-NH2Y731• double mutants α2-

NH2Y730/C439A and α2-NH2Y731/Y730F were expressed. It has already been shown that the 

removal of one PCET pathway amino acid renders the protein inactive (§1.4.1.2 p. 7). The 

3-amino tyrosines show still residual activity. Therefore it was additionally interesting how 

the modification of the direct environment would change the individual radical 

intermediate. We proposed a structured H bond network at NH2Y730•110 (§1.5.3, p.21) and 

NH2Y731• (§4.2). Therefore the question arose if the absence of our assigned H bonds is 

detectable. Up to now our assignment was mainly based on proximities observed between 

the three amino acids Y731-Y730-C439 in the inactive and reduced crystal structures. Here we 

hoped to see effects supporting our current assignment both kinetically and structurally. 

Scheme 1 explains the mutation strategy. The biochemical work and the SF-vis experiments 

were performed by Wankyu Lee, from the Stubbe lab, at MIT. It is reported here to examine 

the effect of the local perturbation due to the double mutation. 

 
Scheme 1: Mutation strategy involves removal of an individual H bond for NH2Y731• (A) and 
NH2Y730• (B). The amino acid subsequent in PCET pathway was exchanged by site directed 
mutagenesis into one without an H bond donor function as phenylalanine and alanine.  
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4.3.2 Kinetic Characterization of NH2Y731/Y730F and NH2Y730/C439A 
The radicals formed in the double mutants NH2Y731/Y730F and NH2Y730/C439A were 

characterized by SF-vis measurements observing the decay of Y122• at 410 nm and the 

formation of NH2Y• at 320 or 325 nm with wt-β2/CDP/ATP in assay buffer (Figure 4-9). 

The results are summarized in Table 4-3. 

 
Figure 4-9: Kinetics of NH2Y• formation in α2-NH2Y731/Y730F:β2-wt (A) or α2-NH2Y730/C439A:β2-
wt (B) with CDP and ATP by SF Vis spectroscopy. Double exponential fits in A or mono 
exponential fits in B to the data are shown in black. Residuals for the fit for NH2Y• formation is 
in magenta for Y• disappearance is in cyan. The results represent the average of 6 to 8 spectra 
and fits were calculated with OriginPro software to minimize residuals (Table 4-3). This figure is 
cited from ref. 254. 

The yield of NH2Y731•/Y730F with 34±3% is identical within error to the yield of the 

corresponding single mutant (32±3%). However, the rate constants are both slower, a factor 

of 6 is found for the fast rate constant and a factor of about 3 for the slow rate constant.  

Table 4-3: Kinetics of NH2Y• formation for α2 mutants. 
 NH2Y• formation  

Mutant a k1 (s-1) %A1 k2 (s-1) %A2 %NH2Y• 
α2-NH2Y731•  9.6 ± 0.6 27 ± 2 0.8 ± 0.1 13 ± 1 32 ± 3 

α2-NH2Y730• 12 ± 1 20 ± 2 2.4 ± 0.2 19 ± 2 39 ± 4 

α2-NH2Y731•/Y730F  1.5 ± 0.1 14 ± 2 0.3 ± 0.03 20 ± 1 34 ± 3 
α2-NH2Y730•/C439A 0.13 ± 0.01 14 ± 1 - - 14 ± 2 

a) Rates were obtained from double exponential fits of 6-8 spectra of SF UV-vis spectra of the reaction 
with 5 μM α2-NH2Y731 and 5 μM wt-β2 with CDP/ATP (1 mM/3 mM) in assay buffer. The rate constants 
for NH2Y730 and NH2Y731-α2 have been reported previously.280  

The NH2Y730•/C439A shows a reduction in overall yield by a factor of two and the rate 

constant of NH2Y731•/Y730F is 10-fold diminished. Here only one rate constant was sufficient 
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to fit the kinetic data. The effect of C439A mutation is quite large in terms of radical build up. 

This implies an effect on the PCET efficiency. Therefore another mutation was tested. 

Unfortunately α2-NH2Y730/C439S could not be successfully expressed. 

4.3.3 Structural Comparison of NH2Y731•/Y730F and NH2Y730•/C439A with 
Their Single Mutants 

In order to exclude larger structural rearrangements in the α2/β2 complex of either NH2Y731• 

or NH2Y730•, the diagonal distance to Y122• was measured for both double mutants.43 After 

the PCET reaction 3-amino tyrosine radical and the stable Y122• are located in diagonally 

opposite monomers of α and β (Figure 1-8, p. 12). Distances between radicals pairs can be 

measured at X (9 Ghz) and Q-band (34 GHz) by pulsed electron double resonance 

(PELDOR/DEER) spectroscopy.257 The reaction of the α2β2 complex (final concentration: 

130 µM) was performed with the same substrate and effector mixture, additional glycerol 

was added at 20 s and 25 s, for NH2Y731/Y730F and NH2Y730/C439A, respectively. Glycerol is 

not only a versatile cryoprotectant, but it prolongs T2 relaxation as well as deuterium 

exchange.281 For PELDOR spectroscopy long T2 relaxation times in the order of several µs 

are required. The reaction was quenched at 40 s (NH2Y731/Y730F) or 1 min 

(NH2Y730/C439A) in ice-cold 2-methylbutan (~113 K) to insure a good heat conductivity for 

the larger Q band tubes.  

4.3.3.1 Diagonal Distance from NH2Y731•/Y730F to Y122• 

The diagonal distance can be measured directly, if the whole spectrum is excited by the 

pump and detect pulses as common at X band. However, concentration sensitivity increases 

with the MW frequency, thus the measurement at Q band (34 GHz) is more sensitive.282-284 

Isabel Bejenke from our group demonstrated that complete distance distributions at Q band 

require orientation averaging. With the power of 2W five field points on the NH2Y730•-Y122• 

radical pair would be necessary.285 However, the distance did not change at different field 

points. Thus if the distance is observed and it does not represent a double frequency (the 

parallel part of a pake pattern, see Figure 2-12), the distance is robust.  

 In Figure 4-10 the ESE-field sweep spectrum at 34 GHz shows NH2Y731• with a 

yield of 28%. Three pump and detect frequencies were set up covering the spectral width of 

the NH2Y731•. A dipolar oscillation was obtained from each detection position after 
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procession and analysis of the data (Figure 4-10B). By adding the normalized spectra a 

dipolar oscillation comparable to earlier X band studies was obtained. 

 
Figure 4-10: 34-GHz distance measurements between NH2Y731• and Y122• in the α2-
NH2Y731/Y730F double mutant at 5 K. (A) The ESE spectrum of unreacted Y122• (blue) has been 
subtracted from the observed spectrum (purple), yielding the NH2Y• (28%) spectrum (red). 
Pump (P, π= 46 ns) and detect (D, π= 56 ns) pulses were separated by 55 MHz and are 
indicated by arrows and shifted stepwise (ΔB = 11 G) over the EPR line. (B) The three 
consecutive (1,2,3) four-pulse DEER traces were normalized and background corrected. C) 
Average trace as sum of the three normalized traces. The red line describes a fit using 
DeerAnalysis286 and Tikhonov regularization287 procedure. D) Distance distribution obtained 
from the analysis in (C). The measured distance distribution shows 3.84±0.15 nm as main 
distance.254 
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Fitting of the time domain trace including a Tikhonov regularization‡‡287 procedure a 

distance distribution was obtained as shown in Figure 4-10D (DeerAnalysis 2013)286. The 

distance distribution of 3.84±0.15 nm is identical to the distance distribution observed 

previously for the single mutant with 3.81±0.12 nm. 

4.3.3.2 Diagonal Distance from NH2Y730•/C439A to Y122• 

In another set of experiments the NH2Y730•/C439A distance to Y122• was tested by the same 

procedure, as shown in Figure 4-10. The measurement was carried out by I. Bejenke in our 

group.285 NH2Y730• yielded 17%, compared to Y122• (Figure 4-11A) in agreement with the 

low yield observed in SF-vis measurements (§4.3.2).  

 Processing procedure of the three measured field points was performed with 

DeerAnalysis.286 A distance distribution from an incomplete powder average results (Figure 

4-11D). Two components with 3.9 nm and 3.3 nm are prominent, which arise from 

NH2Y730•-Y122• and Y122•-Y122• distances, respectively. The ratio is not as expected from the 

last dataset (Figure 4-10D). Here the 3.9 nm distant is the minor contribution. Reasons 

could be the lower yield, unfavorable orientation selection and the first detection (D1, 

Figure 4-11A) outside the spectral width of NH2Y730• the contribution of the longer distance 

(3.9 nm). However, compared to the single mutant study the 3.9 nm distance probability 

(cf. Figure 4-10D) decreases from NH2Y731• to NH2Y730• as well.43 In order to support the 

long distance, the effect of suppressing the long distance is shown in B2 and C in green. The 

RMSD in C (B2) is changing from 0.0025(0.0016) to 0.0036(0.0023) for the blue and 

green fit, respectively. 

 The distance measurements performed here provide evidence against global 

structural distortion introduced into the active enzyme for the observed NH2Y730• 

intermediate by blocking the radical transfer. However, without a resolved dipolar 

oscillation (Figure 4-10B) with a frequency consistent to the long distance the assignment 

for NH2Y730•/C439A is questionable. Overall one can state that the longer distance observed 

in the single mutants was found as well in the double mutants.43, 254 

 

                                                                    
 

‡‡ This includes weighting of the smoothing effect versus the RMSD. 
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Figure 4-11: 34-GHz distance measurements between NH2Y730• and Y122• in the α2-
NH2Y730/C439A double mutant. (A) The composite EPR spectrum at 5 K (purple) followed by 
subtraction of the Y122• (blue) gives the NH2Y• spectrum (red) in 13% yield. B) The DEER 
traces at 20 K were taken with detection pulses (π/2(π) = 20(40) ns) separated by 50 MHz from 
the pump pulse (π = 56 ns). B) Three consecutive traces (1, 2, 3) were measured at D1, D2 and 
D3 (see A), respectively, with 11 G spacing. C) The averaged traces were summed and fit by 
DeerAnalysis286 using Tikhonov regularization.287 D) In the distance distribution the distance of 
3.29 ± 0.15 nm and 3.9 ± 0.1 nm is shown. B and C) In green the frequency suppressing 
distances larger than 3.45 nm is shown. 

  

4.3.4 Electrostatic Environment and Conformeric State: Comparison of the 
Radicals Formed in Double Mutants and Single Mutants 

The electronic structure reflected in the g-factor can be studied for NH2Y731•/Y730F and 

NH2Y730•/C439A. To compare the results with the single mutants and estimate also external 

effects like H bonding high-field EPR spectra were recorded and compared as shown in 

Figure 4-12. The spectra of the double mutants reveal the same coupling pattern for B0 along 

gy and gz. Along gx all features are broader than observed in the single mutants. This is typical 

for a distribution of electrostatic environments around the oxygen of the phenyl ring. The 
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observed g shift is here 0.3-0.4 ppt. NH2Y730•/C439A shows a slightly smaller β-methylene 

coupling at gy (≈24 MHz) the couplings at gz are identical with approximately 32 MHz to 

the value of the single mutant. The coupling obtained from the spectra for gx is 38 MHz.  

 The ND2Y731• double mutant (orange spectrum) compared to the single mutant 

(red spectrum) show an increase in dominant C−β HF coupling (Aiso ≈26 MHz, Table 4-1 

p.80). In order to disentangle the spectral contributions from g value and HF couplings 

further 263 GHz spectra were recorded as shown in Figure 4-13. Low signal intensity and 

yield (15%) of NH2Y730•/C439A at 70 K prevented an artifact free echo detected spectrum. 

Another signal is marked as an artifact with an asterisk (*). The stimulated echo sequence 

was used to compensate the weak signal, thus a shorter Tm filtering has been used. Thus in 

part the signal could arise due to the Y122• signal. From 94 GHz spectra gx was located in the 

center of the doublet splitting (38 MHz) at the low field side. The obtained parameters are 

summarized in Table 4-4. 

 The spectrum of NH2Y731•/Y730F (gray spectrum, Figure 4-13) displays a distinct 

triplet at the low field side of the 263 GHz spectrum. Compared to the single mutant (red 

spectrum), the dominant C−β coupling increases (Aiso ≈ 26 MHz, Table 4-1 p.80). 

C−β couplings are the only larger coupling contributions in these spectra, because the 

amino protons have been exchanged to deuterons. However, this HF coupling in 

combination with a weaker coupling to the second C−β proton (Aiso < 26 MHz) is not 

sufficient to generate the large triplet splitting (peak separation of ~ 1.1 and 1.4 mT). Thus 

the splitting is assigned to a second component. Two different gx values, but similar gy and gz 

values are typical for a second component with a different electrostatic environment. The 

individual parts of these two components are demonstrated via simulation of a larger (red) 

and smaller (blue) gx value component. The weighted sum simulation (gray --) supports of 

the two component interpretation with a weight of 45% to 55% for red and blue, respectively 

(Table 4-4). These two contributions cannot be resolved at 94 GHz, where the spectral 

region around gx shows only broadening (area marked in Figure 4-12). The results indicate 

that, as expected, removal of the H bond to Y730 perturbs the electrostatic environment at 

NH2Y731• and destabilizes the radical. The broadening observed at 94 GHz originates from 

two distinct environments. Thus no Gaussian distribution of H bond interactions is present, 

a prerequisite for a further ENDOR investigation. The simulation demonstrated a good fit 

to the corresponding 94 GHz spectrum, as shown in the Figure 4-12. 
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Figure 4-12: 94-GHz ESE spectra of NH2Y730•/C439A and NH2Y731•/Y730F compared to the 
corresponding single mutants. The spectra show NH2Y730•/C439A (gray) and NH2Y731•/Y730F 
(orange) together with NH2Y730• (black) and NH2Y731• (red) in D2O exchanged buffer. The 
shift of gx is marked in black. The simulation (orange,--) uses the parameters of Table 4-4. Exp. 
details: ESE, T=10 K, π/2 = 18 ns; τ = 260 ns; SRT = 6 ms; SPP = 100; scans = 15-110. To build 
the derivative spectra a 5 point, second order Savitzky-Golay filter was used. 

Table 4-4: Parameters obtained from the double mutant NH2Y730•/C439A and NH2Y731•/Y730F 
EPR spectra and simulation parameters of Figure 4-12 & Figure 4-13. 

 gx gy gz g strain A [MHz]    
Experiment         
NH2 Y730•/C439A 2.0056 2.00415 2.0022  A(C-β-H1) 

A(H2) 
38 
- 

24 
- 

32 
- 

NH2 Y731•/Y730F 2.0055 2.0042 2.0022 0.15 ppt A (C-β-H1) 
A(H2) 

29 
6 

28 
4 

21 
6 

NH2 Y731•/Y730F 2.0052 2.0042 2.0022 0.15 ppt A (C-β-H1) 
A(H2) 

34 
6 

28 
4 

27 
6 
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⋅ 
Figure 4-13: 263-GHz EPR spectra of NH2Y730•/C439A and NH2Y731•/Y730F compared to their 
corresponding single mutants. The spectra show NH2Y730•/C439A (gray) and NH2Y731•/Y730F 
(orange) together with NH2Y730• (black) and NH2Y731• (red) in D2O exchanged buffer. The 
shift of gx is marked in black. The simulation (orange dotted line, ⋅⋅⋅) takes two components into 
account (see Text, Table 4-4). Exp. details for double mutants (263 GHz): Stimulated echo 
(SE); T= 70 K; π/2 = 110 ns; τ = 220 ns; SRT = 6 ms; number of averages = 7500 and 8750. To 
build the derivative spectra a 5 point, second order Savitzky-Golay filter (NH2Y731•/Y730F) or a 
10 G pseudo modulation (ND2Y730•/C439A) was used. The asterisk (*) denotes the presence of a 
background signal (see Text). 

4.3.5 Assignment of the H Bond Donors by ENDOR Spectra of the Double 
Mutants. 
The high-field EPR spectra are partially consistent with a loss of a hydrogen bond. Thus it is 

interesting which 2H nuclei can be detected with 2H Mims ENDOR spectroscopy. 

Therefore, ENDOR spectra were recorded for the samples with the highest yield of 33% at 

20 s and 14% at 30 s for NH2Y731•/Y730F and NH2Y730•/C439A, respectively. The 2H Mims 

ENDOR spectra at gy are displayed in Figure 4-14, using deuterated assay buffer and a τ 

value of 200 ns. They are directly compared with their single mutant counterparts described 

in §4.2.1. 2H ENDOR spectra of both double mutants showed an astonishingly decrease of 

sharp peaks at ± 0.6-0.8 MHz. No sharp features are observed in NH2Y731•/Y730F, whereas a 

loss of ~ 70% intensity compared to the single mutant is apparent in NH2Y730•/C439A 
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mutant. Notably, this is in agreement with the assignment made before (§4.2 p.81) and 

previously (§1.5.3, p.21).110, 254  

 
Figure 4-14: 2H Mims ENDOR spectrum of the double mutants  NH2Y730•/C439A and 
NH2Y731•/Y730F (top) compared to its corresponding single mutant spectrum (bottom).A) The 
simulated tensor shape assigned to the H bond of the DO-Y731 is shown in red. The resonance 
assigned to an H bond of D-C439 has a blue gradient. B) No sharp feature was detected in the 
NH2Y731•/Y730F, in agreement with the loss of a perpendicular H bond. Exp. details: T = 70 K, 
π/2 = 20 ns, τ = 200 ns, πRF= 40 µs, SRT = 5 ms, random RF acquisition279 at 1 shot/point, 
acquisition time is 24 h (green) 50 h (gray ). 

 Thus NH2Y730• harbors two perpendicular H bonds and NH2Y731• has one strong 

to moderate perpendicular H bond donor, Y730. The broad range of the amino deuterons 

shows, furthermore, slight changes for NH2Y730•, the double mutant has a 10% smaller HF 

coupling to the ND2 deuteron, whereas the other coupling stays in the same range as the 

single mutant. At NH2Y731• both amino deuterons have a smaller coupling (~20%). This 

could indicate a slightly changed distribution of spin density over the ring or a change in 

direct intermolecular interaction at the amino group. Nevertheless, both contributions can 

be simulated using a simply scaled tensor of the corresponding single mutant (data not 

shown).  

 Interestingly, the inner coupling range is also changing for NH2Y731•, out of the 

unstructured matrix line a clear pattern emerges. It could be a small axial part of a powder 

pattern. Then a dipolar tensor with values of T∥ = -0.3 MHz and T⊥= 0.6 MHz would be 

present. Otherwise a larger resonance contribution with 1.2 MHz is possibly overlaying with 



Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in RNR Ia 

3-Amino Tyrosine Radical Intermediates   97 

the amino deuteron tensor resonances. This is in agreement with a low gx value observed for 

55% contribution of the NH2Y731•/Y730F. In contrast the inner coupling of NH2Y730•, which 

shows a tensor in agreement with distal water, does not change. The NH2Y731• double 

mutant located near the interface could compensate the loss of an H bond, which could 

explain good yield and the in part small g shift observed. Therefore it was interesting to 

observe from which direction this new contribution could arise from.  

4.3.5.1 Orientation Selective ENDOR from NH2Y731•/Y730F 

A set of 2H ENDOR experiments along all canonical orientations of the g tensor was 

performed. As we have seen before only three deuterium nuclei are present in this system 

two from the ND2 group and one from a here better resolved matrix line. The point of 

interest here was the inner coupling range and the orientation of a distant 2H coupling. For 

B0 oriented along gz the features of the inner line get a single crystal like sharpness. The 

features get broader at B0∥gy and at B0∥gx the inner coupling has an overlap with resonances 

origin from the two amino deuterons. Section§5.3.4 (p.142) will show that in plane 2H HF 

couplings have quadrupole splitting in the order of ≈0.15 MHz. The splitting observed at gz 

could be representative for an axial HF (T⊥ ≈ 0.22 MHz) including a quadrupole splitting of 

150 kHz. Due to orientation selection no parallel HF tensor component for B0‖gz is visible 

for an H bond collinear (±30°) to the gx,gy plane.55, 155 A moderate H bond consistent to such 

a coupling (2.2 Å, Eq. (2-17)), would be sufficient to explain the difference in g value 

between the two environments. Without better resolved spectra (Figure 4-15), a simulation 

of these spectra would be speculative at this point. 
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Figure 4-15: Orientation-selective 2H Mims ENDOR for NH2Y731•/Y730F. The traces were 
recorded at the magnetic field positions corresponding to the canonical values of the g tensor (gx, 
gy, gz) at 70 K. The interaction of a 2H is marked with green (±0.29 MHz) and red lines 
(±0.14 MHz). Exp. details: Bottom: T= 10 K, π/2 = 20 ns, πRF= 40 µs, τ = 200 ns, SRT = 150 ms, 
random RF acquisition279 at 1 shot/point, acquisition time = 1:07 h; top: T= 70 K, SRT = 10 ms, 
acquisition time= 2:24 h. From top to bottom 20, 5 and 10 point adjacent averaging smoothing 
was used. 

