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Cognitive neuroimaging studies typically require fast whole brain image acquisition with maximal sensitivity
to small BOLD signal changes. To increase the sensitivity, higher field strengths are often employed, since they
provide an increased image signal-to-noise ratio (SNR). However, as image SNR increases, the relative
contribution of physiological noise to the total time series noise will be greater compared to that from thermal
noise. At 7 T, we studied how the physiological noise contribution can be best reduced for EPI time series
acquired at three different spatial resolutions (1.1 mmx1.1 mmx 1.8 mm, 2 mmx2 mmx2 mm and

{)(}?;‘!ig:g;wl noise 3 mmx3 mmx3 mm). Applying optimal physiological noise correction methods improved temporal SNR
SNR (tSNR) and increased the numbers of significantly activated voxels in fMRI visual activation studies for all sets
Temporal SNR of acquisition parameters. The most dramatic results were achieved for the lowest spatial resolution, an
tSNR acquisition parameter combination commonly used in cognitive neuroimaging which requires high functional
fMRI sensitivity and temporal resolution (i.e. 3 mm isotropic resolution and whole brain image repetition time of
7T 2 s). For this data, physiological noise models based on cardio-respiratory information improved tSNR by

approximately 25% in the visual cortex and 35% sub-cortically. When the time series were additionally
corrected for the residual effects of head motion after retrospective realignment, the tSNR was increased by
around 58% in the visual cortex and 71% sub-cortically, exceeding tSNR ~140. In conclusion, optimal
physiological noise correction at 7 T increases tSNR significantly, resulting in the highest tSNR per unit time
published so far. This tSNR improvement translates into a significant increase in BOLD sensitivity, facilitating

the study of even subtle BOLD responses.

© 2011 Elsevier Inc. Open access under CCRY license.

Introduction

In cognitive fMRI studies experimentally induced BOLD signal
changes are often just a few tenths of a percent and therefore require
maximal sensitivity and high temporal signal-to-noise ratio (tSNR) for
reliable detection. The SNR and hence the tSNR can be increased by
using higher static magnetic fields (Bp). However, the relative
contribution of physiological noise, including cardio-respiratory
effects and head movement also increases with increased SNR (Kruger
and Glover, 2001; Triantafyllou et al., 2005). Consequently strategies
for reducing the effects of physiological fluctuations are particularly
important in fMRI studies at higher field strengths such as 7 T.

If the subject moves during a scan this leads to an increase in signal
variance which can also give rise to false positive activations if the
motion is correlated with the task (Friston et al.,, 1996; Hajnal et al.,
1994). The thoracic and abdominal movements involved in respira-
tion result in head motion and modulation of the magnetic field
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leading to reproducible signal fluctuations as the subject breathes
(Glover et al., 2000). Cardiovascular processes leading to pulsation in
blood and cerebrospinal fluid give rise to periodic signal fluctuations
linked to the cardiac cycle (Dagli et al., 1999; Glover et al., 2000). Since
the cardiac and respiratory cycles (~1s and ~3 s respectively) are
often under-sampled relative to the EPI acquisition (repetition times
are usually greater than 2 s), aliased signal fluctuations also occur in
the fMRI time series with lower frequencies than the original
physiological effects. Furthermore, lower frequency fluctuations in
BOLD contrast have been reported to arise from changes in blood flow
and CO;, levels associated with changes in breathing depth and rate
(Birn et al., 2006; Wise et al., 2004). Additionally, a relation has been
proposed between low frequency signal fluctuations and changes in
heart rate which give rise to changes in blood oxygenation (Shmueli
et al,, 2007). These low frequency noise components are especially
problematic since they often overlap with the frequencies of the
experimental effects of interest.

The most widely accepted approach for reducing the effect of head
motion is the retrospective realignment of image time series using
image co-registration (e.g. Friston et al, 1995). Signal changes
associated with motion that remain after the realignment procedure
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can be modeled as functions of the estimated realignment parameters
(Friston et al., 1996). Signal fluctuations caused by the cardiac and
respiratory cycles can be removed from the images using RETROICOR
(Glover et al., 2000) or accounted for in the model used for statistical
analysis (Josephs et al., 1997). This approach models cardiac and
respiratory phases using peripheral measures of the subject's pulse
and breathing. More recently studies have focused on the correction
of lower frequency fluctuations related to changes in respiration and
heart rate (Birn et al., 2006; Shmueli et al., 2007) and the development
of impulse response functions to model these effects (Birn et al., 2008;
Chang et al., 2009). Using these correction methods for fMRI data
acquired at 3T, improvement in the delineation of activity in the
presence of task correlated physiological noise has been demonstrat-
ed (Birn et al., 2009). Furthermore, the corrections lead to a reduction
in apparent false positive resting-state activations attributed to the
default-mode network (Chang and Glover, 2009).

Given the SNR dependence of the physiological noise (Kruger and
Glover, 2001; Triantafyllou et al., 2005), it is important to establish how
well physiological noise correction methods work for fMRI at higher
field strengths. It has been shown that by increasing the image
resolution at 7 T, the corresponding reduction in image SNR reduces
the relative contribution of physiological noise to the time series noise
(Triantafyllou et al., 2005). Furthermore, tSNR was increased by
acquiring high resolution fMRI data and spatially smoothing the images
to lower resolutions (Triantafyllou et al, 2006). Many cognitive
neuroimaging studies require fast whole brain image acquisition as
well as maximal sensitivity to small BOLD signal changes. An important
example is studies of the connectivity and causal interactions between
different brain regions (e.g. den Ouden et al., 2009; Stephan et al., 2007)
based on methods such as dynamic causal modeling (Friston et al.,
2003), since they often assess interactions between remote brain areas
using temporal signatures. At 7T, we can achieve 3 mm isotropic
resolution whole brain acquisitions in approximately 2-3 s even
without speeding up image acquisition by using parallel imaging. In
this study we therefore investigate the impact of physiological noise
correction methods on this form of fMRI acquisition in addition to fMRI
time series acquired at higher spatial resolutions.

One of our goals was to characterize the effect of physiological
noise correction on tSNR as a function of image SNR. To do this we
acquired task-free EPI time series and manipulated the image SNR by
varying the radio-frequency (RF) excitation flip angles. We then
applied physiological noise correction methods to the different time
series and used an extension of the model proposed by Kruger and
Glover(2001) to estimate a measure of the resulting tSNR degrada-
tion. Our second goal was to investigate the impact of the corrections
on BOLD sensitivity for typical fMRI scenarios using standard analysis
methods. For this we performed visual activation fMRI studies and
compared the tSNR and the numbers of significantly activated voxels
after applying different noise correction methods.

Methods
Data acquisition

We scanned a total of eleven healthy volunteers on a Siemens 7 T
whole body MR scanner (Siemens Healthcare, Erlangen, Germany)
using a 24-channel RF receive head coil with integrated CP volume RF
transmit coil (Nova Medical, Inc., Wilmington, MA). Written informed
consent was obtained from each participant for the study approved by
the local Ethics committee. For six of the subjects, seven runs of EPI
data were acquired. In five runs, we manipulated the image SNR by
varying the RF excitation flip angle (see below under Temporal SNR
study). During the other two runs we performed fMRI visual
activation studies (see below under FMRI study). In one of the two
fMRI runs, the subjects were instructed to produce task-correlated
motion by moving their head synchronously with the stimulus. We do

not present the data affected by motion here. Also, one of the first six
subjects was excluded because a technical fault with the scanner
shimming system made their data unusable. Finally, we scanned an
additional five subjects performing the fMRI visual activation study as
before but with two different sets of EPI acquisition parameters (see
below under FMRI study).

