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Abstract

This thesis deals with a number of geometric optimization problems which
are all NP-hard. The first problem we consider is the set cover problem for
polytopes in R3. Here, we are given a set of points in R? and a fixed set of
translates of an arbitrary polytope. We would like to select a subset of the
given polytopes such that each input point is covered by at least one polytope
and the number of selected polytopes is minimal. By using epsilon-nets, we
provide the first constant-factor approximation algorithm for this problem. The
second set of problems that we consider are power assignment problems in
wireless networks. Ad hoc wireless networks are a priori unstructured in a
sense that they lack a predetermined interconnectivity. We consider a number
of typical connectivity requirements and either give the first algorithms that
compute a (1 + €)-approximate energy efficient solution to them, or drastically
improve upon existing algorithms in running time. The algorithms are based
on coresets. We then extend the algorithms from the Euclidean case to metrics
of bounded-doubling dimension and study metric spaces of bounded-doubling
dimension more in-depth. The last problem that we consider is the k-hop
minimum spanning tree, that is, we are given a graph and a specified root node
and we would like to find a minimum spanning tree of the graph such that each
root-leaf path contains at most k edges. We give the first PTAS for the problem
in the Euclidean plane.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit geometrischen Optimierungsproblemen, die al-
le NP-schwer sind. Das erste Problem, das wir betrachten, ist das Set Cover
Problem fiir Polytope im R3. Hierbei sind Punkte im R? und eine Menge
von nicht verschiebbaren Polytopen gegeben, die Translationen eines Polyto-
pes sind. Ziel ist es, eine Teilmenge dieser Polytope so auszuwihlen, dass jeder
Eingabepunkt {iberdeckt ist und die Zahl der ausgewéhlten Polytope minimal
ist. Durch das Bestimmen von kleinen epsilon-nets entwickeln wir den ersten
Approximationsalgorithmus mit konstanter Approximationsgiite. Als néchstes
betrachten wir Power Assignment Probleme in drahtlosen Netzwerken. Draht-
lose ad hoc Netzwerke sind a priori strukturlos, d.h. sie besitzen keine vorbe-
stimmten festen Verbindungen. Wir betrachten eine Zahl von typischen Kon-
nektivitdtsanforderungen und entwickeln Algorithmen, die entweder die ersten
(1+4¢€)-Approximationen liefern oder vorherige Algorithmen deutlich in Laufzeit
unterbieten. Die Algorithmen basieren auf coresets. Danach erweitern wir die-
se Algorithmen vom Euklidischen Raum auf metrische Rdume mit begrenzter
doubling-dimension und untersuchen solche R&ume genauer. Das letzte Pro-
blem dem sich diese Arbeit widmet, ist das k-hop Minimum Spanning Tree
Problem. Hierbei ist ein Graph und ein Wurzelknoten gegeben und man mochte
einen minimalen Spannbaum finden, so dass jeder Wurzel-Blatt-Pfad hochsten
k Kanten hat. Fiir die Euklidische Ebene entwickeln wir den ersten PTAS fiir
dieses Problem.
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Introduction

Many real-world optimization problems have a geometric component, which can
be twofold. They can have a geometric interpretation, like LP-type problems,
where for instance the geometric insight led to the discovery of the first poly-
nomial time algorithm for solving linear programs, or the problem itself can
have a geometric background, like for instance covering a set of points in the
Euclidean plane by a minimal number of disks. In this thesis we will focus on
the latter, i.e. on optimization problems that stem from geometry.

The underlying geometry can change the hardness and approximability of a
problem drastically. For instance, the famous Traveling Salesman Problem
is NP-hard. On arbitrary graphs, the problem is even hard to approximate
within any given constant. However, in the metric case, i.e. if the graph satis-
fies the triangle inequality, there is a simple polynomial time algorithm with a
1.5-approximation guarantee known. If we further refine the underlying geom-
etry, i.e. we allow only a restricted set of metric spaces, namely metrics with
bounded doubling dimension, we are able to find a (1 + €)-approximation in
quasi-polynomial time. And finally, in Euclidean space, we are able to find a
(1 + €)-approximate solution in polynomial time.

The TSP example shows the important role the geometry has on the hardness of
a problem. The more restricted the geometry is the more efficiently the problem
can be approximated. And often in real-world applications we naturally deal
with a Euclidean space or with metric spaces that are in some sense close to
Euclidean spaces. This thesis falls into this realm.

All problems that are considered in this thesis are NP-hard. This rules out
the existence of algorithms that could compute the exact solution to these
problems in polynomial time. Hence, we have to lower our expectations and
look for approximate solutions with certain approximation guarantees. We
will demonstrate the broad variety of techniques of how to solve a geometric
optimization problem approximately.



2 INTRODUCTION

Geometric Set Cover in R3

The first chapter deals with the set cover problem. It is a basic and very funda-
mental problem and one of the famous NP-hard problems already discussed in
Garey and Johnson [GJ79]. Whereas the general set cover problem is hard to
approximate better than a logarithmic factor, we will show that for the geomet-
ric version we can do better. Suppose we have points in the three-dimensional
Fuclidean space along with a set of copies of a polytope. Our task is to select a
minimal number of these polytopes such that all points are covered by at least
one polytope. For this problem we give the first constant-factor approximation
algorithm. The algorithm is based on epsilon-nets and extends a result from
Clarkson and Varadarajan [CV05] from unit-cubes to arbitrary, not necessarily
convex polytopes.

Wireless Communication and Low-dimensional Metric Spaces

The second chapter discusses several problems that occur in wireless commu-
nication and can be also seen as special geometric versions of the set cover
problem. Wireless network technology has gained tremendous importance in
recent years. While the spatial aspect was already of interest in the wired net-
work world, it has far more influence on the design and operation of wireless
networks. The power required to transmit information via radio waves is heav-
ily correlated with the Euclidean distance of sender and receivers. In contrast
to wired or cellular networks, ad hoc wireless networks a priori are unstructured
in a sense that they lack a predetermined interconnectivity. An ad hoc wireless
network is built from a set of radio stations, each of which consists of a receiver
as well as a transmission unit. A radio station p can send a message by setting
its transmission range r(p) and then by starting the transmission process. All
other radio stations at distance at most r(p) from p will be able to receive p’s
message. We consider several problems that arise in wireless communication
and provide approximation algorithms that solve these problems approximately
in an energy-efficient way. By using coresets we are able to either drastically
improve existing algorithms in running time or give the first polynomial time
approximation schemes for them.

For analytical purposes it is very convenient to assume that all network nodes
are placed in the Euclidean plane. Unfortunately, in real-world wireless network
deployments, especially if not in the open field, the experienced metric space
does not exactly correspond to a Euclidean space. Buildings, uneven terrain
or interference might affect the transmission characteristics considerably. Nev-
ertheless there is typically a strong correlation between the actual geographic
distance and the required transmission power. One mean to capture the similar-
ity of the experienced metric space to low-dimensional Euclidean spaces is the
doubling dimension. In the third chapter we will consider the doubling dimen-
sion more in-depth and give a novel characterization of such metrics. We then
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show how our algorithms for wireless communication problems can be adapted
to arbitrary metric spaces of bounded doubling dimension.

k-hop Minimum Spanning Trees

The last chapter of this thesis deals with the k-hop minimum spanning tree
problem, that is, given a graph and a specified root node we would like to find
a minimum spanning tree of the graph such that each root-leaf path contains at
most k edges. Whereas the minimum spanning tree problem is easily solvable
exactly in polynomial time the added hop restriction makes the problem NP-
hard. Again, the geometry has an important influence on the hardness of the
problem. The problem is even hard to approximate within any sub-logarithmic
factor for arbitrary graphs, since the set cover problem is a special case of
it. In the metric case an approximation algorithm is known with logarithmic
approximation guarantee. For Euclidean spaces we provide the first (1 + €)-
approximation algorithm that runs in quasi-polynomial time. It even runs in
polynomial time for the Euclidean plane.

Sources

The results from chapter one have been published at STACS 2008 [Lau08].
Chapter two and three are based on papers that have been published at STACS
2007 [FLO7], at DCOSS 2007 [FLNO7] and at DCOSS 2008 [FLNLO8]. The
results in chapter four have been published in Information Processing Let-
ters [LMOS].



INTRODUCTION




Chapter

Geometric Set Cover and Hitting
Sets for Polytopes in R3

Introduction

Suppose we are given a set of n points P in R? and a collection of polytopes
T that are all translates of the same polytope T. We consider two problems
in this chapter. The first is the set cover problem where we want to select a
minimal number of polytopes from the collection 7 such that their union covers
all input points P. The second problem that we consider is finding a hitting
set for the set of polytopes 7, that is, we want to select a minimal number of
points from the input points P such that every given polytope is hit by at least
one point. See Figures 1.1 and 1.2 for an illustration.

e

Figure 1.1: An instance of the set cover problem for polytopes in R?. The
shaded polytopes form a set cover.

Both problems, the set cover problem and the hitting set problem, which are in
fact dual to each other, are very fundamental problems and have been studied
intensively. In a more general setting, where the sets could be arbitrary subsets,

5



Figure 1.2: An instance of the hitting set problem for polytopes in R?. The
hitting set is formed by the points that are marked by a cross.

both problems are known to be NP-hard. In fact they are even hard to approx-
imate within any sub-logarithmic factor unless NP C DITME(n!°81°87) [Fei98].
Even when the sets are induced by geometric objects it is widely believed that
the corresponding set cover problem as well as the hitting set problem are NP-
hard. Several geometric versions of these problems were even proven to be hard
to approximate. Hence, we are looking for algorithms that approximate both
problems. We give the first constant-factor approximation algorithms for the
set cover problem and the hitting set problem for translates of a polytope in R3.
The central concept of our approximation algorithms are small epsilon-nets.

A set of elements P (also called points) along with a collection 7 of subsets of
P (also called ranges) is in general called a set system (P, 7) and for geometric
settings also known as range spaces. One essential characteristic of these set
systems is the Vapnik-Chervonenkis dimension, or VC-dimension [VC71]. The
VC-dimension is the cardinality of the largest subset A C P for which {TTNn A :
T € T} is the powerset of A. In this case we say the set A can be shattered. If
the set A is finite, we say that the set system (P, 7") has bounded VC-dimension,
otherwise we say the VC-dimension of (P, 7) is unbounded. For instance, the
set system induced by disks in the plane has VC-dimension three as well as the
set system induced by halfspaces in R2. Figure 1.3 illustrates the fact that the
VC-dimension for disks in the plane is at least three. Three points can easily
be shattered whereas there is no way to shatter four points by disks. The case
where the four points lie in convex position is depicted in Figure 1.4. The other
case where one point lies within the convex hull of the three others is depicted
in Figure 1.5.

A set N C P is called an epsilon-net for a given set system (P,7) if NNT # ()
for every subset T' € 7 for which |T'| > €-|P|. In other words, an epsilon-net is
a hitting set for all subsets T' € 7 whose cardinality is at least an e-fraction of
the cardinality of the input point set P (cf. Figures 1.6 and 1.7).

We can generalize the definition of an epsilon-net to arbitrary measures in the
obvious way: If we are given a measure pu : P — R>q, a weighted epsilon-net
with respect to p is a set N C P such that NNT # () for every subset T € T for



Figure 1.3: All eight possible subsets of the input points can be constructed
using the disks that are shown. This proves that the VC-dimension of disks in
the plane is at least three.

Figure 1.4: A subset of the input points
that lie diagonal using a disk is con-
structed. However, it is never possible
to construct a subset using a disk that
only contains the other two diagonal
points.

Figure 1.5: It is impossible to construct
the subset of the input points using a
disk that only contains the three points
that form the convex hull and that does
not contain the fourth point in the mid-
dle.

which u(T) > € u(P), where pu(T) = >-,cr p(p). Most proofs for epsilon-nets
are done for unweighted epsilon-nets but they can be easily generalized to apply
for weighted epsilon-nets as well.

Blumer et al. BEHW89] showed that there exist epsilon-nets of size O (%l log %)
for any set system of VC-dimension d. This bound is in fact tight up to a
multiplicative constant for arbitrary set systems as there exist set systems that
do not admit epsilon-nets of size less than this bound [PW90]. Such an epsilon-
net can be simply found by random sampling [Mat02]. The upper bound for
the size of epsilon-nets was later improved to (1 + 0(1))% log% by Komlds et
al. [KPW92].

However, for special set systems that are induced by geometric objects there
do exist epsilon-nets of smaller size, namely of size O(%) It has been shown by
Pach and Woeginger [PW90] that halfspaces in R? and translates of polytopes in
R? admit epsilon-nets of size O(1). Matousek et al. [MSW90] gave an algorithm
for computing small epsilon-nets for pseudo-disks in R? and halfspaces in R3.
The result for halfspaces in R? also follows from a more general statement by
Matousek [Mat92].

Among other reasons for finding epsilon-nets of small size is the fact that
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Figure 1.6: The input point that is
marked by a cross forms an epsilon-net
for the choice of e = 3/5, i.e. every
subset that contains at least 3 points
needs to be hit by one point from the
epsilon-net.
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Figure 1.7: The input points that are
marked by a cross form an epsilon-net
for the choice of ¢ = 2/5, i.e. every
subset that contains at least 2 points
needs to be hit by one point from the
epsilon-net.

an epsilon-net of size g(e) immediately implies an approximation algorithm
for the corresponding hitting set problem with approximation guarantee of
O(g(1/¢)/c), where ¢ denotes the optimal solution to the hitting set prob-
lem [PA95]. This means, that for arbitrary set systems of fixed VC-dimension
we have an algorithm for the hitting set problem with an approximation factor
of O(log¢). For set systems that admit epsilon-nets of size O(1/€) we get an ap-
proximation algorithm to the hitting set problem with constant approximation
guarantee.

Clarkson and Varadarajan [CV05] developed a technique that connects the com-
plexity of a union of geometric objects to the size of the epsilon-net for the dual
set system. Using this result, they are able to develop, among other approxi-
mation algorithms for geometric objects in R?, a constant-factor approximation
algorithm for the set cover problem induced by translates of unit cubes in R3.

We extend their result to not only the set cover problem but also the hitting
set problem for arbitrary translates of a polytope in R3. We do not require the
polytope to be convex or fat. This is the first constant-factor approximation
algorithm for these two problems. We achieve this by giving an epsilon-net for
translates of a polytope in R? of size O(%) We reduce the problem of finding
epsilon-nets for translates of a polytope to a family of non-piercing objects in
R? and then generalize the epsilon-net finder for pseudo-disks of Matousek et
al. [MSWO0] to our setting.

The set cover problem which is studied by Hochbaum and Maass [HM85] where
one is allowed to move the objects is fundamentally different. They give a PTAS
for their problem.
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1.1 Small Epsilon-nets for Polytopes in R?

Let P be a set of n points in R? and let 7 be a family of polytopes that are all
translates of the same bounded polytope Ty. We want to find a set of polytopes
of minimal cardinality among the collection 7 that covers all input points P.
First, we find a small epsilon-net for this set system and use this later for a
constant-factor approximation of the hitting set problem. Finally, we show how
this can then be translated into a solution for the set cover problem.

We denote by T the polytope as well as the subset of points from P that T
covers and by 7 the family of polytopes as well as the corresponding family of
subsets of P. This will make this chapter easier to read and it will be clear
from the context whether we refer to the geometric object or the corresponding
set of points.

1.1.1 From Polytopes in R? to Non-piercing Objects in R?

Given such a set system (P, 7 ) we want to find an epsilon-net for it, i.e. we are
looking for a set N C P such that every subset of points 7' € 7 with |T'| > €-|P)|
is stabbed by at least one point from N.

We can cut the polytope T into, lets say k polytopes T1,75,...,T. If the
polytope T' contains en input points then one of the polytopes 11,75,..., Tk
must contain at least £ -n input points. Hence, in order to find an e-net for the
set system (P, 7) induced by translates of T', it suffices to find an £-net for the
set systems induced by the translates of 11,75, ..., Tk.

Following this reasoning we can reduce our problem for finding an epsilon-net
for the set system induced by translates of arbitrary polytopes to translates
of conver polytopes by cutting the possibly non-convex polytope into a set
of convex polytopes. Note that the number of these convex polytopes only
depends on the polytope T and hence is constant for fixed T

Without loss of generality let 7" be from now on a convex polytope. We can
place a cubical grid onto the space R? such that for any translate of T every
cubical grid cell contains at most one vertex of T. This can be achieved by
making the grid fine enough. Clearly, the maximal number ¢ of grid cells that
can be intersected by T is bounded and only depends on T'. Again, if T' contains
€ - n input points then at least one of the cells must contain at least { - n of
the input points. Hence, we can restrict ourselves to finding epsilon-nets for
translates of triangular cones where all input points lie in a cube in R3. This
just adds a multiplicative constant to the size of the final epsilon-net. This idea
is displayed for a two-dimensional example in Figure 1.8.

The case where the cubical cell only contains a halfspace or the intersection of
two halfspaces can be either seen as a special case of a cone or, in fact, be even
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Figure 1.8: A grid is placed onto the space such that any grid cell contains at
most one vertex of the input polytope.

/r \ z=20

Figure 1.9: The cone C and its internal ray r.

treated separately in a much simpler way. The case of a translate of a halfspace
reduces to a one-dimensional problem and admits an epsilon-net of size 1 and
the case of two intersecting halfspaces reduces to a problem on intervals which
admits an epsilon-net of size O(1/¢).

In the following we will construct an epsilon-net for the set system (P,C) that
is induced by translates of a triangular cone C.

