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Frequency-dependent selection and demographic fluctuations play
important roles in evolutionary and ecological processes. Under
frequency-dependent selection, the average fitness of the population
may increase or decrease based on interactions between individuals
within the population. This should be reflected in fluctuations of the
population size even in constant environments. Here, we propose a
stochastic model that naturally combines these two evolutionary
ingredients by assuming frequency-dependent competition between
different types in an individual-based model. In contrast to previous
game theoretic models, the carrying capacity of the population, and
thus the population size, is determined by pairwise competition
of individuals mediated by evolutionary games and demographic
stochasticity. In the limit of infinite population size, the averaged
stochastic dynamics is captured by deterministic competitive Lotka–
Volterra equations. In small populations, demographic stochasticity
may instead lead to the extinction of the entire population. Because
the population size is driven by fitness in evolutionary games, a pop-
ulation of cooperators is less prone to go extinct than a population of
defectors, whereas in the usual systems of fixed size the population
would thrive regardless of its average payoff.

evolutionary games | stochastic dynamics | changing population size

All natural populations are composed of a finite number of
individuals. These individuals can reproduce, interact, die,

or migrate, which leads to changes in the population size over
time. In many theoretical models, it is convenient and possible
to neglect the effect of demographic fluctuations by assuming
infinite populations when population sizes are sufficiently large
(1) or by assuming constant population size as in the Moran or
Wright–Fisher process (2). However, such simplifications may
be invalid when considering additional ecological processes
including oscillations in population size of predator and prey
systems (3–5), periodic fluctuations and outbreaks of infectious
diseases in humans (6), or chaotic dynamics under multispecies
interactions (7). The Lotka–Volterra equations provide a de-
terministic description of the abundances of species as continu-
ous densities but they are not designed to include the impact of
random drift. Theoretical models coupling changing population
size and stochastic dynamics arising from individual based
models have become more popular only recently (8–12).
The Lotka–Volterra equations naturally take frequency-

dependent selection into consideration. Under frequency-
dependent selection, the fitness of a given type (or species) depends
on the composition of the entire population (or community) (13).
Different kinds of frequency dependence can lead to different dy-
namical patterns. Most prominently, negative frequency-dependent
selection can result in a stable coexistence of different types (14–18).
One elegant way to describe such frequency dependence is through
evolutionary game dynamics (13, 19). Evolutionary game theory has
extensively developed the theory of stochastic dynamics in the past
decade (2). However, most progress has been accomplished for
constant, finite population sizes, which is mathematically convenient
but does not always reflect biologically appropriate scenarios. Game
theoretic models that take changing population sizes into account
mostly focus on deterministic dynamics (20)—similar to traditional

ecological models. Here we introduce a simple and elegant model
of stochastic evolutionary game dynamics that explicitly allows for
changing population size through a natural interpretation of payoffs
in terms of competition between individuals.
Traditional game theoretic models assume that individuals ob-

tain payoffs from interactions with other members in the popu-
lation, which are translated into fitness. Individuals with higher
fitness are assumed to have more offspring and hence reproduc-
tion is frequency-dependent. Conversely, death rates are assumed
to be constant or normalized so as to keep the population size
constant. In contrast, here we focus on a microscopic description
of the dynamics in terms of reaction kinetics equations. Assuming
constant birth rates and frequency-dependent death rates allows
one to interpret payoffs directly and naturally in terms of reaction
rates, where selection acts on survival rather than reproduction.
The present setup lends itself to a straightforward derivation of
the deterministic dynamics in the limit of large population sizes in
the form of competitive Lotka–Volterra equations but equally
allows one to model the stochastic dynamics in finite populations
of variable sizes, which may even lead to the extinction of the
population.

Model and Results
Stochastic Dynamics. Most models for stochastic evolutionary
game dynamics consider a fixed population size, such that every
birth is balanced by the death of another individual (2). Simply
decoupling birth and death events in such models leads to ran-
dom fluctuations in the population size and thus eventually to
stochastic extinction (21). Instead, here we propose a framework
based on the microscopic processes of birth, death, and com-
petition. For simplicity, we focus on two types of individuals, X
and Y, but note that the generalization to arbitrary numbers is
straightforward. Every individual reproduces
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X →X +X and Y →Y +Y [1]

at constant rates λx→xx and λy→yy, respectively, and dies

X → 0 and Y → 0 [2]

also at constant rates λx→0 and λy→0, respectively. Competitive
interactions result in four more processes:

X +X →X X +Y →Y [3a]

X +Y →X Y +Y →Y . [3b]

In the simplest case, all competition rates are equal, such that
two randomly chosen individuals compete for survival (9).