The manufacturer's automatic adjustment procedure optimized for
7 T was performed at the beginning of each experiment to correct for
first and second order distortions in the static magnetic field and to set
the RF transmitter voltage. The EPI data were collected with three
different sets of acquisition parameters which are given in Table 1. For all
acquisitions the slice block was axial-to-coronal single oblique and
aligned and centered manually with the calcarine fissure, and
TE=25ms, volume TR=2. For each subject, we also acquired an
axial, dual echo, gradient echo field map and a T1-weighted anatomical
image (MPRAGE, 1 mm isotropic resolution, TE=3.72 ms, slice
TR =2000 ms, flip angle =5°, inversion time TI= 1050 ms).

Throughout the EPI experiments we recorded the subjects' cardiac
and respiratory signals and the scanner slice synchronization pulses
using the Matlab Data Acquisition Toolbox (2009a, The MathWorks,
Natick, MA) and a data acquisition device (NI USB-6009, National
Instruments, Austin, Texas). The sampling rate was 100 Hz. The
cardiac pulse signal was recorded from an MRI compatible pulse
oximeter (Model 8600 FO, Nonin Medical, Inc. Plymouth, MN)
attached to the subject's finger. The respiratory signal, thoracic
movement, was monitored using a custom-made pneumatic belt
positioned around the abdomen close to the diaphragm. The
pneumatic pressure changes were converted into an analog voltage
using a pressure transducer (Honeywell International Inc. Morris-
town, NJ) before digitization. The scanner slice synchronization pulses
were recorded on one analog input after pulse shaping and
lengthening for reliable detection.

Temporal SNR study

For five of the EPI runs (acquired using Acq3 in Table 1), subjects
were presented with a blank screen and instructed to rest with their
eyes open to reduce the chance of falling asleep and so that their
physiological state would be similar to that during the fMRI activation
runs. Each run comprised 150 volumes and was acquired with one of
the following flip angles: 8°, 16°, 26°, 38° and 70°, selected in a
randomized order. We additionally acquired a thermal noise
measurement of 20 EPI volumes with no RF excitation (i.e. 0° flip
angle) (Triantafyllou et al., 2005). These flip angles produced images
with an equally spaced range of SNR levels from 0° up to a maximum
at 70°, the Ernst angle for gray matter at 7 T (assuming T;=1.9s
(Wright et al., 2008)).

fMRI study

The fMRI stimulus was designed to alternately stimulate annular
sectors of the left and right visual hemifields with contrast reversing
black and white checkerboards. The contrast reversal rate was 8 Hz
and each side was stimulated for 20 s (i.e. 10 EPI volume acquisitions)
interspersed by presentation of the fixation screen for 20s. This
80 second cycle (left; fixation; right; fixation) was repeated five times.
Subjects were instructed to focus on a small, central fixation point
which was present throughout the whole experiment.

Each experiment consisted of 205 volumes: five volumes acquired
at the beginning of each run before starting stimulus presentation to
allow for T;-related equilibration and for the subject to become
accustomed to the scanning noise, followed by 200 volumes during
stimulation. The EPI data were acquired using Acq3 with a flip angle of
70° in the first five subjects and using Acq1 and Acq?2 with a flip angle
of 80° in an additional five subjects.
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Table 1
Acquisition parameters used for EPI data collection. For all acquisitions, TE =25 ms and volume TR=2.
In-plane resolution Matrix Slice thickness Number of Readout BW Echo spacing GRAPPA acceleration Partial
(mm?) (mm)/gap slices (Hz/px) (ms) factor Fourier
Acql 1.1x1.1 192x192 1.8/0 31 1530 0.76 3 7/8
Acq2 2x2 106 x 106 2/0 31 2245 0.51 - 6/8
Acq3 3x3 64 x 64 2/1 40 2298 0.5 - -

Data processing

All data were reconstructed using the scanner vendor's root sum-
of-squares (rSoS) image reconstruction routines and then processed
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/, Friston, 2007) with
additional routines implemented in Matlab (2009a, The MathWorks,
Natick, MA). After discarding the first five volumes of each run, the EPI
data were spatially co-registered to the first volume of the first run.
The gradient echo field map was processed to create a voxel
displacement map and used to correct the realigned images for
geometric distortion (Hutton et al., 2002). The following sections will
describe the subsequent processing steps: definition of regions of
interest (ROIs), physiological noise models, analysis of tSNR, compar-
ison of physiological models at different spatial resolutions and
analysis of fMRI studies.

Definition of regions of interest

A visual cortex (VC) ROI covering a total volume of ~172 cm® in
MNI space (Evans et al., 1993), was defined anatomically according to
the brain atlas provided with the AAL toolbox (Tzourio-Mazoyer et al.,
2002). A lateral geniculate nucleus (LGN) ROI was defined in MNI
space on the basis of a fixed effects group analysis of the spatially
normalized fMRI data (with no physiological noise correction)
acquired using Acq3 (i.e. with the largest voxel sizes). The following
steps were performed to identify consistent LGN activity across the
five subjects studied using Acq3. Each subject’s anatomical image was
registered to their corresponding undistorted, realigned EPI data and
segmented into gray and white matter tissue probability maps using
the unified segmentation procedure in SPM8 (Ashburner and Friston,
2005). The spatial normalization parameters resulting from this step
were applied to the realigned and distortion corrected fMRI time
series from each subject to transform the images into MNI space. The
spatially normalized images were then smoothed using an isotropic
Gaussian kernel with FWHM =8 mm. A fixed effects general linear
model (GLM) was constructed in SPMS8 to perform a voxel-wise F-test
for the effects of right and left visual stimulation over all of the
subjects, together. The resulting map of F-statistics was thresholded at
p<0.05 (corrected for family-wise error using random field theory,
Worsley et al., 1996) to yield a mask containing the significantly
activated regions over the 5 subjects. As well as visual cortex this
mask included clearly delineated regions in left and right LGN which
were manually selected, smoothed and thresholded to create the LGN
ROI (total volume of ~2.8 cm? in the MNI space). Subject specific ROIs
were next created by resampling the VC and LGN ROIs into the space
of each subject using the inverse spatial normalization parameters
resulting from the initial segmentation step. Finally the ROIs were
restricted to gray matter by masking with the gray matter tissue
probability map (from the initial segmentation step), thresholded at a
value of p(GM)>0.01. Note that the group fMRI analysis was
performed only to identify the LGN ROI and not for the assessment
of physiological noise correction which is described later. Further-
more an LGN ROI was constructed only for the fMRI data acquired
using Acq3. The reduced brain coverage for the data acquired at
higher spatial resolutions (i.e. Acq 1 and Acq2) meant that the LGN
was not imaged in all subjects for these data sets.