Given a cone C, we call a set of points P in non-C'-degenerate position if every
translate of C' has at most three points of P on its boundary. We can always
perturb the input points P in such a way that they are in non-C-degenerate
position and the collection of subsets of the form PNCp where Cr is a translate
of C does not decrease [EW85]. Hence, we can restrict ourselves to non-C-
degenerate sets of points P.

We place a coordinate system such that the input points all have z-coordinate
greater than 0 and a ray r emitting from the apex of the cone C and lying
entirely in the cone should intersect the plane z = 0. We refer to such a cone
as a cone that opens to the bottom and the ray r as its internal ray. Figure 1.9
illustrates this setup for the two-dimensional case.

The following two definitions are helpful generalizations of the lower envelope.

Definition 1.1 Given a finite point set P and a triangular cone C that opens
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to the bottom consider the arrangement of all translates of C' that have a point
of P on their boundary but no point of P in their interior. The upper set of
plane segments that can be seen from above is called the lower envelope of P
with respect to cone C.

Figure 1.10 illustrates the definition of the lower envelope in the two-dimensional
case. This definition is similar to the definition of alpha-shapes where the cone
is replaced by a ball. We call all points that lie on the lower envelope with
respect to cone C' lower envelope points and denote this set by L.

Figure 1.10: The lower envelope with Figure 1.11: The flattened lower enve-
respect to cone C, the corresponding lope with respect to cone C', the lower
cones are drawn dotted. envelope is drawn dotted.

Definition 1.2 Let C be a triangular cone that opens to the bottom and let
P C R3 be a finite set of points in non-C-degenerate position. Let C' be a
cone that is flatter than C by a small & and such that it contains C' and the
combinatorial structure of P and C" is the same as for P and C'. See Figure 1.11
for an illustration. Then, the lower envelope of P with respect to C' is called
the flattened lower envelope of P with respect to cone C.

Such a cone C’ always exists for a finite point set that is in non-C-degenerate
position. From now on we abbreviate the term lower envelope with respect to
cone C by lower envelope since we will only deal with the same cone C. The
flattened lower envelope can be basically seen as a slightly flattened version of
the lower envelope.

The next lemma shows that we can reduce the problem of finding an epsilon-net
with respect to cones of arbitrary point sets to finding a weighted epsilon-net
of lower envelope points.

Lemma 1.3 If for every finite point set L C R3 of lower envelope points in
non-C'-degenerate position there exists a weighted epsilon-net with respect to
translates of a cone C' of size s(€) then there exists an epsilon-net with respect
to translates of a cone C of size s(€) for every finite point set P C R3 in
non-C-degenerate position.
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Figure 1.12: The assignment of non-lower envelope points to lower envelope
points.

Proof: Let P C R3 be such a finite point set in non-C-degenerate position. Let
L denote the set of lower envelope points, L = P\ L be the set of all non-lower
envelope points and let u : L — R>o be a measure for each point of the lower
envelope. Initially, we set u(p') =1 for each p’ € L. For each of the non-lower
envelope points p € L we do the following: We consider a cone C' with apex
p. Notice, that any cone that contains p must also contain C. Since p is a
non-lower envelope point the cone C' must contain a point p’ € L. We increase
its measure pu(p’) by 1. See Figure 1.12 for an illustration.

We claim that after doing so for all non-lower envelope points p € L any
weighted epsilon-net N’ for L is also an epsilon-net for the set P. The fol-
lowing facts prove this statement.

1. The measure of all lower envelope points L is n, i.e. u(L) = n.

2. If an arbitrary cone C' contains €-n points from P then the total measure
o of the points from L that C' contains is at least € - n =€ - u(L).

Both properties show that the set N’ is indeed an unweighted epsilon-net for
P. O

The preceding lemma assures that we can restrict ourselves to a finite set of
lower envelope points in non-C-degenerate position. For such a set system we
will now construct a corresponding set system of points in the plane and a
collection of regions in the plane.

Definition 1.4 Let C be a cone and let P’ be a finite set of lower envelope
points in non-C-degenerate position and let C be a collection of translates of
C. We define a projection T from the flattened lower envelope onto the plane
z = 0 by projecting each point along the internal ray v (cf. Figure 1.13). Let
the projection of all points p' € P’ which all lie on the plane z = 0 be denoted
as the set S. For each cone of the collection the image of the intersection of the
cone with the flattened lower envelope is an object D C R? and the family C of
cones induces a family of objects which we will denote by D.
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Figure 1.13: The projection 7 from the flattened lower envelope onto the plane
z=0.

Using the flattened lower envelope instead of the lower envelope avoids degen-
eracy. The intersection of an arbitrary cone with the flattened lower envelope is
always a collection of line segments. Furthermore, it makes everything continu-
ous in the sense that if a cone is moved continuously in R? then the intersection
of the cone with the flattened lower envelope moves continuously as well as its
image of the projection 7. Note that 7 is injective.

Analogously, we call a set of points S C R? in non-D-degenerate position if
every D € D has at most three points on its boundary. We have the following
lemma:

Lemma 1.5 If for every finite point set S C R? in non-D-degenerate position
there exists a weighted epsilon-net with respect to the family of objects D pro-
duced by the projection T of size s(€) then there exists a weighted epsilon-net
with respect to cones of size s(€) for every point set of lower envelope points
P’ C R? in non-C-degenerate position.

Proof: The proof follows immediately from the fact that the image of a cone
C under the projection 7 contains exactly those points that are the image of
the points that are contained in C. ]

We refer to a cone C' as the corresponding cone of the object D = 7(C). We
will prove a few useful properties of the so constructed set system (S, D).

Notice that the intersection of two triangular cones is again a cone. Further-
more, the intersection of a possibly infinite family of triangular cones is either
empty or again a triangular cone since all cones are closed. The intersection of
the boundary of a cone with the flattened lower envelope is either empty or a
set of line segments that form one simple closed cycle. Hence, the image of a
cone under the projection 7 is a closed and connected region whose boundary
is a closed and connected cycle.

We will now characterize the geometry of the family of objects D.

Definition 1.6 Two geometric objects(sets) A C R? and B C R? that are
bounded by Jordan curves are said to be non-piercing if the boundary of A and
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Figure 1.14: A set of non-piercing ob- Figure 1.15: A set of two piercing ob-
jects. jects.

the boundary B cross at most twice. A family of geometric objects is called
non-piercing if every two objects from this family are non-piercing.

Figure 1.14 shows a set of non-piercing objects and Figure 1.15 shows two
piercing objects for comparison.

Lemma 1.7 The projection T produces a family D of non-piercing objects.

Proof: Consider two cones C; and Cy that intersect each other. If one is
contained in the other, i.e. C; C Cs, then we are done, as 7(C1) C 7(C2)
and hence their boundaries cannot cross. So if C; and Cs intersect and none
is subset of the other then the intersection of their boundaries are two rays
emitting from the same point. Each of these rays intersects the flattened lower
envelope exactly once. Hence, as the projection 7 is injective, the boundary of
the two images of the cones C and C5 under the projection 7 intersect exactly
twice. Thus, the objects are non-piercing. O

1.1.2 Small Epsilon-nets for Non-piercing Objects in R?

In this subsection we will derive a few properties of the projection that are
necessary to apply the algorithm of Matousek et al. [MSW90] for finding a
small epsilon-net for pseudo-disks. These properties also hold in general for
any family of non-piercing objects with the additional property that for any
three points there exists always an object that has these three points on its
boundary. However, the proofs are a bit more involved. Since this does not lie
in the scope of this chapter, we omit it here and focus only on the special family
of non-piercing objects that is produced by the projection described above.

The idea behind the construction of the epsilon-net is to construct a planar
graph with certain properties. If fact, the graph that we will construct can be
seen as a generalization of a Delaunay-graph. We will show in a few technical
lemmas that this generalization basically has the same properties as an ordinary
Delaunay-graph, especially that it is a planar graph.
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Figure 1.16: Two intersecting D-Delaunay edges and their defining objects.

Consider the family of all cones that have p and ¢ on its boundary. The in-
tersection of all these cones is a cone Cp, that has p and ¢ on its boundary.
Connect p and ¢ by a Jordan curve E,, that lies entirely in the cone C), and
on the flattened lower envelope, for instance part of the boundary of Cp, that
intersects the flattened lower envelope. The image of E,, under the projection
7 is a curve 7(E,q) embedded in the plane.

Definition 1.8 Let D be a family of non-piercing objects and let S C R? be
a finite set of points. We call two points p,q € R? D-Delaunay neighbors if
there exists an object D € D that has p and q on its boundary and no other
point of S in its interior. The D-Delaunay graph of S, in short D-DT(S), is
the graph that is embedded in the plane, has S as its vertex set and the edges
T(Epq) between all D-Delaunay neighbors p and q.

Due to the definition of the D-Delaunay edge between two D-Delaunay neigh-
bors p and q it is guaranteed that whenever an object D € D contains p as well
as ¢ then it also must contain the D-Delaunay edge 7(Ep,). In the following we
will prove that this D-Delaunay graph is in fact a triangulation of the vertex
set S.

Lemma 1.9 The D-Delaunay graph of the given finite point set S in non-D-
degenerate position is a triangulation.

Proof: First, we will prove that D-DT(S) is planar. Suppose otherwise, i.e.
two edges 7(E,q) and 7(E,,) intersect each other in the plane. Since the cone
Cpq does not have any point in its interior and C,; also does not have any
point in its interior and since each of these cones has at most 3 points on its
boundary the objects 7(Cpq) and 7(Cys) would have to pierce each other, see
Figure 1.16 for an illustration. Here it is actually essential that the set S is in
non-D-degenerate position. Thus, the graph is planar.

The graph D-DT(S) itself consists of an outer face which is defined by cones
of the lower envelope that have at most 2 points on their boundary and all
other faces are triangles defined by the cones of the lower envelope that have
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exactly three points on its boundary. Suppose an inner face F' is not bounded
by a triangle. Then, one can place the apex of a cone in such a way onto the
flattened lower envelope such that its image under the projection 7 is a point
which lies inside this face F'. By moving the cone upward one can ensure that
the cone will finally have three points on its boundary whose image under the
projection 7 are three vertices of the face F' but no point in its interior. Hence,
the face F' must be bounded by a triangle. Hence, D-DT(S) is a triangulation
of the set S. O

We call the points of S that define the outer face the convex hull of S with respect
to cone C and we denote it by convg(S). It is a generalization of the standard
convex hull and we will make use of it later. For a standard triangulation one
requires that the outer face is determined by the convex hull. Here, we replaced
the standard convex hull by the convex hull with respect to cone C'. This is the
appropriate generalization that we need.

Lemma 1.10 Let D be an object produced by the projection 7. The subgraph
G of D-DT(S) induced by the points of S that lie in D is connected.

Proof: We prove the connectivity using induction over the number of points
that lie in D. If D contains at most 2 points then it must be connected by
definition and by the fact that we can slide down the corresponding cone until
both points lie on the boundary. So lets assume that every object D that
contains at most k points from the set S induces a connected subgraph G. Now
consider an object D that contains k + 1 points of S. Consider the cone that is
the intersection of all cones that contain exactly those k£ 4+ 1 points. This cone
has exactly three points on its boundary. We can move the cone by a small
0 in such a way that each of the three points can be excluded separately. As
all of these induced graphs are connected by induction hypothesis, the whole
subgraph induced by D must be connected. ([l

We need two more lemmas. Both lemmas basically rely on the fact that the
projection 7 is continuous.

Lemma 1.11 Let S be a finite point set.

1. For any object D € D, there exists an object D' € D with SN D' =
SNnintD'=SND.

2. For any object D' € D, there exists an object D € D with SN D' =
SNint D' = SNint D.

Proof: Let C be the corresponding cone of D. If we move C' upward along the
internal ray 7 by a small § then the corresponding object D’ of this cone will
satisfy (1). On the other hand, if we move the cone C' downward along the ray
r by a small d then the corresponding object D’ will satisfy (2). O
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Lemma 1.12 Let S be a finite point set in non-D-degenerate position, let (p, q)
be a D-Delaunay edge in D-DT(S). Then there exists an object D with p and
q on its boundary and with SN D = {p,q}.

Proof: Let D be the object that assures that p,q is a D-Delaunay edge, i.e.
D has p and ¢ on its boundary. Since the point set S is in non-D-degenerate
position D has at most three points on its boundary. If D has exactly two points
on its boundary we are done. So lets assume that D has exactly three points on
its boundary. Let C' be the corresponding cone of D and let the corresponding
points of p and ¢ be p’ € R? and ¢’ € R3. Neither p’ nor ¢’ can lie on the
intersection of two of the defining planes of cone C' because otherwise the cone
could still be moved in an upward direction such that all three points still lie
on the boundary until the cone hits a fourth point. But this would mean that
the point set was in C-degenerate position. Hence, p’ and ¢’ lie in the interior
of two of the plane segments of cone C. If we now move the cone C' downward
by a small § such that it still touches p’ and ¢’ then the corresponding object
of this cone will only have p and ¢ on its boundary. O

Having shown these properties, we can basically directly apply the algorithm
for finding an epsilon-net for pseudo-disks from [MSW90]. We will describe the
algorithm here and prove its correctness for our setting.

We are given a finite point set S in non-D-degenerate position and we want
to find a subset N C S of size O(1/¢) that stabs any object D whose measure
wu(D) is at least € - p(S).

Let § = €/6. First, let S1,...,5; be pairwise disjoint subsets of S with the
following properties: Each S; has a measure p(.S;) of §-1(S), their union contains
the convex hull of S with respect to cone C, i.e. conve(S) C U;<;<; Si and each
S; is representable by S N 7(C;) for an appropriate cone C;. Such sets can be
easily constructed by repeatedly biting off points from conve(S) with a suitable
cone C;. Notice that all these objects D; = 7(C;) belong to the collection D.

Next, find a maximal pairwise disjoint collection Sjy1,..., Sy of subsets of the
remaining points S\ Ui<i<;j Si satistying S; = SN D; for some object D; and
each subset has a measure of § - u(S). Obviously, there are at most 1/§ + 1
many subsets S; in total. For an illustration we refer to Figure 1.17.

We assign all points in S; the color i and call all other points colorless. Let S
be the set of all colored points. Note that if an object contains only colorless
points then its measure p has to be less that ¢ - u(S), since the collection of
subsets .S; was maximal.

Let G be the D-Delaunay graph of the set of colored points S, i.e. G = DT(S).
G is indeed a triangulation (cf. Lemma 1.9). In this graph we call a triangle
uni-colored, bi-colored or tri-colored depending upon the number of colors its
vertices have. In a similar way we call edges uni-colored or bi-colored. We call a
maximal connected chain of bi-colored triangles in G sharing bi-colored edges a
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Figure 1.17: The sets S; and the convex hull conve(S) with respect to cone C.
The D-Delaunay triangulation is drawn dotted.

Figure 1.18: The corridor R which is split into two sub-corridors and two tri-
colored triangles. The corners of the sub-corridors are marked by crosses.

corridor (cf. Figure 1.18). Since the graph G is planar and each of the induced
subgraphs G N D; is connected according to Lemma 1.10 the number of such
corridors is at most 3k — 6. All colorless points are contained in the corridors
and the tri-colored triangles because any uni-colored triangle is contained it its
color-defining object. We break each corridor R into a minimum number of sub-
corridors, i.e. sub-chains of the chain that forms R, so that the colorless points
of each sub-corridor have measure at most § - ;(.S). Since the total number of
corridors is 3k — 6 the total number of sub-corridors is O(1/9).

Each sub-corridor is bounded by two chains of uni-colored edges which we call
stdes and by two bi-colored edges which we call ends of the sub-corridor. The
endpoints of the sides are called corners (cf. Figure 1.18). Let N C S be the set
of all corners of all sub-corridors. Since each sub-corridor has at most 4 corners
the size of N is O(1/¢). The set N is an epsilon-net for the set of non-piercing
objects D.

The proof that N is indeed a weighted epsilon-net for the measure p relies in
principle on the fact that the collection D are non-piercing objects and follows
along the lines of [MSW90].

Proof: Let D be an object that has no points of S on its boundary (cf.
Lemma 1.11) and assume that D does not contain any points from N. The
theorem is proven when we can show that the measure p of D is less than
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Figure 1.19: The case where D contains colored points of at least two colors.

€ - u(S). If D contains no colored point then we are done, because the sets .S;
were maximal. Hence, D must contain at least one colored point. If it contains
two colored points, lets say z; of color 1 and zo of color 2, we can draw the
following picture: Let D be the color defining object of color 1 and Dy the
color defining object of color 2. Then D intersects D and Dy but cannot pierce
them. The area between D; and Ds is a sub-corridor whose ends we denote
by (a1,as) and (b1,b2). Lemma 1.12 assures that there is an object D, that
has a; and as on its boundary and there is an object D, that has b; and b2 on
its boundary. Since D also does not contain any point from N which are the
corners of the sub-corridors, i.e. it does not contain aq, as, by or by and since D
and D, as well as D and Dy, are non-piercing it must lie between two ends of one
sub-corridor. See Figure 1.19 for an illustration. Now, as all objects Dy, Ds, D,
and Dj have measure at most 0 - u(S) and the sub-corridor also has measure at
most 0 - 4(.S), D can have measure of at most 5-0u(S) = 5/6€- u(S) < - u(S).

The case where D only contains points of one color and colorless points is very
similar. There is basically only one setup and it is depicted in Figure 1.20.
Arguing as above it is easy to see in this case that D cannot have a measure of
more than 4 -0 - u(S) < e- u(S).

0

Hence, we have the following theorem

Theorem 1.13 Let D be the set of non-piercing objects in R?, that is produced
by the projection 7. For every finite point set in non-D-degenerate position
there exists a weighted epsilon-net of size O(1/¢).