Competitive Selection. The most natural way to introduce evolu-
tionary games in the above framework is to relate the competi-
tion rates in Eq. 3 to a payoff matrix

X
Y

�
a b
c d

�X Y

, [4]

which determines the strength of competition between two X, Y
individuals as a, b, c, and d such that individuals obtaining higher
payoffs are less likely to die in competitive interactions. More
specifically, we assume that reaction rates are the inverse payoffs
scaled by M, a unit for controlling population size,

λxx→x =
1
aM

, λxy→y =
1
bM

,

λxy→x =
1
cM

, λyy→y =
1
dM

.

Thus, if, for example, an X and a Y individual compete, the X
dies with a probability proportional to 1=ðbMÞ and the Y pro-
portional to 1=ðcMÞ. This requires a, b, c, d> 0 to remain mean-
ingful in terms of reaction rates. In traditional models, payoffs
are associated with reproduction, whereas here they refer to the
probability of surviving competitive interactions. In both scenar-
ios, high payoffs result in increased reproductive output over the
lifetime of an individual. Naturally, reaction rates could follow a
different functional dependence, for example λxx→x = expð−aMÞ,
which would lead to qualitatively similar results as long as rates
decrease with increasing payoffs, but without the restriction to
positive payoffs. The scaling term M determines the frequency of
competitive interactions compared with birth or death events,
Eqs. 1 and 2. As long as population sizes are much smaller than
M, competition is rare and most events are births or deaths. In
large populations, however, competition becomes common and
results in density-dependent regulation of the population size.
Implementing evolutionary games through competition is, of

course, just one approach to link payoff matrices to reaction
rates. Intuitively, it is tempting to assume that evolutionary
games determine the birth rates instead because payoffs then
more directly reflect fitness advantages. However, this requires
microscopic reactions of the form X +X →X +X +X, which
occurs at rate a, and so on. Such interactions seem more ap-
pealing in sexually reproducing populations rather than for the
more traditional models, which focus on one sex only or are
based on asexual reproduction. More importantly, however, even
when including competition at fixed rates, this setup remains
inherently biologically unmeaningful, because it either results in
extinction or indefinite growth of homogeneous populations (SI
Appendix, section 1). In natural systems, there can be positive

feedbacks between different types (22), but they typically refer to
different systems where other effects, such as predation, guar-
antee that the population size remains finite. Here, we focus on a
competitive system with negative feedback instead.

Large Population Size. The reaction-based system above can be
formulated in terms of a continuous-time master equation (SI
Appendix, section 2). For large M, a measure of the equilibrium
densities, this equation can be approximated by a Fokker–Planck
equation, which describes the dynamics of the probability dis-
tribution of the system (23). When the population densities ap-
proach the equilibria, we recover deterministic rate equations
from the microscopic processes defined in Eqs. 1–3:

_x= x
�
rx −

1
a

x
M

−
1
b

y
M

�
[5a]

_y= y
�
ry −

1
c

x
M

−
1
d

y
M

�
, [5b]

where x and y denote the density of individuals of type X, Y and
rx = λx→xx − λx→0, ry = λy→yy − λy→0 indicate the intrinsic growth,
that is, the net growth rates from birth and death events, Eqs.
1 and 2. Note that the deterministic limit can be derived directly
based on the law of mass action. Even though only the net
growth rates, rx and ry, enter Eq. 5, it is important that the sto-
chastic description does not lump the two processes together in
either decreased net birth or net death rates. In particular, if
spontaneous death events, Eq. 2, are dropped (or absorbed in
reduced birth rates, Eq. 1) such that deaths occur only due to
competition, Eq. 3, then populations would never go extinct in
the stochastic formulation because the last individual standing
would remain immortal.
To recover the familiar form of the competitive Lotka–Vol-

terra dynamics (24, 25), we factor out rx in Eq. 5 and set a= 1
(without loss of generality),