Physiological noise models

Four physiological noise models were constructed to account for
artifacts related to 1) cardiac and respiratory phases (CRP), 2)
respiratory volume (RV), 3) heart rate (HR), and 4) estimated head
motion parameters (MP). Models for cardiac and respiratory phases and
their aliased harmonics (CRP) were based on RETROICOR (Glover et al.,
2000) and a similar, earlier method (Josephs et al., 1997). Rising edges
were extracted from the measured cardiac peripheral pulse waveform
to identify the time of each heart beat and the cardiac phase was
estimated for each image slice (Glover et al., 2000). The respiratory
waveform was sampled at the frequency of the scanner slice acquisition
(i.e. at 20Hz) and the respiratory phase at each time point was
estimated as described in Glover et al.(2000). A basis set of sine and
cosine Fourier series components extending to the 3rd harmonic (i.e. 6
terms) was used to model the fluctuations arising from the cardiac
phase and was sampled at a reference slice in each image volume. The
slice containing the calcarine fissure was selected as the reference slice
so that the modeling was optimal in that part of the brain. Fluctuations
arising from the respiratory phase were modeled in the same way. This
resulted in a total of 12 model regressors containing a value for each
time point. This component of the noise model is referred to as CRP (for
cardiac and respiratory phases).

The lower frequency changes in respiration and heart rate (RV and
HR) were modeled using an approach based on a combination of
previously published methods (Birn et al., 2006; Birn et al., 2008;
Chang et al., 2009; Shmueli et al., 2007). The implementation closely
followed the method described in Chang and Glover(2009). A time
series representing the change in respiration was calculated from the
respiratory waveform by calculating the standard deviation at each
time point over a 6 second sliding window. This was then convolved
with the impulse response function for respiration (i.e. the ‘respira-
tory response function’) proposed in Birn et al.(2008) and sampled to
the selected reference slice. The resulting regressor is referred to as RV
(for respiratory volume). A time series representing the heart rate was
calculated at each time point using the inverse of the average beat-to-
beat interval over a 6 second sliding window. This was then convolved
with the impulse response function for signal fluctuations related to
heart rate (i.e. the ‘cardiac response function’) proposed in Chang et
al.(2009) and sampled to the selected reference slice. The resulting
regressor is referred to as HR (for heart rate).

Finally, the motion parameters estimated in the realignment step
in SPM8 were used to create an additional set of 6 regressors (3 for
translation and 3 for rotation) to represent a linear model for the
residual effects of head motion after re-alignment (Friston et al.,
1996), which we refer to below as MP (for motion parameters).

In summary, for each subject, a set of 20 regressors (i.e. CRP, RV, HR
and MP) was calculated as described above for each EPI run. Noise
correction based on different combinations of these regressors was
studied.

Analysis of temporal SNR dependence on image SNR
As an initial step, two regressors were constructed to model low

frequency temporal drifts, nominally attributed to hardware effects,
by creating a linear and quadratic function of image number (referred
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to as HW for hardware). Each of the five time series acquired at
different flip angles was corrected for the low frequency drifts alone
and also in addition to the different physiological effects described by
the models above. The correction was performed by fitting the
regressors (after mean correction) to the realigned and distortion
corrected data using a GLM and subtracting the fitted effect from the
image intensity. The data were corrected using the following
combinations of models: 1) HW, 2) HW & CRP, 3) HW & RV & HR,
4) HW & CRP & RV & HR, 5) HW & MP, and 6) HW & CRP & RV & HR &
MP, ie., all models. These model combinations were selected to
investigate the most commonly used approaches to noise correction
(i.e. correcting for cardiac and respiratory phases (Glover et al., 2000),
lower frequency changes in respiration and heart rate (Birn et al.,
2006, 2008; Chang et al., 2009; Shmueli et al., 2007) and residual
effects of motion and the combination of these effects with and
without correcting for residual effects of head motion (Friston et al.,
1996)).

The tSNR was defined as the mean of a voxel time series divided by
its standard deviation. The image SNR was defined as the mean of the
voxel time series divided by a measure of thermal noise from the
images acquired with no RF excitation (see Appendix A). This method
was shown to accurately reflect the true image SNR (SNRy) for multi-
channel receiver coils with no noise covariance between receivers
(Constantinides et al., 1997). Since we cannot guarantee the absence
of noise covariance in our multi-channel receiver coil, we define SNR’g
as the measured image SNR and a scale factor k such that SNR’g =k
SNRy. The scale factor k therefore accounts for noise covariance and
relates true image SNRy to the SNR’p, measure proposed by
Constantinides et al.(1997). Finally, the mean tSNR and mean SNR’q
were calculated for voxels within the VC and LGN ROIs and averaged
over subjects for the time series after correction for the different
physiological effects. Note that no smoothing was applied to the
images for consistency with other studies of tSNR (e.g. Kruger and
Glover, 2001; Triantafyllou et al., 2005). An extension of the SNR
model proposed in Kruger and Glover(2001) (see Appendix A and
Hutton et al., submitted for publication for details) was fitted to the
resulting mean tSNR as a function of mean SNR’y using a multi-
dimensional unconstrained nonlinear minimization (Nelder-Mead)
method in Matlab. This resulted in an estimate of the model
parameters 1/N\ and k for the data after being corrected using the
different noise models (1 to 6). The different values of the parameter
1/\ can be considered to give an indication of the point at which the
tSNR is degraded by further signal-dependent fluctuations (i.e. those
not explained by the corresponding noise correction model). These
values were also compared with those in the literature reported for
data acquired at 3 Tand 7 T and with different voxel sizes (Kruger and
Glover, 2001; Triantafyllou et al., 2005).

Subject specific maps of the percent improvement in tSNR for
models 2 to 6 compared with model 1 were calculated for the data
acquired at the maximum flip angle (i.e. % ((tSNR,/tSNR;) —1) for
n=model number=2 to 6). Subject specific tSNR maps, percent
improvement in tSNR maps and SNR’g maps (for the maximum flip
angle) were transformed into MNI space using the spatial normali-
zation parameters calculated previously and averaged across subjects.
These summary maps were used to demonstrate the spatial
distribution of the impact of the different correction methods and
the corresponding image SNR values.

Performance of physiological noise correction for different spatial
resolutions

The relative importance of the different physiological noise models
was assessed by fitting GLMs comprising the different sets of
physiological regressors to the realigned distortion corrected fMRI
voxel time series acquired with the three different sets of acquisition
parameters. Note that no smoothing was applied for this analysis. We

fitted the six models investigated above (i.e. 1) HW, 2) HW & CRP, 3)
HW &RV &HR,4) HW & CRP& RV & HR, 5) HW & MP, 6) HW & CRP & RV
& HR & MP) to each of the time series. To assess in more detail the
importance of different noise components we also fitted six additional
models for cardiac and respiratory phase components separately (i.e. 7)
HW & CP and 8) HW & RP), respiratory volume and heart rate separately
(i.e.9) HW & RV and 10) HW & HR as well as 11) HW & CRP & MP and
12) HW & RV & HR & MP). All 12 GLMs additionally comprised
regressors to model variance associated with the visual stimulus. The
adjusted coefficient of determination (Rzadj) was calculated at each
voxel to compare the proportion of time series variance accounted for by
each of the models while adjusting for the different numbers of
regressors in each of the models. Rzadj is defined as Rzadj =1—(SSer/
SStot) (dfior/dferr), Where SS.,= (standard deviation of the residual
errors)?, SS;c= (standard deviation of time series)?, df,,c = number of
degrees of freedom in the data —1 and df,,,=df;,r —1 — number of
degrees of freedom in each model. The resulting Rzadj values were
averaged over voxels within the VC ROI and then over subjects.