4.4 Comparing Structural Models from DFT with EPR 
Parameters 
At the beginning of this project, the overall idea was not only to measure EPR and ENDOR 

spectra but, ambitious as it sounds, to obtain a structural model of the radical state. Based on 

T. Argirević’s EPR and Riplinger’s DFT work (Introduction §1.5.3, p.21), a suitable model 

for NH2Y731• in agreement with the EPR results of the previous sections should be found. 

This time the large models (>200 atoms), used for transition state calculations previously,110 

could be augmented by an NH2 group on Y731. 

 The geometry optimization was performed by S. Kossmann in F. Neese’s lab. An 

unrestricted gradient functional BP86 was employed with dispersion correction and a triple 

zeta ζ functional operating in the basis set limit (Methods §3.6, p.71). Three models were 

studied with one, zero and two water molecules named Model 1, 2 and 3, respectively 

(Figure 4-16, p.100). The models were originally based on the inactive crystal structures67 

and took all known amino acids within 5 Å around the NH2Y731 into account. In the 

optimized models the distance to the phenol H bond donor Y730 varies from 2.7 Å in Model 

1 to 2.6 Å in Models 2 and 3 (Figure 2-16). 
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 Nonetheless, all optimized models revealed a decreased O730-O732 distance of 0.9 

to 0.5 Å compared to the crystal structures (Figure 4-17). In the absence of a water molecule 

(Model 2) α-R411 approaches the NH2Y731•. The guanidinium group comes here within H 

bond distance R(N411-O731) ≥ 2.9 Å, where the closest encounter found in crystal structures 

is 3.6 Å (cf. Figure 2-16). The Owat2-O731 distance, of a second water, considered in Model 3 

is with 2.8 Å comparable to the distances (Ro-o ≈2.6-3.6 Å) observed in the vicinity of some 

X-ray structures of α-wt and α-NH2Y731/730 (see Figure 2-16). Despite the second H bond 

having a distance of RO-H ≈1.9 Å, the stronger perpendicular H bond to Y730 remains. 

 Both interactions described by Model 2 and 3, find precedents in the literature. 

Common π-cationic interactions has been described for aromatic amino acids like tyrosine 

to amino acids like arginine.288, 289 A arginine next to a tyrosine revealed a reduction in redox 

potential in small peptide model studies.290 Strong H bond networks, including two water 

molecules, have also been proposed in PS II to have a strong effect on g values and an 

activation role for Yz’s high activity.156, 291 

 In our models, the g values and the HF interaction were calculated using B3LYP 

and EPRII as functional and basis set (§2.3 p.47). The gauge origin of the g tensor had to be 

laid into the radical (fixed at C4) to reduce gauge-dependent errors. The main two variables 

in the 3-amino tyrosines extracted from the high-field EPR spectra are the g values and the β-

methylene couplings that are tabulated in Table 4-5. For the g values we see that within the 

uncertainty of the DFT of 0.5 ppt all values are consistent with the experimental g values. 

Within the models gz is not varying significantly and gy follows the trend of gx between Model 

1 and 2 to a smaller extent as expected by g value theory (Theory §2.1.2, p.31). 
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Figure 4-16: Central part of the DFT geometry optimized NH2Y731• models. The models are 
based on the models used for the energy barrier calculation (Introduction §1.5.3, p.21) of the 
Y731-Y731-C439 triad. In gold the residues directly affecting the model are highlighted. Model 1 
contains the water molecule wat1, Model 2 has no water molecule, and Model 3 considers an 
additional water (wat2) close to NH2Y731•. The complete models are depicted in Figure A - 5 
(p.196). 

 
Figure 4-17: X-ray structures including water molecules in α subunit.67 3 Crystal structures of: A 
α-wild-type, PDB ID 2X0X, molecule C, 2.3 Å resolution; (B) α-NH2Y730 PDB ID 2X04, 
molecule B, 2.7 Å resolution; (C) α-NH2Y731 PDB ID 2X05, molecule C, 2.5 Å resolution. Only 
water oxygen atoms (red spheres), which are near to the phenolic oxygen (≤ 5.5 Å) of the 
tyrosines, are displayed. The distances are given in Å. 
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Table 4-5: Summary of g values and C-β HF couplings of NH2Y• at residues 730, 731, 356. The 
values were obtained from combined simulations of the 263 and 94 GHz spectra and compared 
with those obtained from DFT calculations. The 14N hyperfine tensor of the NH2Y• was not 
varied in the simulations and kept Ax= 2.4 MHz, Ay=1.6-5 MHz, Az= 30.7 MHz.134 Uncertainty in 
g values is about 0.05 ppt for the experiments and 0.5 ppt for DFT calculations. Uncertainty in 
HF couplings is up to 10% from spectral simulations and up to 20 % in DFT calculations. 

 gx gy gz 
Aiso(C-β) 
[MHz] 

Experiment     

NH2 Y730• 2.0054 

2.0052‡ 
2.0042 2.0022 29 

NH2 Y731• 2.0051 2.0040 2.0022 22 

NH2 Y356• 2.0049 2.0041 2.0021 27 

NH2Y730•/C439A 2.0056 2.00415 2.0022 31 

NH2Y731•/Y730F 2.0055/52 2.0041 2.0022 26 

DFT     

NH2Y731• Model 1, with wat1 2.0055 2.0042 2.0022 35 

NH2 Y731• Model 2, no water 2.0050 2.0040 2.0023 28 

NH2 Y731• Model 3, with wat1  and wat2 2.0051 2.0039 2.0021 22 

free NH2Y• Δ 2.0061 2.0045 2.0022 - 
‡ Value reported ref. 134. Δ value from 2-amino-4-methyl-phenol radical.110 

To explain the dependence of the gx values for the three models, one has to take a close look 

at the H bond interactions of the different models. It seems that weak (2.1 Å) to moderate 

(1.9 Å) H bonds make an effect of 0.4-0.5 ppt if they act together with a moderate H bond 

perpendicular oriented to the ring system. This is consistent with small model studies 

(Figure A - 6, p.197). It is worth mentioning that Model 2 and 3 lie closer to the observed 

experimental values. The β-methylene is best captured by Model 3. This model has a 

dihedral θCβ of -47.2°. As shown in Figure 4-18, this will decrease the second beta methylene 

coupling (Hβ1) to nearly zero with aiso(Hβ1)≈3-4 MHz (Model 1 & 3). Within these models 

aiso(Hβ1) cannot cause the HF interaction observed as a triplet at gx. The next largest HF 

coupling is from the C6-H with Ax,y,z=-9,-1,-13 MHz (Model 3), therefore we assigned this 

coupling tentatively to A(C6-H). This is a structural restrain, which could be considered in 

future studies, defined as in Figure 4-18. Since the θCβ angle is connected to the possible 

coupling sizes, for this angle only one dominant β-methylene 1H coupling is expected. It 

should be mentioned, that slight sterical changes from unconsidered interactions to the β 

subunit could introduce changes in the considered models. 
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Figure 4-18: Ring dihedrals θCβ of the crystal structure (green) compared to models 1, 2 (black) 
and 3 (blue) considered for NH2Y731• and Y731• (PDB ID: 2XOX, 2XO5 and 2XO4).67 The 
figure explains the observation, that both C-β couplings become smaller, by an increase in θCβ. 

In order to answer which DFT models are in agreement with the 2H ENDOR results Table 

4-6 summarizes the acquired values. Direct comparison of Models 1 and 3 are in a good 

agreement to the experimental ENDOR work. However, all depicted models show the effect 

of a strong H bond toward Y730 nearly perpendicular to the ring plane. Uncertainty can be up 

to 20% for the DFT values and unique Euler angle sets are hardly found for orientation 

selective ENDOR, increasing the error to about 10%. Thus within the uncertainty only the 

coupling sizes of Model 2 disagree with the observed values. Especially, the ND2 tensor is in 

best agreement with Model 3, were the H bond, as depicted in Figure 4-19, is in best 

agreement with Model 1. Possibly an intermediate model could fit to both properties even 

better. The wat2 position could be modified as a more distant binding to the amino group 

(≥ 2 Å) was obtained in an early optimized structure. Missing contacts have rendered the 

flexibility of a single water molecule on a more distant side too large to lead to an optimized 

geometry. Here structural information of any contact to the β subunit is of essence. The HF 

values of the wat2 deuterium with its calculated value of A⊥,∥=-0.19, 0.37 MHz could be 

unresolved from the discussed narrow matrix line of NH2Y731• (± 0.2 MHz). 

 Addressing the Euler angles and the angular dependence of the H bond to Y730 the 

following Figure 4-19 should visualize the results. In order to compare on the same 

molecular bases, the HF tensor of the ENDOR simulation was rotated into the individual g 

tensor system of the model. The angle differences show a stronger disagreement to Model 2 

as discussed before based on the coupling size. Although Model 2 agrees well with the 

g values, the H bond direction does not. The other two models are within the uncertainty of 

30° identical to the ENDOR simulation. All models are in a good agreement with the 
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H bond direction to Y730. Even if an additional water molecule is considered as in Model 3 

the formed H bond interaction is weaker compared to the perpendicular H bond from Y730. 

 
Figure 4-19: Comparison of DFT models (right) and H bond orientation from ENDOR 
simulation (left) parameters in their respective molecular frame. The g tensor orientation (blue 
arrows) is defined in respect with the molecular frame and therefore for each model slightly 
different (up to 10°). Row A, B and C are in the molecular frame of Model 1, Model 2 and Model 
3, respectively. The hyperfine tensor and Qz are displayed as mint green and green vectors. In all 
models Qz has been found collinear to the OY730-H bond and has been omitted for clarity. 
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Table 4-6: Summary of EPR parameters for the H bond to NH2Y731•. Parameters were obtained 
from simulations of the orientation selective 94-GHz ENDOR spectra and comparison with the 
DFT models. Uncertainty in the parameters from the DFT and ENDOR simulations is 
estimated up to about 20%. 

NH2Y731•  Ax 
[MHz]

 

Ay 
[MHz] 

Az 
[MHz] 

α   [°] β 
[°] 

γ    
[°] 

Qx 

[MHz] 
Qy 

[MHz] 

Qz 
[MHz] 

Simulation 
Y730-OD 

1.3 -1.43 -1.63 -160 
120 

110 
40 

80 
85 

 
-0.03 

 
-0.09 

 
0.12 

 
ND2 D(1) 

-0.6 -2.9 -3.8 -86 
-92 

98 
93 

90 
-3 

 
-0.04 

 
-0.06 

 
0.11 

 
ND2 D(2) 

0.06 -3.1 -4.2 -96 
-93 

93 
84 

-31 
-121 

 
-0.06 

 
-0.08 

 
0.14 

DFT:  
Model 1 

Y730-OD 
1.1 -1.4 -1.7 -164 

119 
137 

39 
79 
85 

 
-0.04 

 
-0.06 

 
0.10 

 
ND2 D(1) 

-0.4 -2.6 -2.8 -86 
-92 

98 
93 

90 
-3 

 
-0.05 

 
-0.07 

 
0.13 

 
ND2 D(2) 

0.04 -2.5 -3.7 -96 
-93 

93 
84 

-31 
-121 

 
-0.06 

 
-0.08 

 
0.14 

DFT:  
Model 2 

Y730-OD 
0.75 -1.8 -2.2 -194 

-104 
147 
121 

58 
-88 

 
-0.04 

 
-0.06 

 
0.10 

 
ND2 D(1) 

0.25 -1.4 -1.5 -103 
-111 

137 
80 

95 
12 

 
-0.05 

 
-0.07 

 
0.13 

 
ND2 D(2) 

1.0 -1.0 -1.8 -113 
-76 

80 
64 

-17 
-114 

 
-0.06 

 
-0.08 

 
0.14 

DFT:  
Model 3 

Y730-OD 
1.1 -1.7 -2.0 -163 

106 
122 

25 
81 
84 

 
-0.04 

 
-0.06 

 
0.09 

 ND2 D(1) 0.47 -2.6 -3.4 -98 
-95 

99 
80 

72 
-15 

 
-0.05 

 
-0.06 

 
0.11 

 ND2 D(2) 0.67 -2.63 -3.97 -100 
-98 

84 
103 

-45 
43 

 
-0.05 

 
-0.06 

 
0.11 

 
OD2(1) 

-0.36 0.66 -0.73 87 
24 

109 
64 

-124 
94 

 
-0.06 

 
-0.07 

 
0.13 

a) The signs of the couplings from the simulation are only relative to each other within one tensor. The 
Euler angles (α, β, γ) are defined from the A or Q to the g tensor based on the y convention (positive sign 
for a rotation is counter clockwise, second rotation is around the y axis). The A- and Q (quadrupole) 
tensor are chosen such that |Ax|<|Ay|<|Az|. Within this definition, for both the amino deuterons and the 
H bond deuteron the Ax direction results along the bond direction. Euler angles from DFT (in the ORCA 
output positive rotations are defined clockwise) were transformed into the magnetic resonance 
convention, for comparison.  
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4.5 Discussion of the PCET in the α Subunit with NH2Ys• 
Prior work has demonstrated that unnatural amino acids can be used successfully to obtain 

information from the α2β2 active E. coli RNR Ia enzyme.69 Not only the globular structure 

but also positioning of NH2Ys• within the PCET relative to Y122• has been accessible (see 

Figure 1-8, p.12).43 Whereas kinetic studies delivered rates of several PCET steps, the 

incorporation of NH2Y offered the opportunity to measure the radical state directly after a 

reversible oxidation step and reorganization of the protein thereafter.110, 134  

 Especially in α RNR the site selective incorporation44 of Y730/731 with NH2Ys 

offered the possibility to study the H bond network and electrostatics of the formed 

transient radical.92, 110 This information can be probed by two EPR accessible parameters: 

the gx value affected by (partial) positive charges and the hyperfine interaction of protons 

forming H bonds in varying strength. The two NH2Y•s at Y730/731 showed a strong decrease 

in gx of 0.7-1.0 ppt compared to the value of the free NH2Y• (Table 4-5, p.101).92 This 

electropositive microenvironment was previously correlated to a DFT calculation (≈140 

atoms, model 4) including all assigned H bond contacts assigned in the 2H ENDOR 

simulations as reported in the introduction (Figure 1-14, p.23).110 In analogy 2H ENDOR 

spectra of NH2Y731• have been assigned preliminary to two perpendicular H bonds (≈1.8 Å) 

within T. Argirević’s dissertation.92 A spectroscopical evidence, however, for the H bond 

donor groups assigned in these models has not been presented and a comparison to the 

transition state calculations (>200 atoms, models 7 and 8) is compromised by the difference 

in model sizes. 92, 110 Additionally, highly accurate (<0.1 ppt) and resolved EPR spectra were 

not presented allowing several interpretations, as the number of conformers observed at 

NH2Y731•. 92 

 In this chapter, high-field 263-GHz EPR has demonstrated a slight, but significant, 

increase (0.3 ppt) of electrostatic interaction from the well-structured NH2Y730• to NH2Y731• 

and has found NH2Y731• to be a single species within the reaction time of seconds and 

minutes. This thesis revealed that the number, orientation and strength of exchangeable 

H bonds differ at these two residues. The ENDOR data are consistent with one strong and 

one moderate perpendicular H bond toward NH2Y730•, but displays only one strong 

perpendicular H bond toward NH2Y731• (Figure 4-14). The corresponding double mutant 

ENDOR spectra were consistent with a loss of an H bond. Additionally, they exhibited a 

decrease in radical build up rate. A connection between the change in H bond network and 
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the lower reaction rate might be drawn. This would emphasize that a loss of an H bond leads 

to a decrease in radical build up rate. A analog argumentation292 explains the tendency in the 

PS II, were the stronger H bonded156, 291 YZ• reacts faster than YD•153, 293. 

 Spectroscopic evidence for the assignment of the π-stacking between Y731-Y730 has 

been obtained by several independent observations. I) The direction of the H bond and the 

alignment to the axis of the H bond donor describes one perpendicular H bond toward Y730 

from NH2Y731• and vice versa for Y731 toward NH2Y730•. II) The H bond dihedral angle (cf. 

Figure 4-8, p.85) indicates an intervening water molecule as described by a model of Kalia 

and Hummer to be unlikely. In their structure an H bond, from the water, shows an angle of 

about 45° between gz and gx. In this case the largest quadrupole splitting would be observed 

along gz and gx equally, which is not the case. On the contrary, the ENDOR spectrum at 

B0‖gx shows the smallest quadrupole splitting at this orientation (see Figure 4-8). However, 

both H bond angles are in agreement with an angle nearly perpendicular toward the 

aromatic plane (50°110 to 70°, see §4.2.2, p.83) as modeled to be ideal for this π-stacked 

interaction.107 III) The double mutant (NH2Y731•/Y730F) misses the typical perpendicular 

H bond pake pattern. Whereas the H bond network at NH2Y731• has a moderate to strong 

perpendicular H bond. This demonstrates the H bond loss is directly dependent on the 

phenoxy group at the 730 residue. IV) The DFT models revealed that no matter if zero, one 

or, two waters are considered in the large models (1-3) the strongest interaction is the 

H bond formed between the π stacked residues (see Figure 4-16). Thus the results support 

the current PCET model that Y731• is the proton acceptor in the next forward PCET step to 

Y730 (Figure 1-10, p.14). Notably, this geometry is present in several, but not all α2 

structures. Other conformeric states have been observed in wt yeast68 and human50, and in 

NH2Y RNR α 2 structures67, as shown in Figure 1-3 (p.5) and Figure 1-12B (p.18). 

Geometric restraints like the nearly perpendicular H bond (§4.2.2, p.83) and a ring dihedral 

(§4.4, p.98) have been formulated, and underline the necessary geometry for this adiabatic 

CPET step106, 110. The optimum efficiency of the transfer has been studied by theorists,106, 107, 

113, 244 pointing toward an adiabatic electron and proton transfer in a geometry consistent 

with our data. 

 So far we could show that Y731 interacts to Y730 by a strong to moderate 

perpendicular H bond and can have only a weak H bond interaction toward the interface. 

DFT studies were performed by C. Riplinger from the Neese group (Mülheim) to explain 
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the observed g shift in great detail and to include electronic, steric and energetic effects for 

orientations of the H bonds of Y730 and Y731 toward each other (§1.5.3.2, p.26).110 In this 

thesis the optimized NH2Y731• models 1 and 2 were obtained from the transitions state wt 

models 1’ and 2’ (models 6 and 7 in ref. 110), as illustrated in Figure 4-20 left. Therefore the 

NH2Y731• and Y731• models have the same structural basis and can be compared.  

 In this thesis Model 1, 2, and 3 were related to the EPR and ENDOR spectra of 

NH2Y731• and had one, zero and two waters in their models, respectively. Models 1 and 3 

were within uncertainty in agreement with the 2H HF couplings from the amino group and 

the g values. Model 3, however, could not be considered for a comparison of NH2Y731• to 

Y731•, because Y731 lacks the NH2-group necessary to stabilize a water molecule (wat2) at a 

distant (rO-H = 1.9 Å) position (see Figure 4-16, p.100). Based on the assignment one can 

return to the recent study of the transition states (TS) and energies of Model 1’ and 2’ by 

Riplinger.110 For position NH2Y730• the ENDOR data showed an H bond consistent with 

wat 1 in Model 1’. Therefore, a model with wat 1 near Y730 is supported for Y731• and Y730• 

equally. The energetic pathway has been predicted and compared to Model 2’ without wat 1 

and with a cation-π interaction of R411 and Y731•, as shown in Figure 4-20 left.  