_x= rx   x
�
1−

x
K
−
1
b

y
K

�
[6a]

_y= ry   y
�
1−

1
c
rx
ry

x
K
−
1
d
rx
ry

y
K

�
. [6b]

Here K = rxM simply denotes the carrying capacity of X types and
rydM the corresponding carrying capacity of Y types. In the ab-
sence of Y types Eq. 6a reduces to the logistic equation

_x= rx   x
�
1−

x
K

�
, [7]

which forms the basis for r-K-selection theory (26), where the car-
rying capacity K is independent of the intrinsic growth rate, rx.
However, according to Eq. 5, K is an emergent quantity determined
by the population’s environment (27–30), which crucially includes
all members of the population together with their ecological intera-
ctions. For example, if a mutant type Y doubles its intrinsic rate of
reproduction compared with the resident X, ry = 2rx, then the mu-
tant type readily displaces the resident and reaches its carrying
capacity at twice the density of the resident, Ky =Kry=rx = 2K, as-
suming that all other environmental parameters remain the same.
This conclusion does not only follow from the microscopic descrip-
tion of relevant biological processes but has also been observed in
experimental settings (27, 28, 31, 32). Moreover, in the following we
show that the notion of a carrying capacity becomes even more
challenging in populations of multiple types. Thus, we use the den-
sity of individuals at equilibrium instead of carrying capacity in
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heterogenous populations, where the total equilibrium density is
Kcox and the densities of type X and type Y individuals at this
equilibrium are Kx

cox and Ky
cox, respectively.

If rx < 0 or ry < 0, the corresponding type will invariably decline
and disappear. Including competition only speeds up their demise.
For example, this applies to the predators in the famous, oscillating
Lotka–Volterra predator–prey dynamics. Because negative inter-
action rates are not meaningful, at least three different types are
required to observe oscillations in a competitive system (25, 33).

Equilibria of the Deterministic System. The deterministic mean-
field dynamics of our model serves as a valuable reference for
the underlying stochastic evolutionary process. Birth and death
rates, Eqs. 1 and 2, may differ for different types, but for the sake
of simplicity and to highlight effects arising from evolutionary
games we discuss interactions of two types, X and Y, with
rx = ry = r. The evolutionary fate of each type depends on a
combination of the strength of intratype competition (a and d)
and intertype competition (b and c). In general, we can classify
three different scenarios based on the payoff matrix. First, for
a> c and b> d, type X individuals invariably achieve higher
payoffs (i.e., longer life expectancy) than Y types and hence type
X dominates type Y. Similarly, type Y dominates type X whenever
a< c and b< d (Fig. 1A). The prisoner’s dilemma is the most
prominent example of a dominance game (19). Second, for a> c
and b< d both types are at a disadvantage compared with the
other type when rare. This reflects coordination games such as
the stag-hunt game (34). Third, for a< c and b> d both types
have an advantage when rare but are at a disadvantage when
abundant. Thus, an interior equilibrium exists where the two
types coexist (Fig. 1B). The hawk–dove or snowdrift games are
examples of such scenarios (35). Note that even though the
classification of the dynamics for two types is based on their
payoffs in the same way as in the classical replicator dynamics
(and the stability remains the same; see SI Appendix, section 3),
the position of the rest points in our deterministic system are
naturally different. For example, in the replicator dynamics a
coexistence game as in Fig. 1B exhibits a stable rest point at
x*= ðd− bÞ=ða− b− c+ dÞ= 1=2. In contrast, according to Eq. 6,
the frequency of X at equilibrium is x*= 10=13. An intuitive
reason for this increase in the relative abundance of X is that the
total number of individuals at the mixed equilibrium is lower
than the carrying capacity for a population of only X types.
Therefore, the only possible equilibria are either homogenous X or