To investigate the impact of the different physiological noise
models on tSNR as a function of voxel volume, maps of tSNR were
calculated for each time series acquired with the different parameter
sets and after correction with models 1 to 12 as described above. The
mean tSNR was calculated for voxels within the VC ROI and averaged
over subjects.

Analysis of fMRI study

The fMRI time series acquired for each subject were minimally
spatially smoothed using an isotropic Gaussian kernel with
FWHM =2 mm for Acql, 3 mm for Acq2 and 4 mm for Acq3. Six
different GLMs were constructed comprising regressors to model
variance associated with: 1) the visual stimulus alone or together with
the physiological noise models, 2) CRP, 3) RV & HR, 4) CRP & RV & HR,
5) MP, and 6) CRP & RV & HR & MP. In each case, the GLMs were fitted
to the data after high-pass filtering the time series using a cut-off
period of 128 s. This step replaced the linear and quadratic detrending
of the time series used for the analysis of temporal SNR dependence
onimage SNR (i.e. the model referred to as HW) and was performed to
be in accordance with standard fMRI analysis procedures.

Voxel-wise t-tests were performed to detect BOLD effects that were
greater for presentation of flickering left wedges compared to the blank
screen and for right wedges compared to the blank screen. The number
of significantly activated voxels (i.e. with p-value <0.05 corrected for
family-wise errors over the brain using random field theory, Worsley
et al.,, 1996) was counted within the VC ROI (for all acquisitions) and
LGN ROI (for Acg3 only) for models 1 to 6. The percentage difference in
numbers of significantly activated voxels was calculated for models 2
to 6 compared with model 1 (i.e. between models using different
physiological noise models compared to none) then averaged over
subjects to provide an aggregate measure reflecting the change in BOLD
sensitivity as a result of the noise correction model.

Results
Temporal SNR dependence on image SNR

Fig. 1a shows tSNR as a function of SNR'q in the VC ROI when the
image SNR was modulated by varying the flip angle. Each data point
shows the mean and standard error over 5 subjects of the mean tSNR in
the visual cortex (VCROI). The different lines correspond to the fit of the
extended SNR model (Hutton et al., submitted for publication; Kruger
and Glover, 2001 and see Appendix A) to the tSNR and SNR’y values
averaged over the subjects after correction with different noise
correction models; 1) black circles — HW, 2) red crosses — HW & CRP,
3) dark blue stars — HW & RV & HR, 4) green squares — HW & CRP & RV &
HR, 5) pink triangles — HW & MP, and 6) light blue diamonds — HW &
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Fig. 1. Temporal (tSNR) versus image SNR (SNR’y) in the visual cortex (VC). (a) Each data point represents the mean tSNR versus the mean SNR’, in the VC ROI for flip angle = 8°, 16°,
26°, 38° and 70° & standard error over 5 subjects. The different lines correspond to the fit of the extended SNR model (Hutton et al., submitted for publication; Kruger and Glover,
2001 and see Appendix A) to the tSNR and SNR’q of the EPI time series after different noise correction models; 1) black circles — HW, 2) red crosses — HW & CRP, 3) dark blue stars —
HW & RV & HR, 4) green squares — HW & CRP & RV & HR, 5) pink triangles — HW & MP, 6) light blue diamonds — HW & CRP & RV & HR & MP. Note that SNR’g =k SNRp and k=~ 1.7.
(b) Black horizontal dashed lines represent the 1/\ values from the literature; (i) 3 T data with voxel size ~ 41.36 mm?>, 1/\ = 83.3 (Kruger and Glover, 2001), (ii) 7 T data with voxel
sizes=1 mm? up to 75 mm?, 1/\ =90.1, (iii) 3 T data with voxel sizes =1 mm? up to 75 mm>, 1/\ =88.5, (iv) 3 T data with voxel size = 14.44 mm>, 1/\ =93.5, (v) 7 T data, voxel
size =14.44 mm°, 1/\ = 116.3, (ii to v from Triantafyllou et al., 2005). The green line with squares, the light blue line with diamonds and the black solid line with circles are the same

as those shown in (a).

CRP & RV & HR & MP. The straight black dotted line shows tSNR = SNR’q
(i.e. in the absence of any additional temporal instability).

The mean and standard error of the SNR’y, and tSNR for the
maximum excitation flip angle (70°) in the VC ROI averaged over the
subjects for different noise correction models are shown in Table 2 as
well as the mean and standard error of the model fit parameter 1/\
estimated from the model fits to the data from each subject corrected
with different noise correction models. Note that these values are
similar to the tSNR values estimated at the maximum image SNR
values measured in this study. The maximum tSNR values for models
(2) to (6) were compared to that for model (1) to calculate a percent
improvement in tSNR that could be attributed to using the
corresponding noise model (shown in Table 2). The values estimated
for the model fit parameter k were 1.7, 1.6 and 1.8 (mean, minimum

Table 2

and maximum respectively) over all subjects and all physiological
noise models (also shown in Table 2).

Not surprisingly the largest improvements were observed when
the noise correction model included all cardio-respiratory compo-
nents and motion parameters (model (6)). The model including
motion parameters alone (model (5)) showed a larger improvement
than the model for all cardio-respiratory effects but no motion
parameters (i.e. model (4)). The improvements due to the model
including cardio-respiratory effects could be mainly attributed to the
cardiac and respiratory phase components (i.e. compare models (2)
and (3)). At lower SNR’q values, e.g. below 200, the tSNR improve-
ment was ~43% for model (6) and ~22% for model (4) (see Fig. 1a).

Fig. 1b shows 1/N values reported in the literature (see figure
legend for references) corresponding to the maximum achievable

Results from the temporal SNR and fMRI studies for 6 different physiological noise correction models averaged over two different regions of interest and 5 subjects. The values shown
are the mean and standard error of the SNR’g (SNR’ (70°)) and tSNR (tSNR (70°)) for the maximum excitation flip angle (70°), the mean and standard error over subjects of the
model fit parameter (1/\), the mean, minimum and maximum over models of the model fit parameter &, percent improvement in tSNR (AtSNR (70°)) and percent increase in
significantly activated voxels (ABOLD) for each model compared with model 1. Note that the SNR’q (70°) values are the same for each model since the model regressors are mean
corrected and SNR’g =K SNRy.