Together with Lemma 1.3 and Lemma 1.5 this immediately implies our central
theorem of this section.
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Figure 1.20: The case where D contains colored points of exactly one color.
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Theorem 1.14 Given a finite point set P C R3 and a polytope T C R3. The
set system (P, T ) induced by a set of translates of polytope T admits an epsilon-
net of size O(1/e).

1.2 From Epsilon-Nets to Hitting Sets

In this section we will describe a constant factor approximation algorithm to
the hitting set problem using the epsilon-net of size O(1/¢) from the previous
section. Recall that in the hitting set problem we are given a set of points
P € R3 and a set of polytopes that are all translates of the same polytope
and we would like to select a subset H C P of the input points of minimal
cardinality such that every polytope is stabbed by a point in H. We denote
the corresponding set system by (P, 7). The fractional hitting set problem is
a relaxation of the original hitting set problem and is defined by the following
linear program (LP1):

min 33,¢p z(p)
s.t. VI'eT Zx(p)zl
peT
VpeP x(p)>0

Let OPT denote the optimal size of the hitting set and OPT* the optimal value
of the fractional hitting set problem. It is known that the integrality gap is
constant for set systems that admit an epsilon-net of size O(1/¢) [PA95]. We
will see a simple proof for this fact later in this section.

There are algorithms that compute a hitting set provided one has an algorithm
that finds a small epsilon-net. The core idea to all these algorithms is to find
a measure ;1 : P — R>g that assigns measures to the elements of P and finds
an appropriate € such that every set in 7 has a measure of at least € - u(S).
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Once such a measure distribution is found it is then obvious that a weighted
epsilon-net to this set system is automatically a hitting set.

The algorithm given by Bronnimann and Godrich [BG94] computes these mea-
sures iteratively. Initially, all elements have measure 1. Then, in each iteration
an epsilon-net is computed and then checked whether it is also a proper hitting
set. If not, i.e. there is a set which is not hit, then the measure of its elements
is doubled. This is done until a hitting set is found. This algorithm can be seen
as a deterministic analogue of the randomized natural selection technique used
for instance by Clarkson [Cla95].

Another algorithm is by Even et al. [ERS05]. Here, the measure of the elements
and e are directly found by the following linear program (LP2):

max e
s.t. VI'eT w(T)>e€

> up) =1
peP
VpeP pu(p) =0

Let the optimal value of this linear program be €*.

It suffices to approximate the solution to this linear problem. There are nu-
merous algorithms that find an approximate solution to such a covering linear
program efficiently [You95, GK98].

One can reduce the problem of finding a weighted epsilon-net to the unweighted
case. One just makes multiple copies of a point according to its assigned measure
and it can be shown that the cardinality of this multiset can be bounded by
2n [CV05]. Hence, an §-net for this set system gives a hitting set for the original
hitting set problem. The size of this hitting set is then O(2/€*).

As observed by Even et al. [ERS05] the linear program (LP1) for the fractional
hitting set problem and the linear program (LP2) for finding an appropriate
€ and a measure p are in fact equivalent. One has just to substitute € by
> pep (p) and p(p) by x(p)-e. Hence, we have OPT = 1/€* and the constructed
epsilon-net which is also a hitting set has size O(OPT"), i.e. we have found an
integral solution whose size is a constant away from the fractional solution. Or
in other words, the integrality gap is constant.

Finally, we can conclude this section with the following theorem.

Theorem 1.15 There exists a polynomial time algorithm that computes a constant-
factor approzimation to the hitting set problem for translates of polytopes in R3.
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Figure 1.21: A set system with the subsets A, B and C.

1.3 From Hitting Set to Set Cover

The hitting set problem and the set cover problem are related to each other.
In fact, they can be seen as dual to each other. The following definition states
this relation precisely.

Definition 1.16 The dual set system of a set system (P,T) is the set system
(T, P*) where P* = {7, : p € P} and T, consists of all subsets of T that contain

p-

As an illustration Figure 1.21 depicts a set system with five points and the
three subsets A, B, C. For the dual set system each of the subsets becomes a
point and each point of the primal set system determines a subset in the dual.
Hence, the corresponding dual set system is then formed by the points A, B, C
and by the subsets {A}, {4, B}, {C} and {B,C}. Notice that the dual of the
dual is again the original set system.

Obviously, a hitting set for the primal set system is a set cover for the dual set
system. Figure 1.21 for example illustrates this relation. The points labeled
1 and 2 form a hitting set. The corresponding subsets in the dual set system
are {A} and {B,C}. They in turn form a set cover for the dual set system.
Hence, in order to solve the set cover problem for a set system it suffices to solve
the hitting set problem for the dual set system. For arbitrary set systems, the
dual set system can be of quite different structure. In general it is only known
that the VC-dimension of the dual set system is less than 2971, where d is the
VC-dimension of the primal set system [Ass83].

However, we observe that if the set system is induced by translates of a polytope,
then the dual is again induced by translates of a polytope. To see this, let (P, 7T)
be the primal set system. One just reduces each polytope T' € 7 to a point, for
instance each to its lowest vertex. Let this be the set P’. Then, replace each
point of P by a translate of the polytope 7" which is the inversion of T in a
point. One easily verifies that the so constructed set system (P’,7”) of points
P’ and collection of translates of polytope T” is indeed equivalent to the dual
(T, P*). This holds in fact for all R?. Figure 1.22 shows an example for planar
polytopes.
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Figure 1.22: A set of points and planar polytopes is depicted on the left with the
corresponding dual on the right. The dotted arrows show the correspondence
between the points in the primal and the polytopes in the dual and the dashed
arrows show the correspondence with the polytopes in the primal and the points
in the dual.

Hence, we can find a constant-factor approximation to the set cover problem
for translates of a polytope in R? in polynomial time.

This brings us to our central theorem of this chapter.

Theorem 1.17 There exists a polynomial time algorithm that computes a constant-
factor approxzimation to the set cover problem for translates of polytopes in R3.

1.4 Conclusions and Open Problems

In this chapter we have given the first constant-factor approximation algorithm
for finding a set cover for a set of points in R? by a given collection of translates
of a polytope as well as the first constant-factor approximation algorithm for
the corresponding hitting set problem. We achieved this result by providing
an epsilon-net of size O(%) for the corresponding set system which is optimal
up to a multiplicative constant. The scope of this chapter was to show that
a constant factor approximation algorithm does exist. We did not focus on
minimizing this constant, however.

Even though we can approximate a unit ball in R? up to any given precision by
a polytope, the corresponding question, whether there exists a constant-factor
approximation algorithm for unit balls in R? still remains open.
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Chapter

Power Assignment Problems in
Wireless Networks

2.1 Introduction

Wireless network technology has gained tremendous importance in recent years.
The availability of high-bandwidth connections not only opens new application
areas for mobile devices, but also replaces more and more so far 'wired’ network
installations. While the spatial aspect was already of interest in the wired
network world due to cable costs etc., it has far more influence on the design
and operation of wireless networks. The power required to transmit information
via radio waves is heavily correlated with the Euclidean distance of sender and
receivers. Hence problems in this area are prime candidates for the use of
techniques from computational geometry.

In contrast to wired or cellular networks, ad hoc wireless networks a priori are
unstructured in a sense that they lack a predetermined interconnectivity. An
ad hoc wireless network is built of a set of radio stations P, each of which
consists of a receiver as well as a transmission unit. A radio station p can
send a message by setting its transmission range r(p) and then by starting
the transmission process. All other radio stations at distance at most 7(p)
from p will be able to receive p’s message (we are ignoring interference for
now). For transmitting a message across a transmission range r(p), the power
consumption of p’s transmission unit is proportional to r(p)®, where « is the
transmission power gradient. In the idealistic setting of empty space, a = 2,
but it may vary from 2 to more than 6 depending on the environment conditions
of the location of the network [Rap96, Pat00]. Given some transmission range
assignment 7 : P — Ry( for all nodes in the network, we can derive the so-
called communication graph G) := G(P, E). G(P, E) is a directed graph with
vertex set P which has a directed edge (p, q) if and only if 7(p) > ||pq||, where

25
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Figure 2.1: One transmission opera- Figure 2.2: A power range assign-
tion from node p to its neighboring ment and the induced communication

nodes. graph.

llpq|| denotes the Euclidean distance between p and ¢. Figures 2.1 and 2.2
illustrate the definition by an example. The energy consumption or cost of the
transmission range assignment 7 is

cost(r) = Z r(p)®.

peP

Since the sites often have limited power supply, the energy consumption of the
communication is an important optimization criterion.

A fundamental problem in radio networks is that of assigning suitable powers to
the individual network nodes such that (1) the resulting communication graph
satisfies a certain connectivity property II, and (2) the overall energy assigned
to all the network nodes is minimized. Many properties II can be considered
and have been treated in the literature before; general surveys of algorithmic
range assignment problems can be found in [CHPT02, WNE00, KKKP00].

In this chapter we consider several definitions of II to solve the following prob-
lems.

k-hop Broadcast: Given a set of stations and a specific source station s, we
want the communication graph to contain a directed spanning tree rooted at s
of depth at most k.

k-Set Broadcast: Given a specific source node s we want to find a trans-
mission range assignment r of minimum total cost such that the respective
communication graph G() contains a directed spanning tree rooted at s and at
most k£ nodes have a non-zero transmission range assigned.

k-hop Multicast: Given a set P of stations, a specific source station s, a set
of clients/receivers C' C P, and some constant k, we want the communication
graph to contain a directed tree rooted at s spanning all nodes in C' with depth
at most k and possibly using some intermediate nodes from P.

k-Station Network/k-disk Cover: Given a set P of stations and some con-
stant k, we want to assign transmission powers to at most k stations (senders)
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such that every station in P can receive a signal from at least one sender. We
distinguish two cases: In the non-discrete case we are allowed to place the k
senders anywhere in the space and in the discrete case the senders must be
from the input set P.

TSP under squared Euclidean distance: Given a set P of n stations, de-
termine a permutation pg, p1,...pn—1 of the nodes such that the total energy
cost of the TSP tour, i.e. >0 PiP(i+1) mod »l|* is minimized.

Since all the above problems are NP-hard or believed to be NP-hard we look for
efficient approximation schemes to solve them. The efficiency of our algorithms
that we will present relies on the fact that for many of the above mentioned
problems we are able to derive small coresets, a powerful concept from compu-
tational geometry. That is, for a given instance we identify a small subset of
the original problem instance for which the solution translates to an almost as
good solution of the original problem. By this, we achieve a speedup in running
time compared to previous algorithms by orders of magnitude.

For analytical purposes it is very convenient to assume that all network nodes
are placed in the Euclidean plane. Unfortunately, for real-world wireless net-
work deployments, especially if not in the open field, the experienced energy
requirement to transmit does not exactly correspond to some power of the Eu-
clidean distance between the respective nodes. Buildings, uneven terrain or
interference might affect the transmission characteristics considerably. Never-
theless there is typically still a strong correlation between the actual geographic
distance and the required transmission power. An interesting question is now
how to model analytically this correlation between geographic distance and en-
ergy requirement. We will look at this question in the next chapter more closely.
For now, we assume that the radio stations are located in the Euclidean plane
and that the energy for a transmission operation corresponds to some power
of the Euclidean distance. In the next chapter we will see how to adapt our
algorithms to a more general setup.

2.2 Bounded-hop Energy-efficient Broadcast in R?

One of the most basic communication tasks in wireless radio networks is broad-
casting. That is, given a set of radio nodes P and a specific source node s € P
we want to broadcast a message originating from s to all other radio nodes in
the network.

There are two simple approaches to this. First, the radio station s sends with
such a strong signal that it reaches all other radio stations in the network, see
Figure 2.3 for an example. The advantage of this approach is that all radio
stations receive the signal without any delay. However, the big disadvantage
is the energy consumption. In order to submit the signal to all other radio
stations, s has to set its transmission range r(s) appropriately high. Since the
energy consumption is proportional to r(s)® where « is usually between 2 and
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Figure 2.3: The source node s broad- Figure 2.4: The source node s broad-
casts its message to all other nodes casts its message to all other nodes us-
within one hop. ing intermediate nodes.

6, the power that s has to send with is very high. Another approach for solving
the broadcasting problem is that s sends to its immediate neighbors and they
in turn send to their neighbors and so on (cf. Figure 2.4). The clear advantage
of this approach is the energy efficiency. It uses much less energy than the first
method. On the other hand, the big drawback of this approach is the latency.
We do not have any control over the time delay by which the last radio node
has received the signal. In this case we are not able to give any guarantee for
the latency.

By finding a solution in between the two described approaches we can combine
the advantages of them and overcome the disadvantages of both approaches.
That is, we use intermediate radio nodes to broadcast a message from s but we
restrict the number of intermediate radio nodes from s to any other radio node
to a constant number k. We output a solution that obeys this hop restriction
and is energy-minimal. In other words, given a particular source node s the
communication graph G(") must contain a directed spanning tree rooted at
source s to all other nodes p € P having depth at most k.

Related Work

The general broadcast problem — assigning powers to stations such that the
resulting communication graph contains a directed spanning tree and the total
amount of energy used is minimized— has a long history. The problem is known
to be NP-hard for a > 1 ([CCP*01, CHP"02]), and for arbitrary, non-metric
distance functions the problem can also not be approximated better than a
log-factor unless P = NP [SK99]. For the Euclidean setting in the plane, the
minimum spanning tree (MST) induces a transmission range assignment. A
lower bound of 6 for the approximation ratio of the MST-based solution has been
shown in [CCP*01] and [WCLFO01]. In a sequence of papers the upper bound for
this solution was lowered in several steps (e.g. [CCPT01, WCLF01, FNKP04])
to finally match its lower bound of 6 ([Amb05]). There is no other polynomial
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time algorithm known with a better approximation guarantee. While all these
papers focused on analytical worst-case bounds for the algorithm performance,
simulation studies e.g. in [CHR'03] show that the actual performance in "real-
world” networks is much better.

There has also been work done on the bounded hop broadcast problem. In
[ACIT04] Ambiihl et al. present an exact algorithm for solving the 2-hop broad-
cast problem with a running time of O(n") as well as a polynomial-time approx-
imation scheme for a fixed number k of hops and constant e which has running
time O(n*) where y = O((k:Q/e)Qk), that is, their algorithm is triply exponential
in the number of hops (and this dependence shows up in the exponent of n).

Our Contribution

This section contains two main contributions: We provide a coreset construction
4k
for the bounded-hop broadcast problem of size O ((i) ) ; using this we obtain

a (14 €)-approximation algorithm for energy-minimal broadcast whose running

%)(1)4;@

. + n | in the Euclidean plane, that is, it is linear in n and

time is O ((

the dependence on k is only doubly exponential.

2.2.1 Coresets

Without loss of generality we assume the largest Euclidean distance between
the source node s and any other node p € P to be equal to 1. We say a
range assignment 7 is valid if the induced communication graph G(") contains
a directed spanning tree rooted at s with depth at most k; otherwise we call r
tnvalid.

Definition 2.1 (Coreset) Let P be a set of n points, s € P a designated
source node. Consider another set S of points (not necessarily a subset of
P). If for any valid range assignment r : P +— Rx( there exist a valid range
assignment 1’ : S — Rsq such that cost(r’) < (1 + €) - cost(r) and for any
valid range assignment r' : S — Rsq there exists a valid range assignment
r: P — R>q such that cost(r) < (1+e€)-cost(r’) then S is called (k,€)-coreset
for (P,s).

A (k, €)-coreset for a problem instance (P, s) can hence be viewed as a problem
sketch of the original problem. If we can show that a coreset of small size
(independent of n) exists, solving the bounded-hop broadcast problem on this
problem sketch immediately leads to an (1+¢)? solution to the original problem.
The former can even be done using an exhaustive search algorithm.
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This definition of a coreset differs slightly from the definition of a coreset defined
in previous papers. For example, the term coreset has been defined for k-
median [HM04] or minimum enclosing disk [KMYO03]. However, in the case of
the bounded-hop broadcast problem we have to consider two more issues. The
first is feasibility. While any solution to the k-median problem is feasible not
every solution is feasible for the bounded-hop broadcast problem. The second
issue is monotonicity. For the problem of the smallest enclosing disk the optimal
solution does not increase if we remove points from the input. We do not have
this property here. An optimal solution can increase or decrease if we remove
input points. Hence, the above definition of a coreset can be seen as the correct
generalization to any optimization problem. We will make use of this definition
throughout the whole chapter.

Our coreset construction is heavily based on the insight that for any valid range
assignment 7 there exists an almost equivalent (in terms of total cost) range
assignment 7’ where all assigned ranges are either zero or rather 'large’. We
formalize this in the following structure lemma:

Lemma 2.2 (Structure Lemma) Letr be a valid range assignment for (P, s)
of cost cost(r). For any 0 < € < 1 there exists a valid range assignment v’ with

either 7' (p) = 0 or v'(p) > (1 — €)e**=2 and total cost cost(r’) < (1 + %_E)a
cost(r).

Proof: Let r be a valid range assignment. Consider a spanning tree rooted at
s of depth at most k contained in the communication graph G("). We call it
the communication tree.

We will construct a valid range assignment r’ from the given range assignment
r. Initially, we set r'(p) = r(p). After the first phase we will ensure r/(s) >
(1 — €)e*=1 and after the second phase we will ensure 7/(p) > (1 — €)e?#~2 for
each node p.

