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The “universal” instability has recently been revived by Landreman, Antonsen and

Dorland1, who showed that it indeed exists in plasma geometries with straight (but

sheared) magnetic field lines. Here it is demonstrated analytically that this instability

can be present in more general sheared and toroidal geometries. In a torus, the

universal instability is shown to be closely related to the trapped-electron mode,

although the trapped-electron drive is usually dominant. However, this drive can be

weakened or eliminated, as in the case in stellarators with the maximum-J property,

leaving the parallel Landau resonance to drive a residual mode, which is identified as

the universal instability.

PACS numbers: 52.35.Kt, 52.55.Hc, 52.25.Dg
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In an ironic turn of events, the “universal” instability has recently been revived1. This

instability of ordinary drift waves was first predicted in the 1960’s2,3 but brought into dis-

repute in the late 1970’s by a series of papers demonstrating that it is actually absent in

the simplest limit of small ion gyroradius, k⊥ρi ≪ 1, if there is no temperature gradient

or magnetic-field curvature4–6. It was even thought (erroneously) that stability prevails at

finite k⊥ρi, so that a plasma without temperature gradients would always be stable in a

simple sheared magnetic field7. For more information about the long and tortuous history

of drift-wave (in)stability, we refer the reader to the reviews by Horton8 and Connor9. In

the latest twist of the story, the recent work of Landreman, Antonsen and Dorland has now

shown that the universal instability exists after all, if k⊥ρi is finite. Their (numerical) proof

was restricted to a straight, sheared magnetic field, and thus raises the question of whether

the instability also exists in more general magnetic geometry.

The universal instability is electrostatic in nature and requires both the ions and the

electrons to be treated kinetically. The dispersion relation is obtained from the gyrokinetic

formulation of the quasineutrality condition, which in a hydrogen plasma can be written as

δni = δne, (1)

where the perturbed density of species a is

δna = −naeaϕ
Ta

+
∫
gaJ0d

3v. (2)

The perturbed distribution functions ga are here defined such that the full distribution

functions are fa = fa0(1−eaϕ/Ta)+ga, the electrostatic potential is denoted by ϕ, the argu-

ment of the Bessel function is k⊥v⊥/Ωa (but the electron gyroradius will be neglected), the

gyrofrequency is denoted by Ωa = eaB/ma, and the rest of the notation is standard. We con-

sider the instability in the collisionless, electrostatic approximation, where the distribution

functions satisfy the gyrokinetic equation

iv∥∇∥ga + (ω − ωda)ga =
eaϕ

Ta
J0
(
ω − ωT∗a

)
fa0. (3)

Here, we use the kinetic energy ε = mav
2/2 and λ = v2⊥/(v

2B) as independent velocity-

space variables, and the parallel derivative ∇∥ is taken holding these constant. The mode

frequency is denoted by ω, the drift frequency by ωda = k⊥ · vda, the diamagnetic frequency

by ω∗a = (Ta/naeaB
2)(k⊥ ×B) · ∇na, with B = ∇ψ ×∇α, and k⊥ = kψ∇ψ + kα∇α, and
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we have written

ωT∗a = ω∗a

[
1 + ηa

(
x2 − 3

2

)]
,

with x2 = mav
2/2Ta and ηa = d lnTa/d lnna. The universal instability is most readily ob-

tained in the limit vT i/L∥ ≪ ω, where vTi denotes the ion thermal speed and L∥ = 1/∇∥ lnϕ

is the length scale of the instability along the magnetic field. We note that parallel ion

motion can be retained perturbatively, as in previous works, but does not significantly alter

the subsequent analysis. It is thus neglected here, but details of how it affects the argument

are displayed in the Appendix. For simplicity, we will also neglect ωdi; this assumption will

be discussed more later. The solution to the ion gyrokinetic equation is then

gi =
eϕ

Ti
J0

(
1− ωT∗i

ω

)
fi0, (4)

and the quasineutrality condition (1) becomes[
1 +

Te
Ti

(1− Γ0)−
ω∗e

ω
(Γ0 − ηib (Γ0 − Γ1))

]
ϕ+

Te
ne

∫
ged

3v = 0, (5)

where Γn = In(b)e
−b and b = k2⊥ρ

2
i = k2⊥Ti/(miΩ

2
i ).