Results for visual cortex (VC ROI)

Models SNR’q (70°) tSNR (70°) /N AtSNR (70°) (%) ABOLD (%)
1) HW 675.8+£19.2 88.943.8 92.5+3.2 - -

2) HW & CRP 108.2+7.4 113.7+7.1 213443 10.7+4.2
3) HW & RV & HR 91.0+3.6 95.0+3.2 24405 27+1.6
4) HW & CRP & RV & HR 111.2+74 117.3+73 248+44 113439
5) HW & MP 119.54+7.2 123.6+7.1 3454+6.8 9.1+3.6
6) HW & CRP & RV & HR & MP 140.9+9.6 147.6 +£10.0 58.548.7 9.6+5.3
[k=1.7/1.6/1.8 (mean/minimum/maximum across models)]

Results for lateral geniculate nucleus (LGN ROI)

1) HW 3444 +15.1 81.8+43 88.2+3.6 - -

2) HW & CRP 107.8+8.5 12324108 313445 236.0+2114
3) HW & RV & HR 833445 90.3+3.6 1.7+£03 16.5+19.8
4) HW & CRP & RV & HR 110.8+9.1 127.8+£11.8 348 +5.1 2454+231.6
5) HW & MP 110.64+6.3 126.64+9.1 35.64+5.2 2159+216.4
6) HW & CRP & RV & HR & MP 140.2+11.9 1743 +19.0 709485 247.6 +253.4

[k=1.6/1.4/1.7 (mean/minimum/maximum across models)]
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tSNR values for these studies. The solid black line with circles, the
green line with squares and the light blue line with diamonds are the
same as those in Fig. 1a and are shown for comparison. There was an
overall consistency between the literature values estimated for both
3Tand 7 T data (dashed lines labeled i to iv) and the value estimated
in this study for model (1) (i.e. no correction for physiological
artifacts). The maximal tSNR value shown by the dashed line labeled
(v) was of the same order as that estimated by models (2), (4) and (5)
in this study (only (4) is shown), but still lower than that estimated
for model (6). It is important to note that the model fit parameters
represented by the dashed lines i, iv and v were predicted using data
acquired at lower image SNR values below 200 (e.g. see Fig. 1 in
Triantafyllou et al., 2005) so that the resulting 1/\ values which are
greater than 100 were predicted from the model rather than
measured for higher image SNR values.

Similar to Fig. 1a, Fig. 2 shows tSNR as a function of SNR'q in the
LGN. Table 2 shows the mean and standard error of the SNR’y and
tSNR for the maximum excitation flip angle (70°), the mean and
standard error of the model fit parameter 1/\, the mean, minimum
and maximum over models of the model fit parameter k and the
percent improvement in tSNR in the LGN ROI averaged over subjects
for the different noise correction models. Notably, in the LGN ROI, the
improvement using correction model (6) could be equally attributed
to modeling cardio-respiratory effects and motion effects, whereas for
the VC ROI more of the improvement using model (6) could be
attributed to modeling the motion effects. This could be explained by
sub-cortical regions being less sensitive to the effects of head motion
than more superficially located brain regions such as the visual cortex,
which may be more affected by the inhomogeneous coil sensitivity
profile and contrast edges.

Furthermore, in contrast to the VC ROI results, the model fit
parameters for models (4) and (6) predict maximal values for tSNR
that are greater than those actually measured (i.e. for model (4), 1/
N=127.8 whereas the maximum measured tSNR is 110.8 and for
model (6), 1/\ =174.3 compared with the measured value of 140.2).
This could be attributed to the use of the 24-channel receive head coil
which has a high sensitivity and offers high image SNR at the surface
of the brain compared with sub-cortical regions (compare the SNR’g
in the LGN with that in the VCROI, as can be seen in the bottom row of
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Fig. 2. Temporal (tSNR) versus image SNR (SNR'y) in the lateral geniculate nucleus
(LGN). Each data point represents the mean tSNR versus the mean SNR’g in the LGN ROI
for flip angle =87, 16°, 26°, 38° and 70° 4 standard error over 5 subjects. The different
lines correspond to the fit of the extended SNR model (Hutton et al., submitted for
publication; Kruger and Glover, 2001 and see Appendix A) to the tSNR and SNR’ of the
EPI time series after different noise correction models; 1) black circles — HW, 2) red
crosses — HW & CRP, 3) dark blue stars — HW & RV & HR, 4) green squares — HW & CRP
& RV&HR, 5) pink triangles — HW & MP, 6) light blue diamonds — HW & CRP & RV & HR
& MP. Note that SNR’g =k SNRg and K~ 1.6.

Fig. 3). Thus the limited image SNR in the LGN may have prevented
the predicted maximal tSNR from being obtained. The values
estimated for the model fit parameter Kk were 1.6, 1.4 and 1.7
(mean, minimum and maximum respectively) over all subjects and all
physiological noise models (also shown in Table 2).

Fig. 3 shows maps of percent improvement in tSNR averaged over
subjects. In the top row, the spatially normalized averaged map of
tSNR for model 6 shows the pattern commonly reported in the
literature for higher tSNR values in white matter compared to gray
matter. The second and third rows show the percent improvement in
tSNR for model (4) and model (6) respectively compared with model
(1) (note the different color scales). For both maps, larger improve-
ments in tSNR can be observed in regions typically associated with
physiological effects such as highly vascularized regions. Additionally,
for model (6) large improvements in tSNR can be observed around the
edges of the brain and the VC ROI reflecting the impact of including
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Fig. 3. Maps of tSNR, percent improvement in tSNR and SNR’ spatially normalized into
MNI space and averaged over 5 subjects. Results are shown for data acquired with flip
angle =70°. Top row: tSNR map after physiological noise correction model (6) (HW &
CRP & RV & HR & MP). Note the higher tSNR in the white matter. Second row: percent
improvement in tSNR calculated after physiological noise correction model (4)
compared to model (1): % ((tSNR4/tSNR;) —1). Third row: percent improvement in
tSNR calculated after physiological noise correction models (6) compared to model (1):
% ((tSNRg/tSNR;) — 1). Bottom row: SNR’g map where SNR’o =k SNRy. Note that this is
the same for all correction models. The black contours illustrate the boundaries of the
VC and LGN ROIs in MNI space rather than the actual subject specific gray matter ROIs
used to analyze the tSNR and SNR’, values. Note the large improvement in tSNR for %
((tSNRg/tSNR;) — 1) especially in the VC ROI and around the edges of the brain
whereas for % ((tSNR4/tSNR;) — 1) the improvements are more specifically located in
regions typically associated with physiological effects such as the regions of high
vasculature.
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motion parameters for correcting motion artifacts in these regions.
The bottom row of Fig. 3 shows the spatially normalized averaged
map of SNR’, for comparison with the tSNR and improvement in tSNR
maps.

Performance of physiological noise correction for different spatial resolutions

Fig. 4 shows the R%,q; values in ascending order for 12 different
physiological noise models for each of the three different sets of fMRI
acquisition parameters. Each bar shows the mean and standard error
over 5 subjects in the VC ROI. The colored bars correspond to the six
model combinations investigated for all studies and the gray bars
correspond to the additional six models studied for completeness.
Using the Rzadj value means that the proportion of variance explained
by each model can be compared even though the numbers of
regressors are different between the models. For all acquisitions Rzadj
was greatest for model 6 even though it comprised the most
regressors. The order of Rzadj values for the more common
combinations of models corresponded to the order of tSNR improve-
ment in Fig. 1a and for all models the order was consistent for all
acquisitions. Investigating physiological components separately
showed that changes in respiration (RV) explained slightly more
variance than changes in heart rate (HR), respiratory phase (RP)
explained slightly more variance than the cardiac phase (CP) and
cardiac and respiratory phase components together explained more
variance than changes in heart rate and respiration. The most variance
was explained by all the models containing the motion parameters
with the motion parameters explaining the largest portion of the
variance. For Acql and Acq2 the models for cardiac and respiratory
phases and also for motion parameters each explained more than an
additional 10% of variance. Furthermore the model comprising all
effects explained more than an additional 20% of the variance even
though this model included all 20 regressors. The overall reduction in
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R%,4; values with decrease in voxel size reflected the reduced
contribution of physiological noise at lower image SNR values.