 In the calculation performed on the wt enzyme the structural effect in terms of 

energy barriers are now displayed. The lowest energy barrier reported so far between two 

tyrosines is observed between Y731• and Y730• for Model 1’. Additionally, the barrier heights 

of other DFT models from the literature are displayed in Figure 4-20.107, 112 Siegbahn et al. as 

well as Kalia and Hummer have modeled their DFT work solely with a di tyrosine peptide 

model between Y731 and Y730 with or without a water molecule in between. Although they 

pointed out either the importance of (non-equilibrium) electrostatics106, 113 or considered 

H bonds107, 232 they could not consider them. Both aspects have now been tested and 

compared to the EPR work biased by the absence of structural knowledge at the interface. 

Therefore Model 1’ takes these important interactions into account. Bu et al. states that the 

protein environment stabilizes the radical intermediates (by up to ~3 kcal/mol) and thus 

increases their observed barrier height. Comparing Model 1’ and 2’ it is evident that the 

close electro positive influence of R411 (with a gx shift in NH2Y• of 0.5 ppt) in Model 2’ can 

destabilize the Y731• compared to the TS and diminish the activation barrier.110 The 

geometry with the water (wat1) close to Y730, however, stabilizes the C439• and decreases the 

necessary energy for this endergonic forward PCET step.110 Therefore it is difficult to 
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quantify the effect for all considered interactions, however, compared to Siegbahn et al. the 

barrier height decreases by 2 kcal/mol for the first step between Y731 and Y730 and is identical 

within error of 1.2 kcal/mol for the second step to C439•.110, 232 Notably, all DFT models used 

the same hybrid functional, the work of Kalia and Hummer even by the same dispersion 

corrected diffuse TZVPP basis set. Furthermore Siegbahn et al. mentioned that the effect of 

the total energy does not depend strongly on the basis set, thus the comparison is 

admissible. Generally, it is expected that B3LYP works well for PCET barrier heights, but 

underestimates them.113, 192, 294 This is an important point before one compare these barriers 

to kinetic rates.  

 
Figure 4-20: Energy diagram for the PCET in α. Here the calculated energies from C. Riplinger 
are shown for the preferred Model 1’ (red) and Model 2’ (blue). Additional other DFT energy 
barriers are shown as HAT energies from Siegbahn et al. (violet),107 the CPET energies of Kalia 
et al. (green)106 and work form Bu et al. (orange)112. Barrier heights in solid lines are a direct 
PCET step, were points mark a water assisted transfer. The energies obtained from QM/MM 
structures of Bu et al. are 2-51 kcal/mol higher and were omitted here. Modified from ref. 110. 

 Kinetic rates were recently measured for the PCET step from a higher potential 

2,3,5-F2-Y356 to Y731-Y730-C439-nucleotide.86 Activated by a photo trigger the 2,3,5-F3-Y356• 

decayed with a rate of 14000 s-1,86 this is still slower than rates from B3LYP studies between 

Y731-Y730-C439 with 107 per s.110 The slower rate of 14000 s-1 is in agreement with the 

proposed rate limiting step for this reaction to be the nucleotide reduction.86, 110 Although 

this comparison does not enable us to judge the activation energy of single PCET steps, it 

tells us that no slow structural conversions can take place between our investigated triad of 

Y731-Y730-C439. 

 The interaction of Y731 to C439 was proposed to be direct in previous ENDOR 

studies. It was also observed in all resting state α2 structures of wt, NH2Y730, and NH2Y731.22, 67 



Hydrogen Bonds and Electrostatic Environment of Radical Intermediates in RNR Ia 

3-Amino Tyrosine Radical Intermediates   109 

Bu et al. have strongly challenged this assignment. They claim that their two shell DFT 

(ONIUM) model based solely on the inactive α2-NH2Y730 structure shows wat1 (H2O138 in 

their notation) moving into a gap between Y730 and C439 during geometry optimization.112 

Notably, this has also been observed in some of our DFT models, if no restraints were used. 

It has been considered as an effect of the imperfect model based on the inactive crystal 

structure. In this chapter it could be demonstrated that the H bond resonance is missing in 

the NH2Y730•/C439 ENDOR spectrum, in agreement with the energy models presented by 

Riplinger (Figure 4-20).110 On the contrary, barrier height (Figure 4-20) and geometry of 

the intervening water of Bu et al. is similar for a water molecule (H2O138) or a cyteine S-H, as 

illustrated in Figure 4-21 (orange). Nevertheless, it can be stated that in the radical state of 

NH2Y730• the water they assigned to change its position (wat1/ H2O138) is still present in a 

distal position (cf. Figure 4-21, blue). Otherwise our methods cannot distinguish between a 

moderate H bond from and OH or an SH group. Agreement can be reached that assisting 

water molecules can stabilize the transition state as in the trend observed between Model 2’ 

and Model 1’ (cf. Figure 4-20). Nonetheless, a large energy barrier (60 kcal/mol) reported 

by them could not be reproduced even without wat1 in any other Y to Cys study including 

their own (Figure 4-20). 112 Though it could point out the strong distance dependence for a 

PT in a single PCET step.101, 112 

 
Figure 4-21: H bond environment of Y730• from DFT Model 1‘ (blue) and ONIUM model of 
Chen et al.(orange).110, 112 The H bonds to Y730• are marked for Model 1‘ in red and for the 
ONIUM model in blue. The distance of the H bond is given next to the individual proton in Å. 
The distance between Y730 phenoxy oxygen and H-C439 is marked in gray. 
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4.6 High-Field EPR Spectra of NH₂Y₃₅₆• in the β Subunit 
This part of the chapter will describe the results obtained using the 3-amino tyrosine 

mutation in the β subunit, more specifically at Y356 placed in the C terminal domain of the β 

protein. In β2 this part is highly flexible, nevertheless the last 32 amino acids were used to 

stabilize the α2 complex in order to crystalize it (Figure 1-4 p. 7). Furthermore, it could be 

shown by NMR studies§§123 or by the NH2Y730• stabilized complex69 that this part becomes 

ordered in the “active” complex. Focused on position 356, PELDOR studies based on a 

Dopa mutation have shown a narrow distance distribution (3.1±0.1 nm) at Dopa356 (Figure 

1-6A p.10). Recently, also a narrow distance distribution of the NH2Y356•-Y122• radical pair 

could be reported by PELDOR spectroscopy28(I. Bejenke, unpublished results). Based on 

these studies it became evident that a structuring around the flexible region takes place, but 

what does the local electronic structure look like?  

In the following part the protein was prepared as published by E. Minnihan (Methods §3.2), 

the EPR samples, measurements and analysis were done in this thesis. The NH2Y356-β 

mutants have the intrinsic problem of the placement of an electronic sink near the “stable” 

tyrosine Y122•, thus only 0.5 radical/β2 compared to 1.2 Y122• per wt-β2
67 could be generated 

by reconstitution methods.28 A second batch in a 1:1 complex with an His6 tagged α mutant 

was purified by W. Lee in the Stubbe lab at MIT.  

4.6.1 EPR Spectra of NH₂Y₃₅₆• for Several Reaction Times 

For the investigation of the electronic structure and the H bonding at Y356•, the time point 

for quenching the reaction had to be selected. These time points should be reproducible and 

should not contain further radical species. Although the SF-vis spectroscopy demonstrated a 

steady state at 1 s,67 it is also interesting how the spectra develop during the radical decay 

with time points from s to minutes. As an example, conformational changes in this time scale 

could report on general local flexibilities of NH2Y356•. Therefore EPR experiments were 

performed at 94 GHz for several time points from 6 s to 2 min, as shown in Figure 4-22. The 

spectra looked slightly different due to their contributions of glass peaks (high-field asterisk 

*) and another contribution (low field asterisk *) quite intense at 2 min and quite low in 

intensity for the 44 s. For both later time points the low field line at B0ǁgy seem to be 

                                                                    
 

§§ This study has been performed with mouse RNR Ia. 
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broadened, therefore further studies were performed at earlier time points up to ≈20 s, 

where also the highest radical yield was obtained ≈20%. 

 
Figure 4-22: 94 GHz-Echo detected spectra of NH2Y356• recorded at different freezing time 
points during the reaction. The spectra are sorted from 6s quench (bottom) to 2 min quench 
(top). The derivative was obtained from a 3 G pseudo modulation. Exp. details: 70 K; 
π(π/2)=32(16) ns; SRT=5 ms; Number of averages from (6-120 s): 1300, 6200, 450, 1500 and 
3800. 

4.6.2 Polarity around NH₂Y₃₅₆• from 263 GHz and 94 GHz Spectra 
In order to characterize the electrostatic environment and the electronic structure of 

NH2Y356• spectra were measured and compared at various frequencies, E. Minnihan 

reported on 9 GHz67 spectra and T. Argirević on 94 GHz spectra 92. The 263 GHz spectra 

should be here compared to the g values already obtained HF parameters necessary for 

simulating the field dependent 94 GHz EPR spectra. 263 GHz spectroscopy was available to 

us since the beginning of 2012, but not all functions worked properly at the beginning. For 

example, the linearization procedure elongates the measurement time to an extent, for which 

at low radical yields no good S/N can be reached to measure in the accuracy of 50 ppm. 
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Thus, non-linearized field sweeps with an error of about 90 ppm had to be used. To show, 

however, that the spectra were consistent with or without linearization the first two spectra 

are included in Figure 4-23. It is clear that differences can be seen by eye. For instance the 

spectral width of the non-linearized field sweep is slightly larger. Nevertheless, the same 

g values are obtained within an error of 90 ppm (Methods §3.5). Another point is the signal 

contribution marked as artifact with an asterisk (*), which is not present in the reactions 

quenched later. Hence, it was neglected as a signal arising from the background due to low 

radical yield of the sample (≈10%). Possibly a deterioration upon freeze and thawing cycles 

of the prepared enzyme could also explain this contribution.  

 The g values match already with the other investigated NH2Ys•. They are more 

clearly resolved in the derivative spectra of the linearized spectrum (Figure 4-24). A 

comparison with a simulation based on the previous results is shown in Figure 4-24. With a 

gx of 2.0049 based on calibration with Y122• (Figure A - 7, p. 198), the radical has the highest 

polarity of all three NH2Ys•. The values are summarized in Table 4-7. The β-methylene HF 

coupling is within the range of 22 MHz and 29 MHz of the single mutants in α. A 

consideration beyond the semi empirical McConnel295 equation is discussed together with 

single amino acid DFT models in §4.6.4 (p.115). The trend in gx values is consistent with 

the decreased spectral width of the ND2Y356• spectra. As the gx values is proportional to the 

spin density population of the oxygen nucleus, the atom in Y356• with the largest spin-orbit 

coupling, the result can be directly related to an increase of electrostatic environment 

around the oxygen (Theory §2.1.2). This leads to a trend of decreasing electrostatic 

interaction from NH2Y356 over NH2Y731 to NH2Y730, the in direction of forward PCET. 
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Figure 4-23: 263-GHz EPR spectra of ND2Y356• measured at three reaction time points. Exp. 
details (from top to bottom): green: SE, π/2=90 ns, τ=260 ns, SRT =2 ms, SPP=1000, 150 
scans; red: ESE, π/2=100, τ=240 ns, SRT=3 ms, SPP=100, 250 scans; black: ESE, π/2=100, 
τ=240 ns, SRT=3 ms, SPP=100, 160 scans; black and red are not linearized. 

 
Figure 4-24: 94 and 263-GHz EPR spectra (blue) of NH2Y356• and simulation (gray, Table 4-7). 
Exp. details: A) see Figure 4-23 (green); B) ESE at 94 GHz; T=70 K; π/2 = 32 ns; τ = 260 ns; 
SRT = 5 ms; SPP = 50; scans = 750. The derivative is obtained by 10 and 3 points second order 
Savitzky-Golay filter for A and B, respectively. 
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Table 4-7: Summary of g values and HF couplings observed in the EPR spectrum of NH2Y356•. 
The 14N hyperfine tensor of the NH2Y• was not varied in the simulations and kept Ax= 2.4 MHz, 
Ay=5 MHz, Az= 30.7 MHz.134 Uncertainty in g values and HF couplings is about 0.05 ppt and 
10%, respectively. 

 gx gy gz Aiso(C-β) 

NH2 Y356• 2.0049 2.0041 2.0021 27 

4.6.3 H bond interactions at NH₂Y₃₅₆• 

The observation of a polar environment around NH₂Y₃₅₆• has enhanced the interest in the 

identification of its origin. Up to now, H bonds orthogonal to the ring plane were observed 

by ENDOR spectroscopy at NH2Y731• and NH2Y730•. These H bond interactions have 

always sharp features at B0∥gy (cf. Figure 4-7). In ND2Y356• the spectra at 94 GHz at B0∥gy 

(Figure 4-25) did not show this sharp feature in a range of ±0.6 to ±0.8 MHz. It was quite 

astonishing to also see in the Q-band spectra (Appendix Figure A - 8, p.199) only 

contributions from the internal couplings of the amino deuterons and a matrix line with 

small contributions up to 0.48 MHz. A simulation considering only the matrix line and the 

amino deuterons is shown below the experimental result. The parameters are based on 

previous simulations of ND2Y731• and its double mutant (§4.2.1). The difficulty in this case 

was that the structure and even local structural motifs are unknown. Thus, large DFT 

models as in the previous case could not be constructed. To evaluate the structural 

surrounding small models can be notwithstanding helpful. Up to now it can be stated that no 

strong exchangeable external H bond to NH2Y356• is present, but a high electropositive 

environment around the oxygen is present.  
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Figure 4-25: 2H ENDOR spectrum of NH2Y356• quenched at 10 s compared with simulation. 
The experimental spectrum (gray) taken at 70K and B0∥gy was smoothed (blue, adjacent 
averaging, 10 points). The simulation is shown below the parameters are reported in Table 4-8. 
Exp. details: Mims 2H ENDOR , π/2=20 ns, τ= 200 ns, 1 SPP random acquisition, SRT=7 ms, 
acquisition time = 48 h. 

Table 4-8: Summary of EPR parameters for the exchangeable protons at NH2Y356•. Parameters 
were obtained by 94-GHz 2H ENDOR spectra. Uncertainty in the parameters is up to 20%. The 
central line has not been assigned to a coupling, but to a matrix line. The size is given in the first 
line. 

NH2Y356•  Ax 
[MHz]

 

Ay 
[MHz] 

Az 
[MHz] 

α    
[°] 

β 
[°] 

γ    
[°] 

Qx 

[MHz] 
Qy 

[MHz] 

Qz 
[MHz] 

Simulation: Matrix 
line  

-0.21 0.21 0.42 - 90 - -0.06 -0.06 0.12 

 ND2 
D(1) 

-0.6 -2.5 -3.5 -86 
-92 

98 
93 

90 
-3 

 
-0.04 

 
-0.06 

 
0.11 

 ND2 
D(2) 

0.06 -3.1 -4.0 -96 
-93 

93 
84 

-31 
-121 

 
-0.06 

 
-0.08 

 
0.14 

 

4.6.4 Modeling NH₂Ys• by DFT Calculations Considering One Amino-
Acid 

Quite unexpected results for NH2Y356• were found, a high polarity on the one hand and on 

the other hand no strong resolved H bond interaction as in the other two NH2Y single 

mutants. Any large DFT models at this residue have no structural foundation, thus DFT 
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calculations with single amino-acid models were performed on individual observable effects. 

First the effect of the conformer on the g value was investigated. In the second step the effect 

of the orientation dependence of a single H bond to NH2Y• was evaluated on g values and 
2H HF couplings of the H bonding nucleus. Finally the polarity effect should be modeled by 

two approaches. For all three DFT studies there are examples in the literature.144, 154, 175 

Within these studies tyrosines or semiquinones have been investigated. The outcome 

cannot be directly transferred to the g values in 3-amino tyrosines. A linear scaling by gx 

values or phenoxy oxygen spin density population cannot be assumed.  

 The error of treating the effects of conformer and H bonding separately is small as 

will be shown by the calculations. Generally, it should be noted that the uncertainties of 

DFT calculations are higher than the size of the effects studied here with 0.5 ppt for g values 

and up to 20% for HF couplings. Therefore the consistency within the models and the trend 

of the values can only be discussed here. The reason why we still describe these effects will 

also be highlighted by the experimental results of Chapter 5. 

4.6.4.1 The Conformeric State of a NH₂Y• 

A relaxed surface scan over the ring dihedral θCβ has been performed as a DFT calculation. 

The B3LYP268, 271, 272 hybrid functional and (def2-)TZVPP207 have been used to obtain a 

geometry optimized dihedral within 10-9 Eh (Methods §3.6.2.2). The EPR parameter were 

calculated on the same basis including a continuum polarization model (COSMO296) 

adjusted to the polarizability of ethanol to account for a polar environment. The diheadral is 

defined by the angle between Cβ-Cα and C1-C6 axis, as illustrated in Figure 4-26A. The used 

tyrosine model is illustrated in Figure 4-26B with typical Löwdin spin density population297 

of ρO 24% and ρC1 about 14%, here θCβ=60° is shown. As an additional control of the relaxed 

surface scan the absolute energies report about a global minimum at θCβ=90° (Figure 

4-26C), the local maximum arises due to a sterical interaction of the backbone amine with a 

ring proton. This local maximum is not reported in a larger calculation on a dipeptide 

radical,129 so could be a model error of the peptide bond removal. 

 The gx value is minimal, when the Cα is in eclipsed conformation to the pz orbital 

(Figure 4-26D) due to the hyperconjugative interaction. The effect on the g value was found 

to be minor and in a range of 0.15 ppt. This change in g value is not significant, therefore 

only the trend within this model can be considered here. In Figure 4-26E&F a sin2(θHβ) 

dependence of the HF coupling to the dihedral angle becomes evident. The β-methylene 
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HF coupling is increased if one of the protons is parallel to the π system, i.e., Hβ1 overlaps 

with pz of C1 (Figure 4-26A). This hyperconjugation leads to an increase in spin density 

population in the nucleus parallel to the aromatic π system, therefore a nearly isotropic and 

positive HF interaction results. The calculation of the conformeric state reproduces the form 

of the McConnel equation.295 The β-methylene proton behaves similar as the Karplus 

equation in NMR298 on the overlap of the spin interactions. The lowest HF interaction for 

both beta methylene couplings is observed at for Cβ axial and the highest for Cβ parallel to 

the ring plane, with 2.0061 and 2.0059 respectively. 

 Although the g value is in the typical range of a free NH2Y, the HF couplings for 

Hβ display the full range of observed Cβ HF couplings. The maximal coupling of 34 MHz 

found in α-NH2Y730•/C439A as well as the smallest coupling of 22 MHz of α-NH2Y731• (cf. 

Table 4-7) lie on the curve. The Hβ HF coupling has been reported in tyrosines to be 

inversely proportional to the oxygen spin density population.277 The effect is quite small in 

NH2Y’s, due to the second electronegative group in ortho position to the oxyl function. Still 

the phenoxy spin density population varies within the models in this section from 24% to 

19% (p.124). In this case, the 27 MHz of NH2Y356• from aiso for Hβ (Table 4-7) would 

correspond to a dihedral angle θCβ from 10-20° or 50-60°, as directly obtained from Figure 

4-26E. Only in the latter case (55±5°) the second β-methylene coupling is smaller than 

10 MHz and thereby unresolved, thus θCβ is approximately 55°. An uncertainty of 15° can be 

estimated. 
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Figure 4-26: Dihedral scan over the ring dihedral. A) The ring dihedral θCβ is defined as Cβ-Cα-
C1-C6 on a model of a neutral 3-amino tyrosine• (B). The energy in Hartree (C), the gz,x value 
(D) and aiso(C-1Hβ1,2; E and F) are plotted against the on the ring dihedral. E and F show the 
dependence of aiso(1H) for the individual Hβ2/1 and its individual dihedral θHβ2/1 on top of the 
graph for Hβ2/1 (green/red). 