The core idea to this construction is that if we have two nodes that are geo-
metrically close to each other and one has a large power value r(p) assigned
to it and the other has a rather small power value, we can safely increase the
larger a bit and remove the smaller one and still have a valid power assignment.
We apply this idea once in the opposite direction of the communication paths,
i.e. towards the source node s (first phase) and once along the direction of the
directed communication paths (second phase).

If 7(s) > (1 —€)e*~! we are done with the first phase. Otherwise, there exists a
directed path of length at least 1 from source node s to some node p having at
most k£ hops. Let the nodes on this path be labeled p = pg, p1,..., =5, 1 <k
as in Figure 2.5.

Note that r(pg) does not contribute to the length of this path as it is the last
node on the directed path. On this path pick the node with largest index j
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pr=s

p1 p1

Figure 2.5: Original range assignment  Figure 2.6: Range assignment after
before the first phase the first phase

such that 7(p;) > (1 — €)¢/~1. Such a node clearly exists as Yt_; r(p;) > 1
and Y0 (1 — €)e'~! < 1. Setting 7'(s) = r(p;) (1 + %—e) and 7/(p;) = 0 for
i =j...1 —1 increases the cost cost(r’) only slightly but still ensures a valid
range assignment because

7(s) = 1) (14 1)

> T(pj)+€j
!
> r(p)+ Y, (L—e)e!
i=j+1
!
> o)+ Y e,
i=j+1

i.e. we have increased 7’(s) such that all nodes that could be reached by nodes
Pj,Pj+1,---,Pi—1 can now be reached directly by s.

In the second phase we can use an analogous argument starting from source
node s. We assign each node p in the communication tree a level according to
the number of hops to the source node s, where the source node s has level 0
and the leaves of the tree have level at most k.

We distinguish two cases. In the first case r/(s) = r(s), i.e. the value of the
starting node s has not been increased. The other case occurs when it has been
increased, i.e. 7'(s) > r(s).

Let us look at the first case. Consider all maximal paths {¢;}; in the commu-
nication tree starting from node s where all nodes have r(p) < (1 — €)e*~1+% if
node p is on level i.

We can set 7/(s) = r(s)(1 + %) and '(p) = 0 for all p € t;. Hence, we again
maintain a valid range assignment and the next nodes p along the paths of the
communication tree satisfy r(p) > (1 —¢€)e*~"1+ if node p is on level i. Applying
the same reasoning iteratively to these nodes we finally have that for all nodes
p either 7/(p) = 0 or 7' (p) > (1 — €)e*~1* for a node p on level i. Note that for

nodes p on level k we can set r’'(p) = 0. Hence, we have a valid range assignment
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! with /(p) > (1 — €)e2k=2,

Let us now consider the second case, when r’'(s) > r(s), i.e. the value of s
has been increased in the first phase of the construction. Here we increased

7/(s) already in the first phase to at least (1 — ¢)e?—2 (1 + %_6) = €2, Hence,
we can continue as in the first case without increasing r/(s) anymore, because
F2 >k (1 — )b for e < 1.

The cost of the valid range assignment r’ satisfies

cost(r’) = Z(r'(p))a
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Using the preceding lemma it is now easy to come up with a small coreset.
Intuitively we use a grid of width roughly an e-fraction of the minimum non-
zero range assigned in 77,

Lemma 2.3 For any k-hop broadcast instance there exists a (k, (a+2)e)-coreset

of size O <(1)4k>

Proof: We place a grid of grid width A = %e “Pmin, Where 7, = (1 —€)e?h—2

on the plane. Notice, that the grid has to cover an area of radius 1 around the
source only because the furthest distance from node s to any other node is 1.

4k
Hence its size is in O ((i) ) for small e. Now assign each point in P to its

closest grid point. Let S be the set of grid points that had at least one point
from P snapped to it.

It remains to show that S is indeed a coreset. We can transform any given
valid range assignment r for P into a valid range assignment r” for S in two
steps. First, we apply the preceding Structure Lemma 2.2 to r to get a valid
range assignment ' for P with r/(p) = 0 or r/(p) > 7min. If we define the range
assignment " for S as

' (p)) = max ' (p) + V2A
p was snapped to p’
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we get a valid range assignment for S since all points in P are within A/v/2 of
their respective nearest grid point. We then have

' (p) = max ' (p) + V2A
p was snapped to p’
< max 7 (p) + € Tmin
p was snapped to p’
< (14 max ' (p).

p was snapped to p’

Hence, the cost of the range assignment r” satisfies

cost((") < (14 €) cost(() < (14 €) (1 e

> i cost(r).

On the other hand, we can transform any valid range assignment 7 for S into
a valid range assignment r for P again in two steps. First, we use the Structure
Lemma 2.2 to construct a valid range assignment r’ for S with »'(p) = 0 or
r'(p) > Tmin. Then, we select for each grid point g € S one representative gp
from P that was snapped to it. For the grid point to which s (the source) was
snapped we select s as the representative. If we define the range assignment r
for P as r(gp) = '(g9) + v2A and r(p) = 0 if p does not belong to the chosen
representatives, then r is a valid range assignment for P because every point is
moved by the snapping by at most A/v/2. Hence, we have

r(gp) = r'(p) + V2A = 1'(p) + € i < (1+ €)' (p)-
The cost of the valid range assignment r then satisfies

€

cost(r) < (1+¢€)cost(r’) < (1 +e) (1 +1 )a - cost(r").

— €

For small € we have (1 + ¢) (1 + ﬁ)a < (14 (a+ 2)e). This shows that S is
indeed a (k, (o + 2)e) coreset for P. O

Unfortunately we are not aware of any efficient algorithm for computing even
just a constant approximation to the bounded-hop broadcast problem. But
since we were able to reduce the problem size to a constant independent of n, we
can also employ an exhaustive search strategy to compute an optimal solution
for the reduced problem (S, s), which in turn translates to an (1 + (a + 2)e)?-
approximate solution to the original problem since the reduced problem (S, s)
is a (k, (o + 2)¢)-coreset. In fact, it is still much more efficient to solve the
problem for the coreset with a simple exhaustive search algorithm than to solve
the problem for the coreset with the algorithm by Ambiihl et al. [ACIT04].

Let us now concentrate on solving the bounded-hop broadcast problem for the
coreset S. When looking for an optimal, energy-minimal solution for S, it
is obvious that each node needs to consider only |S| different ranges. Hence,
naively there are at most |S \'S | different range assignments to consider at all.
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We enumerate all these assignments and for each of them we check whether
the induced communication graph contains a directed spanning tree of depth
at most k rooted at the grid point corresponding to the original root node s,
that is whether the respective range assignment is valid; this can be done in
time |S|?. Of all the valid range assignments we return the one of minimal cost.

Assuming the floor function, i.e. we can compute the floor of a rational number
in constant time, a (k, (a+2)e)-coreset S for an instance of the k-hop broadcast
problem for a set of n radio nodes in the plane can be constructed in linear time.
Hence we obtain the following theorem:

Theorem 2.4 A (1 + (a + 2)e)?-approzvimate solution for the k-hop energy-
minimal broadcast problem on n points in the plane can be computed in time

1 4k(%)4k
o<n+|5\5)_o<n+ (6> )

A simple observation allows us to improve the running time slightly. Since
eventually we are only interested in an approximate solution to the problem, we
are also happy with only approximating the optimum solution for the coreset S.
Such an approximation for S can be found more efficiently by not considering
all possible at most |S| ranges for each grid point. Instead we consider as
admissible ranges only 0 and ry, - (1 + e)i for ¢ > 0. That is, the number of
different ranges a node can attain is at most 1 + log, r;ﬁn < % . log% for
e < 1. This comes at a cost of a (1+¢) factor by which each individual assigned
range might exceed the optimum. The running time of the algorithm improves,

though, which leads to our main result in this section:

Theorem 2.5 A (1 + (a + 2)e)3-approzvimate solution for the k-hop energy-
minimal broadcast problem on n points in the plane can be computed in time

S| (£)*
O(n—i—(zg{;-logl) >:O<n+<4k> )
€ € €

A (14 1)-approximate solution can be easily obtained by choosing € = 0(1/«).

A solution to the k-hop broadcast problem addresses the issue of energy-efficiency
and latency. We can bound the delay until the last radio node has received the
message and we know that the energy consumed by one broadcasting operation
is minimal for this setup. However, we did not consider the issue of interference
and reliability. We will do this in the next section.
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2.3 Minimum-energy Broadcast with Few Senders

One problem that is particularly prominent for the MST—based solution is the
fact that in the resulting transmission range assignment a very large fraction
of the network nodes are transmitting (i.e. have non-zero transmission range).
In the MST-based range assignment, at least n/6 nodes are actually senders
during the broadcast operation (since the maximum degree of the minimum
spanning tree of a set of points in the Euclidean plane is bounded by 6). This
raises several critical issues: (a) The more network nodes are transmitting in
the process of one broadcast operation, the more likely it is that some nodes in
the network experience interference due to several nearby nodes transmitting
at the same time (unless special precautions are taken that interference does
not occur). (b) Every retransmission of a message implies a certain delay which
is necessary to set up the transmission unit etc; that is, the more senders are
involved in the broadcast operation, the higher the latency becomes. This
effect is even amplified by the previous problem if due to interference messages
have to be resent. (¢) Network nodes are not 100% reliable; if for example the
probability for a network node to operate properly is 99.9%, the probability
for a network broadcast to fail, i.e. not all nodes receiving the message, is
1 — 0.999(/6) which is around 40% for a network of n = 3000 nodes. This
suggests to look for broadcast operations in the network that use only very few
sending nodes. Of course, this comes at the cost of an increased total power
consumption, but the behavior with respect to the critical issues (a) to (c) can
be drastically improved.

In this section we study the following restricted broadcast operation: Given
a specific source node s we want to find a transmission range assignment r of
minimum total cost such that the respective communication graph G") contains
a directed spanning tree rooted at s and at most k nodes have a non-zero
transmission range assigned. We call this problem the k-set energy-minimal
broadcast problem. Allowing only a small number k of sending nodes during
the broadcast operation has several advantages: (a) The k transmissions can
be easily scheduled in k different time slots, hence avoiding any interference at
all. (b) The latency is obviously bounded by O(k). (c¢) In the above scenario
the probability of a broadcast operation to fail is 1 — 0.999%, which e.g. for
k=10is 1%.

In this section we consider the k-set minimum energy broadcast problem from
an analytical point of view. We show that somewhat surprisingly again for any
network of n radio stations there exists a subset S of the stations whose size
is independent of n and which preserves all the important characteristics of P
with respect to an energy efficient k-set broadcast. We call S a coreset of the
network topology with respect to the k-set broadcast problem. In contrast to
the k-hop broadcast problem where the coreset has a size exponential in k, we
will derive a coreset for the k-set broadcast problem whose size is polynomial
in k and 1/e. In fact, we will show that using a coreset of size |S| = O((k/¢)?),



36 MINIMUM-ENERGY BROADCAST WITH FEW SENDERS

any solution of the k-set broadcast problem for S translates to a solution for
the k-set broadcast problem for the original set P at a cost at most a (1 + ¢€)
factor away and vice versa. Since the size of this coreset is independent of
the network size, we can even afford to run an exhaustive search algorithm to
compute an optimal k-set broadcast. The running time of this algorithm is
linear in n but still exponential in k. So we also present an O(1)-approximation
algorithm whose running time is linear in n but polynomial in k.

Closely related in particular to the O(1)-approximation algorithm that we will
present is the work by Bilo et al. [BCKKO05]. They consider the problem of
covering a set of n points in the plane using at most k disks such that the sum
of the areas of the disks is minimized. They provide a (1 + €)-approximation to
this problem in time O(no‘2/ 62). They do not address the problem of enforcing
connectivity which is part of the k-set broadcast problem.

Section 2.3.1 recaps a known complexity result for the unconstrained broadcast
problem and sketches a simple folklore-brute-force algorithm to solve the k-set
broadcast problem. Section 2.3.3 contains the core contributions for the k-set
broadcast problem; we show how to extract a small coreset of the network
topology and how to use that to obtain a (1 + €)-approximation algorithm. In
Section 2.3.4 we show how a faster algorithm obtains an O(1)-approximation.

2.3.1 Preliminaries

As mentioned before the unconstrained broadcast problem is known to be NP-
hard for @ > 1 and for non-metric distance functions even not well approximable
([CCPT01, SK99]. Since the unconstrained broadcast problem is a special case
of the k-set broadcast problem with & = n these hardness results carry over to
the k-set broadcast problem, if k is not treated as a constant. If k is regarded
a constant, the problem can be solved in polynomial time as we will see in the
following.

2.3.2 A Naive Algorithm

The k-set broadcast problem can be solved in a naive way. Essentially, one can
try out all (kfl) different subsets for the & — 1 active senders apart from the
source s. For each of those (and the source node s), one then assigns all possible
n — 1 ranges. In total we have then O(n*~1(n —1)¥) = O(n?*) potential power
assignments. For each of those we can check in O(n?) time whether it is a valid
k-set broadcast.

That is, overall we have the following corollary:

Corollary 2.6 For n points we can compute the optimal k-set broadcast in
time O(n?k+2).
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For most practical applications, we expect k to be a small constant, but unfor-
tunately not small enough that this naive algorithm can be applied to networks
of not too small size (e.g. several thousand nodes). In the following we lower our
expectations and aim for approzimate solutions to the k-set broadcast problem.
This allows for more efficient algorithms as we will see.

2.3.3 Small Coresets of the Network Topology

We will now show that we can find a small coreset to the original problem. We
assume that the maximum distance from the source node s to another node
is 1.

First, we need to show a technical lemma:

Lemma 2.7 The term
Sy (ri +6)*
Z§:1 i

is mazimized if 1y = r; for alli € {2,...,k} forri,d >0

Proof: Let us first consider the case for two variables: We claim that the
expression

max (r1 +0)* + (ro + 9)¢

« o
ri+ry=c

attains its maximum when 7 = 7. Since r{ 47§ = ¢ we have 7, = (c —r§)1/°.

Thus we want to find the maximum of the function
f(re) == ((c =)V + ) + (1 + 6)@

We have

(c—rg)!/e +9) ) o

(C _ ,r.a)l/a

flira)=a-|(ra+6)>*" - (TQ‘ (

Thus

To - ((c — 7‘5")1/0‘ + 5)
(C— T.a)l/oz

_Tr20

(C— ra)l/a

f’(?“g):() S ro+d =

& Tot+d = 1o & o= (c¢/2)V

Since 71 = (¢ — r$)Y* = (¢/2)"/* we have 7 = ro. Furthermore note that this
is the only maximum of the function f(r2) inside its domain, and that the value
of the function at the boundary is strictly less.
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Now let us consider the case with more that two variables. We can restate the
claim as follows: The expression

k
max Z(n +0)“
Zi:l T?:C 7»:1
attains its maximum when r; = r; for all 7. Assume otherwise, i.e. the expres-
sion is maximal when at least two variables have different value. Let these two
variables be without loss of generality 1 # ro. However, we have

k k
max Z(n +9)¢ = max (ri+90)%+ (re+0)*+ Z(rz +9)“.
Y re=cizl g+ re=e =3
However, if we fix r; for 3 < ¢ < k and the sum r{* 4+ 7§, we see from the two-
variable case that the expression can be increased if r; # 9. This contradicts
the assumption that the maximum is attained when at least two variables have
different value. Hence, for r,d > 0 the expression

b (ri +6)*

k «a
=173

is maximized if ry = r; for all i € {2,... ,k}. O

Lemma 2.8 For any k-set broadcast instance there exists a (k, (1+€)%)-coreset

of size O ('6%2)

Proof: We place a grid of grid width A = %i on the plane. Notice, that
the grid has to cover an area of radius 1 around the source only because the
furthest distance from node s to any other node is 1. Hence its size is O (ﬁ—;)
Now we assign each point in P to its closest grid point. Let S be the set of grid
points that had at least one point from P snapped to it.

It remains to show that S is indeed a (k, (1 4 €))-coreset. We can transform
any given valid range assignment r for P into a valid range assignment 7’ for
S. We define the range assignment r’ for S as

r'(p') = max r(p) + V2A.

p was snapped to p’

Since each point p is at most %A away from its closest grid point p’ we certainly

have a valid range assignment for S. It is easy to see that the cost of v’ for S
is not much larger than the cost of r for P. We have:

D @) = Y (  max r(p) +V24)

»es »Es p was snapped to p’

IN

max )+ )
s p was snapped to p

IN
(7]
=
S
+
|
)

peP
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The relative error satisfies
cost (1) < Sopep(r(p) + 1)
cost(r) = X ,ep(r(p))®

Notice, that > ,cp r(p) > 1 and r is positive for at most k points p. Hence,
the above expression is maximized when all 7(p) have the same value 7, for all
points p that are assigned a positive value, see Lemma 2.7. Thus

cost(r’) k- (% +5)°

cost(r) = k- (L)«

Tp

= (1+4¢)“.

On the other hand we can transform any given valid range assignment r’ for S
into a valid range assignment r for P as follows. We select for each grid point
g € S one representative gp from P that was snapped to it. For the grid point to
which s (the source) was snapped we select s as the representative. If we define
the range assignment r for P as r(gp) = r'(g) + v2A and 7(p) = 0 if p does
not belong to the chosen representatives, then r is a valid range assignment for
P because every point is moved by the snapping by at most A/v/2. Using the
same reasoning as above we can show that cost(r) < (1 + €)® cost(r’). Hence,
we have shown that S is indeed a (k, (1 + €))-coreset. O

Once we have solved the k-set broadcast problem for the (k, (1 + €)®)-coreset S
we can easily transform the obtained solution to a (1+¢)?**-approximate solution
to the original problem. Let us now concentrate on solving the k-set broadcast
problem for the coreset S. Since we were able to reduce the problem size to
a constant independent of n, we can employ an exhaustive search strategy to
compute an optimal solution for the reduced problem (S, s).