Fig. 5 shows the tSNR as a function of voxel size for different
physiological noise models. Note that only models 1 to 6 are shown for
clarity. Each data point shows the mean and standard error over 5
subjects of the mean tSNR in the visual cortex (VC ROI). Compared to
model (1) the maximum percent improvement in tSNR was around
10% for Acq1, 30% for Acq2 and 40% for Acq3. There was a reduction in
tSNR improvement as the voxel size was reduced which again
reflected the reduced contribution of physiological noise as a result of
the lower image SNR for the increased spatial resolution. Note that the
results in Figs. 4 and 5 were generated from EPI time series during
which visual activation studies were performed.

fMRI study

Fig. 6 shows the percent difference in numbers of significantly
activated voxels (p<0.05 corrected for multiple comparisons) for the
fMRI analysis calculated for physiological noise correction models (2) to
(4) compared with model (1) averaged over subjects. For Acq2 and Acq3
all noise models lead to an increase in the number of significantly
activated voxels when averaged over subjects. For all acquisitions the
cardiac and respiratory phase models (2) and (4) always lead to
improvements (>10% for Acq2 and Acq3 in the VC ROI). Models
including motion parameters lead to improvements for Acq2 and Acq3
but to a lesser degree. The model for lower frequency cardio-respiratory
effects alone (model (3)) resulted in the smallest change in numbers of
significantly activated voxels and even lead to a small reduction in the
VCROI for Acql. In the LGN ROI for Acq3, average increases of more than
200% were observed for all models except model 3, which reflects the
small number of activated voxels in this region. The standard errors
indicated that the range of improvements was highly variable across
subjects. This was also apparent when examining the activation maps
from individual subjects. For example in one subject, LGN activation was
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Fig. 4. Adjusted coefficient of determination (R%,4j) averaged over VC ROI + standard error over 5 subjects for three different sets of acquisition parameters, Acq1, Acq2 and Acq3 (see
Table 1 for acquisition parameters). The colored bars correspond to the model combinations 1 to 6 (see Fig. 1a) and the gray bars correspond to the additional models studied for

completeness (as listed in horizontal axes).
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Fig. 5. Temporal (tSNR) versus voxel size (in mm?) for three sets of acquisition parameters
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green squares — HW & CRP & RV & HR, 5) pink triangles — HW & MP, 6) light blue
diamonds — HW & CRP & RV & MP.
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only present in one hemisphere when no physiological noise modeling
was included in the GLM (i.e. model (1)), but became significantly
activated after noise correction was performed.

Discussion

The goals of this study were to characterize the effect of
physiological noise correction on temporal SNR (tSNR) as a function
of image SNR and to investigate the impact of these corrections on
BOLD sensitivity. We placed emphasis on fast whole brain image
acquisition parameters that are typically used for cognitive neuroim-
aging studies. We acquired task-free EPI time series at different radio-
frequency (RF) excitation flip angles, applied physiological noise
correction methods and fitted a modified version of the SNR model
proposed by Kruger and Glover(2001) to the tSNR and SNR values
resulting from each time series. We also performed a visual activation
fMRI study at different spatial resolutions and assessed changes in the
numbers of significantly activated voxels associated with brain
activity after the different correction methods. Using state of the art
models for the physiological noise correction, we showed increases in
tSNR per unit time beyond previously published values and related
improvements in BOLD sensitivity.

Performance of different physiological noise models

By removing the variance in the EPI time series associated with the
different physiological noise components it was possible to improve the
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Fig. 6. Percent difference in numbers of significantly activated voxels (p<0.05 corrected for multiple comparisons) for physiological noise correction models (2) to (4) compared
with model (1): 2) red — CRP, 3) dark blue — RV & HR, 4) green — CRP & RV & HR, 5) pink — MP and 6) light blue — CRP & RV & HR & MP. Each bar represents the results averaged over
subjects 4 standard error. The different panels show results for the different sets of acquisition parameters and ROIs — a) Acq1, VCROI, b) Acg2, VCRO], ¢) Acq3, LGN ROl and d) Acq4,

VC ROI (see Table 1 for acquisition parameters).
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tSNR by approximately 25% in the visual cortex and 35% in the LGN
when including regressors for cardio-respiratory effects. When addi-
tionally including the motion parameters the tSNR was improved by
approximately 58% in the visual cortex and 71% in the LGN. Overall, the
largest portion of variance was explained by the motion parameters.
This would suggest that a large amount of the variance was due to
subject motion. On inspection, the estimated motion parameters
indicated that the subjects did not move excessively (less than 1 mm
translation and 1° rotation), but it was apparent in the physiological
noise model that the estimated motion parameters were partially
correlated with subject breathing. Respiration may lead to small true
movements of the head, as well as a modulation of the By magnetic field
which has been shown to cause significant fluctuations at 7 T (Van De
Moortele et al., 2002). As the magnetic field changes, geometric
distortions leading to voxel shifts along the phase-encode direction
also fluctuate. This can cause the retrospective image realignment
algorithm to make an incorrect estimate of true head motion along the
phase-encode direction. This effect was apparent in the estimated
motion parameters for the data acquired in this study. One approach to
mitigate this effect is the real-time adjustment of By shims (van
Gelderen et al., 2007) which uses information about the spatial
distribution of the magnetic field changes associated with breathing
to apply compensating By shims in real time. Such methods require
special hardware and are not readily available. Image-based methods to
retrospectively correct for fluctuating geometric distortion effects have
been proposed (Andersson et al.,2001; Hutton et al., 2005) but currently
use models based on true head motion which would need to be
modified to include information about the subject's respiration.

Corrections based on the model for cardiac and respiratory phase
changes had a much greater impact on the tSNR than the model for
lower frequency cardio-respiratory effects (e.g. at the maximum
image SNR, tSNR was improved by ~22% compared with ~2% in the VC
ROI and ~32% compared with ~2% in the LGN). One explanation is that
changes in the breathing and heart rates of the subjects studied here
were minimal. In contrast, the models for cardiac and respiratory
phases account for much of the variance attributed to the sampling of
the cardiac and respiratory phases at different time points.

The performance of the corrections was most dramatic for the data
acquired at the lowest spatial resolution but still had a significant
effect for the medium spatial resolution. The order of performance of
the different models was comparable at different resolutions, in
particular, the model including all regressors always performed best.
At the smallest voxel size, improvements were minimal, reflecting the
reduced contribution of physiological noise as a result of lower image
SNR.