4.6.4.2 Water Dihedral Scan 

The same procedure of a dihedral relaxed surface scan was applied to calculate the dihedral 

of one H bond from a water molecule (θH2O, Figure 4-27A) to NH2Y• (§4.6.4.1). Because no 
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further restraints were applied, the lowest lying conformer was found in all geometry 

optimization models for the individual θH2O. Also the H bonding geometry changes slightly 

in course of the calculation Figure 4-27B. The ONH2Y-HH2O distance obtained correlates 

nicely to the gx value of the EPR parameter calculation (Figure 4-27C). 

 The energy variation 10-3 EH between the models is approximately an order of 

magnitude smaller than in the conformeric scan (Figure 4-27C). However a clear minimum 

is found for the water within the plane (up to ±30°) with the phenoxy ring. This is in 

contrast to the θH2O of single mutant NH2Ys• discussed so far. Here in both cases a 

perpendicular H bond has been found. An in-plane H bond is in agreement with other 

tyrosine radical H bonds as found in yeast RNR Y122• correspondent 152 or in the YD of 

photosystem II.153 The H bond angles of tyrosine radicals in α are the exception in the 

literature, to the best of my knowledge.  

 The HF tensor of the H bond was therefore a core interest. Although the values 

obtained from the calculation had a rhombicity increasing up to θH2O=40°, and only then an 

absolute axial symmetric tensor forms. For the sake of argument, only the averaged axial 

component T⊥ of the individual tensors are plotted in Figure 4-27E. Both the orthogonal 

and the parallel HF interaction increase with dihedral angle θH2O. This is in absolute contrast 

to the decrease in distance and increase of gx value, in C. The orthogonal component of the 

HF values T⊥ increase faster than the parallel T∥ values. The increase is consistent with an 

increasing isotropic HF interaction aiso, which acts on each individual HF component. It 

changes Ax, Ay and Az in the principle axis system simultaneously. The isotropic HF aiso 

interaction is a direct indication for orbital interaction, because it is only governed by spin 

density in the 1s orbital of the 1H nucleus (Theory §2.1.3, Eq. (2-13). The increase of 

interaction, albeit the longer H bond distance, is a consequence of the non-spherical 

symmetry of the pz orbital. This is nothing astonishing per se,185 but explains why a tensor 

can appear a lot weaker by a change in H bond angle.299 Mostly the orthogonal component 

of the tensor is observed in the HF spectra, like ENDOR. The broad parallel component can 

be difficult to observe in these overlaying spectra. The g value variation with H bond 

dihedral is about 0.2 ppt. As a comparison, this is the difference between α-NH2Y731• and β-

NH2Y356• assuming an in-plane H bond at β-NH2Y356•. The C1 spin density population was 

only minor effected by the change of H bond dihedral with standard deviation of 1.4% of the 

ρC1 value (ΔρC1Löwdin=0.2%). 
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Figure 4-27: Dihedral scan over the H bond dihedral. A) The ring dihedral θH2O is defined as C3-
C4-O-HH2O on a model of the neutral 3-amino tyrosine• (B). C) The gx value (red) correlates 
well with the H bond length (green). D) The energy in Hartree against the dihedral θH2O, is 
consistent with a global minimum at θH2O=0+-30°.E) The HF value (for 2H) depending on the H 
bond dihedral is plotted. The anisotropic part is listed separately for its averaged axial (T⊥, 
green) and absolute parallel (T∥, blue) value. Isotropic HF aiso is shown in red. F) shows the H 
bond angle (C4-O-HH2O) as a control. 
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4.6.4.3 Water Network around NH₂Y₃₅₆• 

The last section opened up a new explanation for the 2H Mims ENDOR spectrum obtained 

with NH2Y356•. In plane water can have small axial HF tensor contributions of ≈0.4 MHz, 

but will still affect the g value by ≈0.5 ppt. Despite the high polarity used in the continuum 

model, this is still not the size of the effect of 1.1 ppt experimentally observed gx shift (vs. free 

NH2Y•, Table 4-5), compared to several reported DFT models of the isolated 3-amino 

tyrosine. The high uncertainty of DFT of about 0.5 ppt110 will not deliver quantitative data, 

i.e., the number of H bonds present at the NH2Y356•. Therefore only the trend should be 

further investigated. Especially steric effects and polarity effects of a free NH2Y• should be 

considered. The idea of modeling of NH2Y356• with water network emerged. Seveant et al. 

contributed to this idea by demonstrating a water network as a functional PCET system 

(Theory §2.4.3).250, 251 

 The models of the 3-amino tyrosine were built up successively with 1, 2 and 3 

water molecules. After each additional water molecule the geometry was optimized and the 

EPR parameters were calculated by single point calculations. To observe the g-shift 

depending on weak H bonds formed by each water molecule g values and HF couplings 

were obtained for each H bond. Furthermore, one can observe how water molecules locate 

toward phenoxy oxygens, because the energy barriers are small enough to be overcome by 

the geometry optimization cycles. One water molecule is positioned after geometry 

optimization within the ring plane (Figure 4-28A) the minimum found in Figure 4-27C. 

After the addition of a second water in hydrogen bond distance of the phenoxy oxygen in the 

ring plane, the geometry optimization end up in model Figure 4-28B. Here one water is 

perpendicular (75°) to the ring plane H bonded to the phenoxy oxygen (wat1), the other 

one is H bonded to the amino proton and is located in the aromatic plane (Figure 4-28B 

wat2). If wat2 is removed from model B a water geometry comparable to Model A is 

regained, after geometry optimization. The addition of a third water molecule produced too 

much flexibility for its small energetic influence to converge in a DFT calculation. Albeit 

changes in the integration grid and removal of COSMO296 polarities. Therefore, a relaxed 

surface scan for the third water was performed also without COSMO. It ranged from 0° to 

60° H bond dihedral θwat3 with a step size of 10°. Figure 4-28C shows the converged 

geometry, a water molecule at 40° H bond dihedral θwat3.  
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Figure 4-28: DFT models of different H bonding situations at a NH2Y•. The gx value is 
compared for a model with one (A, 2.0057), (B, 2.0058) with two and with three (C, 2.0056) 
water molecules, named wat1 to wat3. The spin densities ρ varied through the models from ρO= 
23% over 21% to 21% and for ρC1 from 14% over 13% to 12% (after Löwdin297). The H bond 
length between the oxygen of the NH2Y• and the wat1 increases from B to C slightly with 1.79 
over 1.81 to 1.83 Å. The distances in the figure are given in Å. The dihedrals are given on the left 
side. Calculation details: B3LYP, def2-TZVPP, COSMO(ethanol), energy converged to 10-6 Eh. 

From the g values point of view a clear trend of the H bond distance on the g value was 

found, as reported by C. Riplinger (Introduction, Figure 1-14C, p.23). Two H bonds almost 

axial to the ring plane have also been shown from his studies to suppress the g values by 0.5 

ppt.110 As shown on the small model calculations performed previously (Figure 1-14C, 

p.23), one axial H bond does not shift the g value strongly, only with a second H bond to the 

oxygen directed perpendicular toward the ring one could reduce the gx by 0.9 ppt 

(Appendix: Figure A - 6, p.197). Model C shows the same tendency. However, the basis set 

used here gives slightly larger g values, because it is not as flexible as EPR II in the core 

region (cf. §2.3.3 p.51). Recalculating model C in order to compare it with the large models 
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with the smaller EPRII basis set reduces the g values to gz=2.0022, gy=2.0043 and gx=2.0054. 

These values are within 0.5 ppt uncertainty of the DFT calculations consistent to the 

experimental ones (Table 4-7, p.114). Considering the large distances (≥1.8 Å) of the two 

H bond partners, especially wat2, the gx value is low enough to explain the g values observed 

at NH2Y356•. A protein environment can influence the H bond length for water for instance 

by polarization and local environment effects.300, 301 Notably, the obtained ring dihedral 

θCβ=68° of model C is within the prediction based on the conformeric DFT calculation with 

θCβ=55±15° (§4.6.4.1) in agreement to the experimental HF coupling (§4.1.2, p.77). 

 Additionally, one needs to discuss the HF tensors and sizes. Both H bond 

interactions to the oxygen from wat2 and wat3 in Model C are close to the ring plane and do 

not overlap with the pz orbital of the oxygen. The aiso values are with -40 and -70 kHz (for 
2H) are in the lower range of Figure 4-27E. Although all water containing models would 

result in a decrease of gx value similar to the experiment, they do also show an HF tensor in a 

size, which would be larger than the observed matrix line. The values are collected in Table 

4-9.  

Table 4-9: EPR parameters from DFT of NH2Y• in water Model C. The HF couplings are within 
20% uncertainty and the g values have an uncertainty of 0.5 ppt. Both HF and g values are 
identical within uncertainty for two basis sets used here. 

Proton 
HF 

Ax [MHz]
 

Ay [MHz] Az [MHz] 

wat1-1H -2.7 -3.0 5.0 

wat2-1H -4.0 -4.2 6.8 

wat3-1H -2.7 -3.0 5.0 

Hβ1 -1H 2.2 -0.9 -1.1 

Hβ1 -1H 23 18 19 
Deuteron 
HF 

Ax [MHz]
 

Ay [MHz] Az [MHz] 

wat1-2H -0.42 -0.46 0.77 
wat2-2H -0.41 -0.47 0.77 
wat3-2H -0.62 -0.64 1.04 

Basis set gx gy gz 

TZVPP 2.0056 2.0042 2.0022 

EPRII 2.0054 2.0043 2.0022 

 

A perpendicular H bond orientation to NH2Y356• could be strongly disfavored based on the 

comparison between 2H ENDOR spectra of NH2Ys• in α. A proton bound within the ring 
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plane, however, with couplings (2H) of -0.5, -0.5 and 1 MHz could be unresolved in the 

NH2Y356• 2H ENDOR spectra. This coupling can be consistent to the experimentally 

observed matrix line ±0.4 MHz, if the uncertainty of the calculated values and the 

broadening by quadrupole interaction are considered. The amino deuteron couplings, 

however, prevent an unambiguous assignment. 

4.6.4.4 Positive Charges in the Surrounding of NH₂Y₃₅₆• 

A second hypothesis for the structure between β-W48 and β-Y356 was postulated by Bollinger 

et al. in 2006. They proposed Mg2+ interaction along the PCET. They observed in a Y122F 

mutant upon cofactor assembly a tryptophan radical W+•. The lifetime and the kinetic 

formation of a Y• in β2 was dependent on the presence of Mg2+ and β-Y356. It was proposed 

that Mg2+ in RNR is not only essential for nucleotide reduction,302 but also for mediating the 

PCET between W48 and Y356. 74, 303  

 On the other hand earth alkaline metals in their +II oxidation state have been used 

in the literature to model polarity effects in DFT calculations. These models were used 

especially if direct treatment of explicit water was not enough to sufficiently reduce the 

gx value to the experimental values.175, 304, 305 It has been as well an alternative to “correction 

factors”216 for treating H bonding effects in EPR/DFT calculations. Magnesium(II) is 

usually coordinated by six ligands, therefore a small DFT model taking these interactions 

into account was set up. It includes an essential glutamate residue either β-E52 or β-E350, 

modeled by acetic acid required for charge balance. The geometry optimized model is 

shown in Figure 4-29. The g values reproduced a highly polar environment with 2.0051, 

2.0040 and 2.0022 which is in excellent agreement with the experimentally observed spectra 

(Table 4-7). Although there is no evidence for such an Mg2+ coordination, it demonstrates 

the effect of positive charges in reducing the g values significantly. The oxygen spin density 

population is, after the Löwdin analysis with ρO=19%, 2% lower than in the water network 

models. 

In a more general picture positive charges are present in proteins also within individual 

amino acids.306 Especially at the interface salt bridges and interactions with aromatic systems 

might govern protein-protein interaction.307 Positively charged amino acids are not present 

in the 32 C-terminal amino acid tail. The difference in their isoelectric point has helped for 

instance in the separation of truncated and full length β peptides.308 However, positively 

charged arginine’s are observed in the β subunit and in the α subunit as essential for activity 
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and could have an effect in subunit interaction.309 The β 32 amino acid tail harbors two 

glutamates which on the other hand introduce a negative charge. By forming salt bridges 

these positive charges could be neutralized to enhance a folding of this β C terminal tail. 

Therefore, positive charges residues should also be considered to lie within the interaction 

sphere of Y356•. 

 
Figure 4-29: DFT model demonstrating the effect of positive charges (Mg2+) in the surrounding 
of the phenoxy nucleus. In this model an Mg2+-Ion (green) was placed and a coordination sphere 
(yellow dotted line) was modeled. An acid, an alcoholic function and 4 waters are included. 
Calculation details: B3LYP, def2-TZVPP, COSMO (ethanol), Energy converged to 10-6 Eh. 

4.7 Discussion of the β-NH₂Y₃₅₆• Radical Intermediate 
The essential radical intermediate formed at position 356 is of key interest in understanding 

how the RNR transfers an electron selectively through the α/β subunit interface. There are 

no detailed structural information on Y356. The diagonal distance between Y122• and 

NH2Y356• could be determined in the active enzyme (Figure 1-8, p.12). The comparison 

between the pKa values of Y intermediates using NO2Y mutations has demonstrated that 

residue 356 is more polar than the Ys in α (§1.4.5, p.16).41 Investigations on NH2Y•s show a 

similar electropositive environment at position Y731, Y730 and, Y356, (Table 4-5, p.101).92 So 

far no conclusions in agreement to the redox potential difference (≈60 mV, Figure 1-11, 

p.17) between Y731, Y730 and, Y356 could be drawn. Furthermore, there is no information 

about the H bond network, which is crucial to understand the forward PCET mechanism.  

 2H ENDOR spectra on NH2Y356• did not resolve any exchangeable H bond in 

contrast to the Y intermediates in the α subunit. The gx value from 263 GHz EPR, as 

indicator for an electrostatic environment was correlated to number of intermolecular 
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H bonds. An apparent contradiction between zero perpendicular H bonds and a g tensor 

indicating high polarity has been discussed. On the one hand, an H bond network within the 

aromatic plane, could have unresolved HF interactions. The parallel component of the HF 

interaction T∥ is reported to be difficult to detect in Ys• due to their broad, low intense line 

shape.299 On the other hand positive charges could be modeled to account for the g tensor 

and the HF tensor contributions.  

Despite these problems, it could be demonstrated that a perpendicular strong or moderate 

H bond is absent at NH₂Y₃₅₆•. Thus it seems to be unlikely that the NH₂Y₃₅₆• can engage in 

a similar “π-stacking” geometry as Y731 and Y730. Additionally, NH2Y731• has not shown any 

strong or moderate H bond toward the direction of residue 356. From a mechanistic point 

of view a perpendicular H bond has been pointed out to be a prerequisite for a “HAT 

geometry”, as illustrated in Figure 2-15A (p. 51),113 allowing an adiabatic proton transfer. 

This point indicates that a collinear CPET step from Y356 to Y731 is unlikely. On the other 

hand drawbacks of the NH2Y mutation became obvious in the investigation of NH₂Y₃₅₆•. 

The introduced amine function can act as an H bond donor and thereby influences the 

H bond network. Especially for an in-plane H bond as found at residue 356 NH2Ys could be 

non-innocent reporters for H bonding networks (cf. Figure 4-28, p.122).  

 The NH2-group also changes the EPR property of Ys investigated. The broad 

ENDOR absorption of amino proton 2H resonances is spectroscopical a resolution problem, 

which can lead to unresolvable H bond interactions. In the case of β-NH2Y356• it is 

aggravated by the intrinsically low S/N due to low Y122•/α2β2 ratios (0.5, see Methods) in β 

mutants. 

 The introduced H bond donor function (NH2) has been relatively unproblematic 

in the well-structured surrounding of α-NH2Y730• as could be revealed by no additional 

H bond found compared to Y730• large model.67, 110 In the α-NH2Y731• for the first time water 

H bonded to the amino group (Model 3, p.98) was considered and reproduced the 

experimental results better.254 In contrast, at β-NH2Y356• no structural information is at hand 

to separate the NH2 effect from the Y356• H bond network. Thus, further experimental 

studies are necessary on a natural Y•. Therefore, we decided to simplify our system and 

searched for an alternative probe, which is described in the next chapter. 
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5 2,3,5-F₃Y₁₂₂• TO GENERATE Y• 

INTERMEDIATES IN THE PCET 

5.1 Introduction of a New Rate Limiting Step to Generate Y₃₅₆• 
The idea of investigating naturally occurring radicals in the RT of RNR is tremendously 

appealing. While amino tyrosines offered the opportunity to compare all three transient 

tyrosin based radical intermediates, trapped tyrosines on the pathway have complimentary 

advantages. Recently, Yokoyama et al. published a new way of by-passing the natural 

conformational gating in ribonucleotide reductase.84, 118 Here not the potential of the radical 

intermediate was lowered; instead they increased the potential of the Y122 to prevent a 

completion of the reverse PCET. The formed intermediate radical is to a large extent (90%) 

Y356•. In this study, they have used β2-NO2Y122 with a large excess potential of 200 mV (cf. 

Figure 5-1A). This NO2Y122• not only has a short lifetime in β2, but also can populate non-

pathway side reactions. Additionally, it has to be coupled to cofactor assembly to reduce β2-

NO2Y in the first place. Thus the individual PCETs to Y122 and from Y122• to Y356• cannot be 

studied separately.84  

 Nevertheless, the idea to trap a tyrosyl radical in its natural protein environment is 

appealing. 2,3,5-F3Y has shown to overcome the conformational gating despite the absence 

of a large over potential as in NO2Y.119, 127 2,3,5-F3Y is approximately 30 mV harder to 
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oxidize than Y to its neutral radical state.119 In Chapter 4, it was demonstrated that an 

H bond interaction between α2-Y731 and α2-Y356 is unlikely. If an H bond interaction occurs 

this interaction would be only consistent with a weak H bond (aiso≈0). Therefore, it seemed 

to be possible to investigate with this 2,3,5-F3Y122• the forward (Figure 5-1C) as well as the 

reverse PCET (Figure 5-1B). For the former case, the pathway is blocked by a phenylalanine 

at α-Y731 after PCET initiation by 2,3,5-F3Y122•. In the latter case, wild type α is used with β-

2,3,5-F3Y122. Here it has been postulated that a reverse PCET takes place based on the 

identical rate constant (20 s-1) of Y356• and CDP formation.*** This argument is analog to the 

one used for β2-NO2Y122•.84 As foundation to future work this thesis will investigate β-2,3,5-

F3Y122:α-wt & α-Y731F trapped on the second time scale. This time scale is comparable to the 

3-amino tyrosine reaction times (Chapter 4). Initial studies of β-2,3,5-F3Y122:α-wt have 

shown identical 9 GHz spectra of 20 s freeze quench or RFQ samples.28 However, the 

relative ratios between Y356• and 2,3,5-F3Y122• change from 50% to 30% for Y356•.28 

 The focus of this thesis is the identification of intermolecular interactions by HF 

ENDOR. For this purpose, a natural tyrosine is beneficial, because the absence of ND2 

couplings in the 2H Mims ENDOR spectra in deuterated buffer offers a better resolution for 

small radical concentrations. The spin density population on the phenoxy nucleus is higher 

in Ys• than NH2Ys•. Therefore one should expect an increase in dipolar HF couplings to the 

phenoxy oxygen [see Eq. (2-16)]. This larger HF coupling can increase the Mims ENDOR 

efficiency (cf. Figure 2-10B p.43). Up to now the forward radical transfer was discussed 

using NH2Ys•. Hence, the focus of this chapter will be the forward transfer.  

                                                                    
 

*** Kanchana Ravichandran and J.A. Stubbe, MIT, unpublished results. 
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Figure 5-1: Reduction redox potentials are shown along the PCET in mV relative to the 
oxidation of Y122 -> Y122• +e-+H+. The potential height is based on the work of recent 
publications.41, 110 A) To trap β-Y356• in a wild type environment the redox potentials of two 
mutations β-2,3,5-F3Y122 and β-NO2Y122 are shown. B) By using β-2,3,5-F3Y122 with α-wt a radical 
assigned to β-Y356• could be trapped in the s timescale.28 Yields of 27% β-Y356• together with 3% 
of α-Y731• and α-Y730• are expected.84 The PCET is free to proceed to nucleotide turnover and 
back, thus in the second time scale an equilibrium radical distribution will be observed. C) To 
observe a radical species of the forward PCET, most likely Y356•, a PCET blockade at Y731 is 
introduced with Y731F. 