When looking for an energy-minimal solution for S, it is obvious that we need

to consider only |S| different ranges for each node. Hence, naively there are
K2 k

at most Elj . (’6%2) different range assignments to consider at all. We

enumerate all these assignments and for each of them we check whether the

range assignment is valid; this can be done in time |S|2. Of all the valid range

assignments we return the one of minimal cost.

Hence, a (k, (1+¢€)®)-coreset S for an instance of the k-set broadcast problem for
a set of n radio nodes in the plane can be constructed in linear time, provided
we can compute the floor of a rational number in constant time. Hence we
obtain the following theorem:

Theorem 2.9 A (1+¢)%*-approzimate solution for the k-set broadcast problem
4k+4
on n points in the plane can be computed in time O (n + (%) >

Again we can improve the running time slightly. Since eventually we are only
interested in an approximate solution to the problem, we only need to approxi-
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mate the optimum solution for the coreset S. Such an approximation for S can
be found more efficiently by not considering all possible at most |S| ranges for
each grid point. Instead we consider as admissible ranges only 0 and - (1+ €)!
for ¢ > 0. That is, the number of different ranges a node can attain is at most
1+ log1+6§ < % -log§ for e < 1. This comes at a cost of a (1 + €) factor by
which each individual assigned range might exceed the optimum. The running
time of the algorithm improves, though, which leads to our main result in this
section:

Theorem 2.10 A (1 + €)3>*-approzimate solution for the k-set broadcast prob-

. . L K2 log &\ F
lem om n points in the plane can be computed in time O (n + ’:—j ( ;g €> )

2.3.4 Faster O(1)-Approximations

We now show how to compute a constant approximation for the k-set broadcast
problem. The idea is to first cluster the points into k clusters. Then we ensure
connectivity of these point sets by increasing their cluster sizes. As clustering
we define the k-disk cover problem:

Definition 2.11 (k-disk cover problem) Given a set P of n points in the
Euclidean plane, find a subset C' C P of cardinality at most k and radii r, > 0
associated with each element p € C such that 3 ,ccry is minimized and all
points in P are covered by the disks D)’ := {x € R? | ||ap| < rp}.

Given a k-disk cover D := (C, (rp)pec) for P with center points C' and radii
rp, We associate with D a range assignment rp on P as follows:

rp ifpelC

VpeP: r =
P p(p) {0 otherwise

By D; we denote a disk in D. Note that the k-disk cover problem with the ad-
ditional constraint that the communication graph G0 is connected is exactly
the k-set broadcast problem and that an instance of one problem is a relaxation
of the of the other. Thus, the cost of an optimal solution for an instance of the
k-disk cover problem is a lower bound for the k-set broadcast problem. Unfor-
tunately, the k-disk cover problem is NP-hard (see [BCKKO5]) but it admits a
PTAS as shown by Bilo et al. [BCKKO05]. A direct consequence of their results
is:

Corollary 2.12 There exists an algorithm for the k-disk cover problem in R¢
a\O(d
that computes (1 + €)-approzimate solution in time n(e) ( ).
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Figure 2.7: Proof illustration for the constant factor approximation algorithm.

By setting € to 1 we obtain a 2-approximation algorithm for the k-disk cover
problem that runs in time n for a constant ¢,. A brief sketch of this algorithm
can be found in the next section. Note that the algorithm can easily be modified
such that the source s is the center of one of the disks.

Our approximation algorithm works as follows: First we compute an approxi-
mate k-disk cover D := (C, (rp)pec) over P. Then we determine for the center
points in C an approximate broadcast with range assignment rp by using an
minimum spanning tree based algorithm (see [Amb05]) that has an approxi-
mation guarantee of 6. Now we construct a range assignment r4 for P in the
following way:

max{ry, rp(p)} ifpeC

VpeP: r =
P Alp) { 0 otherwise

Note that G("4) is connected and therefore induces a valid k-set broadcast since
only k stations are sending. We still have to show that we have computed an
approximate solution:

Theorem 2.13 cost(r4) < 36¢q - cost(ropt), where rop is the range assignment
of an optimal k-set broadcast and c, is a constant depending only on .

Proof: The proof idea is the following: Assuming knowledge about an optimal
range assignment r,,; for the k-set broadcast we transform the range assignment
rp into r’, such that a) 77, is a valid k-set broadcast b) the sending nodes in 77,
are exactly the center points of D and c) r/, is a constant factor approximation
of ropt. If we know that such a broadcast 7, exists, we can simply compute
an optimal broadcast rp over the center points of D. Then we know that
cost(rg) < cost(r,) and rp must also be a constant factor approximation of

ropt'
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Consider now the communication tree T' which is defined as a subtree of G("ert)
spanning P. The idea of the construction of r/, is to replace the inner nodes
of T' (i.e. the sending stations of r,,;) by increasing the radii of the disks in C
appropriately so that r/, is valid.

We increase the nonzero values of rp in the following way: with each of the inner
nodes B; of T" we associate arbitrarily one disk D; in which B; is contained.
Note that there must be at least one such disk for each B; since the disks cover
all input points P. We now update rp in a breath first search manner on T
starting from source node s (see Figure 2.7):

Given an inner node B; of T if all children of B; in T lie in the associated disk
D; then all of them can be reached from node C; without increasing r;. The
interesting case is if there are children of B; that are not contained in D; but
contained in a disk D] whose center is not covered so far. Assume that there
is exactly one such child c¢. We then set the radius of D; to r; + 7} + ropt(B;).
If there is more than one such child, let ¢ be the one that maximizes r; so that
each child of B; and the centers of the disks in which the children of B; are
contained in can be reached by D;. Note that it can happen that two different
inner nodes B; and Bj are associated with the same disk Dy, so that Dy is
updated more than once in the process. In such a case we update Dj only if
ri is increasing. Now let us assume that for a disk D; the last update involved
disk D’. We then call disk D’ the target disk of D;.

By induction G("?) is connected after these updates. Furthermore, note that
the sending stations are still exactly the center points of D. Let D* C D be
the set of disks that are updated and let B; be the node in T in the update
step for disk D; € D*. Summing over all disks, the total cost of the broadcast
is therefore bounded by:

Z Tz'a + Z (Ti + T,/i + 7"opt(Bi))OL

DleD\D* D;eD*

<cost(D)<2cost(ropt) (%)

Before we bound the second term, note that a disk appears as a target disk
only once in the process of updating the disk radii since once its center point is
covered it is never considered as a target disk again. Thus each r; in the above
sum can also appear only once. Hence,

(k%) < cqo Z r+ Z i+ Z Topt (Bi)”

D;eD* D;eD* D;eD*
«a a
< ca(2 Z Ty + Z Topt(Bi)?)
D;eD D;eD
—_———
<4 cost(ropt) =cost(ropt)

< 5-cq - cost(rop)
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where the constant ¢, can be bounded by 3%. Thus, there exists a broadcast
on the center points C' with a total cost that can be upper bounded by

2cost(ropt) + 5 - Co - cost(Topt)
< 6 cq - cost(Topt)

Since we use a 6-approximate broadcast, the algorithm has an approximation
ratio of 36¢,. O

Theorem 2.14 There exists a constant factor approrimation algorithm for the
k-set broadcast problem on n points in the Fuclidean plane that runs in O(ncla).

The theorem can be further improved by using the results of the previous sec-
tion. By setting € to 1 we obtain a coreset of size k2. Using Theorem 2.14 we
obtain directly a constant factor approximation algorithm whose running time
is only linear in n and polynomial in k:

Theorem 2.15 There exists a constant factor approzimation algorithm for the
k-set broadcast problem on n points in the Fuclidean plane that runs in time
linear in n and polynomial in k, i.e. in O(n + k).

2.4 Bounded-hop Multicast or: ”Reaching Few Re-
ceivers Quickly”

Given a set P of n points (stations) in R?, a distinguished source point s € P
(sender), and a set C' C § of client points (receivers) we want to assign ranges
r S +— R>g to the elements in P such that the resulting communication graph
contains a tree rooted at s spanning all elements in C' and with depth at most
k. The goal is to minimize the total assigned energy >_ cp r(p)®. This can be
thought of as the problem of determining an energy efficient way to quickly (i.e.
within few transmissions) disseminate a message or a data stream to a set of
few receivers in a wireless network.

As in the previous section we will solve this problem by first deriving a coreset S
of size independent of | P| = n and then invoking an exhaustive search algorithm.
We assume both k and |C] = ¢ to be constants. The resulting coreset will
have size polynomial in 1/€, ¢ and k. For few receivers this is a considerable
improvement over the exponential-sized coreset that was used in Section 2.2 for
the k-hop broadcast problem.

2.4.1 Algorithms

We will use the same coreset construction as for the k-set broadcast problem.
If we would like to reach c receivers each within at most & hops we immediately
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know that at most kc senders can be actively sending. Hence, we can use the
coreset construction for the k-set broadcast problem with kc active senders.
Obviously, the so constructed coreset with respect to the k-set broadcast prob-
lem is also a coreset with respect to the k-hop multicast problem and has size

O ((k;;)Q). All we need to do is to solve the problem for the coreset.

As we are not aware of any algorithm to solve the k-hop multicast problem
we employ a naive exhaustive search strategy, which we can afford since after
the coreset computation we are left with a constant problem size. Essentially
we consider every kc-subset of S as potential set of senders and try out the

S| potential ranges for each of the senders. Hence, naively there are at most
p g ) y
kc?

kc” ke
]22 . (%2) different range assignments to consider at all. We enumerate
c

all these assignments and for each of them we check whether the range assign-
ment is valid with respect to the set C’ of grid points that have at least one
point from C snapped to it; this can be done in time |S|?. Of all the valid range
assignments we return the one of minimal cost.

A coreset S for an instance of the k-hop multicast problem can be constructed

in linear time. Hence we obtain the following theorem:

Theorem 2.16 A (1+¢)-approximate solution for the k-hop multicast problem
dkct4
on n points in the plane can be computed in time O (n + (%) ‘ )

As we are only interested in an approximate solution, we do not have to consider
all | S| potential ranges but can restrict to essentially O (logl Te f) many. The
running time of the algorithm improves accordingly:

Theorem 2.17 A (1+¢)-approximate solution for the k-hop multicast problem

o i (he)? [ (ke)? log ke \
on n points in the plane can be computed in time O | n + p .

2.5 Energy-minimal Network Coverage or: ”How to
Cover Points by Disks”

The problem that we consider in this section was studied before in [AAB06,
BCKKO05] and aims to select and assign powers to k out of a total of n wireless
network stations such that all stations are within reach of at least one of the
selected stations and the required energy is minimal, i.e. given a set P of points
in R? and some constant k, we want to find at most k d-dimensional balls
with radii r; that cover all points in S while minimizing the objective function
Zle rg* for some power gradient o > 1. The problem was shown to be NP-hard
for @ > 1 [BCKKO5] and solvable in polynomial time for « = 1 [GKK108].
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We again show that a coreset of size polynomial in k and 1/e exists. This
enables us to improve the running time of the (1 + €)-approximation algorithm
by Bilo et al. [BCKKO05] from n((e/ 9?Y) to a running time that is linear in
n. We also present a variant that is able to tolerate few outliers and runs in
polynomial time for constant values of k& and the number of outliers.

We distinguish two cases: the discrete case in which the ball centers have to be
in P and the non-discrete case where the centers can be located arbitrarily in
R,

2.5.1 A Small Coreset for k-disk Cover

. . . . 2d/a+1 . .
In this section we describe how to find a coreset of size O (%), i.e. of size

independent of n and polynomial in k& and in 1/e.

For now let us assume that we are given the cost of a Ad-approximate solution
P> for the point set P. We start by putting a regular d-dimensional grid on P
with grid cell width A depending on P*. For each cell C in the grid we choose
an arbitrary representative point in P N C. We denote by S the set of these
representatives. We say that C' is active if P N C # (). Note that the distance
between any point in SN C and the representative point of C' is at most v/d- A.
In the following we write ROFT for an optimal solution for any point set R C P.
We obtain a solution SIQP T by increasing the disks in an optimal solution SOFT
by an additive term v/d - A. Since each point in P has a representative in S
with distance at most v/d - A, SIQP T covers P. In the following we will show
that (i) the cost of ST is close to the cost of an optimal solution POF7 for
the original input set P and (ii) the size of the coreset S is small.

Theorem 2.18 We have in the

non-discrete case: cost(SEFT) < (1 + €)® - cost(POFT)

discrete case: cost(SSPT) < (1 + 6)20‘2 - cost(POFT)

Proof: Suppose SOF7T is given by k balls (Ci)iequ,...ky With radil (ri)ieq1,.. k-
Then

cost(SgPT) B Zle(n—l—\/g-A)a (1

cost(POPT) cost(POPT) = ()

One can easily show that this term is maximized when r; =r; Vi € {2,...,k}
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(see Lemma 2.7). Thus we have

(COSt(SOPT)Ua € (cost(PM)l/o‘)a

cost(SGFT) k1/e K1/ )
cost(POPT) = ™7 cost(POPT)
OPT\1/a AN
- (cost(S )V e (%) )
B cost(POPT)
COSt(SOPT)l/a @
_— =:(II
(Cost(POPT)l/a Te (11)

Now let us distinguish between the non-discrete and the discrete case. In the
non-discrete case (1) < (14¢) following from the monotonicity of the problem,
i.e. for all subsets R C P : cost(ROFT) < cost(PPPT). This can easily be seen,
as each feasible solution for P is also a feasible solution for R. In the discrete
case cost(SOPT) can be bigger than cost(PYFT) - but not much as we will see:
Given an optimal solution POFT we transform PPFT into a feasible solution
PSOP T for S by shifting the ball centers to their corresponding representative
point in S. Since some points can be uncovered now we have to increase the
ball radii by an additional v/d - A. Following exactly the same analysis as
above, we get in this case that cost(P$FT) < (1 + €)@ - cost(POFT). Hence
cost(SPPT) < (1 +€)® 4 €)* < (1 + €)% - cost(POFT), O

Knowing that the coreset S is a good representation of the original input set P
we will show that S is also small.

Theorem 2.19 The size of the computed coreset S is bounded by

241 yd/a
0<k ) )
€

Proof: Observe that the size of S is exactly given by the number of cells that
contain a point of P. The idea is now to use an optimal solution P°"T to bound
the number of active cells. We can do so because any feasible solution for P
covers all points in P and thus a cell C' can only be active if such a solution
covers fully or partially C'. Thus the number of active cells cannot be bigger
than the volume of such a solution divided by the volume of a grid cell.

To ensure that also the partially covered cells are taken into account we in-
crease the radii by an additional term v/d - A. Consider POFT given by k balls
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(Ci)iequ,....ky With radii (7;);e(1,.. k- Then

k2d. Ti+\/g~A !

=1

vy (142!
= (2Vd)*- 1+ =

(2Vd) ;( + )
Y vart.y 1+<k-A>““,(cost<P0PT>>”“ '
- P € cost(P?)

IA

1/« d
2Vd)? -k - <1+(k')‘>/)

IN
=
S
Q
N

where inequality (x) follows from the fact that r; < cost(POFT)1/e, O
We still have to show how to approximate cost(POP T) for the construction of
the coreset S. Feder et al. [FG88] show how to compute deterministically a
2-approximate solution for the so called k-center problem in O(nlogk) time.
Furthermore, Har-Peled shows in [Har04] how to obtain such an approximation
in O(n) expected time for k = O(n'/3/logn). The k-center problem differs
from the k-disk coverage problem just in the objective function which is given

by max;—_ r{* where the discs have radii r;. Since % le re <max;—1 75 <

le r$* a 2-approximation for the k-center problem is a 2k-approximation for

the k-disk cover problem. Using such an approximation the size of our coreset
2d

becomes O (k‘EH / ed). It remains to show how to obtain a solution for the

coreset.

2.5.2 Algorithms
Discrete Case

Note that the discrete version of the k-disc cover problem can be solved by the
approach of Bilo et. al. [BCKKO05]. Recall that their algorithm runs n((¢/ 9%®)
time. A short description of this algorithm will be given later in this section.

Alternatively we can find an optimal solution in the following way. We consider
all k-subsets of the points in the coreset S as the possible centers of the balls.
Note that at least one point in S has to lie on the boundary of each ball in
an optimal solution (otherwise you could create a better solution by shrinking
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a ball). Thus the number of possible radii for each ball is bounded by n — k.
In total there are (n — k)* - () < n?k possible solutions. Hence, we have the
following theorem:

Theorem 2.20 The running time of the approximation algorithm in the dis-

crete case 1S
k%+1 min { 2k, (a/5)0<d) }
Ol|ln+

ed

Non-discrete Case

Note that on each ball D of an optimal solution there must be at least three
points (or two points in diametrical position) that define D - otherwise it would
be possible to obtain a smaller solution by shrinking D. Thus for obtaining an
optimal solution via exhaustive search it is only necessary to check all k-sets of
3- respectively 2-subsets of S which yields a running time of O(n?*). Hence, we
have:

Theorem 2.21 A (1+¢)-approximate solution of the non-discrete k-disk cover
problem can be found in
2441\ P
O|n+ ]
€

2.5.3 k-disk Cover with Few Outliers

Assume we want to cover not all points by balls but we relax this constraint and
allow a few points not to be covered, i.e. we allow let us say c outliers. This way,
the optimal cover might have a considerably lower power consumption/cost.