Comparison with other studies on physiological noise and temporal SNR

In recent work we have extended the model proposed in Kruger
and Glover(2001) to account for noise covariance in data acquired
using a multi-channel receiver coil (see Appendix A and Hutton et al.,
submitted for publication). By fitting this extended model to tSNR
values calculated for different SNR’g values, it was possible to estimate
the parameters 1/\ and k for the data after different physiological
noise correction models were applied. The parameter Kk is a scale
factor which represents the deviation of the SNR’q measured using the
method introduced by Constantinides et al.(1997) from the true SNRg
and reflects the impact of noise covariance on the data as a result of
the multi-channel receiver coil (i.e. K =SNR’g/SNRyp). The parameter
1/N can be considered as a physical measure of tSNR degradation by
signal dependent fluctuations. In other words it provides an indication
of the tSNR at which further increases in image SNR do not lead to
further increases in tSNR. In the literature, this parameter has been
estimated for data acquired at different field strengths and different
voxel sizes (Kruger and Glover, 2001; Triantafyllou et al., 2005). In
order to fit the model, image SNR was modulated by varying the flip

angle (as was done in this study) or by varying the voxel size. The
published 1/X\ values (i to iv in Fig. 1b, from Kruger and Glover, 2001
and Triantafyllou et al, 2005) are quite consistent with the data
acquired in this study after applying the correction using the less
effective models ((1) and (3)). The exception is the case of the 7 T
data acquired with a smaller voxel size of 14.44 mm?, for which
1/N=116.3 (dashed line v in Fig. 1b). In this case it was shown
that the reduction in image SNR resulting from the increased resolution
beneficially leads to a reduction in the relative contribution of
physiological noise to tSNR (Triantafyllou et al., 2005). It should also
be noted that the maximum tSNR measured for this data was below 100,
so as pointed out by the authors, obtaining data with a tSNR equal to 1/\
would require the image SNR to be increased using improved RF coil
design or even higher field strengths. Furthermore, at higher field
strengths it is also important to account for large B1 inhomogeneities
(Lutti et al,, 2010) when setting the RF excitation flip angle in order to
maximize the image SNR in a particular region of interest. In this
experiment the scanner adjustment procedures resulted in an actual RF
excitation flip angle which was reasonably close (within ~10%) of the
nominal flip angle in the visual cortex.

The higher SNR available at 7 T can be exploited to acquire high
resolution data (Speck et al., 2008) and the corresponding reduction
in image SNR has been shown to reduce the relative contribution of
physiological noise (Triantafyllou et al., 2005). Furthermore, by
acquiring high resolution data and then spatially smoothing it down
to a lower resolution, the tSNR can be increased relative to that
achieved by direct acquisition of the same spatial resolution
(Triantafyllou et al., 2006). For example, for data acquired with an
in-plane resolution of 1.5 mmx 1.5 mm, then smoothed down to a
resolution of 3 mmx 3 mm, the ratio of tSNR of the smoothed data to
that of the data directly acquired at the same lower spatial resolution
was 1.61 (Triantafyllou et al., 2006). This tSNR improvement is of the
same order as the maximum improvement achieved in this study for
data acquired with an in-plane resolution of 3 mmx 3 mm (i.e. a 58%
to 71% improvement in tSNR).

Although there are benefits in high resolution acquisition, there are
also limitations. In particular, temporal resolution is reduced and
susceptibility related geometric distortions are exacerbated due to
longer readout times. Furthermore, increased spatial resolution can
lead to reduced brain coverage for the same TR (e.g. the LGN was not
imaged in all subjects for the higher resolution acquisitions presented
in this study). The longer acquisition time will also reduce the num-
ber of observations in an fMRI experiment and hence the overall
sensitivity of the experiment (Murphy et al., 2007). To take this into
account, the comparison of tSNR achieved using different protocols
should include the effective degrees of freedom or volume acquisition
time, for example using the measure for ‘sensitivity’ proposed in Poser
et al.(2010), tSNR/~'volume TR. It should be noted that the temporal
autocorrelations in fMRI time series occur at a time scale of a few
seconds so that a shorter TR may lead to a slightly higher auto-
correlation affecting the sensitivity measure. The ratio between the
minimum +'volume TR proposed in Triantafyllou et al.(2006) for high
resolution acquisition at 7 T and the lowest resolution used in the
current study for the same brain coverage suggests an improvement in
sensitivity for the current study by a factor of ¥3/2.25 assuming that
the temporal autocorrelations are equivalent in the two acquisitions.
In other words, the high resolution experiment would need to be 33%
longer to achieve the same statistical power as the experiment using a
standard resolution with physiological noise correction. In a conser-
vative estimate where the autocorrelation is 0.1 for the high resolution
acquisition and 0.2 (Penny et al., 2003) for the low resolution scan, the
experiment would still need to be 10% longer for the high resolution
acquisition. It should be noted that comparisons between scanners and
protocols may also be affected and possibly limited by differences in
the RF coils, k-space acquisition schemes, image reconstruction
methods and timing parameters such as TE.
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The results presented here show that it is possible to increase the
tSNR for EPI acquired at a lower resolution using physiological noise
correction methods and without sacrificing imaging speed, coverage
or image SNR. However, it is also clear that the increase in tSNR
relative to the maximum available SNR is still limited (i.e. 140 to 400).
Possible explanations for at least some of this residual variance are
spontaneous neuronal fluctuations (Bianciardi et al., 2009) or signal
fluctuations generated as a result of the image reconstruction.
Nevertheless, the tSNR achieved with the full noise correction
model (6) exceeds values for tSNR per unit time reported in the
literature so far (Bodurka et al., 2007; Gonzalez-Castillo et al., 2011;
Hu and Glover, 2006; Kruger and Glover, 2001; Murphy et al., 2007;
Triantafyllou et al., 2005, 2006, 2011) as determined by a systematic
literature search (search of the PubMed database for titles and
abstracts containing the terms “physiological noise AND SNR AND
(MRI OR fMRI OR 7T)” followed by manual selection of relevant
articles (8 out of 10)).

Performance of physiological noise correction in fMRI

The results of the visual fMRI study showed that for all acquisitions
physiological noise correction using the cardiac and respiratory phase
models leads to an increase in the number of significantly activated
voxels of more than 10% in the visual cortex and more than 200% in
the LGN. In agreement with the tSNR analyses, the model for lower
frequency cardio-respiratory effects alone resulted in the smallest
change in numbers of significantly activated voxels and overall the
largest improvements were seen for data acquired using Acq3 and in
the LGN ROL

The relative improvements observed in the analysis of tSNR did
not completely transfer to improvements in BOLD sensitivity as
assessed by an increase in significantly activated voxels. In fact, in
some subjects the corrections which included the motion parameters
even had a detrimental impact BOLD sensitivity. This effect suggests
that including the motion parameters to model residual errors may
have reduced the size of the modeled visual response which can
happen if components of the noise models were correlated with the
activation task. On closer inspection of the GLM, correlations between
the head motion parameters and task were higher for subjects where
this effect was apparent. This may have been caused by actual task-
related head motion leading to false positives which are removed by
the correction. It is also possible that large signal changes from the
visual activity introduced a bias into the retrospective image
realignment algorithm hence resulting in artifactual task-correlated
motion estimates as described by Freire and Mangin(2001). This issue
could be resolved by estimating the motion from independent
measurements such as optical tracking (Zaitsev et al., 2006) or by
developing fully quantitative artifact models that do not rely on a
correlational approach.