What remains is the system composed of equation (3) for the electrons and the constraint

(5), which is in general difficult to solve analytically. However, the case of a constant,

unsheared magnetic field is relatively simple to analyze, and we examine this case now as it

will bring clarity to the general result later. The electron response in this limit becomes

ge = −eϕ
Te

ω − ωT∗e
ω − k∥v∥

fe0,

so that
Te
ne

∫
ged

3v = i
√
π

ω

k∥vTe

[
1− ω∗e

ω

(
1− ηe

2

)]
ϕ, (6)

if ω = ωr + iγ with γ ∼ ωr ≪ k∥vTe. It is now a simple matter to find unstable regions

in parameter space from Eq. (5). A particularly clear limit is that of small perpendicular

wavelength, k⊥ρi ≫ 1, where

Γ0 ≃
1√
2πb

(
1 +

1

8b

)
,

Γ1 ≃
1√
2πb

(
1− 3

8b

)
,

and thus
ω

ω∗e
≃ 1√

2πb
· 1− ηi/2

1 + Te
Ti

− i
√
π ω∗e
k∥vTe

(
1− ηe

2

) ,
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implying that the plasma is unstable if ηi and ηe are both less than 2 or both greater than

2.

We now turn to our main topic of interest, the question of stability in general sheared

magnetic geometry. For topologically toroidal magnetic fields, the gyrokinetic equation as

written in Eq. (3), can be interpreted in ballooning space. It is worth noting that while

previous studies of the universal instability have been done in Fourier space, the formula-

tion in ballooning space is equivalent, as can be demonstrated, with some care, by Fourier

transformation. To pass to ballooning space, we simply write ∇∥ = ∂/∂l, where l denotes

the arc length along the magnetic field line, now taken to extend infinitely in both directions,

and we note that the argument of the Bessel function J0 now varies with l. The diamagnetic

frequency ω∗i = (kαTi/ne)dn/dψ is independent of l, but

k⊥ = |kψ∇ψ + kα∇α|

varies on the length scale of the shear length, Ls, along the field. As is well known, solutions

in the torus are obtained by transformation of the ballooning space solutions, but we note

that one can also interpret solutions as applying directly to infinite sheared geometries, of

which the simplest example is the sheared slab. The following analysis is to be interpreted in

both ways, i.e. as applying to the old sheared-slab universal instability, and also as applying

to a generalized toroidal version.

Because the magnetic field strength and the shear vary along the magnetic field, the

mode structure and the dispersion relation can no longer be obtained analytically, but we

can nevertheless extract most of the information we need by the quadratic form obtained

by multiplying Eq. (5) by the complex conjugate of the electrostatic potential, ϕ∗, and

integrating along the entire field line, −∞ < l <∞,

∫ ∞

−∞

[
1 +

Te
Ti

(1− Γ0)−
ω∗e

ω
(Γ0 − ηib (Γ0 − Γ1))

]
|ϕ|2dl

B
+
Te
ne

∫ ∞

−∞
ϕ∗dl

B

∫
ged

3v = 0. (7)

The imaginary part of this equation is

γω∗e

ω2
r + γ2

∫ ∞

−∞
[Γ0 − ηib (Γ0 − Γ1)] |ϕ|2

dl

B
=

Te
ne2

Qe(ω), (8)

where

Qe(ω) = −e Im
∫ ∞

−∞
ϕ∗dl

B

∫
ged

3v,
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and we conclude that instability is impossible unless Qe(ω)/ω∗e is positive. Physically, Qe

is proportional to the work done by the electrons on the instability8,10,11. It was calculated

in Ref.10 and found to be a sum of contributions from passing and trapped particles,

Qe(ω) = Qep(ω) +Qet(ω),

where, if 0 < γ ≪ |ωr|, the former is given by

Qep(ω) = − ne2

TevTe
√
π

∫ ∞

0
(ω − ωT∗e)e

−x2xdx
∫ 1/Bmax

0
dλ

∑
j=cos,sin

|ψj(x, λ, ω)|2 , (9)

with (
ψcos(x, λ, t)

ψsin(x, λ, t)

)
=
∫ ∞

−∞

(
cos

sin

)
M(t, 0, l)