Y populations or a stable heterogenous mixture of the two. According
to Eq. 5 with rx = ry = r, the densities of individuals at the three

equilibria are Kx = aMr and Ky = dMr as well as Kcox =Kx
cox +

Ky
cox with Kx

cox = ½acðb− dÞ=ðbc− adÞ�Mr and Ky
cox = ½bdðc− aÞ=

ðbc− adÞ�Mr, which can be rewritten as Kcox =Kx + ½ðc− aÞðb− aÞ=
ðbc− adÞ�Ky. Note that in the coexistence equilibrium the density of
individuals of each type is always lower than its carrying capacity in
isolation, that is, Kx

cox <Kx and Ky
cox <Ky. However, the total

number of individuals in mixed equilibria can either exceed or fall
short of homogenous carrying capacities: If b> a, Kcox >Kx; if
b< a, Kcox <Kx; if c> d, Kcox >Ky; and if c< d, Kcox <Ky. More
specifically, in coexistence games b> a and c> d holds such that
the total number of individuals is highest in the mixed equilibrium,
Kcox >Kx,Ky. Conversely, the reverse ranking is impossible: It
would require b< a and c< d, but this refers to coordination
games where the mixed state is unstable and the population ap-
proaches either one of the homogenous configurations. Of course,
in the corresponding stochastic realizations the population size at
equilibrium is not fixed and instead fluctuates around the carrying
capacity (Fig. 1). For identical birth and death rates, the evolu-
tionary game controls the relative growth or decline of the two
types through competition, but regardless of the game the num-
bers of both types can increase or decrease if the current state of
the population is far from equilibrium. All possible rankings of
equilibrium densities are summarized in SI Appendix, Table 1.

Stochastic Simulations. In contrast to the deterministic equilibrium
predictions, the only evolutionary outcome in stochastic simula-
tions is the eventual extinction of the entire population—all other
states are transient. Fortunately, the expected times to extinction
rapidly grow with the density of individuals in equilibrium, con-
trolled by M (Fig. 2). Hence, predictions based on deterministic
dynamics, Eq. 5, keep providing valuable insights for the stochastic
dynamics, Eqs. 1–3, especially for large population sizes. Sub-
stantial quantitative and even qualitative differences arise, as il-
lustrated in Fig. 1 for three characteristic types of interactions. The
stochastic dynamics is implemented through the Gillespie algo-
rithm (36). For the relatively large carrying capacity Kx = 1,000
in Fig. 1, each realization of the stochastic dynamics fluctuates
around the deterministic trajectory. Fluctuations represent an in-
tegral part of natural populations and hence stochastic evolu-
tionary models provide a more natural way to study evolutionary
trajectories, especially to capture the interplay between ecological
and evolutionary processes (10, 11, 37, 38).
In small populations, competition for survival is weak and the

dynamics is mainly determined by the intrinsic growth rate, r (i.e.,
individual birth and death events). Consequently, small r results
in higher stochasticity but also tends to decrease the number of

Fig. 1. The stochastic dynamics fluctuates around the deterministic predictions in large populations (black lines). Each panel refers to one of the three
characteristic classes of interactions as determined by the ranking of payoffs. Evolutionary trajectories for X (blue) and Y (red) types are shown for initially
small (x0 = 10, y0 = 90, pale colors) and large (x0 = 1,000, y0 = 1,000 saturated colors) populations. Regardless of the game both types tend to increase for low
initial population sizes, whereas both types decrease in densities at large initial sizes. In all cases the deterministic predictions agrees well with the stochastic
dynamics in that the stochastic trajectories fluctuate around the deterministic average [parameters M= 2,000, λx→xx = λy→yy = 0.6, and λx→0 = λy→0 = 0.1, which
translates into Kx = 1,000 and Ky = 250 (A) and Ky = 500 (B and C)].
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individuals at equilibria, which further amplifies the effect. As
the population grows and approaches its carrying capacity,
competition becomes increasingly important and competition
rates (payoff matrix, Eq. 4) also control the size of fluctuations.
Strong competition (small payoffs) reduces stochasticity but also
tends to decrease the population size, which may offset the re-
duction in terms of fluctuations.
Furthermore, if the numbers of the two types in the stochastic

process are far away from the deterministic equilibrium, even the
averaged stochastic dynamics can be very different from de-
terministic predictions. For example, in the deterministic case a
dominant mutant always succeeds in invading and eventually
fixating in the population. In contrast, in the stochastic case a
single mutant often fails to invade and fixate even if it is domi-
nant. Note that fixation of a single mutant becomes even less
likely in larger populations—despite the fact that fluctuations
decrease and the deterministic dynamics is recovered in the limit
of large populations.