Prior investigations of the radical intermediates a high-field EPR characterization of β-2,3,5-

F3Y122 was conducted. This was necessary due to several reasons. First, this species had 

already been demonstrated to have changed relaxation behavior in CW EPR spectra as 

observed by saturation experiments compared to β-Y122•.28 We have observed in pulse EPR 

spectra that the relaxation filter as introduced for Y122• does not work as efficiently with 

2,3,5-F3Y122•. Thus, possible contributions to the spectra have to be identified. Most 

importantly, one needs to check, if the newly incorporated mutation induce disturbances in 

the structure as compared to β-Y122. 
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The work of Seyedsayamdost et al. showed that 2,3,5-F3Ys are deprotonated in solution 

while Ys are protonated.119 So it is necessary to understand more of the electronic structure 

of this mutant, and possibly understand how the conformational gating is circumvented by 

this UAA.120 

5.2 Multifrequency EPR Characterization of 2,3,5-F₃Y₁₂₂• 
In order to characterize the electronic structure of a radical the HF couplings and the 

g values have to be determined. Large HF couplings in 2,3,5-F₃Y₁₂₂• are the β-methylene 1H 

and the 19F couplings.28, 120 To compare the effect of the mutation on the environment, 

especially the β-methylene coupling can give indications which conformer is present. Large 

couplings can be observed in the 9 GHz spectrum, whereas the g tensor is observable at 

high-field/frequency measurements. A simulation with a shared parameter set delivers the 

best obtainable parameters. In Figure 5-2 the spectra of 3 frequencies are shown with the 

best simulation below. The 9 GHz spectrum consists of a triplet, quartet, and triplet pattern. 

This demonstrates that the large β-methylene coupling is roughly the same size as the 2-19F 

HF interaction (Table 5-1). From a doublet of doublets a distorted triplet arises, as observed 

on the low and high-field side of this spectrum. The last triplet in the center overlaps with 

the rest of the spectrum consistent with a doublet observed in the higher field spectra at 

B0∥gx or gy. At 94 GHz, the strong orientation dependence of the 19F HF tensors becomes 

evident, here B0∥gx and gy show only a doublet contribution. The triplet, quartet, and triplet 

pattern are only observed at B0∥gz. The triplet at the high-field side seems to be strongly 

distorted and only merely visible within the S/N. One explanation could be a not completely 

integrated echo signal, diminishing weak intensities at the edges of the spectrum from these 

large HF couplings. The low field side overlaps with the gy doublet, thus only at the edges 

weak peaks are resolved. The 263 GHz spectrum continues the trend and delivers stronger 

constrains for the gx and gy values. As an internal standard the strong contribution of Mn2+ 

ions can be used. These sharp peaks are clearly visible in the spectrum and distort the high-

field line shape. For the simulation the β-methylene coupling and the g values were taken 

from the HF spectra were the large HF couplings present at B0∥gz whereas taken from the 

9 GHz spectrum. This resulted in a reasonable agreement of the simulation to the 

experimental spectrum in a small number of iterations if a full matrix diagonalization for the 

electron spin was used (EasySpin; cf. §2.1.6, p.36).169 This is necessary in this case due to the 
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large 19F HF couplings observed here. To improve the values of the β-methylene couplings a 

Davies ENDOR improved variant310 was recorded by R. Rizzato of our group (unpublished 

data).  

 A conformeric change can be observed from the obtained aiso of Cβ-H with 

45 MHz. A semi-empirical formula [McConnell Eq. (5-1)] connects this aiso value with the 

rotation angle around Cβ-C1 axis, the ring dihedral θpzβ.178, 295 In this equation the spin 

density population at C1 ( 1Cρ ) is a linear proportional to aiso(Cβ-H) and B1 is an empirical 

constant. Wt-Y122• has an aiso value of 55 MHz, which is significantly larger.157 The spin 

density population is not a priori known for the new UAA; it can be derived either 

experimentally by stepwise isotopic labeling or theoretically by a DFT calculation. The DFT 

can give an estimate of the typical C1 spin density population ρC1 to determine the Cβ-H 

hyperfine couplings [see Eq. (5-1)].178, 295 The C1 spin density population ρC1 is 

experimentally obtained for Y122• with 38%.311 DFT structures of Y• under similar conditions 

obtain with 37% similar Mulliken312, 313 spin density populations. The spin density 

populations calculated for a 2,3,5-F₃Y₁₂₂• (Figure 5-3A) are with 34% roughly 10% smaller 

and would lead to an aiso(Cβ-H) = 49 MHz for the same conformer. This indicates a slight 

but significant conformeric change of the 2,3,5-F₃Y₁₂₂•. Using the McConnell Eq. (5-1) the 

angle θpzβ between the projection of pz(C1) and Cβ-Hβ is estimated to be 16-25°.176, 178, 314, 315 

For Y122• a θpzβ was obtained by single crystal EPR data to be 12-16°,63 thus the value is 0-9° 

larger. The sp3 geometry at Cβ has angle of 117.8°± 0.6°,277 thus a θCβ value between 44-53° is 

obtained (Figure 5-3B). X-ray diffraction has shown a dihedral θCβ of 46.2°, as seen in Figure 

5-3C.63 This gives a tendency of the occurred change in ring dihedral.  
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Figure 5-2: EPR spectra of 2,3,5-F3Y122• at different observing frequencies (9, 94 and 263 GHz). 
The experimental trace (red) and the simulation (black) are compared based on the same 
simulation parameters (Table 5-1). The black dashed lines show the HF coupling pattern. The 
canonical g values are marked as blue dashed lines in the 94 and 263 GHz ESE spectra. Right: 
The 2,3,5-F3Y• and the HF coupling pattern for B0‖gz is shown. Exp. details: 9 GHz: CW-EPR 
spectra of 2,3,5-F3-Y122• in H2O at 80 K, MA=1 G, conversion time=80 ms, power attenuation = 
17 dB, scans=16; 94 GHz: ESE spectrum of 2,3,5-F3-Y122• in D2O (50 µM) at 10 K, π/2(π)= 
30(60) ns, τ =240 ns, SRT=200 ms, number of averages = 16; 263 GHz: ESE spectrum of 2,3,5-
F3-Y122• in D2O (50 µM) at 10 K, π/2(π)=60(120) ns, τ =290 ns, SRT=20 ms, number of 
averages =1950. The 263 GHz spectra show a 3% Mn2+ contribution (geff= 2.00110) with an HF 
coupling of AMn ~ 94 G marked with an asterisk (*). The derivative of the pulse spectra was built 
using a 10 points second order Savitzky-Golay filter. 
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The g values obtained by simulation are a source of information about the local 

electrostatics. In this case, the environment around Y122 is reported to be apolar and 

influenced by van der Waals interactions.46 To separate the effect from the UAA 2,3,5-F₃Y 

and the local polarity of the environment around 2,3,5-F₃Y₁₂₂• a DFT calculation delivered 

g values. The environment around Y122 has a lower polarity as other radicals discussed up to 

now. A continuum polarization296 of chloroform (ε=4) was used in agreement with previous 

DFT calculations.294 The g tensor shown in Figure 5-3 and its values are summarized in 

Table 5-1. The g tensor is identical within error to the simulation. The β-methylene in the 

final model was chosen similar to the McConnell estimate θCβ=55°. In this case an aiso of 

47 MHz is within uncertainty identical to the experimentally obtained β-methylene HF 

coupling (aiso = 45 MHz). However, other HF couplings, like 3-F and 2-F, are generally too 

large and too less dipolar. In order to discriminate the error between neglected 

contributions of the protein and DFT more sophisticated calculations would be necessary. 

This is not within the scope of this thesis. Here one could clearly show that a difference in 

conformeric change and the already adjusted polarity around Y122 is in reasonable agreement 

with the experiment.  

Table 5-1: Summary of obtained g values, C-β HF couplings, and 19F HF couplings. The results 
from the simulation are compared to results reported earlier from 9 GHz EPR spectra and with a 
small DFT Calculation (Figure 5-3). 

Multi-frequency simulation 

Simulation of : 
Dr. William Myers  
(Britt Lab) DFT model 

 gx gy gz gx gy gz gx gy gz 
 2.00832 2.00519 2.00220 NA NA NA 2.0083 2.0055 2.0022 

 
Ax 

[MHz]
 

Ay 
[MHz] 

Az 
[MHz] 

Ax 
[MHz]

 

Ay 
[MHz] 

Az 
[MHz] 

Ax 
[MHz]

 

Ay 
[MHz] 

Az 
[MHz] 

2-F -3 15 -45 15 3 53 -2 10 -53 
3-F -3 -40 145 18 3 -152 -32 -44 168 
5-F -3 -25 183 -15 -3 183 -35 -48 181 
H

β1
 56 39 40 36 43 50 45 46 51 

H
β2

       -0.3 -0.8 5 
6-
H 

7.8 7.5 2    4 6 11 

[°] α β γ       
2-F -60(120) 0 0       
3-F 42 0 0       
5-F -138 0 0       
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2,3,5-F₃Y₁₂₂• has a similar environment as Y122• including a small change in ring dihedral 

(<10°). This could be obtained from the multi-frequency EPR work supported by a small 

DFT model. The small structural changes might shed light on how 2,3,5-F3Y122 is able to 

omit the conformational gating. On the one hand, this UAA has a lower pKa with 6.4 

compared to 9.9 and could be deprotonated. On the other hand the protein has shown no 

deprotonation of NO2Y122 mutant at this position, even if the pH of the protein buffer was 

altered up to 2.5 units above Acyl-NO2Ys solution pKa.118 A conformeric change could be 

another plausible explanation. Thus, the reason for an omitted conformational gating is still 

open to further studies, which should consider the small change in backbone dihedral. 

Ideally the diagonal distances of the two β2-Y122• should be compared with two β2-2,3,5-

F3Y122• in the resting β2 and in the “active” β2:α2 complex. The former is an experiment that 

can be directly done; for the latter one, a rigorous filter of the individual contributions has to 

be developed. 

 
Figure 5-3: DFT model of 2,3,5-F3Y122•. A) The principal axes of the g and one exemplified 
prolate 19F HF tensor are illustrated by green arrows on C4 and F5, respectively. In this model the 
oxygen has 35% and the C1 34% spin density population (Mullikan). DFT Calculation details: 
UB3LYP, def2-TZVPP; COSMO(ethanol); converged to 10-9 Eh. B) Dihedral angles θCβ and 
θpzβ discussed here are depicted along Cβ-C1. C) Y122 and its dihedral angle θCβ from the crystal 
structure is shown.63 
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5.3 Characterization by Forward PCET Y• Formed with 2,3,5-
F₃Y₁₂₂• 

5.3.1 Electrostatic Environment 
This section starts with the forward PCET transfer, because many results indicated that the 

intermediate NH2Y356• accumulates during forward PCET.67, 83, 91 The relative reaction 

potential to the Y• intermediates in α was identified for a Y356• previously.84 Derived by the 

analogy to NO2Y122•: α2-Y731F and 2,3,5-F3Y122•:α2-wt is was expected to find Y356• here.28, 84 

 The reaction was performed as described previously for the NH2Y’s, i.e., it was 

quenched in liquid nitrogen at two time points 10 and ≈20 s.  

 The spectra of the obtained pathway radical are shown in Figure 5-4. Both spectra 

show a typical tyrosine line shape with a pseudo quintet (doublet of triplets) at B0∥gx, a 

doublet at gy and large doublet with a doublet from doublets at gz. These features arise from 

the isotropic β-methylene HF coupling and an anisotropic 3/5-1H HF coupling. Where the 

3/5-1H coupling is unresolved at B0∥gy, it is only half the size of the β-methylene HF 

coupling collinear to gx. The factor between the isotropic coupling and the 3/5-1H coupling 

is about 2.5 at B0∥gz. Taking this into account the spectra could be simulated as shown in 

Figure 5-4 (gray). The simulation parameters are identical within error to the ones observed 

for a putatively forward Y356• at 140 GHz, as shown in Table 5-2.84 It should be noted that 

the error in HF couplings in this thesis is smaller than reported previously.84 A β-methylene 

aiso of 47 MHz was obtained here. Typical spin densities ρC1 of tyrosines in polar 

environments are reported for YD•316, 317, YZ•318and Y•319, 320 in water values with 0.37316-318-

0.34319, 320. Using Eq. (5-1) a β-methylene angle θpzβ of 14-28° (θCβ=42-56°) is obtained. A 

geometry illustrated in Figure 5-3B by θpzβ = 25°. To summarize, we can report to have 

trapped a radical species with a very similar g and HF tensor as observed previously within ≈ 

15 s with the β-NO2Y122 mutant.84 A different value of aiso(β-1H ) could arise from the 

simulation of the broad lines observed by Yokoyama et al..84 The reaction in this thesis uses 

2,3,5-F₃Y₁₂₂•, which is uncoupled from the oxidation of the Y122 mutant. The radical yield of 

10 and 23 s was between 35 and 40%. 
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The later time point seems to have an additional contribution to the line shape compared to 

the radical quenched at 10 s. This will be discussed later after introducing the radical formed 

with wild type α (§5.4).  

  
Figure 5-4: 94-GHz EPR spectrum of PCET radical formed with β2-2,3,5-F₃Y₁₂₂:α2-Y731F in 
deuterated buffer. Three reaction time points 10 (blue), 20 (red) and 23 s (green) are compared 
to the simulation (gray, Table 5-2). The inset on the right side shows a Y•. Exp. details: 100 K 
ESE; π(π/2)=28/32/48(14/18/24) ns; τ =267/227/272 ns; SRT = 5 ms; 6000/600/600; blue 
& green: 3 G pseudo modulation, red was gained by a 15p second order Savitzky-Golay filter, 
green trace was additionally smoothed by 10 points. 

In order to obtain high restraints for the simulation parameters the parameter set was 

concomitantly simulated with a Q-band spectrum (Figure 5-5). The Q-band spectrum 

shows an overlap of the spectral components; for instance part of the pseudo quintet is now 

observed at B0∥gy. This helps to weight effects from the g values and the coupling size. The 

simulation aligns well with the spectrum, only at the high-field side (1199.8-1200.7 mT) the 

spectrum is distorted by the quartz peak from the EPR sample tube. Here the simulation 

shows discrepancy to the experimental EPR line-shape.  
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Figure 5-5: 34-GHz EPR spectrum of the PCET radical formed with β2-2,3,5-F₃Y₁₂₂:α2-Y731F in 
deuterated buffer. The derivative (blue) is compared to the simulation (cf. Table 5-2). Exp. 
details: Reaction time 18 s, then 20% glycerol-d3, quenched at 41 s in ice cold isopentane; ESE at 
80 K, SRT = 1 ms, π = 40 ns, τ = 210 ns, number of averages = 600, Savitzky-Golay (8 points, 
second order) filtered. 

Table 5-2: Pathway radical observed with β2-2,3,5-F₃Y₁₂₂:α2-Y731F simulation parameters and 
comparison to Yokoyama et al.84 The error is estimated with 10% for the HF couplings 
(>15 MHz) and is given in parenthesis for the last displayed digit for the g values. 

β2-2,3,5-F₃Y₁₂₂:α2-Y731F [this thesis] 
Ax 

[MHz]
 

Ay 
[MHz] 

Az 
[MHz] 

 
gx gy gz β-1H  45 48 49 

g 
values 

2.0072(1) 2.00446(5) 2.0022 3/5-1Ha -5/-3 -21/-17 -29/-
23 

β2-NO2Y122: α2-Y731F84 

 
gx gy gz β-1H  54 52 54 

g 
values 

2.0072(5) 2.0044(1) 2.0022(4) 3,5-1Ha 4 18 26 

a) The Euler angles are α,β,γ = 90, 90, ±20, for the definition |Ax|<|Ay|<|Az|. 

 

For tyrosine radicals, it has been reported that the g shift is in most cases influenced from 

H bond interactions as already discussed in the previous chapter. A DFT study of p-

methylpenoxy radical on its dependence of a single H bonding distance has led to an 

empirical formula, based on a least square fit of the obtained data. 143 This formula (5-2) is 

displayed below and should govern our expectations. 
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Here the gx value is directly dependent on the H bond distance r in Å. Thus the expected 

value would be with 1.72 Å, which is rather short. However, this formula assumes a single 

H bond as the sole origin of electrostatic effects.  

 x 2
O-H

0.0033
2.0094

( 0.5)
g

r
= −

−  (5-2) 

Up to now, the EPR spectra recorded in deuterated buffer were discussed, because they 

facilitate the g value determination by sharpening the EPR spectrum. Based on the 

expectations one would expect similar results for the reaction performed in H2O buffer but 

modified by a coupling of exchangeable protons. As discussed earlier, the gyromagnetic ratio 

is 6.5 higher thus the coupling size increases directly proportional [cf. Eq. (2-14) p.34]. The 

spectra were recorded under the same reaction conditions only in an H2O buffer. For further 

tests 15 mM MgSO4 required for nucleotide reduction was exchanged stoichiometrically by 
25MgCl2. The results in Figure 5-6 show only minor changes in the line shape. Couplings up 

to the size of ~0.3 mT are normally not resolved, but still contribute to line broadening as 

observed here. 

 
Figure 5-6 Comparison between radical formed from β2-2,3,5-F₃Y₁₂₂:α2-Y731F in H2O (blue) and 
D2O (green). Exp. details: H2O ESE spectrum at 80 K; quenched at 15 s, π(π/2)=56(28) ns, 
τ=240 ns, SRT= 6 ms, number of averages = 6300. For parameters to the D2O spectrum, see 
Figure 5-4 with 10 s reaction time. 
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5.3.2 Assignment of the Pathway Radical by the Diagonal Distance to 2,3,5-
F3Y122• 
One way to characterize this pathway radical is to measure its location along the PCET. This 

has been done for several radical intermediates along the pathway. Thus, we can easily 

compare these results, as illustrated in Figure 1-8 (p.12). 

The differences of the two simulations parameters between this pathway radical and 

previous reported Y356• require additional confirmation of the assignment to residue β-356.84 

Thus, Q-band distance measurements (DEER/PELDOR) were performed to obtain 

experimental evidence for the assignment of the observed radical species to β-Y356•. In order 

to maximize the S/N Q-band was used instead of X-band PELDOR spectroscopy.282-284 To 

compensate the effect of an incomplete spectral excitation, three experiments at 3 different 

field points (1-3) for pump (P) and detect (D) were performed (Figure 5-7A). At all field 

points a pronounced oscillation frequency was observed (Figure 5-7B). The averaged 

dipolar oscillations can be Fourier transformed; a pake pattern results with a perpendicular 

frequency, resulting in a distance of 3.06±0.03 nm (Figure 5-7C, Inset). 