Conceptually, we think of a k-disk cover with ¢ outliers as a (k + ¢)-disk cover
with ¢ balls having radius 0. Doing so, we can use the same coreset construction
as above, replacing k by k+c. Obviously, the cost of an optimal solution for the
(k + ¢)-disk cover problem is a lower bound for the k-disk cover with ¢ outliers.
Hence, the imposed grid might be finer than actually needed. So snapping each
point to its closest representative still ensures a (1 4 €)-approximation. When

(ko) 81 )

constructed as above, the coreset has size O < .

Again, there are two ways to solve this reduced instance, first by a slightly
modified version of the algorithm proposed by Bilo et al. [BCKKO05] and second
by exhaustive search.
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We will shortly sketch the algorithm by Bilo et al. [BCKKO05] which is based
on a hierarchical subdivision scheme proposed by Erlebach et al. in [EJSO01]
which in turn is based on the works of Hochbaum and Maass [HM85]. Each
subdivision is assigned a level and they together form a hierarchy. All possible
balls are also assigned levels depending on their size. Each ball of a specific
level has about the size of an e-fraction of the size of the cells of the subdivision
of same level. Now, a cell in the subdivision of a fixed level is called relevant if
at least one input point is covered by one ball of the same level. If a relevant
cell Z' is included in a relevant cell Z and no larger cell Z" exists that would
satisfy Z/ C Z" C Z, then Z' is called a child cell of Z and Z is called the
parent of Z'. This naturally defines a tree. It can be shown that a relevant cell
has at most a constant number of child cells (the constant only depending on
e, a and d). The key ingredient for the algorithm to run in polynomial time
is the fact that there exists a nearly optimal solution where a relevant cell can
be covered by only a constant number of balls of larger radius. The algorithm
then processes all relevant cells of the hierarchical subdivision in a bottom-up
fashion using dynamic programming. A table is constructed that for a given
cell Z, a given configuration P of balls having higher level than Z (i.e. large
balls) and an integer i < k stores the balls of level at most the level of Z (i.e.
small balls) such that all input points in Z are covered and the total number
of balls is at most ¢. This is done for a cell Z by looking up the entries of the
child cells and iterating over all possible ways to distribute the ¢ balls among
them.

The k-disk cover problem with ¢ outliers exhibits the same structural properties
as the k-disk cover problem without outliers. Especially, the local optimality
of the global optimal solution is preserved. Hence, we can adapt the dynamic
programming approach of the original algorithm. In order for the algorithm to
cope with ¢ outliers we store not only one table for each cell but ¢ 4+ 1 such
tables. Each such table corresponds to the table for a cell Z where 0,1,...,¢
points are not covered. Now, we do not only iterate over all possible ways to
distribute the ¢ balls among its child cells but also all ways to distribute | < ¢
outliers. This increases the running time to n((@/9%D) (@/9°D) — p((a/°D),
Hence running the algorithm on the coreset yields the following result:

Theorem 2.22 We can compute a minimum k-disk cover with ¢ outliers (1+¢)
approzimately in time

(a/e)0@

o [ns (“9)

€

For the exhaustive search approach we consider all assignments of k£ disks each
having a representative as its center and one lying on its boundary. For each
such assignment we check in time O(k|S|) whether the number of uncovered
points is at most ¢. We output the solution with minimal cost.
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Theorem 2.23 We can compute a minimum k-disk cover with ¢ outliers (1+4€)
approximately in time

2.6 Information Aggregation via Energy-minimal TSP
Tours

While early wireless sensor networks were primarily data collection systems
where sensor readings within the network are all transferred to a central comput-
ing device for evaluation, current wireless sensor networks perform a lot of the
data processing in-network. For this purpose some nodes in the network might
be interested in periodically collecting information from certain other nodes,
some nodes might want to disseminate information to certain groups of other
nodes. A typical approach for data collection and dissemination as well as for
data aggregation purposes are tree-like subnetwork topologies, they incur cer-
tain disadvantages with respect to load-imbalance as well as non-obliviousness
to varying initiators of the data collection or dissemination operation, though.
Another, very simple approach could be to have a virtual token floating through
the network (or part thereof). Sensor nodes can attach data to the token or
read data from the token and then hand it over to the next node. Preferably
the token should not visit a node again before all other nodes have been visited
and this should happen in an energy-optimal fashion, i.e. the sum of the ener-
gies to hand over the token to the respective next node should be minimized.
Such a scheme has some advantages: first of all none of sensor nodes plays a
distinguished role — something that is desirable for a system of homogeneous
sensor nodes — furthermore every sensor node can use the same token to initiate
its data collection/dissemination operation. Abstractly speaking we are inter-
ested in finding a Travelling Salesman Tour (TSP) of minimum energy cost for
(part of) the network nodes. Unfortunately, the classical TSP with non-metric
distance function is even hard to approximate (see [OM]). However, for metrics
satisfying the relaxed triangle inequality ||zy| < 7(||zz| + ||zy||) for 7 > 1 and
every triple of points x,y and z a 47 approximation exists [BC00] (where ||zy||
denotes the Euclidean distance between point x and z).

In this section we show that the 'normal’ Euclidean TSP is not suitable for
obtaining an energy-efficient tour and devise a 6-approximation algorithm for
TSP under squared Euclidean metric. More generally, we present an O(1)-
approximation for the TSP problem with powers a of the Euclidean distance as
edge weights. For small a we improve upon previous work by Andreae [And01]
and Bender and Chekuri [BCO00].
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2.6.1 Why Euclidean TSP Does Not Work

Figure 2.8: An optimal energy-minimal tour for points on a slightly bent line.

Simply computing an optimal tour for the underlying Fuclidean instance does
not work. The cost for such a tour can be a factor Q(n) off from the optimal
solution for the energy-minimal tour. Consider the example where n points
lie on a slightly bent line and each point having distance 1 to its right and left
neighbor. An optimal Euclidean tour would visit the points in their linear order
and the go back to the first point. Omitting the fact that the line is slightly
bent this tour would have a cost of (n —1)-12 4 (n —1)2 = n(n — 1) if the edge
weights are squared Euclidean distances. However, an optimal energy-minimal
tour would have a cost of (n—2)-22+2-12 = 4(n—1) +2. This tour would first
visit every second point on the line and on the way back all remaining points
as in Figure 2.8.

Ty 15 T,

Figure 2.9: Tree T and its children trees 11,75, ...,T}.

2.6.2 A 6-Approximation Algorithm

In this section we will describe an algorithm which computes a 6-approximation
for the TSP under squared Euclidean distance. Obviously, the cost of a min-
imum spanning tree is a lower bound for the optimal value OPT of the tour.
Consider a non-trivial minimum spanning tree T" for a graph with node set V'
and squared Fuclidean edge weights. We denote the cost of such a tree by
MST(T). Let r be the root of T" and p be one child of T

We define two Hamiltonian paths 7%(T") and 7°(T) as follows. Let 7%(T) be a
path starting at r, finishing at p that visits all nodes of T" and the cost of this
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path be at most 6 MST(T') — 3||rp||2. Let 7°(T) be defined in the same way but
in opposite direction, i.e. it starts at p and finishes at r.

Now, if we have such a tour 7%(T") for the original vertex set V' we can construct
a Hamilton tour by connecting r with p. The cost of this tour is clearly at most
6 MST(T) — 3|rp||® + ||rpl|*> < 6 MST(T) < 6 0OPT. It remains to show how to
construct such tours 7% and 7°. We will do this recursively.

For a tree T of height 1, i.e. a single node r, 7%(T) and 7°(T") both consist of
just the single node. Conceptually, we identify p with 7 in this case. Obviously,
the cost of both paths is trivially at most 6 MST(T) — 3||rp||?.

Now, let T be of height larger than 1 and let T1,...,Ty be its children trees.
Let r denote the root of T" and r; the root of T; and p; be a child of 7} as in
Figure 2.9. Then we set 7%(T) = (r, 7°(T1), 7(T), . .., 7°(T})).

The cost of the path 7(T') satisfies

cost(7(T)) = |lrp1l|? + cost(x®(T1)) + ||ripz||? + cost(n®(Tn)) +
oo lrr—apkl® + cost(x"(T))

(lrrall + llripall)? + cost(x®(Th))

+(l[rarll + [rrall + [lrapal))® + cost(x"(T2))

IN

H(lr—arll 4 sl + lreprl)? + cost(x®(Tk))
2([rr1 |2 + 2{|rapr]|* + cost(n®(T1))
+3[|rur|® + 3|l rra|® + 3llrap2|? + cost(n®(T2))

IA

+3Hrk_1r|]2 + 3Hrrk||2 + SHTkpkH2 + cost(wb(Tk))

k k k
6> llrrill> +3D llrapill> + D cost(n*(T;)) — 3||rrl|?
i=1 i=1 i=1

IN

k k

< 6 [lrrill* + 6 MST(T;) — 3[|rrg|?
i=1 =1

= 6MST(T) — 3>

In the above calculation we used the fact that (30, a;)* < n®™ 1. Y0, a2,
for a; > 0 and o > 1. This follows directly from Jensen’s inequality and the
fact that the function f : x — 2@ is convex. The path 7%(T) is constructed
analogously.

In fact, the very same construction and reasoning can be generalized to the
following corollary.

Corollary 2.24 There exists a 2 - 3% ' -approzimation algorithm for the TSP
if the edge weights are Fuclidean edge weights to the power a.
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The metric with Euclidean edge weights to the power « satisfies the relaxed
triangle inequality with 7 = 2°~!. A short computation shows that our algo-
rithm is better than previous algorithms [BC00, And01] for small «, i.e. for
2<a<2.T7.

Conclusions

In this chapter we have addressed the problem of installing a communication
infrastructure for a wireless network by suitably assigning transmission ranges
to the individual radio stations. We considered several basic tasks that are
often performed by wireless networks and we provided algorithms for solving
these tasks in an energy-efficient way. Since the problems that we considered
are NP-hard, we provided polynomial time approximation schemes and fast al-
gorithms with a constant approximation guarantee. For some problems where
polynomial time approximation schemes were already known we could improve
the running time drastically upon previous algorithms, like the k-hop broad-
cast problem or the k-disk cover problem. For other problems we provided the
first polynomial time approximation schemes, like the k-set broadcast problem
or the k-hop multicast problem. For the travelling salesperson problem un-
der squared Euclidean distance we were able to partially improve the constant
approximation guarantee.

All polynomial time approximation schemes that were presented here rely on
the fact that we could identify a small coreset for each problem and then solve
the problem for this reduced instance. One of the goals of this chapter was
to show that the concept of coresets is useful for quite a number of geometric
problems and it yields fast approximation algorithms. But coresets are not
only the basis of fast algorithms but they are also very general in the sense
that they allow the problem to be modified and still one can use the same or
a fairly similar coreset to solve the new problem. For instance, we have seen
how to find an energy-minimal k-hop broadcast for a set of radio nodes in the
plane. One issue, that we did not discuss there was the issue of reliability.
There was one path from the source node to each radio node in the wireless
network. But what if we would also allow for some radio nodes to fail but still
want the source node to broadcast its message to all other nodes within at most
k hop. One solution would be to have, lets say, ¢ node-disjoint paths from the
source node to each of the other radio nodes. This way ¢ — 1 radio nodes could
fail and we could still perform the desired broadcast operation. For ¢ being a
small constant we could actually use the same coreset construction and solve
the problem approximately to any arbitrary relative error. This small example
demonstrates the power of our approach that we described here.

For simplicity, we assumed the radio nodes to lie in the Euclidean plane. This
is a rather strong assumption and in real world hardly ever true. The metric
that is experienced in real world is more general than the Euclidean plane but
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on the other hand not too general. It still has some resemblance with the
Euclidean space. We will show how to deal with this issue in the next chapter.
An indicator of the flexibility and robustness of our approach that we used here
is demonstrated by the fact that even in this more general metrical setting our
algorithms are still able to find (1 + €)-approximate solutions in polynomial
time.



Chapter

Low-dimensional Metric Spaces

3.1 Introduction

In the last chapter we have seen approximation algorithms for numerous prob-
lems that arise in wireless networks. For analytical purposes it was very con-
venient to assume that all network nodes were placed in the Euclidean plane.
Unfortunately, in real-world wireless network deployments, especially if not in
the open field, the experienced energy requirement to transmit does not exactly
correspond to some power of the Euclidean distance between the respective
nodes. Buildings, uneven terrain or interference might affect the transmission
characteristics considerably. Nevertheless there is typically still a strong cor-
relation between the actual geographic distance and the required transmission
power. An interesting question is now how to model analytically this correlation
between geographic distance and energy requirement. One possible way is to
assume that the required transmission energies are powers of the distance val-
ues in some metric space containing all the network nodes, and that this metric
space has some resemblance to a low-dimensional Euclidean space. ”Resem-
blance to a low-dimensional Fuclidean space” could be interpreted differently:
one might postulate that there is a mapping from this metric space into low-
dimensional Euclidean space which more or less preserves distances. This is
a rather strong assumption, though. Another means to capture similarity to
low-dimensional Euclidean spaces is the so-called doubling dimension [GKLO03].
The doubling dimension of a metric space (X, d), where X is a set of points and
d is the distance function, is the least value p such that any ball in the metric
with arbitrary radius r can be covered by at most 2° balls of radius r/2. Note
that for any p € N, the Euclidean space R has doubling dimension ©(p).

In this chapter we will consider the doubling dimension a bit more in-depth and
give a novel characterization of such metrics based on hierarchical fat decompo-
sitions (HFDs). We then show how the algorithms for wireless communication

95



56 INTRODUCTION

problems that were presented in the previous chapter as well as other algo-
rithms in the wireless networking context can be adapted to arbitrary metric
spaces of bounded doubling dimension. Interestingly, we could also show that
metrics of bounded doubling dimension are not a tight characterization of all
the metrics that allow for well-behaved HFDs, that is, there are metrics which
are not of bounded doubling dimension, but still our and many other algorithms
run efficiently. Finally, in Section 3.5 we examine metrics of bounded doubling
dimension that arise as shortest-path metrics in unweighted graphs (e.g. unit-
disk communication graphs). We show that for such metrics, an HFD can be
computed in near-linear time, and the latter can be instrumented to derive a
simple deterministic routing scheme that allows for (1+¢) stretch using routing

O
tables of size O ((1) & - log? n> bits.

Related Work

Metrics of bounded doubling dimension have been studied for quite some time,
amongst others Talwar in [Tal04] provides algorithms for low-dimensional met-
rics that (1+¢) approximate various optimization problems like TSP, k-median,
and facility location. Furthermore he gives a construction of a well-separated
pair decomposition for unweighted graphs of bounded doubling dimension p
that has size O(s”nlogn) (for doubling constant s). Based on that he provides
compact representation schemes like approximate distance labels, a shortest
path oracle, as well as a routing scheme which allows for (1 + €)-paths using

routing tables of size O ((IO%Y log? n) 1" An improved routing scheme using

routing tables of size O ((1/6)0(”) log? n) bits was presented in [CGMZ05] by
Chan et al., but the construction is rather involved and based on a derandom-
ization of the Lovasz Local Lemma. Har-Peled and Mendel in [HMO06] gave
a randomized construction for a well-separated pair decomposition of linear

size which matches the optimal size for the Euclidean case from Callahan and
Kosaraju in [CK95].

Our Contribution

First, we give a novel characterization of metrics of bounded doubling dimen-
sion that is rather straightforward and intuitive using hierarchical fat decom-
positions (HFDs). As a side result we show how such HFDs directly lead to
well-separated pair decompositions of linear-size for metrics of bounded dou-
bling dimension (such WSPDs were also constructed in a randomized fashion in
[HMO06]). Second, we show how the algorithms for wireless communication prob-
lems that were presented in the last chapter can be made run efficiently when
the network is placed in a metric of bounded doubling dimension. Furthermore

'In fact his results are more general in a sense that they hold for metrics with arbitrary
spread, but all constants depend on the spread.
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we show that metrics of bounded doubling dimension are not a tight charac-
terization of all the metrics that allow for well behaved HFDs, that is there are
metrics which are not of bounded doubling dimension but still our algorithms
for wireless communication problems run in polynomial time. And last, we
show how to construct HFDs efficiently in unweighted graphs as they occur for
example as communication graphs in networks and instrument the HFDs to
allow for a routing scheme that guarantees paths at most a (1+ ¢) factor longer

o
than the shortest paths using routing tables of size O <(i> 2 -log? n) bits.

Our construction is considerably simpler than the one given in [CGMZ05] by
Chan et al.

3.2 Properties of Low-dimensional Metrics

As mentioned in the introduction, the theoretical analysis of algorithms typi-
cally requires some simplifying assumptions on the problem setting. In case of
wireless networking, a very common assumption is that all the network nodes
are in the Euclidean plane, distances are the natural Euclidean distances, and
the required transmission energy is some power of the Euclidean distance. This
might be true for network deployments in the open field, but as soon as there
are buildings, uneven terrain or interference, the effective required transmission
power might be far higher. Still, it is true that there is a strong correlation
between geographic/Euclidean distance and required transmission power. One
way to capture similarity to low-dimensional Euclidean spaces is the so-called
doubling dimension. The doubling dimension of a metric space (X,d) is the
least value p such that any ball in the metric with arbitrary radius r can be
covered by at most 2° balls of radius r/2. In the following we will consider
such metrics of bounded doubling dimension, i.e. the metrics whose doubling
dimension is a constant. In particular, we will show that a bounded doubling
dimension does not only imply a Euclidean-like covering property but also a
packing property.