ϕ(l)dl√
1− λB

,

and

M(ω, a, b) =
∫ b

a
(ω − ωda)

dl′∣∣∣v∥∣∣∣ ,
The corresponding contribution from the trapped particles is given by

Qet(ω) = −2
√
πne2

TevTe

∞∑
m=−∞

∫ ∞

0
(ω − ωT∗e)e

−x2xdx

×
∫ 1/Bmax

1/Bmin

dλ
∑
wells

δ (M(ω, l1, l2)−mπ) |ψt(x, λ, ω)|2 , (10)

where the sum is taken over all the trapping wells along the field line, l1,2 denote the locations

of consecutive bounce points, and

ψt(x, λ, ω) =
∫ l2

l1

cosM(ω, l1, l)√
1− λB

ϕ(l)dl.

We now take the limit ω ≪ k∥vTe, where M ≪ 1, and note that the passing-particle

contribution (9),

Qep(ω)

ω∗e
=

ne2

2
√
πvTeTe

(
1− ηe

2
− ω

ω∗e

) ∫ 1/Bmax

0
|ψcos|2 dλ, (11)

exactly corresponds to that producing the universal instability in a straight magnetic field,

Eq. (6), but is relatively small compared with the contribution from trapped electrons. The

latter is dominated by the m = 0 term in the sum (10), and because of the delta function,

this term picks out the resonance ω = ωde (an overbar denotes the bounce average) and is

larger than Eq. (11) by a factor k∥vTe/ω ≫ 1.
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We are thus led to the conclusion that in arbitrary toroidal geometry the same driving

mechanism (parallel Landau resonance) is present to drive an instability as in the case of a

straight magnetic field, but it is generally overwhelmed by the trapped-particle drive. To

prove that an instability similar to the universal one nevertheless exists in certain geometries,

we consider the limit of steep density gradient, ω∗e ≫ ωde. In this limit, we can neglect ωde

in a first approximation, so that the trapped-electron response simply becomes

ge = −
(
1− ω∗e

ω

)
eϕ

Te
fe0.

Equation (7) then yields the following variational form for the real frequency11,

ω

ω∗e
=
N [ϕ]

D[ϕ]
, (12)

where the functionals N and D are defined by

N [ϕ] =
∫ ∞

−∞
Γ0|ϕ|2

dl

B
− 1

2

∫ 1/Bmin

1/Bmax

∑
j

τj|ϕj|2dλ,

D[ϕ] =
∫ ∞

−∞

[
1 +

Te
Ti

(1− Γ0)
]
|ϕ|2dl

B
− 1

2

∫ 1/Bmin

1/Bmax

∑
j

τj|ϕj|2dλ.

and we have taken ηi = 0 for simplicity. The sums appearing in these expressions are taken

over all trapping wells along the field line, and

τj(λ) =
∫ l2

l1

dl√
1− λB(l)

denotes the normalized bounce time in such a well. The key idea here is that Eq. (12)

furnishes the zeroth order solution (ωr, ϕ(l)). The growth rate is then computed directly

from Eq. (8), which exactly accounts for the resonances. We do not do this computation

explicitly, but argue for the existence of a particular solution as follows.

The denominator D[ϕ] in Eq. (12) is always positive, because of the Schwartz inequality,

1

2

∫ 1/Bmin

1/Bmax

∑
j

τj|ϕj|2dλ ≤
√
1− Bmin

Bmax

∫
|ϕ|2dl

B
,

and so is the numerator N [ϕ] when the perpendicular wavelength b = k2⊥ρ
2
i vanishes. Thus

we have 0 < N [ϕ] < D[ϕ] for small b, and there is therefore a range of perpendicular

wavelengths for which the real frequency satisfies 0 < ω/ω∗e < 1, making the passing-

electron contribution to the growth rate (11) positive if ηe < 2, regardless of the (unknown)

6



mode structure ϕ(l). As already remarked, this contribution is however usually overwhelmed

by the trapped-particle drive (10), but the latter can be made arbitrarily small by tailoring

the magnetic field. In a tokamak, this can be achieved by increasing the aspect ratio so

as to reduce the fraction of trapped particles. In a stellarator, it can be accomplished by

minimizing the amount of unfavorable bounce-averaged curvature. In the limit of a so-called

maximum-J stellarator10,11, all trapped particles experience average favorable curvature, so

that ω∗eωde < 0 for all orbits. Because ω has the same sign as ω∗e, there are then no

resonances in the delta function of Eq. (10) and the trapped-electron drive vanishes. In

both cases, we are left with an instability driven by circulating electrons through a parallel