The averaged time traces can also be fitted (Eq. (2-18), Figure 5-7C) under a Tikhonov 

regularization287 procedure a distance distribution as a probability function of distances is 

obtained (Figure 5-7D, DeerAnalysis).286 Here a full pake pattern is assumed, but the value 

is still within the error of the pake pattern distance. The distance for this system was 

obtained with 3.04±0.06 nm (Figure 5-7C), identical within error to value obtained for Y122• 

to the Dopa356•43 (3.05±0.06 nm)or NH2Y356• (3.02±0.16 nm)28, p.177. And also identical to 

the value reported by Yokojama et al. for NO2Y122• to Y356• (3.01±0.04 nm).84 

In summary, the same forward radical distance is observed as reported in the millisecond 

time scale by Yokojama et al.84 This distance has already been assigned to several UAA at the 

356 position and can be assigned to β2-2,3,5-F3Y122•-- β1-Y356•. 28, p.177, 43 Noteworthy, also the 

β2-NO2Y122•-- β1-Y356• distance is stable up to the minute time scale.84 Thus, despite the 

decay of roughly 10% of radical content in the second timescale the radical position is in 

respect to the diagonal distance to residue 122 stable.28 Additionally, the PCET disruption at 

position 731 by phenylalanine does not change the distance compared to other reports of 

diagonal distances between the 122 and 356 position in β (cf. Figure 1-8, p.12). If Y731 is H 

bonded to Y356 a difference between α2-wt and α2-Y731F should be observable in the 2H 

ENDOR spectra. 
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Figure 5-7: 34-GHz diagonal distance measurement with the pathway radical produced by β2-
2,3,5-F3Y122: α 2-Y731F. A) ESE spectrum at 40K (violet) and spectrum of pathway radical alone at 
70 K (red) are shown together with the pump and detect positions in the DEER traces. Three 
consecutive measurements are spaced by 11 G. Pump (P1,P2 and P3; π= 56 ns) and detect (D1, 
D2 and D3; π = 46 ns) are separated by 54 MHz. The dipolar oscillations (green = 1, blue =2 
and red =3) in B are illustrated. The dipolar oscillations are normalized and averaged to form C. 
From Fourier transformation a dipolar coupling pattern is obtained the perpendicular 
component (red, -⋅-) of the powder pattern has a frequency of 1.82±0.05 MHz (C, inset). This 
frequency results to an interspin distance of 3.06±0.03 nm using Eq. (2-18). This trace was fitted 
to obtain a distance distribution D. The main observed distance is 3.04±0.06 nm. The distances 
>3 nm (frequencies < 0.8 MHz) are in respect to the recorded dipolar oscillation not in the 
reliable distance range. Therefore they are regarded as unresolved in the pake pattern. 

5.3.3 Mims ENDOR of Forward Radical Transfer to Y₃₅₆• 

The gx value of β2-Y356•:α2-Y731F is comparable with the gx value of YD• in the photosystem II, 

for which a value of 2.00756 has been reported.321 It has been stated that YD• has only one 

H bond,322 also the wide doublet tyrosine of prostaglandin-H2-synthase harbor a single 

H bond (gx=2.0075).160 Thus one stronger H bond or a contribution of a second 1H HF 

coupling would be expected in these Y356• ENDOR measurements. The ENDOR spectra in 

Chapter 4 show that the large couplings can be measured with an inter pulse delay τ of 
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200 ns equivalent to 5 MHz modulation through the Mims whole conditions (Theory §2.2.3 

p.40). Thus a range of strong couplings from ±0.5 to ±2 MHz is unsuppressed. The recorded 

spectra are shown in Figure 5-8. The spectra show a complete dipolar tensor (A∥=-2∙A⊥; 

A≈T) shape as typical for H bonds not interacting with nodal plane of the π system (see 

Figure 2-12 p.46). The values of the resolved turning points in the pake pattern of the HF 

interaction are ±0.6 MHz and ±0.3 MHz. It should be mentioned, that they are astonishingly 

similar to the values observed for yeast RNR with a 0.5 ppt larger gx value.55 In the 

comparison to the 2H MIMS ENDOR spectra of yeast RNR and Y• with a comparable gx 

values (2.0076±0.0001) as yeast RNR, it becomes evident that their central region is 

occupied by a Mims hole (cf. Table 1-1, p.24).55, 155 In contrast the central line in the region 

of ±0.2 MHz has an intensity twice the size compared to the ±0.3 MHz peaks. This could 

indicate another not completely resolved weaker H bond. The assignment of the direction 

of the here detected proton, could specify the direction of the H bond acceptor during 

forward PCET between Y122 and Y356.  

 
Figure 5-8: 2H ENDOR of Y356• with α(Y731F). Mims ENDOR spectrum was recorded for three 
samples with 10-23 s reaction time. All samples at B0∥gy show an HF coupling consistent with a 
weak to moderate H bond and a smaller unresolved central line contribution. Exp. details: T= 
80-100 K π/2=20 ns, τ=200 ns, πRF= 40 µs, one SPP random RF acquisition; gray: 100 K, 
SRT=10 ms; red: 100 K, SRT= 5 ms; green: 80 K, SRT= 10 ms; acquisition time = 42, 23 and 
25 h for blue, red and green, respectively. The blue curve is 10 points adjacent averaged.  
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5.3.4 Direction of the H Bond 
The 2H Mims ENDOR spectra along each canonical orientation of the g tensor are shown in 

Figure 5-9. The interpulse delay τ was adjusted to maximize the Mims ENDOR signal for 

the small coupling size (cf. Figure 2-10B p.43). Beside the central Mims hole, no other Mims 

holes are expected in the RF range investigated. The three orientations show three distinct 

spectra with an axial T⊥ tensor component with resonances of ±0.3 MHz visible in all 

spectra, most sharply along B0∥gz. In this spectrum, the parallel component T∥ is absent with 

resonances of ±0.6 MHz. For B0∥gx the parallel component is shallow but visible, the 

spectrum. B0∥gy was shown before measured with a shorter τ value (200 ns) suppressing this 

small coupling range a bit stronger than for B0∥gx,gz. In this B0∥gy spectrum the parallel 

component is clearly visible and a complete powder pattern can be observed (see Figure 

2-12 p.46). The spectra were first simulated with the starting parameters of yeast-RNR, due 

to the similarity in the size of the HF coupling. The simulation parameters, however, did not 

fit the obtained spectra. In yeast, an H bond approximately parallel to the C-O bond has 

been found, but the B0∥gx orientation (Figure 5-9) has only a weak parallel component. In a 

purely dipolar tensor, as assumed here, the parallel component is along the dipolar axis, thus 

the O--H vector should be along gy, possibly with a minor contribution along gx. Therefore 

an angle dependent simulation approach was used. It considers each orientation of the HF 

tensor with respect to the g tensor within a resolution of 10° for one octant of the principle 

axis g tensor system (inset Figure 5-9). The quadrupole tensor is aligned along the H bond 

donor atom X-H bond (cf. Figure 4-19 p.103), thus it can be assumed to be parallel to the H 

bond direction and HF tensor for negligible protein structure restraints on the H bond 

donor. The best simulation has been selected and is shown in Figure 5-9. Simulations in 

which the parallel HF coupling component is approximately collinear to the gx, gz plane 

could be considered. Therefore the simulated 2H HF tensor is from its orientation similar to 

the one reported in for YD•, by Kessen et al.155 (see Table 1-1, p.24). 

To rationalize Euler angles between the g and HF tensor principle axis systems (see Table 

5-3) one can relate them to the H bond dihedral angle θH2O discussed before (§4.6.4.2 

p.118). Then the γ is the H bond angle (HX--O-C4), because the C4-O bond also defines the 

gx axis in the PAS. β is the H bond dihedral angle + 90°, as shown in Figure 4-10. The angle α 

has nearly no effect in the simulation and was set to 0°. The discrepancy of the simulation 

and the experimental data arises most probably from another smaller coupling in the range 
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of ±0.25 MHz. This small coupling is not resolved from the matrix line and is therefore not 

assigned. 

 A single H bond geometry consistent with the obtained angles resembles a 

130±15° H bond angle. In agreement to the H bond angle found with nearly no scalar (aiso) 

contribution in previous H bond dihedral scans (§4.6.4.2 p.118). The H bond dihedral can 

range from -35-35° without a strong deviation in the fit. To visualize the effects a small DFT 

model with a θH2O=30° (Figure 5-10) has been calculated. Here the HF coupling values are 

overestimated by a factor of 1.5, but the angles are within the error of the experiment.  

 
Figure 5-9: Orientation selective 2H ENDOR of Y356• with α-Y731F. The Mims ENDOR 
spectrum was recorded with B0 along gx, gy and gz (black). The simulation is shown beneath each 
trace in red. Exp. details: gx and gz: T= 40 K, π/2=36 ns, τ=400 ns, πRF= 40 µs, one SPP random 
acquisition, SRT =10 ms, acquisition time = 24 & 32 h; gy: see Figure 5-8 (green). A line 
broadening of 45 kHz was used for the simulation. Further parameters are shown in Table 5-3. 

Structurally, this has some implication compared to the work discussed in the NH2Y’s 

(§4.2.2, p.83). This is the first spectroscopic evidence for an in-plane H bond at Y356•. It has 

an essentially zero aiso contribution. This excludes spin polarization through the pz oxygen 

orbital, because the H bond is in the pz orbitals nodal plane (cf. Figure 5-10). In Y356• the 

stabilization of perpendicular H bond is absent, thus an energetically favored H bond is 

formed along the filled non-bonding π orbitals (see Figure 4-27D p.120).  
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Table 5-3: Simulation parameters of the unknown (X) H bond donor to Y356•. The Euler angle 
uncertainties are described in the text. The HF and quadrupole tensor has about 10% error. A 
DFT calculation with a water in the assumed θH2O=30° is compared to the simulation. The DFT 
calculation has g values of (2.0077, 2.0045, 2.0022).a  

Y356•  Ax 
[MHz]

 

Ay 
[MHz] 

Az 
[MHz] 

α    
[°] 

β 
[°] 

γ    
[°] 

Qx 

[kHz] 
Qy 

[kHz] 

Qz 
[kHz] 

Simulation X-D 
≈1.9 Åb 

-0.44 -0.46 0.91 0 
0 

120 
120 

130 
130 

 
-54 

 
-72 

 
126 

DFT 
θH2O=30° 

wat1-D 
1.8 Å 

-0.77 -0.78 1.34 -10 
15 

104 
113 

138 
140 

 
-54 

 
-74 

 
128 

a) Calculation details: B3LYP; basis set def2-tzvpp/EPRII. The polarizability of ethanol was used and 
dispersion correction. Both basis sets gave within 0.1 ppt or 5% identical HF and g values. b) Obtained 
with point-dipole approximation (§5.3.5). 

 

Figure 5-10: DFT model of a Y• with one water molecule. A restrained geometry optimization 
was performed with H bond dihedral θH2O=30°. An H bond angle (C4-O-Hwat1) of 130° was 
obtained. 

5.3.5 Y356• H bond Length 
 In the presence of a purely dipolar HF interaction a distance from the electron 

spin dipole to the nearest point charge can be approximated. Here oxygen is the nearest spin 

density bearing nucleus and has a ρO reported for YD•316, 317, 323, Y•319, 320 in water and YZ•156, 318 

to be between 0.28 and 0.25. One obtains a distance of 1.87-1.95 Å for the H bond by Eq. 

(2-17) (p.35). The nucleus is approximated as a point charge. Hence, the obtained distance 

is in tendency estimated as too large (≈5%).153, 295 Nevertheless, this is a moderate to weak 

H bond. It could be shown before that the H bond distances increase with the number of 

H bonds (§4.6.4.3 p.121).110 In the similar case of YD• with an stronger H bond, but the 

same angle dependence, no matrix line or inner coupling was observed. Also the g value is 
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0.4 ppt higher than observed for β-Y356•:α-Y730F. The 2H coupling connected to the central 

line is therefore a most likely more distant.  

 This has been qualitatively supported by a small DFT model. It considers two 

water molecules (wat 1&2) in the π-plane and a Y•. The wat2 is scanned for its distance 

from 2.4 to 2.2 Å. To insure a fast convergence the ring dihedral (θCβ=55°) and the dihedral 

to the first water (θwat1=20°) was kept constant. The values are summarized in Table 5-4 

below. To reproduce the gx value exact a 2H within a distance of 2.2 Å is necessary. However, 

all distances have g values within the uncertainty of the DFT. For wat2 with an H bond 

distance of 2.2 Å, an HF tensor of Ax,y,z =-0.3, -0.4, 0.8 MHz was found. A perpendicular 

component of 0.4 MHz could be still unresolved between the observed matrix line width 

and the larger HF coupling. Wat2 can occupy every orientation toward a Y•, except for 

orientations exceeding the matrix line width. For instance the line width at gx∥B0 is smaller 

than 0.4 MHz, therefore Az and Qz parallel to gx can be excluded. The HF tensors of wat1 are 

in agreement with the overestimation of the H bond HF couplings by DFT calculations. 

This has been observed previously.110, 254 

Table 5-4: Small DFT model using a Y• and two waters scanning the distance of a distant of the 
second water (wat2). ρO was 0.34 after Muliken population analysis312, 313. The H bond dihedrals 
were kept constant with 20° (wat1) and 167° (wat2). The Hwat-O-C4 angle stayed constant with 
117°(wat1) and 123° (wat2). The Qz value was either 130 kHz for wat1 or 142 kHz for wat2.a 

No.  O--H Distance [Å] Ax [MHz]
 

Ay [MHz] Az [MHz] Qz [kHz] gx gy gz 

1 Hwat1 1.82 -0.63 -0.69 1.24 126    

 Hwat2 2.20 -0.33 -0.38 0.78 142 2.0072 2.0046 2.0022 

2 Hwat1 1.82 -0.63 -0.70 1.24 126    

 Hwat2 2.30 -0.30 -0.34 0.70 142 2.0073 2.0046 2.0022 

3 Hwat1 1.81 -0.64 -0.70 1.25 126    

 Hwat2 2.40 -0.27 -0.31 0.64 146 2.0074 2.0046 2.0022 
a) Calculation details: UB3LYP, def2-TZVPP, COSMO(Ethanol), RICOSX, Grimme dispersion 
corrected. The uncertainty of the coupling values is estimated with 20%. Cβ-1H HF coupling stayed 
constant with aiso=55 MHz. 
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5.4 Equilibrium PCET Radical Y₃₅₆• Formed during Reverse 
PCET 

5.4.1 Multi-frequency Characterization 
The pathway radical formed in the reaction of β2-2,3,5-F3-Y122 and α2-wt with substrate 

(CDP) and effector (ATP) has been quenched in the second timescale. EPR spectra of the 

putative forward radical transfer and that in PCET equilibrium can then be compared 

directly. The radical formed in PCET equilibrium can be observed without the disturbance 

of the mutation (Y731F) in α, as in the previous section. Therefore the formed Y356• is also 

relevant to the discussion of the forward radical transfer.28 The 94 GHz EPR spectrum 

Figure 5-11A has the same pattern at B0∥gx and gz, only at B0∥gy shows only a dominant β-

methylene HF coupling. To constrain the HF couplings further a 34 GHz spectrum (Figure 

5-11B) was recorded, then the two frequencies were simulated simultaneously. Simulating 

the spectra with one parameter set (Table 5-5) gave a reasonable fit of the experimental 

trace (Figure 5-11, gray). In addition to the simulation set for a Y356•, a 10% additional 

contribution of Y731• and Y730• was taken into account. This contribution is only observable 

at the low field side of the 94 GHz and 9 GHz spectrum. Based on the knowledge from the 

3-amino tyrosine the gx value it was assumed to be larger than in the Y356• case. A value of 

2.0078 has been used, other values were not resolved therefore the suggested parameters of 

Yokojama et al. were used as parameters.84 Also the parameters of Y356• along the reverse 

PCET are identical within error to the published results (Table 5-5).84 Thus only a single Q-

band DEER trace was recorded, to verify the diagonal distance reported for radicals at Y356 

(Appendix: Figure A - 9, p.200). This is an additional evidence for assigning the observed 

main pathway radical species to Y356•. 
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Figure 5-11: EPR spectra (blue) and simulation (gray) of the pathway radicals using β2-2,3,5-
F₃Y₁₂₂:α2-wt at two frequencies. The 94 GHz and 34 GHz EPR spectra in D2O buffer at 80 K are 
shown left and right, respectively. The simulation parameters are shown in Table 5-5. Exp. 
details: ESE, 94 GHz: π=40 ns, τ= 270 ns, SRT= 6 ms, the reaction was quenched at 11 s in 
liquid nitrogen; 34 GHz: ESE, π=40 ns, τ= 220 ns, SRT= 5 ms. The reaction was quenched in ice 
cold isopentane after 41 s, at 10 s 20% glycerol-D3 was added. The derivative was obtained by 
3 G pseudo modulation or by a Savitzky-Golay (5 points, second order) filter for 94 GHz and 34 
GHz, respectively.  

Table 5-5: Simulation parameters of the pathway radical observed with β2-2,3,5F₃-Y₁₂₂ and wild 
type α2 in comparison to Y356• formed with β2-NO2-Y122: α2-wt. The errors for the g values were 
estimated and are given in parenthesis for the last shown digit. The error for the HF values 
>15 MHz are 2 MHz, the errors for the smaller couplings are estimated to be approximately 
3 MHz. 

β2-2,3,5F₃Y₁₂₂:α2-wt [this thesis] 
Ax 

[MHz]
 

Ay 
[MHz] 

Az 
[MHz] 

 
gx gy gz β-1H  61 52 56 

g values 
2.0063(1) 2.0045(1) 2.0022(1) 

3/5-1Ha 
-5 
-3 

-21 
-19 

-24 
-24 

β2-NO2Y122: α2-wt84 

 
gx gy gz β-1H  61 52 54 

g values 2.0063(3) 2.0044(2) 2.0022(3) 3,5-1Ha 4 18 26 
a) The Euler angles are α,β,γ = 90, 90, ±20, for the definition |Ax|<|Ay|<|Az|. 
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Interestingly, although Y356• is formed with α-wt and α-Y731F they have a significantly 

different g values and β-methylene HF couplings with aiso =47 MHz to aiso= 56 MHz, they 

have the same diagonal distance to Y122•. Hence, either the spin density changes, the ring 

dihedral angle θCβ, or a combination thereof. Studying the semi-empirical McConnel Eq. 

(5-1) Svistunenko et al. demonstrated that the oxygen spin density population is inversely 

proportional to McConnel estimate of C1 spin density population.277 An increase of 20 % in 

spin density population could explain the difference in β-methylene HF coupling. A value of 

ρC1 between 0.41 and 0.45 would be obtained from ρC1 = 0.34-0.38316-320 used for the forward 

PCET Y356•. The larger value is comparable to the spin density population ρC1 = 0.44-0.45 

observed in a recent YZ• DFT study with gx between 2.0055 and 2.0063.156 A change in 

dihedral angle θCβ would correspond to 12-22° change for an oxygen spin density population 

in the range of 34%-38%.  

 The spectrum recorded for the reaction in H2O buffer shows the same line shape 

as the spectrum in deuterated buffer (Figure 5-12). The broadening due to D/H exchange is 

significantly stronger than in the forward PCET Y356•. This can partially be explained by the 

more intense shoulder at the high-field side of the spectra previously assigned to a 

contribution of Y731• and Y730•.  

The Aβ coupling is decreasing slightly as observed at gz. And the gx and gy values seem to be 

slightly shifted between the two spectra below. Overall the concomitant change of time 

point and medium contribute to this spectrum. Here a rigorous investigation of different 

time points, preferentially by rapid freeze quench would bring more insight. Furthermore we 

will consider the single spectrum at 11 s. This 11 s sample is further used to record ENDOR 

spectra, which can be used to further investigate the different spectral line shapes observed 

here. 
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Figure 5-12: Comparison between an H2O and a D2O spectra of the Y356• formed β2-2,3,5F₃-
Y₁₂₂: α2-wt. W-Band ESE spectrum of the reaction of 2,3,5-F3-Y122•(β) and wild type(α) with 
CDP/ATP. 1Hβ HF coupling is marked at gz with Aβ. Exp. details: Blue: see Figure 5-11; Green: 
T= 80 K, π(π/2)=56(28) ns, τ= 614 ns, number of averages = 3150. The derivative was built 
with a Satitzky-Golay filter (20 points, second order). 

5.4.2 Mims ENDOR of Y₃₅₆• Using Wild Type α 

In order to understand the g-shift of 0.9 ppt (compared to Y356•:α2-Y730F) Mims ENDOR 

spectroscopy was performed for the radical transfer in equilibrium. A larger coupling is 

expected than observed for the radical in §5.3.3. Therefore the measurement shown in 

Figure 5-13 was recorded with a larger window for couplings of up to ±2 MHz. With the τ 

setting of 200 ns we create certain blind spots, thus a second τ value was measured with 

shifted blind spot criteria (3.3 MHz modulation, cf. Theory §2.2.3, p. 40). Nevertheless, 

identical spectra are obtained (5.13). The same coupling strength as before (§5.3.3) with ± 

0.6 MHz for the parallel component is observed. Hence, the strength of the coupling 

apparently does not correlate with the g value shift. The number of H bonds, however, could 

correlate to the g value shift. In the amino tyrosine, the 2H ENDOR intensities relative to 

each other for inter- and intra-molecular (NH2) nuclear couplings observed. For tyrosines in 

D2O buffer spectra only the anisotropic coupling and the matrix line can be observed. It can 
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be stated, however, that compared to the Y356•:α2-Y730F spectra with the blocked pathway the 

parallel component of the hyperfine is stronger and both turning points (± 0.6 and 0.3 MHz) 

are slightly sharper. This could be an indication of a second anisotropic deuteron coupling.  