3.2.1 Metrics of Bounded Doubling Dimension

The fact that every ball can be covered by at most a constant number of balls
of half the radius (covering property) induces the fact, that not too many balls
of sufficiently large radius can be placed inside a larger ball (packing property).
The following lemma states this fact precisely. (The same observation was made
in section 2 of [HMO6] in the context of net-trees but was not explicitly stated
in this general form.)

Lemma 3.1 (Packing Lemma) Given a metric (X,d) with doubling con-
stant k, i.e. every ball can be covered by at most k balls of half the radius,
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then, at most k pairwise disjoint balls of radius r/2 + €, for € > 0 can be placed
inside a ball of radius r.

Proof: Consider a ball B of radius r. Place a set S = {By, Ba, ..., B;} of pair-
wise disjoint balls each having radius r/2 + € inside B. Let C' = {b;, b2, ..., by}
be a set of balls of radius r/2 that cover the ball B. The distance between two
centers of balls from S is at least r+2¢ > r as they are pairwise disjoint. Hence,
every ball b; € C' can cover at most one center of a ball B; € S. Since every

ball from the set S is covered and especially its center, we have |S| < |C| = k.
U

The same generalizes to arbitrary radii. If a ball B of radius r can be covered
by at most k balls of radius r then there can be at most k pairwise disjoint
balls of radius r + € for € > 0 placed inside B. We will make use of this packing
property at various places later.

3.2.2 Hierarchical Fat Decompositions (HFD)

Given an arbitrary metric (X,d), a decomposition is a partition of X into
clusters {C;}. A hierarchical decomposition is a sequence of decompositions
P, P_q,...,Py, where each cluster in P; is the union of clusters from P;_1,
P, =X, and Py = {{z}|z € X}, i.e. P, is the single cluster containing X and
every point forms one separate cluster in Py.2 We refer to clusters of P; as
clusters at level 7. A hierarchical decomposition where each cluster of the same
level i is contained in a ball of radius r;, contains a ball of radius « - r;, and
ri—1 < f-r; for constants a and 8 < 1 is called a hierarchical fat decomposition
(HFD). Thus, in an HFD clusters are fat and the size of the clusters from dif-
ferent levels form a geometric sequence. We call a set fat if the ratio between
an inscribed ball and a surrounding ball is bounded by a constant.

We will show how to construct an HFD for an arbitrary metric (X, d). Without
loss of generality we assume min, qcx d(p, q) = 1. We call ® = max, 4cx d(p, q)
the spread of X. We construct the HFD bottom-up. Let L; be a set of points
which we call landmarks of level 7. With each landmark we associate a cluster
Ci(l) € X. Figure 3.1 illustrates the construction.

On the lowest level we have L, = X and Cy(l) = {l}, i.e. each point forms a
separate cluster. Obviously, each cluster is contained in a ball of radius 1 and
contains a ball of radius %

Starting from the lowest level we construct the next level recursively as follows.
For level i we compute a 4'-independent maximal set (i.e. a maximal set with
respect to insertion with the pairwise distance of at least 4°) of landmarks L;
from the set L; 1 of landmarks from one level below. Hence, the distance

2This is also known as a laminar set system as used frequently in the literature.
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Figure 3.1: A hierarchical fat decomposition (HFD) for a point set is drawn
here schematically. All five different levels from level 0 to level 4 are displayed.
Each cluster of each level is represented by an ellipse and each landmark of each
cluster is marked by a cross. An HFD naturally defines a tree.

between any two landmarks of level i is at least 4°. We compute the Voronoi
diagram VD of this set L; and call the Voronoi cell of I V' C;(l). The union of
all clusters of landmarks from level i — 1 that fall in the region V C;(l) form the
new cluster that we associate with landmark [, i.e. Ci(l) = Upev e,y Ci—1(p)-
Obviously, each Voronoi cell contains a ball of radius 4/2 and is contained in a
ball of radius 4%, since the set of landmarks L; form a 4’ maximal independent
set. Hence, each cluster on level 7 is contained in a ball of radius Zé‘:o 47 <
41 /3 and each cluster contains a ball of radius 4°/2 — Z;;%] 4" > 4/6. Thus,
we have constructed an HFD.

3.2.3 A Characterization of Metrics of Bounded Doubling Di-
mension

We say an HFD has degree d if the tree induced by the hierarchy has maxi-
mal degree d. The following theorem gives a characterization of metrics with
bounded doubling dimension in terms of such HFDs.

Theorem 3.2 A metric (X,d) has bounded doubling dimension if and only if
all hierarchical fat decompositions of (X, d) have bounded degree.

Proof: First, suppose metric (X, d) has bounded doubling dimension. Fix an
arbitrary HFD for (X, d) and pick a cluster C. Since C' is fat, it is contained
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Figure 3.2: A metric with unbounded doubling dimension but with bounded
degree HFD.

in a ball of radius r; and it is the union of fat clusters {C1,Cs,...,C;}. Each
of them contains a ball of radius ro. The ratio of the two radii r; and 7y is
bounded by a constant due to the definition of an HFD. Then, by the Packing
Lemma 3.1 cluster C' cannot contain more than a constant number of clusters
from the level below. Hence, each HFD has bounded degree.

On the other hand, suppose (X, d) has no bounded degree. Then there exists a
ball B(z,r) = {y|d(z,y) < r} that cannot be covered by a constant number of
balls of half the radius r. We can construct an HFD, which has no bounded de-
gree as follows. Consider an HFD constructed as in Section 3.2.2, where the set
of landmarks always contains the point . Consider the minimal cluster C that
contains ball B(x,r) and consider the set of children clusters {C1,Cs,...,C;}
of C that are all contained in a ball of radius 7/2. Due to the definition of
an HFD the difference in the levels of these clusters is bounded by a constant.
Since, the number of children clusters is not bounded, the HFD cannot have
bounded degree. O

There are metrics however, that admit an HFD with bounded degree but do not
have bounded doubling dimension, i.e. the set of metrics with bounded doubling
dimension are a proper subset of metrics that admit an HFD with bounded

degree. The following metric is such an example. Consider the complete binary

tree of depth [ and each edge from level i — 1 to level i having weight % as in
Figure 3.2. Let p be a node which is connected to all leaves with edge weights
%. The shortest path metric induced by this graph does not have a bounded
doubling dimension but admits an HFD with bounded degree. We can place
2! disjoint balls of radius 21%, each having a leaf as its center, inside a ball
of radius % with center p. Hence, the metric cannot have bounded doubling
dimension for arbitrary large [ (Packing Lemma). On the other hand, it is easy

to see that the metric has an HFD of degree 2.
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3.3 Well-separated Pair Decomposition

Suppose we are given an arbitrary metric (X, d), where X is a set of n points
and d : X x X — R>q is the distance function. To store the distance function
we need O(n?) space. However, what happens if we do not need to store the
exact values of the distance function but, lets say, we allow a small error of 1/s.
There is some hope that we could then store the complete distance matrix in
less than ©(n?) space. In fact, it was shown by Callahan and Kosaraju [CK95]
that for Euclidean spaces of fixed dimension we can store all pairwise distances
approximately with a relative error of 1/s in ©(n) space for fixed s. Unfor-
tunately, for arbitrary metric spaces it is in general not possible to store all
pairwise distances even approximately in less than ©(n?) space. However, in
this section we will show that for metrics of bounded doubling we can store all
pairwise distances with a relative error of 1/s in O(n) space. This matches the
bound for the Euclidean case.

Talwar [Tal04] gave a randomized construction for metrics of bounded doubling
dimension but the space required to store the distance function still depended
on the spread of the metric. Later, Har-Peled and Mendel [HMO06] also gave a
randomized construction where they removed the dependency on the spread.
We will see that with our hierarchical fat decomposition a deterministic con-
struction without the dependency on the spread follows immediately.

So lets assume we have a metric space (X,d), and let A C X and B C X be
two subsets of points. We say that the point sets A and B are well-separated if
A and B can each be contained in a ball of radius » whose minimum distance
is at least s -7, where s is the separation and assumed to be a constant. Let us
define the interaction product, denoted by ®, between two point sets A and B
as A@ B={{p,p'}|p€ A p € B, p#p'} Theset {{A1,B1},...,{Ak, Bx}}

is said to be a realization of A ® B if

1. A;,CAand B;C Bforalli=1,2,...,k.

2. AinB;=0foralli=1,2,... k.

3. (AZ®BZ)H(AJ®BJ):®fOI‘ all1 <i<j<k.

4. Ao B=r, A; @ B;.
The realization is said to be well-separated if it additional satisfies the property:
A; and B; are well-separated for all : = 1,2,...,k.

Let T be a tree associated with X, that is each of the leafs of T is labeled
by a singleton set containing one of the points of X and each internal node is
labeled by the union f all sets labeling the leaves of its subtree. For A, B C X
we say that a realization of A ® B uses T if all A; and B; in the realization
are nodes in 7. We define a well-separated pair decomposition (WSPD) of X
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to be a structure consisting of a tree 1" associated with X and a well-separated
realization of X ® X that uses 7.

Once we have given a well-separated pair decomposition for a point set X and
a separation constant s we can simply read of the approximate distance for any
two points p € X and p’ € X and the approximate distance has a relative error
of 1/s compared to the true distance between p and p'.

We have the following theorem:

Theorem 3.3 An HFD with bounded degree immediately implies a well-separated
pair decomposition (WSPD) of linear size in the number of input points for met-
rics of bounded doubling dimension.

Proof: The construction follows closely the lines of [CK95]. If we replace in
their construction the fair split tree by our hierarchical fat decomposition, we
get the same bounds, apart from constant factors. All we need to show is that
lemma 4.1 in [CK95] still holds, i.e. if a ball B of radius r is intersected by the
surrounding balls of a set of clusters S = {C1,Ca,...,C;} with C; N C; = 0 for
1 # j and the parent of each cluster C; has a surrounding ball of radius larger
than r/s for a constant s, then the set S can only contain a constant number
of clusters. But this is certainly true. The Packing Lemma 3.1 assures that
there are just a constant number of clusters whose surrounding balls intersect
a large ball B whose radius is larger by a constant. And as the HFD has
bounded degree, these clusters have constant number of children clusters S =
{C1,Cs,...,Ci} all together. If we eliminate all clusters in the HFD that just
have one children cluster we get that the number of well-separated pairs is
linear in the number of input points and depends only on the constant s and
the doubling dimension. O

3.4 Optimizing Energy-efficiency in Low-dimensional
Metrics

In the following we will briefly sketch how the algorithms presented in the
last chapter for wireless communication problems can also be applied for met-
rics of bounded doubling dimension. Furthermore we show how an old re-
sult ([FMS03]) can also be partly adapted from the Euclidean setting.

3.4.1 Energy-efficient k-hop Broadcast, k-set Broadcast and k-
disk cover

The algorithm presented in Section 2.2 for broadcasting in the plane can be
generalized to arbitrary metrics with bounded doubling dimension.
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Obviously, the Structure Lemma 2.2 still holds since the triangle inequality
holds. Now, instead of placing a grid onto the plane, we construct an HFD
for the nodes as in Section 3.2.2. The level of the decomposition where each
cluster is contained in a ball of radius » = A/2 replaces the grid in the approx-
imation algorithm. As the metric has bounded doubling dimension, the HFD
has bounded degree. Hence, there is just a constant number of clusters in the
decomposition of this level. We can solve this instance in the same way as for
the planar case. The construction of the decomposition can be done in a naive
way in time O(n?), but we believe that a faster construction should be possi-
ble using techniques similar to those used in [HMO06]. We want to emphasize
that our algorithm essentially works for any metric, but for metrics of bounded
doubling dimension we can guarantee polynomial running time. In fact, our
algorithm runs in polynomial time if we have constructed an HFD of bounded
degree. This is certainly true for metrics of bounded doubling dimension but as
we have seen there exist metric that admit an HFD of bounded degree but do
not have a bounded doubling dimension. Even for these metrics, our algorithm
runs in polynomial time.

A close look at the approximation algorithms from the previous chapter for
energy-efficient k-set broadcast problem and the k-disk cover problem reveals
the same properties as for the k-hop broadcast problem. Again, the whole
input can be assumed to be in a ball of radius 1 and the grid is replaced by
a the appropriate level of the HFD. The number of clusters in this level only
depends on k, € and the doubling dimension and hence can be thought of as
being constant. Thus, the coreset again has constant size and we solve it in the
same way in the planar case.

3.4.2 Energy-efficient k-hop Paths

In [FMS03] the authors have considered the problem of computing an (1 + €)
energy-optimal path between a given source node s and a target node t in a
network in R? which uses at most k& hops/transmissions. Again, the assumption
was that the required energy to transmit a message from some node p to some
other node ¢ is ||pq||®, for @ > 2 where ||pg|| denotes the Euclidean distance.
Using a rather simple construction where the neighborhood of the query pair
s and t was covered using a constant number of grid cells (depending only on
k,d,€) such queries could be answered with a (1 + €) guarantee in O(logn)
time. Similarly to the bounded-hop broadcast, we can replace this grid by a
respective level of an HFD. For bounded doubling dimension we then know that
there are only a constant number of relevant grid cells and the algorithm can be
implemented as in the Euclidean case. In [FMS03] the construction was further
refined by using a well-separated pair decomposition to actually precompute
a linear number of k-hop paths which then for a query could be accessed in
O(1) time (independent of k,d,€). We have not investigated whether this con-
struction also translates to metrics of bounded doubling dimension (where a
linear-size WSPD exists).
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3.5 Computing HFDs in Shortest-path Metrics

In wireless sensor networks, typically the employed network nodes are very low-
capability devices with simple computing and networking units. In particular,
most of these devices do not have the ability to adjust the transmission power
but always send within a fixed range. The graph representing the pairs of
nodes that can communicate with each other is then a so-called unit-disk graph
(UDG), where two nodes can exchange messages directly iff they are at distance
of most 1. Typically UDGs are considered in the Euclidean setting, but they can
be looked at in any metric space. Due to the fixed transmission power saving
energy directly by varying the latter is not possible. Still, indirectly, energy
can be saved by for example better routing schemes which yield to shorter (i.e.
fewer hops) paths. In the following we will briefly discuss how HFDs can be
used to provide such efficient routing schemes. We first show how in case of
unweighted graphs like UDGs, HFDs can be efficiently computed and then we
sketch how the structure of the HFDs can be exploited to allow for a routing
scheme with almost optimal path lengths using only small routing tables at
each node.

3.5.1 A Near-linear Time Algorithm

Consider an unweighted graph G = (V| E). All shortest paths define a shortest-
path metric on the set of vertices. If the metric has bounded doubling dimension
we can construct an HFD with bounded degree. We describe here how to do
this efficiently.

We follow the generic approach described in Section 3.2.2. At level i we need
to construct an 4‘-independent maximal set of nodes L;, the landmarks. This
can be done greedily using a modified breadth-first search algorithm on the
original graph G. At the same time we can compute the corresponding Voronoi
diagram.

We pick an arbitrary node n; and add it to the set L;. In a breadth-first
search we successively compute the set of nodes that have distance 1, that have
distance 2, and so on until we computed the set of nodes at distance 4*. We
mark each visited node as part of the Voronoi cell of node n; and store its
distance to ni. From the set of nodes at distance 4° we pick a node ns and add
it to L;. Starting from node ny we again compute the set of nodes that have
distance 1, distance 2, and so on to the node no. Similarly, if a node is not
assigned to a Voronoi cell, we assign it to ny. If it has been assigned already to
some other node but the distance to the other landmark is larger than to the
current node ng, we reassign it to the current node. We do this until no new
landmark can be found and all nodes are assigned to its Voronoi cell.

It happens that we visit a node and an edge several times. However, as the
metric has bounded doubling dimension, we visit each edge and node at most
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a constant number. For any edge or node there are just a constant number
of landmarks within distance 4' (cf. Packing Lemma 3.1). Hence, it is visited
only a constant number. Thus, the running time is O(m + n) for one level and
O((m + n)logn) for the whole construction of the HFD as there are O(logn)
levels.

3.5.2 Hierarchical Routing in Doubling Metrics

The HFD constructed above implicitly induces a hierarchical naming scheme
for all nodes of the network by building IP-type addresses which reflect in
which child cluster of each level a node v is contained (remember that there
are always only a constant number of children of each cluster). For example
if v is contained in the top-most cluster 4, in the 2nd child of that top-most
cluster and in the 5th child of that child, its name would be 4.2.5. Clusters
can be named accordingly and will be prefixes of the node names. We now
install routing tables at each node which allow for almost-shortest path routing
in the network: For every cluster C with diameter D we store at all nodes in the
network which have distance at most O(D/¢) from C a distance value (associated
with the respective address of the cluster and a pointer to the predecessor on
the shortest path to the cluster) to the boundary of C in the node’s routing
table. Now, when a message needs to be routed to a target node t and is
currently at node p, p inspects its routing table and looks for an entry which is
a as large as possible prefix of the target address. p then forwards the message
to the adjacent neighbor which is associated with this routing table entry. A
simple calculation shows that this yields paths which are at most a (1 + €)
factor longer than the optimal shortest path 3. For the size of the routing table
first consider an arbitrary node v and clusters of diameter at most D. Clearly
there are at most O((1/¢)?(®)) many such clusters which have distance less than
O(D/e) from v and have hence created a routing table entry at v. Overall there
are only logn levels and each routing table entry has size O(logn) (since the
maximum distance is n). Hence the overall size of the routing table of one node
is O((1/€)°@ log? n).