Extinction. In ecological models the risk of extinction of a popu-
lation owing to demographic stochasticity has recently received
considerable attention (see, e.g., refs. 10, 37, and 38). Evolutionary
game theory models demonstrated that stochastic fluctuations are
important determinants for the fixation and extinction of individual
traits even under constant population sizes (2) but remained un-
able to address the more dramatic possibility of the extinction of
the entire population.
In a dominance game, the deterministic dynamics predicts that

the dominant type invariably takes over the entire population
and approaches its carrying capacity (Fig. 2A). However, in
stochastic models the two types X and Y may go extinct se-
quentially owing to fluctuations. Especially when starting from
small populations, the extinction probability is not negligible
(Fig. 2B). Note that the (cumulative) extinction probability
converges to 1 as time goes on regardless of the population size.

Only for larger populations extinction typically takes much
longer and the extinction probability increases slowly with time.
The smaller the population size—owing to small carrying ca-
pacities, fluctuations, or initial configurations—the higher the
risk of extinction.
In Fig. 2A, the dominant X type has a higher carrying capacity

than the Y type and, hence, provided that the X mutant suc-
cessfully invades and fixates, the population ends up more per-
sistent. In the third realization in Fig. 2A, the X type is lost first
and the entire population vanishes soon after. An essential factor
for the persistence of small populations are the birth and death
rates, Eqs. 1 and 2, or, more specifically, their difference: For
large intrinsic growth rates, small populations are more likely to
escape extinction because the population can more readily re-
cover and return to its carrying capacity.
In coexistence games, the two types X and Y typically coexist

and their densities fluctuate around their respective (determin-
istic) densities of individuals in equilibrium, Kx

cox and Ky
cox (Fig.

1B). Whenever stochastic fluctuations drive one type to extinction,
the carrying capacity of the remaining type changes to Kx or Ky,
respectively. Thus, the density of individuals in the entire pop-
ulation changes and is driven by the interplay of demographic
fluctuations arising from intrinsic growth rates and the strength of
competition (Fig. 3).
In this case the extinction of the entire population is a two-step

process: First one types goes extinct—typically the type with the
lower density in equilibrium—and then the population fluctuates
around the homogenous carrying capacity of the remaining type
such that the extinction dynamics is now governed by the sto-
chastic equivalent for the logistic growth of a single type, which is
well understood (10, 24, 37).

Snowdrift Game. As a concrete example of a coexistence game, we
consider the stochastic dynamics of the snowdrift game (35) [or,
equivalently, the hawk–dove game (19)]. In the snowdrift game
two individuals need to finish a task, which provides benefits β to
both. The costs of the task, γ, are shared equally if both cooperate
(i.e., participate in completing the task). If only one participates,
the cooperator has to bear the entire costs but the defector still
receives the benefits. Finally, if both defect and refuse to partici-
pate, the payoffs for both individuals are close to zero. Hence, the
payoffs of cooperators, X, and defectors, Y, are a= β− γ=2,
b= β− γ, c= β, and d= «, where β− γ � «> 0 and β> γ > 0. Note
that in the limit «→ 0 the death rate of Y types due to competition
diverges and they are no longer able to persist in isolation. To
maximize its own gain, each player should do the opposite of what
its opponent does. A population of cooperators fluctuates around
Kx = ðβ− γ=2Þrx  M. A defecting mutant has a selective advantage
and hence is likely to successfully invade and the population typ-
ically starts fluctuating around a new equilibrium, where the total
density of individuals is lower—from b< a follows Kcox <Kx (SI
Appendix, Table 1). For sufficiently small «, the conditions for the
ranking Kx >Kx

cox >Ky >Ky
cox are satisfied. Thus, even though

defecting mutants are favored, their abundances in the coexistence
equilibrium are even lower than when in isolation. Consequently,
stochastic fluctuations are more likely to eliminate defectors and
reestablish cooperation at the original carrying capacity, Kx. For
example, forM = 2,000, rx = ry = 0.5, β= 1.5, γ = 1, and  «= 0.05, the
density of cooperators Kx

cox ≈ 964 in the mixed equilibrium is much
larger than that of defectors Ky

cox ≈ 18 and hence the odds of
persistence are clearly in favor of cooperators.