 
Figure 5-13: 2H ENDOR of Y356• with wild type α. The pathway radical formed after 10 s was 
measured at 70 K with two different τ values 200 ns (red) and 300 ns (blue) to ensure a broad 
coverage of possible resonances. The spectra show the B0∥gy only a weak to moderate H bond 
and a matrix line. Exp. details: Mims ENDOR, T= 70 K π/2=20 ns, τ=200-300 ns, one SPP 
random acquisition, SRT=11 ms, acquisition time = 24 and 48 h. The traces have been 
smoothed by 5 (red) and 6 (blue) points adjacent averaging. 

The form of the tensor indicates that both H bonds should be within the plane of the 

tyrosine (±30°, gx,gy plane), otherwise a stronger non-dipolar contribution would be 

expected from the spectral analysis performed for the 3-amino tyrosines (Chapter 4). 

Orientation selective data can give spectroscopical evidence for an H bond along gx or gy as 

shown here (§5.3.4) or previously for instance in yeast RNR.55 

5.4.2.1 1H ELDOR Detected NMR of Y356• Formed during Equilibrium PCET 

The unprecedented low gx value of 2.0063 has shown only distant H bonding protons 

(≈1.9 Å) for the Y356• formed during PCET equilibrium. This seems contradictory at first. 

Although the effect can be rationalized a control was necessary to check if any larger 

couplings were not recorded due to line broadening or fast exchange conditions within the 
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S/N of the ENDOR measurement. Additionally, we only excited a part of the orientations at 

94 GHz, thus couplings larger at other orientations could have been missed. At Q band, we 

were able to reach a nearly full pake pattern with one measurement, as shown by studies on 

amino tyrosines.92 

 Here, the experiment was performed at 80 K to suppress any contribution of β2-

2,3,5-F3-Y122• in the spectra. The spin-lattice relaxation (T1) at these temperatures is quite 

short compared to the long RF pulse. An HF detecting sequence, ELDOR detected NMR, 

has been often used in metallo proteins with intrinsically short relaxation times.186 It has 

been reported to be less affected from short spin-lattice relaxation times (T1) as ENDOR 

(cf. Theory §2.2.4 p.43).135 Indeed, first ENDOR spectra showed the need for long 

accumulation to gain sufficient S/N. 92  

 The spectrum in Figure 5-14 was recorded with ELDOR detected NMR. It should 

be mentioned that the resolutions are not as high as in a comparable Davies 1H ENDOR 

spectrum, but ELDOR detected NMR is more sensitive.188, 191 Thus measurement times up 

to 72 h could be omitted.92 Additionally, all internal tyrosine couplings contribute to this 1H 

HF spectrum, making an assignment to individual couplings speculative. However, in 

comparison between the reactions performed in D2O and H2O the spectrum is a valuable 

control for the estimated couplings sizes (blue, Figure 5-14). Both spectra are completely 

identical to each other within S/N. Only around the central line the deuterated sample has a 

sharper central line (5.1 MHz vs. 7.8 MHz). The line width increase is consistent with the 

coupling observed in the Mims ENDOR spectra of 1.2 MHz (6.5 x 1.2 MHz = 7.8 MHz).  

 Thus, no stronger coupling was missed in the Mims ENDOR spectra, due to blind 

spots. The broad lines observed in the range of ±(26-31) MHz are identified as beta 

methylene couplings, here the background subtraction leaded to a higher frequency 

uncertainty than in the central region of the spectrum. This is especially true at the edge of 

the experimental resonance conditions for the MW irradiation (DIP). 
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Figure 5-14: Comparison of Y356• with wild type α in protonated and deuterated buffer. The 
EDNMR centered at the 1H Larmor frequency shows the resonances in D2O (blue) and H2O 
(red) spectrum. The same HF couplings are observed independently of the buffer, beside the β-
methylene coupling (orange) and the broadened central line as discussed in the text. Exp. 
details: π(π/2)=200(100) ns; τ = 500 ns; HTAELDOR pulse = 2 µs, SRT =2 ms, acquisition time = 
14 h (red) 11 h (blue). The recorded spectra were baseline corrected by a spline function.  

5.4.2.2 Correlating of the Number of H bonds to the g Value 

The gx value is an indication for an electrostatic environment mainly around the phenoxy 

oxygen nucleus. H bonding is a major factor for electrostatic effects beside positive charges 

in the surrounding. Hence, one might correlate observed gx value with the number of 

H bonds. Depending on the number and the distance several H bond networks have been 

reported, for instance two studies in a highly polar electrostatic environment come close to 

the g values observed for Y356•:α2-wt (Table 5-6). Two H bonds have been reported 

previously in Y crystals formed in hydrochloric acid solution.161 And three H bonds have 

even been modeled for YZ• in PSII (Introduction §1.5.2, p.20).156, 161  

 To reduce the number of parameters one can use the point dipole approximation 

from Y356•:α2-Y731F. The distance derived in §5.3.5 (p. 144) can be applied, because even for 

lower gx values the oxygen spin density population was found identical to the values used for 

the distance calculation with ρO = 0.25.156 Hence, the H bond distance should be 

approximately 1.87±0.10 Å.  
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As Table 5-6 illustrates, examples in the literature of two H bonds include at least one strong 

H bond (≈1.6 Å), but this is not in agreement with the derived distance for Y356•:α2-wt 

(1.87±0.10 Å). Two DFT models were set up to calculate the value of the HF coupling to 

the external proton in a mean distance of 1.84 (model 4) and 1.7 Å (model 5). The former 

report an HF coupling of Az=1.2 MHz the latter Az=1.4 MHz. The shorter distance has a 

significantly larger value than experimentally observed (0.91 MHz). The value calculated for 

the longer distance with 1.84 Å is within uncertainty (30%) still in agreement to the 2H 

ENDOR simulation. Both models are within uncertainty to the obtained g values of Y356• 

formed with α2-wt. The gx value of both models is 0.2 ppt (model 5) and 0.5 ppt (model 4) 

larger than experimentally observed. Notably, the H bond environment described in 

Model 4 is similar to Model C designed for discussing polarity effects around NH2Y356• 

(§4.6.4.4, p.124).  
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Table 5-6: Comparison between experimental (white) and calculated (highlighted gray) g values 
and, number and distances of H bonds.a 

gx value 
 

gy value 
 

gz value 
 

No. of 
H bonds 

rO—H
b 

[Å] 
Structure 

description 
T⊥

c 

 
Reference 

 

2.0072(1) 2.00446(5) 2.0022 two 
1.9(1)d 
~2.2 Åe Y356•:Y731F -0.45 

EPR: This 
thesis 

2.0063(1) 2.0045(1) 2.0022(1) ≥two 
1.9(1)d 

- Y356•:wt -0.45 
EPR: This 

thesis 

2.00673  2.00453 2.00232 one 
1.45f 

1.60d 
YD• (tensed) 

His-H  
-0.80 EPR153 

2.00774  2.00447 2.00232 one 
1.75f 

1.84d 
YD• 

(relaxed)His-H  
-0.53 EPR153 

2.0066 2.0042 2.0024 two 
1.60g 

- 

Modeled by: 
COOH function 
and a polarized 
HCl molecule 

- 
EPR on 

crystal161 

2.0062 2.0042 2.0021 two 
1.60g 

- 

Modeled by: 
COOH function 
and a polarized 
HCl molecule 

- 
EPR on 

crystal161 

2.0063 2.0044 2.0023 two 
1.59 
1.78 

Polarized His and 
water molecules 

- 
DFT 

calculation156 

2.0055 2.0043 2.0023 three 
1.59 
1.78 
1.76 

Polarized His and 
2 water molecules 

- 
DFT 

calculation156 

2.0068(5) 2.0046(5) 2.0023(2) two 
1.85h 

1.83h 
Model 4 

2 water molecules 
-0.62 

DFT 
calculation: 
This thesisi 

2.0065(5) 2.0045(5) 2.0022(2) two 
1.70j 

1.70j 
Model 5: 2 water 

molecules 
-0.78 

DFT 
calculation: 
This thesisi 

a) The error or uncertainty of the values is given for the last digit in parentheses. b) H bond distance 
between phenoxy oxygen and proton. c) Averaged value in MHz; d) Derived by the point dipole 
approximation the error of 10% of the HF coupling is not considered. e) Estimated by a relaxed scan over 
H bond distances in a DFT model. f) Derived by McConnel Eq. ρO=0.28 g) from the reduced crystal 
structure. h) 1H HF couplings are Ax,y,z= -3.9, -4.3, 7.8 MHz and Ax,y,z= -3.3, -3.5, 7.4 MHz. i) Calculation 
details: UB3LYP, def2-TZVPP, COSMO(Ethanol), RICOSX, D3BJ Grimme dispersion corrected. The 
H bond distances 1.7 Å were restrained. The uncertainty of the coupling values is estimated with 20% and 
the uncertainty of the g values is estimated with 0.5 ppt. j) 1H HF couplings are Ax,y,z= -4.0, -4.0, 8.7 MHz 
and Ax,y,z= -5.1, -5.1, 9.2 MHz.  
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5.5 Discussion 

5.5.1 Removing the Conformational Gating by 2,3,5-F3Y 
Initial studies demonstrated that β2-2,3,5-F3Y122 is able to overcome conformational gating 

with potential difference of about 10 mV to Y122.28 The potential difference is low enough 

that reverse PCET from β2-Y356• to β2-2,3,5-F3Y122 could be observed for the first time.28 At 

first, it has been discussed that 2,3,5-F3Y is deprotonated at the 122 position83 due to its pKa 

of 6.4.119 Then it was concluded that 2,3,5-F3Y is protonated based on the inability to 

observe β2-NO2Y122
– within a pH dependent study (cf. §1.4.5, p.16).41, 120 In this study, 

however, the reported solvent inaccessibility of Y122 has not been considered.46, 324 Thus it 

cannot be excluded that the protonation state of the buried 122 residue is unaffected by the 

buffer pH. 

 The EPR parameters of β2-2,3,5-F3Y122• were compared to β2-wt(Y122•). EPR 

spectra were recorded at three different frequencies (9, 94 and 263 GHz) to determine 

g values and the tyrosine ring dihedral angle θCβ. One set of simulation parameters has been 

found for all spectra. The 263 GHz EPR spectra reveal a gx value of 2.00832(±0.00005), 

which is slightly shifted from the value of 2.00912(±0.00005) found in wt Y122•. A small 

model DFT calculation could reproduce the g value considering a polarity of ε=4 described 

previously for Y122•.104, 107, 325 Notably, no H bond interaction has been considered in the 

model. In a combination of the empirical McConnel equation and DFT calculation the ring 

dihedral was determined to be θCβ=55±5°. The reduced state in the crystal structure reports 

about θCβ=46°, thus a ≈10° larger value is observed.63 On the other hand, the oxidized Y122• 

diplays a 1-5° smaller value than observed for reduced Y122.63 How this structural change 

could influence the accessibility of residue 122 to the interface requires still a large DFT or 

QM/MM model of different conformational states taking the Cα-Cβ bond into account. 

5.5.2 Comparison between Y356• and NH2Y356• Forward PCET Radical 
Intermediates 
Information on the radical transfer along the subunit interface is important to understand 

the PCET between the subunits and the activity control of RNR Ia. In E. coli RNR Ia several 

pieces of information have been gathered for the “stepping stone” of the PCET, residue 356. 

In the reduced state, pKa measurements indicated a solvent like environment for NO2Y356 
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independetly from the formation of the α2β2 “resting state” complex.118 The transient radical 

state reports about how the protein has reorganized directly after a single PCET step in the 

“active” α2β2 complex. In the “active” α2β2 complex the radical pair distance between residues 

β1-356 and β2-122 (PELDOR distance) of 3.0±0.1 nm is independent of mutation method 

and reaction time ranging from 8 ms up to a minute.28, 43, 84 EPR high-field data has reported 

that two different polar environments can be obtained at Y356•.84 A combined examination of 

polarity and H bond network, however, has not been presented before. 

As shown in the previous (§4.6 p.110) and in the current chapter, two different approaches 

have been pursued to characterize radical intermediates at residue β-Y356. In the first 

approach the radical was competitively trapped using an NH2Y mutant at residue 356 with 

3-10 % residual activity.67 In the second approach a PCET blockade was used with an α2-

Y731F mutant, which is inactive.47, 84 Despite their differences, both radical intermediates 

formed at residue 356 inform us about H bonding and electrostatic environment. Also in the 

reaction of the β2-2,3,5-F3Y122:α2-Y731F RNR the PELDOR distance is reproduced (cf. 

§5.3.2, p.139).28 Additionally, Y356• and NH2Y356• have no perpendicular strong or moderate 

exchangeable H bonds. Perpendicular H bonds have been observed in the studies of the 

PCET transfer in the RNR α subunit (Chapter 4).110, 254 The in-plane H bond characterized 

in Y356• might be hidden under the wide spectral feature of the amino deuterons for 

NH2Y356•. The hyperfine tensor is proportional to the nearby phenoxy oxygen spin density 

population (ρO) due to the scaling of its dipolar part. Therefore an H bond observed in an 

Y356• with (T⊥=0.45 MHz) has a dipolar strength related to ρO. A value around 25-28% is 

reported for ρO. 156, 316-320, 323 In contrast, the spin density population for NH2Ys• is in the 

range of 17-21%110 for the single mutant models (see §4.4). Thus a distance found for Y356• 

of 1.87-1.95 Å would be estimated with an HF coupling of T⊥≈ 0.29-0.38 MHz for NH2Y356• 

(see Eq. 2-17). The most prominent axial component T⊥ in the spectra would be with 

±0.2 MHz not resolved from the matrix line of NH2Y356•, which could explain the absence of 

clearly resolved H bond features in the 2H ENDOR spectrum of NH2Y356•.  

 Furthermore, high frequency EPR delivers g values for the forward radical transfer 

of NH2Y356• and β-Y356•:α-Y730F. The NH2Y356• has a gx value (2.0049) slightly lower than 

the strongly H bonded NH2Ys in the α subunit (Chapter 4). The β-Y356• with α2-Y730F has a 

gx value of 2.0072. Thus Y356• is by 1.9 ppt more effected by electropositive charges than 

Y122• and even 0.4 ppt more than yeast or mouse RNR Y122• equivalent with one H bond 
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(1.8 Å).55, 158 The value is not as low as the metastable “tensed” YD• state with 2.0064 with an 

H bond of approximately 1.5 Å (see §1.5.2, p.20).153 The electrostatic effect of NH2Y356• 

should correspond to a moderate to strong H bond (rO--H 1.6 Å and 1.8 Å) and at least one 

moderate H bond (rO--H 1.9 Å) found in NH2Y730 and NH2Y731 (see §4.4). This would imply 

for Y356• another partially positive charge in <2 Å surrounding of the oxygen nucleus. 

However, this could not be observed for Y356• with α2-Y730F. Here the g value is consistent 

with a weak H bond (1.8 Å) and another distant proton (≳2.2 Å, Table 5-4, p.145). A 

similar environment has been modeled for NH2Y356• (model C §4.6.4.3, p.121). For 

NH2Y356• the g value could not be reproduced by one moderate and one weak H bond, but 

was within uncertainty of 0.5 ppt consistent to the DFT model C (§4.6.4.3, p.121). The lack 

of additional structural information, however, allows various interpretations. Noteworthy, 

Y356• formed during reverse PCET with α2-wt is more consistent to the g value observed at 

NH2Y356• and with three weak to moderate H bonds or two H bonds and a positive charge. 

 Additionally, two conformers were recently proposed for NH2Y356• by their 

different kinetic phases.326 Further time-dependent measurements at high frequency EPR 

are necessary to decide if the NH2Y changes the equilibrium between the two states 

observed with Y356•. One can point out that the conformer observed for the forward PCET 

at NH2Y356• (θCβ = 55°±15°) and Y356• (θCβ=42-56°) is identical within uncertainty of the 

measurement and the small DFT models.  

5.5.3 Y356• in Forward and Reverse PCET  
This thesis covers the forward PCET transfer in RNR Ia, which requires an additional 

mutation to observe the forward Y356• species. Therefore the preliminary results of Y356•:α2-

wt, which is initially formed during reverse PCET28, should be discussed. It could be shown 

that the reverse Y356• shares a common distance with the forward Y356• species. This is in 

agreement with study focusing on the equilibrium radicals formed using β2-NO2Y122: α2-wt. 

Additionally, all Y356• using 2,3,5-F₃Y₁₂₂• properties observed here agree well with the 

properties found using the β2-NO2Y122•, such as polarity and ring dihedral. However, using 

2,3,5-F₃Y₁₂₂• one could separate the investigation of Y356• from the cofactor assembly step, 

necessary to produce β2-NO2Y122•. 

 Hence, Y356• residue could be observed during putatively reverse PCET28 with a gx 

value of 2.0063±0.0001 in an unusual polar environment. It has the same 2H HF coupling 
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size as observed for Y356• during forward PCET. The electrostatic environment is within 

uncertainty of our models in agreement with at least two in-plane H bonds in the range of 

1.9±0.1 Å. For longer distances a third weak H bond might be considered as the second 

weak H bond in the forward Y356•. This implies a structured H bond network, because 

unstructured Y• in aqueous solution need an acidic environment to produce similar low gx 

values (Table 5-6).161, 319 Furthermore a rapid exchange would broaden the EPR line shape 

B0∥gx and the 2H ENDOR spectra, in contrary the lines are sharper than observed with 

Y356•:α2-Y731F. However, other sources of structured polar environments as cations or 

charged groups are equally possible to explain the gx shift. As has been pointed out for 

NH2Y356•, positive charges from cations as Mg2+ or guadinium groups can in principle 

introduce a strong polarity around Ys•. Binding of Mg2+, has long been known to play an 

important, but still poorly defined role in α/α, α/β and β structure/chemistry.74 Though a 

complex of Y356• and Mg2+ additional to the two H bonds observed is unlikely considering 

the strong effect on the g value of a divalent cation.174, 175 Orientation selective measurement 

can further limit the directions of the H bond(s) observed Y356•:α2-wt, if an additional 

parallel tensor component (T∥) can be observed either along B0∥gx and B0∥gz a second 

1.9±0.1 Å H bond would be present. A second H bond in this range would imply a similar 

geometry as observed for NH2Y730• with three H bonds 1.8, 1.8 and 2.2 Å.110 

 The H bond network found at the Y356s• could be used to obtain the reversible 

redox potentials. Peptide models have been applied to measure reversible redox potentials of 

the radical intermediates without dimerization of the Y• in solution.62, 327, 121, 122 The H bond 

network observed in this thesis at the RNR intermediates might aid the design of adequate 

peptide models, which are able to measure realistic redox potentials. Generally, it has been 

found that an additional H bond can reduce the redox potential by typically 60-120 mV.292 

An approximately 60 mV lower potential of Y356• has been postulated based on kinetic data 

compared to the Y PCET intermediates Y731• and Y730• in the α subunit (see Figure 1-11, 

p.17).28, 41, 84 

 Based solely on the Mims ENDOR spectra presented herein, it cannot be 

evaluated if the two Y356• resemble two energetic minimum states or if the α-Y731F mutation 

influences the environment. It cannot be ruled out that an H bond bound to Y356• is lost due 

to α2-Y731F mutation, because a water molecule is also bound to α2-Y731. However, in the last 
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chapter it could be shown that at least NH2Y731• interacts only weakly with the subunit 

interface.  