Landau resonance producing a response (11) very much like that in a straight magnetic

field. Note that this instability does not require a temperature gradient but can be driven

by a density gradient alone. For the purposes of comparing this result with previous work,

we note that inclusion of finite parallel ion motion in the ion response merely introduces an

extra quadratic term to the left-hand-side of Eq. (7), as shown in the Appendix. This term

is of order (k∥vTi/ω)
2 compared with the others, and is additionally small at large k⊥ρi.

The numerical simulations of Ref.1 showed that, in a linearly sheared field where k⊥ =

ky (1 + l2/L2
s)

1/2
, the universal instability only occurs at sufficienty small shear, Ls/Ln > 13,

where Ln denotes the density-profile scale length. It is interesting to note that a lower bound

on Ls/Ln is indeed necessary for our ordering k∥vT i/ω ≪ 1, without which strong Landau

damping on the ions would occur. For, according to the variational principle (12), this

parameter equals

ω

k∥vTi
=
N [ϕ]

D[ϕ]

kyρi
k∥Ln

(13)

where the function Γ0 in the definition of N [ϕ] decays like

Γ0 ∼
1√
2πb

∼ Ls/l√
2πkyρi

as l → ∞. Thus, if the width (measured crudely by k−1
∥ ) of the eigenfunction ϕ(l) exceeds

Ls, then N [ϕ]/D[ϕ] ∼ k∥Ls/
√
2πkyρi and the ordering k∥vTi/ω ≪ 1 requires

Ls
Ln

≫ 1√
kyρi

.

On the other hand, if k∥Ls > 1, then N [ϕ]/D[ϕ] = O(1) and the condition that Eq. (13)
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exceed unity implies
Ls
Ln

≫ 1

kyρi
.

It therefore seems understandable that there should be a limit on Ls/Ln below which insta-

bility cannot occur.

Let us summarize and discuss our findings. First, we have given new theoretical support

for the existence of the universal instability in a sheared slab geometry, the context in which

the mode has been traditionally studied. This may not at once be apparent, but it is

because the sheared slab is a limit of the gyrokinetic system in ballooning space, and this

limit can be approached as described above, by continuously deforming a general magnetic

field. Our argument requires k⊥ρi = O(1), and so does not contradict stability proofs4–6

where this parameter was taken to be small, but our results are in disagreement with Ref.7.

We have also established the existence of the instability in topologically toroidal magnetic

geometry. In particular, maximum-J stellarators prove an intriguing example: It turns out

that the stability of trapped-electron modes in these configurations leaves space for the

universal instability to appear. It seems suitably ironic that the instability called universal

may ultimately be found lurking in the most exotic of places.
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APPENDIX: PARALLEL ION MOTION

When the first term in Eq. (3) is small for the ions, it can be accounted for perturbatively,

by denoting the lowest-order solution (4) by Gi and writing

gi = Gi −
iv∥
ω

∇∥

(
Gi −

iv∥
ω

∇∥gi

)
.

Approximating the last term on the right by Gi, we find the ion density perturbation to

be
δni
n

= −eϕ
Ti

+
δn0 + δn1

n
,

with
δn0

n
=

1

n

∫
GiJ0d

3v =
eϕ

Ti

[
−1 +

(
1− ω∗i

ω

)
Γ0 −

ηiω∗i

ω
b(Γ0 − Γ1)

]
,

δn1

n
= − B

nω2

∫ ∞

0
fi0

(
1− ωT∗i

ω

)
2πv4dv

∫ 1/B

0
J0∇∥

[√
1− λB ∇∥(J0ϕ)

]
dλ,

and in Eq. (7) we thus obtain the following additional term on the left-hand side

Te
nω2Ti

∫ ∞

−∞

dl

B

∫
fi0

(
1− ωT∗i

ω

)
v2∥v

2
∣∣∣∇∥(J0ϕ)

∣∣∣2 d3v,
which is a small correction, of order (k∥vT i/ω)

2, to the other terms. It appears that this

term can be either stabilizing or destabilizing.
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