Discussion
Demographic fluctuations based on ecological interactions capture
important aspects and represent crucial determinants of evolu-
tionary trajectories, especially in smaller populations. Here, we in-
troduce a simple stochastic framework built on the microscopic
events of birth, death and competition. This framework admits a

Fig. 2. Stochastic dynamics of a dominance game in small populations.
(A) Three realizations of the stochastic dynamics in a small population with
two types, X (blue) and Y (red) for M= 1,000. Stochastic trajectories deviate
significantly from the deterministic dynamics (solid black lines). For example,
in the third realization both types go extinct, first the dominant type X
followed by type Y a little later. (B) Cumulative probability for the extinction
of the entire population over time, averaged over 105 realizations for dif-
ferent M (parameters λx→xx = λy→yy =0.6, λx→0 = λy→0 = 0.5, x0 =1, and y0 = 9;
this yields Kx = 100 and Ky = 25 in the upper panel).
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simple yet elegant way to implement evolutionary games through
payoff based competition rates, which results in selection on survival
instead of the more traditional fecundity based selection (30). This
yields a stochastic model for evolutionary games in populations of
changing and fluctuating finite size. In the limit of infinite pop-
ulation sizes, this framework recovers the deterministic dynamics of
the competitive Lotka–Volterra equations and hence allows to
pinpoint and emphasize differences that arise due to stochastic
effects. The deterministic limit of the stochastic framework also
highlights that, in contrast to the classical r-K-selection theory, the
ecological carrying capacity of a population is an emergent quantity
(27, 28), which depends on the population configuration and is
determined by the underlying processes of birth, death, and

competition. In particular, mutations that alter the rates of any of
these processes trigger a change in the (deterministic) carrying ca-
pacities of the mutant population, provided that it succeeds to take
over, or of the mixed population in the case of coexistence. Our
model implies that adaptation is not a simple process of accumu-
lating beneficial mutations with higher carrying capacities in iso-
lation, but instead an adaptive process that can favor invasion and
fixation of mutations that are disadvantageous for the entire pop-
ulation including evolutionary suicide (39).
Dominant mutations are bound to take over with certainty

under deterministic dynamics. However, in the stochastic sce-
nario, the chances for a single beneficial mutant to successfully
invade and take over remain small, even for a dominant strategy.
At first it might be surprising that the chances of success de-
crease for increasing population sizes—despite the fact that the
limit of large populations recovers the deterministic dynamics.
However, of course, in this limit the mutant density converges to
zero, which resolves the apparent contradiction. Similar results
can be found in classical models of finite populations with
constant fitness values (40). Here we investigated stochastic
dynamics in well-mixed populations but a natural extension is to
consider spatial dimensions, which may increase stochastic ef-
fects due to small local subpopulations (41–43).
Here, we have focused on the paradigmatic case of one pop-

ulation and two types, but it is straightforward to extend the
framework to include multiple types. In a population with three
types, oscillations can persist in the stochastic process, whereas the
deterministic limit suggests cycles spiraling toward an internal
equilibrium (44, 45) (SI Appendix, Fig. 1). Moreover, our frame-
work easily extends to group interactions, such as public goods
games, by allowing for competitive interactions that involve more
than two individuals. However, in either case, the number of mi-
croscopic interactions tends to increase rapidly and hence ham-
pers a more general yet compact and intuitive presentation.
The stochastic framework also emphasizes that in the long

run populations invariably go extinct, which means that the de-
terministic equilibria merely indicate fleeting states—albeit the
expected time to extinction can be exceedingly long, especially for
larger populations. Therefore, it remains reasonable to consider
the deterministic predictions as a baseline superimposed by fluc-
tuations of stochastic realizations. At the same time it is crucial,
especially in smaller populations, to consider the persistence of
individual traits or the viability of the entire population. For ex-
ample, in the snowdrift game an invasion attempt by defectors
triggers ecological feedback, which alters the carrying capacities in
favor of cooperators, such that stochastic fluctuations help to
eliminate defectors and reestablish homogenous cooperation.
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