 Additionally, a change in the isotropic β-methylene HF couplings from 47 to 

56 MHz could be observed for forward to reverse Y356•, respectively. This might be an 

indication of two conformeric states of Y356•. A large change in Cβ-H HF coupling is not a 

prerequisite for a conformational change. Here a significant change of 20% could be 

observed between forward and reverse PCET Y356•. If a conformational change occurs it 

could change the ET distance in the PCET by more than 6 Å, although the diagonal distance 

between β1-Y356• and α2-2,3,5-F3Y122• might be unaffected (Introduction §1.4.6, p.17). In 

this thesis, an unchanged diagonal distance has been found between forward and reverse 

PCET Y356•. The same was reported using NO2Y122• to form forward and reverse Y356•.84  

 This could be further tested by rapid freeze quench EPR. In the EPR spectra a 

change in gx value from the millisecond time to the second time scale could be investigated. 

With Y356•:α2-wt no difference were reported between RFQ and manual freeze quench at 

9 GHz.28 This could be an indication that the different H bond networks, observed with 

Y731F and with wt α, are indeed formed first during forward then during reverse PCET. A 

change in the H bond network might affect the PT distances. 

  

5.5.4 Mechanistic Implications 
Mechanistically the presence of a bidirectional PCET at Y356 has been suggested since the 

pH dependent measurements with various fluorinated Y356.82, 119 In combination with 

conserved glutamates (i.e., E350, see §1.4.1.2, p.7), a geometry similar to tyrosine analogs (1 

or 2) of Hammerström et al.328 was proposed, as shown in Figure 5-15.328, 329 In these 

models, Hammerström et al. could show that the phenol reaction was pH independent in 

the presence of an intramolecular acid.328 This has been observed during various FnY356 

incorporations.82, 119 However, there is not any spectroscopic evidence for a glutamate (E350) 

near residue 356. Additionally, no PT acceptor was found. 
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Figure 5-15: Biomimetic systems of H bonded tyrosine analogs linked to a photosensitizer. 1 
and 2 are from ref. 101, 330 and 3-6 are studied in ref. 101. 

  This thesis was able demonstrate a polar environment that stabilizes two different 

H bond environments of Y356•. In both cases forward or reverse PCET only in-plane and 

moderate H bonds are observed. The H bonds found here might be from the proton 

acceptor function during forward PCET. Thus a proton acceptor function (X) would be 

within ≈2.9±1 Å (distance Ophenoxy to X) within the ring plane. Small PCET model studies 

have shown similar geometries.101, 102 Experimental studies point out that the kinetic rate in a 

bidirectional CPET by elongation of the ET distance from 12 to 21 Å is within error 

identical to the rate dependence of a pure electron transfer, for a short proton transport 

(PT) distance.331 On the other hand, PT rates have been investigated for several donor 

acceptor distances within the ring plane (see 3-6, Figure 5-15), indicating that PT can be 

rate limiting.101, 252 Due to the fast decay with PT distance, the H bond (≈1.9±1 Å) found 

here could be a rate limiting with a donor acceptor distance d of 2.9±0.1 Å, as illustrated by 

Figure 5-16.  

 However, the rate is strongly dependent on the distance and a change of ~0.2 Å 

changes the rate constant nearly 3 orders of magnitude. Currently, advanced EPR 

techniques combined with semi-empirical equations or HF parameter from DFT 

calculations employed here, are not precise enough to evaluate H bond distance changes of 

0.1 Å. Isotopical labeling with 2H could increase the resolution of 1H ENDOR spectroscopy 

in comparison to 2H ENDOR spectroscopy studied here. 
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Figure 5-16: Dependence of the estimated PCET rate constant on the proton donor-acceptor 
distance dO—N for a reaction without driving force (ΔG0=0).The red line is a fit for ln kPCET= -β 
dO—N + constant, with β ~27 Å-1. Data plot from ref. 101. 
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6 CONCLUSION 

The intersubunit radical transfer from the diiron cofactor to the nucleotide reduction side in 

RNRs Ia has major unresolved issues. Although three Y• intermediates have been assigned, 

it is uncertain how these Ys transfer their protons to form Ys•. Structural information of the 

“active” state is still missing. In this thesis site specific incorporated 3-amino tyrosin forming 

NH2Ys• offered the unique opportunity to compare these three Y intermediates in high-field 

EPR investigations and resolve hydrogen (H) bonds networks and electrostatic 

environments at these radicals sites. At the Y intermediates β-356 another mutation strategy 

offered the possibility to characterize H bonds to Y356•. 

6.1 NH₂Y• Intermediates Investigated in the α Subunit 
Pulsed-263-GHz EPR spectroscopy has been applied for the first time on NH2Ys• to unravel 

small changes in the electrostatic environment of NH2Y356•, NH2Y730• and NH2Y731•. The 

gx value is most indicative for electrostatic changes, which arise due to positive and negative 

charges and H bond interactions. All three investigated intermediates showed low gx values 

(> 0.6 ppt lower as the free NH2Y•) symptomatic for H bonded polar environments. 

NH2Y730• has been assigned before to harbor one moderate H bond (1.8 Å) and two weak H 

bonds (≥ 2.0 Å),110 in this thesis it had the highest gx value of the three NH2Ys• 

intermediates. The gx value from 263-GHz EPR spectra of NH2Y731• is with 0.3 ppt lower 

that found at NH2Y730• (see Table 4-7, p.114). 
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 2H ENDOR spectroscopy revealed a strong H bond (1.6-1.7 Å) at NH2Y731• (see 

Figure 4-7, p.83). A DFT calculation, consistent with the experimentally obtained g values, 

considered an additional weak in-plane H bond (≥1.9 Å) from a nearby water molecule 

(Model 3 in Figure 4-16, p.100). 

 Thorough investigations lead from the initial hypothesis of π stacking between 

Y731 and Y730 to the first spectroscopic evidence for their interaction. First, two additional 

NH2Y• from double mutants were investigated, and thus underlying amino deuteron 

resonances could be separated from resonances of intermolecular H bonds. Two 

perpendicular H bonds at NH2Y730• and one stronger H bond at NH2Y731• were found 

consistent with the double mutants removing in each case one perpendicular H bond 

contribution. Second, to support the tensor shape indicating a contact interaction with the 

spin bearing pz orbital, orientation selective ENDOR spectra at NH2Y731• have been 

recorded. The simulation revealed an H bond and its H bond donor bond (H-XDonor) 

aligned ≈70° perpendicular to the ring plane (see Figure 4-7, p.83). Third, the interaction 

has been calculated by large DFT structures capturing the essential EPR parameters from 

263-GHz EPR and 94-GHz ENDOR spectra. These calculations demonstrated a π- stacked 

geometry between NH2Y731• and Y730 independent of the number of water molecules 

present in the models (1,2 & 3, Figure 4-16, p.100). 

 The combination of results from DFT models, EPR and orientation selective 

ENDOR spectra lead to the assignment of H-O-Y730 as H bond partner of NH2Y731•. In the 

same DFT models without the NH2 group the π stacked conformation between Y730 and Y731 

could be found in the oxidized and reduced state.110 Together with the H bonds interaction 

at NH2Y730• the mutual H bonding between position Y730 and Y731 could be demonstrated. 

This geometry is typical for an adiabatic proton transfer between Y731 and Y730, formulated as 

HAT by Siegbahn et al. or as CPET by Kalia and Hummer.106, 107, 232 

 The DFT calculations of the large models could be closely correlated to the 

transition state calculations done prior to this thesis. A model including a distal water 

molecule (wat 1), H bonded to Y730, is preferred based on the current data for the radical 

intermediate at 730 and 731 (Figure 1-14C, p.23). The structural bias of investigating α 

RNR Ia with NH2Ys• has been discussed. 

 RNR employs a highly selective PCET transfer. Seminal studies on the PCET 

showed that the removal of an OH group by mutation of a tyrosine to a phenylalanine is able 
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to shut down the whole pathway. H bond knock out double mutants (NH2Y731•/Y730F and 

NH2Y730•/C439A) highlighted this point again. They are intrinsically inactive due to the loss 

of an essential amino acid. However it was not expected that the radical build up rate would 

be directly affected, as the radical is generated - in PCET direction - before the mutation 

position. The double mutants form NH2Y• by a factor of 2 and 10 slower for 

NH2Y731•/Y730F and NH2Y730•/C439A, respectively (see Table 4-3, p.88). This showed once 

more how delicate this PCET pathway is in terms of activity. This is also in agreement with 

the recent slight over potential study of Olshansky et al., even here the radical decay of 2,3,5-

F3Y356-β, was affected by a Y730F mutation in α, pointing out how important the PCET is for 

reducing the individually formed transient radical.86  

 Quite intriguing was the finding that the interaction from the α to the β subunit is 

not governed by a perpendicular moderate H bond as suggested previously.92 However, a 

weak H bond (≳2 Å) from the interface to NH2Y731• could not be excluded. Nevertheless, 

the data indicates that a close encounter as π stacking of Y356 and Y731 and a collinear PCET 

is unlikely. 

6.2 NH₂Y• and Y• Intermediates Investigated in the β Subunit 
The investigation of radical intermediates in β was performed by the study of tyrosine 

intermediates at β2-Y356, in Chapter 4 with Y356 mutated to NH2Y356.  

 263 GHz EPR spectroscopy revealed the highest polarity found in all NH2Ys• at 

NH2Y356• with a gx value of 2.0049 which is by 0.2-0.5 ppt significantly lower than in 

NH2Y730/731• (see Table 4-7, p.114). The ENDOR spectrum of NH2Y356•, however, was only 

in agreement with in-plane H bonds. In contrast to perpendicular H bonds, in-plane H 

bonds could be affected by the incorporated in-plane amino group. Here the innocent 

reporter role of the NH2Y• could not be anticipated anymore, therefore another mutation 

approach was necessary at residue 356. Here one could not find any evidence of a 

perpendicular or strong H bond at NH2Y•.  

 Y356• could be trapped using 2,3,5-F₃Y₁₂₂• with a ~10 mV higher reduction 

potential. Why 2,3,5-F₃Y₁₂₂• circumvents conformational gating and forms Y356• has not 

been understood.28 A characterization of this mutant showed only a minor shift (9°) in ring 

dihedral compared to Y122 (see Figure 5-3, p.134). If a difference in PT or indeed a general 
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deprotonated 2,3,5-F₃Y₁₂₂- (pKa of N-acetyl-2,3,5-F₃Y 6.3) triggers the unhindered PCET is 

still discussed.41  

 It has been discussed that a strong to moderate H bond is not expected between 

Y356 and Y731 based on NH2Y• studies. Therefore a PCET blockade as α2-Y731F should be a 

reasonable small perturbation to trap Y356• on the forward PCET. And indeed the yield was 

comparable to Y356• using α2-wt with about 30% for the manually quenched samples 

(s timescale). 

 The forward PCET Y356• was investigated by multi-frequency EPR at Q band and 

at 94 GHz. The spectra revealed a 0.4 ppt lower gx value of Y356• than observed for Ys• with 

one moderate H bond (1.8 Å), which is an indication for a higher electrostatic interaction. 

The 2H Mims ENDOR spectra in combination with DFT calculations estimated an H bond 

distance of 1.9±0.1 Å to the phenoxy nucleus. The weak to moderate H bond was in-plane 

to the phenyl ring. Orientation selective ENDOR spectra could demonstrate an orientation 

perpendicular to the C-O bond axis similar to YD• in PS II.155 By comparison to other 

orientation selective measurements an additional smaller coupling was proposed.55 In order 

to explain a small 2H coupling pattern as well as the lower gx value (0.4 ppt compared to YD•) 

a DFT Y• model was created. A moderate and a weak H bond with a distance of 1.8 and 

≳2.2 Å could reproduce both EPR parameters. 

 The control study with β2-2,3,5-F₃Y₁₂₂•: α2-wt, reverse PCET Y356• showed a ring 

dihedral (θCβ=55±10°) and polarity similar to the forward NH2Y356• PCET case. The 2H 

Mims ENDOR spectra, however, reported the same ENDOR pake pattern in size as Y356• 

formed during forward PCET. This apparent contradiction could be explained with a 

second moderate in-plane H bond (1.8 Å). Additionally, electrostatic influences have been 

discussed for NH2Y356• (during forward PCET) and Y356• (during reverse PCET). Higher 

resolution is necessary to further resolve the H bond environment during reverse PCET.  

 The absence of any strong or perpendicular H bond is an indication for a 

mechanistically different PCET in the β subunit in perspective to the observed π stacking in 

the α subunit. 

6.3 Outlook 
For the investigated tyrosyl radicals and their analogs, high frequency up to 263 GHz is 

necessary to measure resolved and accurate EPR spectra. In future studies the experimental 
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limit of resolvable nuclear distances can be expanded by the use of deuterated enzymes (Ys) 

in H2O buffer media to detect 1H intermolecular ENDOR resonances. Theoretically, the 

broadening of the line and concomitant decrease in absorption is partially compensated by a 

higher detection efficiency for larger couplings (§2.2.3, p.40). Additionally, the splitting of 

the quadrupole coupling will be removed from the spectra, if intermolecular 1H HF 

couplings are detected. It should be noted, that the quadrupole information on the electric 

field gradient will be lost. This information was valuable within this thesis. More recently 

developed high sensitive 1H ENDOR schemes can be applied in isotope labeled samples.310, 

332 

 Additional investigations on the reverse PCET have to be performed in shorter 

time scales within RFQ high-field EPR. A change in the g value over the reaction time might 

demonstrate the exchange between forward and reverse Y356• state. Additionally, the KIE 

should be measured between the PCET of 2,3,5-F₃Y122• and Y356, because for the first time a 

putatively single PCET step can be investigated between Y intermediates in RNR. 

 Orientation selective PELDOR studies concomitantly with solid state NMR 

studies might investigate the structure of the “active” homodimeric complex using NH2Ys 

and an isotopically labeled β terminal tail.333-336 The information from solid state NMR 

studies would be complementary, i.e., the reduced conformation of β2-Y356 could be 

obtained if the reaction is trapped with NH2Y730•. New advances in cryo electron 

microscopy might also lead to structural insight with nearly atomic resolution (<3.0 Å).70, 337, 

338  

 Recently, several papers have used QM/MM calculations to investigate PCET 

reactions.339-341 To observe if conformational changes occurring below the ms time scale 

QM/MM calculations of the subunit interface could contribute valuable insight in the ns 

timescale. 
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APPENDIX 1: PREVIOUS EPR RESULTS FOR NH2Y• 

 
Table A. 1: Summary of EPR parameters from NH2Ys• by simulation of 94 GHz EPR  spectra in 
D2O and H2O buffer at position β-356, α-731 and α-730 on the PCET of E. coli RNR. T. 
Argirević presented these hyperfine couplings, Euler angles and g values in his thesis (2011).92 
The large couplings were additionally in agreement with 34 GHz 1H Davis ENDOR spectra. 92 
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APPENDIX 2: APPENDIX TO CHAPTER 4 (NH2Y730/731•) 

The 263 GHz spectrum in H2O buffer was recorded at a different reaction time point of 2 

min, but still shows the g values as demonstrated by the simulations. However, one should 

note, that due to the absence of sharp features beside gy the accuracy of the g value 

determination is lower. 

 
Figure A - 1: 263 GHz ESE Spectrum of Y730NH2• 2 min at 70 K. Blue shows derivative 
(obtained by 5 points 2nd order Savitzky-Golay filter) and red shows the simulation. Exp. details: 
ESE, π/2=64 ns, τ= 270 ns, SRT= 6 ms, SPP=500, 200 scans.  
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Figure A - 2: 94-GHz EPR spectra at various reaction times (10 s- 2 min) of ND2Y731•. Exp. 
details: ESE, T = 70 K, τ= 240 ns, SRT = 5 ms, SPP= 50-100, scans=100-200. The derivative was 
built by a 5–10 points second order Savitzky-Golay filter. 
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Figure A - 3: ENDOR spectra of ND2Y731 at gy from three preparations and from reaction time 
points ranging from 10-35 s. All spectra show within S/N the same features. Exp. details: 2H 
Mims ENDOR, T = 10 K, τ=200 ns; π/2=20 ns, SRT= 150-200 ms; number of averages from 
top to down: 450 (2 h), 2800 (11 h), 150 (0.6 h), 300 (1.2 h), 50 (12 min), 3000 (12 h); Exp. 
details of the 30 s trace can be found in Figure 4-7 (p.83). 
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Figure A - 4: Orientation selective 2H Mims ENDOR spectrum of the central line of NH2Y731•. 
Spectral range between -0.3 to 0.3 MHz shows weak couplings. Exp. details: T =70 K, 
π/2=20 ns, τ= 360 ns, SRT=10 ms, acquisition time 5 h (3000 scans). 



 

196 Appendices 

 
Figure A - 5: Large DFT models for NH2Y731

●. The 210 to 216 atoms large Model 1 (wine red), 
Model 2 (green) and Model 3 (purple) are depicted. The GDP is modeled by an (3R, 4S)-
tetrahydrofuran-3,4-diol. 
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Figure A - 6: Small DFT models for NH2Y731

●. Small models were constructed from DFT Model 
2 in order to check for the effect of individual amino acid residues on the g values of NH2Y731

●. 
For geometry optimization the functional (B3LYP) and the Aldrich’s’ TZVPP basis set of triple-
ζ quality were used. For deriving the EPR parameters, the EPR II basis set was used (Online 
Methods). Solvent effects were taken into account by a conductor like screening model 
(COSMO) with the polarizability of ethanol. A) This first small model is built from Model 2 by 
considering residues only in the first interaction sphere. No further geometry optimization was 
carried out. The g tensor with R411 is gxyz = [2.0050, 2.0041, 2.0022]. If R411 is removed the g 
tensor becomes gxyz = [2.0055, 2.0044, 2.0021], i.e., the gx value shifts by Δgx = + 0.5 ppt. B) Small 
model A after additional geometry optimization, gxyz = [2.0052, 2.0042, 2.0022]. C) Small model 
which mimics the double mutant NH2Y731

●/Y730F. The g tensor results to gxyz = [2.0060, 2.0046, 
2.0023]. D) Small model C after geometry optimization. The g tensor is gxyz = [2.0052, 2.0043, 
2.0023,], i.e., the computed gx lowers by 0.8 ppt. 
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APPENDIX 3: APPENDIX TO CHAPTER 4 (NH2Y356•) 

 
Figure A - 7: 94 GHz field calibration of β-ND2Y356• (blue line) by internal β-Y122• (black line). 
The g values were aligned on Y122• with gx=2.00912.157 Exp. details (blue/black): ESE, 13 s 
reaction time, T = 70 K /10 K, π= 30 ns, τ=275 ns, SRT = 5 ms/ 50 ms, SPP= 100/10, scan= 
62/1. The derivative was built by a 10 point second order Savitzky-Golay filter. NH2Y356• yield 
was 13%, estimated by the integral with and without subtraction resting state of β2-Y122•. 
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Figure A - 8: 2H Mims ENDOR spectrum of ND2Y356• compared to ND2Y731• at 35 GHz. Exp. 
details (blue/red): T= 10 K, π/2= 20 ns, τ=200 ns, πRF=30/40 µs, SRT=30/150 ms, SPP=1, 
averaging time =11 h. 20 point Savitzky-Golay second order filter was used to obtain blue and 
red from the corresponding gray spectrum. Data courtesy belongs to Bejenke and Argirević for 
blue and red, respectively. 
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APPENDIX 4: APPENDIX TO CHAPTER 5 

 
Figure A - 9: Diagnonal distance measurement of pathway radical produced with α2-2,3,5-
F3Y122:β2-wt. ESE spectrum at 40 K (violet) and spectrum of pathway radical alone at 70 K (red) 
are shown together with the pump and detect positions of the PELDOR measurements. From 
pump (π= 56 ns) and detect (π = 46 ns) separated by 54 MHz the dipolar oscillation (B) is 
obtained after background subtraction and normalization. DEER Analysis using Tikonov 
regularization gives a fit (black line) to the individual (B) and summed (C) dipolar oscillation. 
This oscillation can be Fourier transformed to a Dipolar pake pattern (D). The perpendicular 
component with ±1.86 MHz can be read out. From Eq. (2-19) the dipolar distance is obtained 
with 3.0±0.1 nm. The inner part of the pake pattern also show another contribution with ±0.6 
MHz, but the length of the recorded time trace is too short to resolve this contribution. 
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