Discrepancies between the tSNR and fMRI results may have been
caused by the difference in the standard methods used for each
analysis to perform physiological noise correction. The analyses were
performed in this way so that improvements in tSNR calculated using
a standard method (Friedman and Glover, 2006) could be compared
with increases in BOLD sensitivity measured using standard fMRI
analysis methods (Friston, 2007). For the tSNR study, no smoothing
was applied to the data before fitting the GLM and linear and
quadratic functions of image number were used to model low
frequency drifts. For the fMRI study, data were smoothed with an
isotropic Gaussian kernel with FWHM =2 mm, 3 mm and 4 mm for
Acql, Acq2 and Acq3 respectively before fitting the GLM and a high-
pass filter was used to remove low frequency drifts. Furthermore, for
the statistical analysis of fMRI data, the structured non-white noise or
temporal autocorrelations resulting from physiological effects can
lead to invalid statistical inferences. Most fMRI analysis software
packages try to compensate for this using for example an autore-

gressive (AR) model (Friston et al., 2002 ). However it has been shown
that a first order AR model is inadequate in the presence of strongly
correlated oscillatory noise and that specific modeling of physiological
effects was a superior approach for improving the validity of statistical
inferences (Lund et al., 2006). Thus, in general, the direct compara-
bility of different statistical models may be limited, since the analyses
take oscillatory noise components into account to different degrees.
Finally, summarizing changes in BOLD sensitivity over a region of
interest becomes complicated when one considers that the differen-
tial effects of the noise correction methods as described above also
vary from voxel to voxel. As a result the aggregate measure used to
represent the within subject changes in BOLD sensitivity may
contribute to the between subject variability.

Methodological considerations

The methods used in this study can be implemented easily for
routine fMRI scanning and data analysis. Peripheral measurements of
subject pulse and breathing are straight forward, even in the MRI
environment, and should not interfere with experimental design.
Although a time lag may exist between the pulse measured at the
finger tip and that measured in the head, the oscillatory nature of the
correction means that the lag will result in a phase shift only. The
cardiac modeling in the cardiac respiratory phase (CRP) model
(Glover et al., 2000) is by design insensitive to phase shifts. However,
the heart rate (HR) model may in principle be affected by such a lag,
which may explain to some degree why this model is less effective in
reducing physiological noise in the data. Peripheral physiological
monitoring may also be further simplified by capturing multiple
sources of physiological noise using pulse oximetry alone (Verstynen
and Deshpande, 2011).

The physiological noise correction methods described here will
reduce the degrees of freedom in the data. For fMRI studies, the
number of degrees of freedom is usually quite large (i.e. often
comprising more than 100-200 images). Therefore modeling residual
variance with up to 20 regressors (i.e. up to 10% reduction in degrees
of freedom) will only minimally affect the statistical analysis.
Furthermore, when the physiological regressors are included in the
fMRI statistical model, the established statistical analysis techniques
(e.g. as implemented in SPM8) will account for changes in the spatio-
temporal variance structure and effective degrees of freedom (Friston,
2007).

In this study the methods used to extract the ROIs were carefully
designed so that anatomical regions defined in MNI space were non-
linearly transformed into subject-specific space and masked by gray
matter voxels identified using segmentation. This ensured that
comparable regions were automatically defined in all subjects and
that the regions contained gray matter only to avoid tSNR values
being contaminated by those from white matter voxels. Note that in
this study we did not specifically investigate improvements in tSNR in
brain regions suffering from susceptibility related distortion and
signal loss. Although well-established methods exist to address these
issues e.g. (Deichmann et al., 2002, 2003; Weiskopf et al., 2006, 2007),
they need to be validated at 7 T.

Conclusion

This study has demonstrated the impact of physiological noise
correction on EPI time series acquired at 7 T. Modeling cardiac and
respiratory effects in fMRI analyses is strongly recommended to
improve BOLD sensitivity. To improve the tSNR, the largest proportion
of residual variance was explained by including motion parameters,
but for fMRI analyses care must be taken that the estimated head
motion is not correlated with the fMRI task. Using the full noise
models the tSNR was increased by more than 50-70% and in fMRI
experiments the number of significantly activated voxels was
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increased by more than 10% in the visual cortex or much more sub-
cortically. In summary, fMRI at 7T in combination with optimized
physiological noise modeling promises a very high BOLD sensitivity
and temporal resolution for cognitive neuroimaging.
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Appendix A. Extended physiological noise model accounting for
noise covariance in multi-channel receiver coil data

Using the model proposed by Kruger and Glover(2001) to
characterize the effect of physiological noise correction on temporal
SNR (tSNR) as a function of image SNR (SNRg) requires that tSNR and
SNRy are estimated accurately. In particular, the values should be
identical when device instability and/or physiological noise are
negligible (Triantafyllou et al., 2011). The tSNR is typically defined
as the mean intensity of a voxel time series divided by its standard
deviation and can be easily measured on magnitude time-series data.
Accurately estimating the exact image SNRq in principle needs to take
into account the entire image acquisition and reconstruction process
(Kellman and McVeigh, 2005). This includes for example noise
covariance in multi-channel receiver systems, effective receiver
bandwidth and noise rectification in magnitude images. To our
knowledge, this is not implemented as standard image reconstruction
on clinical scanners. Calculating the SNR, off-line requires large
amounts of k-space raw data from the individual channels and noise
calibration scans. Therefore in this study we took an alternative
approach to estimating SNR from the scanner vendor's root sum-of-
squares (rSoS) reconstructed images. We used the approach by
Constantinides et al.(1997), which requires an additional noise
reference scan with no RF excitation but does not require raw k-
space data. This approach computes the noise standard deviation
o=root mean square value of all the voxel intensities in the central
region of the noise reference images divided by twice the number
of receiver channels. At each voxel we then defined a measure,
SNR’o =mean intensity of the voxel time series divided by o which
was shown to accurately reflect SNRy for multi-channel receiver
coils with no noise covariance between receivers (Constantinides
et al., 1997). In the presence of noise covariance between receivers,
SNR’y deviates from SNRy by a scaling factor which reflects the
impact of noise covariance on the data. Therefore to account for this
we extended the model proposed by Kruger and Glover(2001) to
include an additional scale factor k such that:

k = SNR) / SNR, (A1)

Using Eq. (A1) to replace SNRq by SNR'q in the original model
proposed by Kruger and Glover(2001) leads to the extended model
(Hutton et al., submitted for publication):

tSNR = SNR), / (Kz +\2SNR)? (A2)

This model enables the effect of noise covariance (k) and
physiological noise (\) to be estimated simultaneously from readily
available rSoS reconstructed images. Furthermore, the scaling factor
may also capture other correction factors that are independent of
image SNR. The \ and k values estimated from the SNR’g and tSNR
values measured at different flip angles were estimated using a

multidimensional unconstrained nonlinear minimization (Nelder-
Mead) method in Matlab. Full details of the extended model and its
validation using simulations, phantom and human data are described
in Hutton et al.(submitted for publication). For small values of SNRg
(e.g. <35 for the case of 24 receiver channels as used in this study), an
additional correction of SNR’g and tSNR is necessary to account for the
changes in noise statistics. Note that in the absence of physiological
noise or other temporal instabilities, e.g. by acquiring data on a
phantom, the relationship tSNR = SNR’/k holds true.
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