3.6 Conclusions

We have seen how to generalize algorithms for problems that lie in Euclidean
space to metric spaces with bounded doubling dimension. These metrics are
much more general than Euclidean spaces and are thus able to capture real
world instances much better. Still, our algorithms for energy-efficient wireless
communication that were based on coresets run efficiently for such metrics. The
core idea that we used was our construction of hierarchical fat decompositions

3In [FGNWO06] a similar construction was used to get paths which are at most a constant
factor longer than the shortest path. The proof follows along the same lines.
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(HFD). It was sufficient for the algorithms that the metric allows for a bounded
degree HFD, which is certainly the case for metrics of bounded doubling di-
mension. We have seen that an HFD also immediately implies a well-separated
pair decomposition for metrics of bounded doubling dimension. Furthermore,
regarding our characterization of metrics of bounded doubling dimension, it
turns out that there exist metrics which do not have bounded doubling dimen-
sion but still, a bounded degree HFD exists. It might be interesting to find a
tighter characterization of such metrics which allow a bounded degree HFD.



Chapter

k-hop Minimum Spanning Trees in
Euclidean Metrics

4.1 Introduction

We are given set P of n points in d-dimensional Euclidean space with the
distance function d(-), a fixed positive integer k and a root node r € P. The
k-hop spanning tree of P is a tree T rooted at r and spanning all points of P,
such that number of edges on any root-leaf path is not greater than k. The cost
of T' is the sum of its edge weights. In this paper we consider the k-hop spanning
tree problem of minimum cost (k-hop MST). Figure 4.1 shows an example of a
2-hop spanning tree.

Based on the methods of Arora et al. [ARR9S8| for the Euclidean k-median
problem, we present a polynomial-time approximation scheme for the k-hop
MST problem in the plane, when k is a constant.

Figure 4.1: A 2-hop minimum spanning tree. All root-leaf paths contain at
most 2 edges.
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As a byproduct of our algorithm, we also provide a polynomial-time approxima-
tion scheme for the geometric versions of the following more general problems:

The multi-level concentrator location problem. Here, we are given a set
P of nodes, a set C C P of clients and a k sets of facilities F = F,U...UF, C P
with the opening facility costs f; for each facility j € F'. The task is to open
subsets of facilities FZ-’ C F;, 1 <1 <k and assign each client to the closest level
one facility in F}, and assign each of the level (i — 1) facilities to the closest
level i facilities F, such that the opening facilities costs plus the sum of the
distances is minimized.

The bounded-depth minimum Steiner tree problem. Given a set P of
nodes, a set D of Steiner points and a root node r € P, the task is to construct
a minimum cost tree of depth k, rooted at r that spans the set P and possibly
uses some Steiner points from the set D.

It is not difficult to see that the k-hop MST is just a special case of the above
two problems, and any solutions for them would immediately imply a solution
for the k-hop MST problem.

Motivation

Minimum-cost spanning trees are pervasive and their efficient construction ap-
pears important in many practical applications. For example, in multicast-
routing problem in the area of computer networks (see, e.g. [DC90, DEF194])
a number of clients and a server are connected by a common communication
network. The server wishes to transmit identical information to all client nodes.
Most solutions to the multicast problem involve computing a tree rooted at the
server and spanning the client nodes. The server then transmits the data to
its immediate children in the tree and intermediate nodes forward incoming
data to their respective descendants in the tree. Tree-routing schemes allow
for fast data delivery while keeping the total network load low. Kompella et
al. [KPP93] consider the problem of computing multicast-trees that minimize
the overall network cost as well as the maximum transmission latency on any
path in the tree connecting the server to a client node. It is not hard to see
that a multi-hop transmission with too many hops will increase the latency
of the communication. Moreover, transmission with too many hops will in-
evitably increase the probability of a link failure. Thus, assuming that all links
in the network have roughly the same transmission delay (which is a reasonable
assumption in local area networks), limiting the number of hops in the transmis-
sion to some small integer k£ helps in achieving fast and reliable communication
protocols.
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Related Work

In the classic metric facility location problem, we are given a set of clients C
and a set of facilities /' with metric edge costs ¢;j, for all i € F,j € C and
opening cost f; for all facilities ¢ € F. The goal is to open subset of facilities
F’' C F such that the sum of opening facility costs, plus the sum of the costs
of assigning each client to its closest facility in F’ is minimized. The best
known approximation algorithm is by Mahdian et al. [MYZ02] that achieves
1.52 approximation ratio. Note that the 2-hop MST is a special case of the
facility location problem, e.g. replace each facility cost f; by the distance from
i to the root r. Thus, all the approximation results for facility location problem
apply immediately to the 2-hop MST. Guha and Khuller [GK99] proved that
the existence of a polynomial time 1.463-approximation algorithm for the metric
facility location problem would imply that P = NP. This hardness result also
applies for the 2-hop MST problem.

For the Euclidean facility location problem a randomized PTAS based on Arora’s
technique [Aro98] for the Euclidean TSP is presented in [ARR98], for the points
in the plane. Unfortunately, for d-dimensional geometric instances and d > 2,
the algorithms runs only in quasi-polynomial time. However, Kolliopoulos and
Rao [KR99] were able to construct a nearly linear time randomized PTAS for
facility location problem for any d-dimensional Euclidean space. The small
errors in this paper were fixed by the authors in [KRO7].

Zhang [Zha04] gives a 1.77-approximation algorithm for the metric two-level
concentrator location problem which is a generalization of the 3-hop MST.

The first constant factor approximation for the bounded depth steiner tree
problem and likewise for the k-hop MST in general metric spaces is presented
by Kantor and Peleg in [KP06]. The approximation ratio of their algorithm
is rather high, though. More precisely, they construct a polynomial time ap-
proximation algorithm with approximation ratio 1.52-9%~2 for complete graphs
whose weight function is a metric.

Althaus et al. [AFHP105] present an approximation algorithm that computes
a k-hop spanning tree in general metric spaces of total expected cost O(logn)
times the cost of the optimal k-hop MST. They approximate the metric space
into a tree metric using the result by Fakcharoenphol et al. [FRT03] who showed
that any metric space can be probabilistically approximated by a family of tree
metrics such that the expected stretch in the cost is at most O(logn). Althaus
et al. develop an exact algorithm for the k-hop MST in the special case when
the cost function is induced by a tree.

Clementi et al. [CIM™05] present an algorithm that computes with high prob-
ability a constant approximation for constant k£ for random instances in the
plane.
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Our Contribution

In this chapter we present the first PTAS for the k-hop MST problem in the
plane. We extend the technique of Arora et al. [ARR9S8] for the Euclidean k-
median problem and show that the (1 + ¢€) solution for the k-hop MST problem
can be computed in polynomial time.

In Section 4.2 we review the quadtree dissection from [ARR98] and show that
there exists a (1 + €) solution to the k-hop MST problem with respect to the
given dissection. Furthermore, in Section 4.3 we show how to compute such an
approximate solution with a dynamic programming algorithm in time (%)O(k/ 9.
We also extend our algorithm to the multi-level concentrator location problem
and the bounded depth minimum Steiner tree problem in Section 4.4.

4.2 Preliminaries

In this part we describe the quadtree dissection from [ARR98] and show the
existence of approximately optimal solutions with a simple structure based on a
given dissection. Let P denote a set of n points in the plane. The bounding box
is the smallest axis-aligned square that contains all points of P. The side-length
of the bounding box is the length of its side. In the following, we assume that
the bounding box of the points has side-length L = n/e and all points of P lie
on gridpoints of the unit grid defined on the bounding box. Note that the cost
increase of the optimum is negligible since moving each point to the closest grid
point will increase the minimum cost k-hop MST by at most € - OPT.

A dissection of a box is a recursive partition of the box into lower level boxes.
More precisely, we view the dissection as a hierarchical decomposition of the
plane into boxes. A box in a dissection is any box that can be obtained by
a recursive splitting process that starts with the bounding box and generally
splits an existing dissection box by 2 axis-orthogonal lines passing through its
center into 4 identical subboxes. Such a decomposition naturally defines a 4-ary
tree. Each line is assigned a level. There are 2¢ level i lines that partition level 4
boxes into level i+ 1 boxes. The size of a box is its side length. A nice property
of the dissection boxes is that any two boxes either have disjoint interiors or
one is contained inside the other. Note that there are O(L?) nodes in the tree
and its depth is log L = O(log(n/¢)). The dissection is depicted in Figure 4.2.
This dissection is quite similar to our hierarchical fat decomposition (HFD)
developed in Chapter 3.

We randomize the levels in the dissection of the bounding box the same way
as in [Aro98, ARR98]. Namely, randomly pick two integers 0 < a,b < L. The
(a, b)-shift of the dissection is defined by shifting = and y coordinates of all lines
by a and b respectively, and then reducing modulo L.
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L

Figure 4.2: The bounding box and the dissection of the plane with a point set is
displayed. The thick lines correspond to level 0 lines, the thin lines correspond
to level 1 lines and the dotted lines are level 2 lines.

Note that the solution to the k-hop MST problem consists of a collection of
line segments. We will only allow the segments to bend and pass through a set
of prespecified points called portals. More precisely, place 2'm equally spaced
portals on each level i line. Moreover, at the corner of each dissection box place
a portal. Note that each level i + 1 box in the dissection has m portals on its
two level i + 1 edges and strictly less than m portals on its two level ¢ edges.
In general, any box in the dissection has at most 4m portals.

A solution to the k-hop MST problem is called portal-respecting if it crosses a
dissection box only at portals.

Suppose we are given the optimal set of line segments that describe an optimal
k-hop MST solution. To make the solution portal-respecting, we need to deflect
each edge that crosses a side of a box in the dissection to the nearest portal.
Note that if the size of the box is [, we need to deflect each edge by at most
[/m to make it pass through a portal.

Since the shifts a and b are chosen randomly, we have that the probability that
each vertical/horizontal line [ in the grid is from the level i: Pr[l is at level i] =
2¢/L. Using this fact, Arora at el. [ARR98] show the following Structure theo-
rem:

Lemma 4.1 For any collection of line segments, random shifts a and b and
m > 1, the bending process will, with probability at least 1/2, deflect the seg-
ments by at most O(log L/m) times the sum of the length of the line segments.

Since the above Lemma 4.1 holds for any set of line segments, it also implies
the following:

Corollary 4.2 Let r € P denote the root node and let shifts a and b be chosen
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9] log(n/e)

uniformly at random. Let m = (7> for any € > 0. Then, with prob-

€

ability of at least 1/2 the cost of the optimal portal-respecting solution for the
k-hop MST problem is at most (1 + €) - OPT, where OPT denotes the optimal
cost of the k-hop MST.

4.3 The Algorithm

In this section we will describe the algorithm to compute an optimal portal-
respecting k-hop MST which is, with probability of at least 1/2, a (1 + €)-
approximation to the optimal k-hop MST.

Consider any optimal k-hop MST. We assign each node a level depending on
the number of hops to the root r, where r is assigned level 0, its immediate
neighbors are assigned 1 and so on. We also assign levels to the edges. An edge
from a level ¢ — 1 node to a level ¢ node is assigned the level i. Hence, we have
nodes from level 0 to k and edges from level 1 to k.

Consider now a box in the dissection as described in the previous section. Re-
member that edges are only allowed to cross the boundary of the box at portals.
The optimal solution inside the box is fully determined if we know for each por-
tal and each level i the distance from the portal to the nearest node of level
i outside the box. Conversely, the optimal solution outside this box is fully
determined if we know for each portal and each level 7 the distance from the
portal to the nearest node of level 7 inside this box.

Hence, if we fix all distances at the portals of a box to all nearest nodes of levels
0 to kK — 1, only the solution inside this box with minimal cost can be part of
an optimal solution. This enables us to design the following dynamic program.

We store in the table Table(B,insidey, ..., inside;_1,outsidey, ..., outsideg_1)
the cheapest solution for box B that respects the given inside and outside
function, where inside; denotes the distance function on the portals to the
closest node of level i inside box B. Function outside; is defined analogously.
In other words inside; describes what box B can provide to the outside and
outside; describes what can be provided to box B from outside. For the distance
function inside; we can still allow an additional additive error of I/m as the
distance between two neighboring portals is already [/m. Remember that the
size of box B is [ and we have placed m portals on its boundary. Thus, we
have inside;(p) € {0,1/m,2l/m,...,2],00} for a portal p and two neighboring
portals differ by at most [/m. We assign oo as a value for inside;(p), if no node
of level i is inside the corresponding box. Hence, we have at most 2m - 3*™
possible assignments per box for each inside; function.

A slightly different reasoning holds for the outside; functions. Here, the maximal
distance from a portal to an outside node can be at most 2L. Again, we
can allow an additional additive error of [/m. Hence, we have outside;(p) €



THE ALGORITHM 73

i) ke

[ )
Figure 4.3: All nodes actually lie on Figure 4.4: All nodes actually lie
top of each other and the edges pass on top of each other and the dot-
through one portal. ted lines have length 0.

{0,1/m,2l/m,...,2L,00}. This sums up to at most 2Lm/ different values and
at most 2Lm/l - 3*™ possible assignments per box for each outside; function.
This could be reduced by making the gap between two consecutive values larger
as the distance becomes larger, since for larger distances we anyway have a
larger additional error due to a larger interportal distance, but we omit this
here. In total we have T' = 4Lm? - 3%™F entries in table Table per box B.

Computing the table

We compute the table Table bottom up. There are two different base cases:
1. The root r is inside the bor B.

We set Table(B, insidey, . . ., insideg_1, outsidey, . . . ,outsidei_1) to cost 0 if the
following two conditions both hold

1. insideg(p) is the distance from each portal p to the root r, and

2. inside;(p) for i > 1 is oo for all p.

Should at least one of the above conditions not hold, we set its corresponding
Table entry to co.

2. The box B contains at least one node but no root.

Note that all nodes lie in the center of box B and thus on top of each other due
to the initial perturbation. Let one of these nodes be node ¢. If inside;(p) is
the distance between the nodes in the box and each portal p for all p and some
i > 1, and insidey(p) = oo for all i’ # i, and all portals p, we then connect
node ¢ to the portal p’ such that dist(q,p’) + outside;_1(p’) is minimal among
all portals of this box. We store this cost in the corresponding Table entry. If
however, all inside;(p) are oo for all ¢ and all p, i.e. this box does not provide
any reachable node to the outside, we have to distinguish two cases. In the



74 GENERALIZATIONS

first case it is cheaper to connect all nodes to a level £k — 1 node as depicted in
Figure 4.3. In the second case, it is cheaper to connect one node ¢ to a node of
level at most k — 2 and then connecting all other nodes inside the box to this
node ¢ as in Figure 4.4. Which case we have can be determined by looking at
the corresponding outside; functions. We store the cost in the corresponding
Table entry. In all other cases, i.e. the inside; and outside; functions do not
fully satisfy one of the above cases, we set the corresponding Table entry to oo,
since such a configuration can never be satisfied.

If we are not in the base case, the entry of Table(B,insidey,...,insidex_1,
outsidey, . .., outside;y_1) can be computed from the corresponding table en-

tries Table(B;, inside(()j ), . ,inside,(jzl outside((]j ), .. ,outside,(cjzl), for 1 <j <4,

where By, By, B3 and By are the four sub-boxes of B, and insidegj) and
outsidegj ) are the corresponding inside and outside functions of level ¢ of sub-
box Bj;. Once all inside; and outside; functions are fixed we go through all
possible insidez(-j ) Z(-j ) functions that comply with distance functions
of box B. As we only have approximate distances stored we again intro-
duce an additive error of at most I/m per line segment. However, this er-
ror is at most the error that occurs while making an edge portal-respecting
for this box and hence, can be neglected here. We sum up the correspond-
ing costs for By, By, B3 and By and store the minimal in the corresponding
Table(B, insidey, . . ., inside_1, outsidey, . . . , outsider_1) entry. The time spent

per box amounts then to O(T?).

and outside

As there are L? boxes in the dissection the total running time amounts to

O(L2 ) T5) _ (ﬁ)o(k/f).

€

We conclude with the main theorem:

Theorem 4.3 The k-hop minimum spanning tree problem in the Fuclidean
plane admits a polynomial time approrimation scheme for any fized k.

4.4 Generalizations

The bounded-depth minimum Steiner tree problem

Our approach easily generalizes to the shallow Steiner tree problem. Here, one
is also allowed to use Steiner points in the bounded-hop MST. We just have to
change the base case in our algorithm. If we only have Steiner points inside a
box we have two options: either use the Steiner point or do not use it. This
can be easily decided based on the distance functions on the portals.
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The multi-level concentrator location problem

If we assign levels to the Steiner points and also opening costs for using a
Steiner point, we are left with the multi-level concentrator location problem.
This problem can also be solved using our approach. We just have to add the
opening cost to the corresponding Table entry. For the initial perturbation
it suffices to have a lower bound on the optimal cost which is polynomial in
the number of nodes n. The corresponding k-level facility location problem
obviously is an n-approximation. Aardal et al. [ACS99] showed how to compute
a 3-approximation for this problem. Hence, the initial bounding box has size
L = 3n?/e, and the running time adapts accordingly.

4.5 Conclusions and Open Problems

We provided the first polynomial time approximation scheme for the k-hop
minimum spanning tree and related problems in the plane. The algorithm
follows along the lines of Arora et al. [ARR98]. Thus, the algorithm can be
generalized to higher dimensions but with only quasi-polynomial running time.
It would be interesting to find a PTAS also for higher dimensions. As mentioned
before, Kolliopoulos and Rao in [KR07| construct a randomized PTAS for k-
median problem in the d-dimensional Euclidean space. However, their Structure
theorem and algorithm is based on an adaptive dissection that guesses at every
level the solution to the optimal facility assignment. Unfortunately, it is not
obvious how to adapt their dissection to problems like the k-hop MST problem.
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